Optimization of functioning of semiconductor optical amplifier as intensity modulator of signals in optical telecommunication systems (Оптимизация функционирования полупроводникового оптического усилителя в качестве модулятора интенсивности сигналов в оптических телекоммуникационных системах) тема диссертации и автореферата по ВАК РФ 05.13.01, кандидат наук Язбек Хуссейн

  • Язбек Хуссейн
  • кандидат науккандидат наук
  • 2020, ФГАОУ ВО «Российский университет дружбы народов»
  • Специальность ВАК РФ05.13.01
  • Количество страниц 127
Язбек Хуссейн. Optimization of functioning of semiconductor optical amplifier as intensity modulator of signals in optical telecommunication systems (Оптимизация функционирования полупроводникового оптического усилителя в качестве модулятора интенсивности сигналов в оптических телекоммуникационных системах): дис. кандидат наук: 05.13.01 - Системный анализ, управление и обработка информации (по отраслям). ФГАОУ ВО «Российский университет дружбы народов». 2020. 127 с.

Оглавление диссертации кандидат наук Язбек Хуссейн

TABLE OF CONTENTS

ABBREVIATION LIST

INTRODUCTION

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1. Introduction

1.1.2. Optical Network Hierarchy

1.1.3. Optical access networks

1.1.4. Next-generation passive optical networks (NG-PON)

1.2. IM-DD transmission system

1.3. Semiconductor Optical Amplifiers

1.3.1. Semiconductor optical amplifier composition

1.3.2. SOA characteristics

1.3.3. SOA as an external modulator

1.4. Quantum-Dot Semiconductor Optical Amplifiers (QD-SOA)

1.5. Multi-Electrode Semiconductor Optical Amplifiers (ME-SOA)

1.6. Orthogonal frequency-division multiplexing (OFDM)

1.6.1. Evaluation criteria for optical OFDM signals

1.6.2. OFDM transmitter

1.6.3. Optical transmitter devices

1.6.4. External modulation

1.6.5. Optical fiber channel

1.6.6. PIN-photodiode

1.6.7. Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC)

1.7. Conclusion

CHAPTER 2: RESEARCH METHODOLOGY

2.1. Introduction

2.2. The proposed Optical transmission system

2.2.1. Transmitter Section

2.2.2. Models for SMF and PIN Detector

2.2.3. Receiver Section

2.2.4. Single Semiconductor Optical Amplifiers (SOA) as an Electrical to Optical Converter (E/O)

2.2.4.1. SOA-Based Intensity Modulator Model

2.2.4.2. QD-SOA-Based Intensity Modulator Model

2.3. (ME-SOA/ME-QDSOA)-Based Intensity Modulator Model

2.4. Simulation parameters

2.5. Used devices and tools

2.6. Preparation

2.7. Simulation procedure

2.8. Conclusion

CHAPTER 3: THE PROPOSED OPTICAL FIBER LINK WITH ME-SOA MODEL PERFORMANCE DISCUSSION

3.1. Introduction

3.2. ME-SOA dynamic simulation results

3.3. Contour plots of system throughput

3.4. Conclusion

CHAPTER 4: THE PROPOSED OPTICAL FIBER LINK WITH ME-QD-SOA MODEL PERFORMANCE DISCUSSION

4.1. Introduction

4.2. ME-QD-SOA dynamic simulation results

4.3. Multi-Electrode Quantum-Dot Semiconductor Optical Amplifier ME-QD-SOA dynamic simulation results at Fs = 25GS/s

4.4. Contour Plots of system throughput

4.5. Conclusion

CHAPTER 5: PERFORMANCE COMPARISON OF ME-SOA AND ME-QD-SOA INTENSITY MODULATORS

5.1. Introduction

5.2. ME-SOA compared to ME-QD-SOA

5.3. Contour plots of system throughput

5.4. Conclusion

REFERENCES

Appendix A:

Appendix B:

Рекомендованный список диссертаций по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК

Введение диссертации (часть автореферата) на тему «Optimization of functioning of semiconductor optical amplifier as intensity modulator of signals in optical telecommunication systems (Оптимизация функционирования полупроводникового оптического усилителя в качестве модулятора интенсивности сигналов в оптических телекоммуникационных системах)»

INTRODUCTION

Relevance of research:

The problems of system analysis, optimization, control, decision-making and information processing of optical telecommunication systems are extremely relevant from the point of view of determining the criteria that affect their functioning and assessing their efficiency, quality and reliability.

Optical access networks are the last part of an optical network that connects between the central office and the customer premises. This last link typically extends between 20 km up to 40 km. Optical fiber connections yearly are boosted by 28%.

Previous works used Orthogonal Frequency Division Multiplexing (OFDM) signals for enhancing the optical access network, since OFDM is a very well-known modulation technique used in both wireline and wireless communication systems [83].

Adaptively modulated optical orthogonal frequency multiplexing (AMOOFDM) signal exploits the entire bandwidth by allocating the suitable modulation format (DPSK, QPSK, 8-256 QAM) to each subcarrier independently. The modulation format is recognized by negotiations between the transmitter and receiver at the beginning of establishing a connection in the single-mode fiber (SMF) system [101].

In the last ten years, AMOOFDM signals have been investigated in relation to the problems of optimization of optical communication systems using Semiconductor Optical Amplifier (SOA) technology for enhancing the performance of the optical access networks. The use of SOA for this purpose is an urgent topic for research in optical communication systems in terms of

determining criteria for system optimization. Through these studies, signal intensity, bit-rate and transmission range were determined as criteria. As a result, a special mathematical and algorithmic software was developed that allows simulating a system with a transmission rate of about 30 Gbps for one optical channel at a distance of up to 80 km using SOA, and when using a reflective SOA, it reached only 60 km. The use of quantum dot SOA (QD-SOA) instead of a conventional and reflective device did not increase the transmission distance. The use of two-stage SOA improved the distance to 90 km. But still, when all of the above systems are used, there is a sharp drop in the power level of high-frequency subcarriers, which leads to a limitation of the system throughput to a maximum of 30 Gbps and a distance to a maximum of 90 km, since there is still no specific design to solve this problem.

Extending the transmission reach is vital to reduce the cost of the system by reducing the number of nodes required between the central office and the customer premises. While increasing the system capacity is vital to increase the quality of service per single customer or to increase the number of served customers per one fiber link or one fiber channel.

Therefore, for the tasks of optimizing optical communication systems using SOA technology based on the selected criteria for optimizing the system to improve the performance of optical access networks, the urgent task is to develop new SOA designs and methods of their operation to determine optimal criteria in order to increase the performance of optical networks and expand the access range. The result can be achieved by modeling new optimal SOA and QD-SOA designs that improve the bit-rate and transmission range of AMOOFDM signals in the intensity modulator of a direct detection receiver in passive optical networks. This is made possible by expanding the system bandwidth on the transmitter side by using these configurations as an

electrical-to-optical converter, which will solve the system bandwidth problem by eliminating the problem of power drop in high frequency subcarriers of AMOOFDM signals.

Since the formulated traditional problem is complex, not convex in the search space, and, therefore, has many extreme solutions, it is solved by technical methods, and not by classical algorithms.

The aforementioned facts determined the purpose of the study -Development of optimization methods for models of new designs (multi-electrode configuration) SOA and QD-SOA using the criteria of signal intensity, data transmission rate and transmission range, which significantly expands the optimal operating conditions, improves the bit-rate, as well as the transmission range of AMOOFDM signals in the intensity modulation / direct detection in passive optical telecommunication systems (IMDD / PON).

Tasks:

1. Investigate the theoretical foundations of controlling a semiconductor optical amplifier model with a different number of control electrodes (1E-SOA, 2E-SOA) and develop a method for optimizing the model by adding an additional control electrode (model 3E-SOA), taking into account the optimal operating conditions.

2. Investigate the theoretical foundations of controlling a single-electrode model of a quantum-dot semiconductor optical amplifier (1E-QD-SOA) and develop a method for its optimization by adding additional control electrodes (models 2E-QD-SOA and 3E-QD-SOA), taking into account the optimal operating conditions.

3. To develop special mathematical and algorithmic support with codes simulating ME-SOA / ME-QD-SOA as intensity modulators for AMOOFDM signals in IMDD / PON optical telecommunication systems.

4. Create an optimized model of signal propagation through optical telecommunication systems containing SOA, on the basis of computer information processing methods.

5. Develop a computer program ЭВМ based on the performed simulation.

The scientific novelty of the study is as follows:

1. For the first time, the operation of semiconductor optical amplifiers 1E- and 2E-SOA was optimized by adding an additional control electrode (the 3E-SOA model was created), used as an intensity modulator of AMOOFDM signals in optical telecommunication systems.

2. For the first time, the operation of 1E-QD-SOA was optimized by adding an additional control electrode (model 2E-QD-SOA was created), used as an intensity modulator of AMOOFDM signals in optical telecommunication systems.

3. For the first time, the operation of the 2E-QD-SOA obtained at the previous stage was optimized by adding an additional control electrode (the 3E-QD-SOA model was created), used as an intensity modulator of AMOOFDM signals in optical telecommunication systems.

Practical significance

The following practical applications in real telecommunication infrastructures are substantiated:

When analyzing the selected criteria for system optimization, it was found that multi-electrode (ME) configurations extend the transmission coverage, which reduces the cost of the system by reducing the number of nodes required between the central office and the customer's premises. Also, extending the access networks up to 120 km (long-haul access networks) in some places substitute the use of metropolitan networks. Moreover, can

provide service to many of rural areas that don't have access to internet services.

Based on computer methods of information processing, an optimized model of signal propagation through optical telecommunication systems containing SOA was created, due to which an increase in the system bandwidth on the transmitter side was discovered due to the use of the SOA / QD-SOA ME-configuration as an electrical-to-optical converter, which solves the problem of system capacity by eliminating the problem of power level drop of high-frequency subcarriers of AMOOFDM signals. Increasing system capacity is vital to improve the quality of service for each customer or to increase the number of customers served per fiber channel.

Thanks to the proposed methods and algorithms for predicting and evaluating the efficiency, quality and reliability of the system, the proposed models of ME-configurations demonstrate high efficiency and greater flexibility in choosing the optimal operating conditions, in comparison with previously used designs using the same operating conditions: the proposed models of ME-configurations have a much wider range of input optical power variations, with the possibility of high signal transmission rates. Accordingly, it is possible to reduce the cost, complexity and power consumption of our system simply by maintaining the same network infrastructure and changing only the electrical to optical conversion component and eliminating the use of a laser source on the subscriber unit (ONU) side.

Fundamental principles submitted to defense

1. A model for describing and evaluating the effectiveness of optimization, control, decision-making and information processing in the form of a modeling platform that simulates ME-SOA as intensity

modulators for AMOOFDM signals in IMDD / PON optical networks based on the developed optimization criteria for the convenient parameters of each section, determining the length and bias current required to obtain the best electrical bandwidth.

2. A model for describing and evaluating the effectiveness of optimization, control, decision-making and information processing in the form of a modeling platform that simulates ME-QD-SOA as intensity modulators for AMOOFDM signals in IMDD / PON optical networks based on the developed optimization criteria for the convenient parameters of each section, determining the length and bias current required to obtain the best electrical bandwidth.

3. A computer program serving as a simulation platform that simulates ME-SOA / ME-QD-SOA as intensity modulators for AMOOFDM signals in IMDD / PON optical networks and for optimizing the convenient parameters of each section, determining the length and bias current required to obtain better electrical bandwidth.

4. ME-SOA / ME-QD-SOA parameters using the developed criteria and numerical methods.

5. Special mathematical and algorithmic support for a computer model of signal propagation through optical access networks using the developed optimization criteria.

6. Computer program for computers (ЭВМ) " Simulator for Adaptive Modulated Optical Orthogonal Frequency Division Multiplexing (AMOOFDM) Signal Transceiver", Registration certificate № ... 2020

Reliability and validity of the results

The results of the work are substantiated experimentally: the initial data are based on laboratory experiments obtained in the course of the work of predecessors, the results of this study are confirmed by mathematical and

numerical modeling. The results obtained agree with the published data of foreign studies on the topic of the dissertation.

Compliance of the dissertation with the Passport of the scientific

specialty

This dissertation "Optimization of the functioning of a semiconductor optical amplifier and a semiconductor optical amplifier with quantum dots as an intensity modulator of AMOOFDM signals in optical telecommunication systems" corresponds to the passport of specialty 05.13.01 - System analysis, control and information processing: p. 1 - "Theoretical foundations and methods system analysis, optimization, management, decision-making and information processing ", p. 3 -" Development of criteria and models for describing and evaluating the effectiveness of solving problems of system analysis, optimization, management, decision-making and information processing ", p. 4 -" Development of methods and algorithms for solving problems of system analysis, optimization, management, decision-making and information processing ", p. 5 -" Development of special mathematical and algorithmic support for systems of analysis, optimization, management, decision-making and information processing ", as well as the formula of the specialty" ... specialty dealing with problems of development and application of methods of system analysis of complex applied research objects, information processing, targeted human impact on research objects, including issues of analysis, modeling, optimization, improvement of management and decision-making, in order to increase the efficiency of the research objects functioning».

Personal contribution

The author took the lead contribution from selecting the research topic to obtaining the overall results.

The author personally developed the theoretical basis, models, optimization criteria and all technical details, performed coding, performed numerical simulations, received, analyzed and summarized the results, and then wrote a manuscript.

The Author's contribution is predominant where he has participated in all stages of research: task setting, realization, and discussed research results in scientific publications and conferences.

Approbation of the research results: The main concepts and results of the research were discussed and presented at various international scientific conferences, seminars and meetings of the department:

1. "ME-SOA enhancing the system capacity of the optical access networks". International scientific conference of teachers, graduate students and students "Science for the good of humanity - 2018", April 16-27, 2018. Moscow Regional State University (MGOU), Moscow, Russia.

2. "A comparison between the typical access networks and the adaptively modulated optical orthogonal frequency division multiplexing based access networks." "Scientific and practical conference with international participation" Engineering Systems - 2019 ", April 4-5, 2019. Peoples' Friendship University of Russia (RUDN). Moscow, Russia.

3. "Multi-electrode QD-SOA as an intensity modulator of AMOOFDM signals in IMDD PONs". International multidisciplinary scientific conference "Perspective element base of nano- and microelectronics", December 12-13, 2019. Moscow Regional State University (MGOU), Moscow, Russia.

4. "Use of a multi-electrode semiconductor optical amplifier with quantum dots (QD-SOA) as a modulator of AMOOFDM signal intensity in IMDD PONs" // International conference "Promising element base of micro- and nanoelectronics using modern achievements of theoretical physics", September 16 - 18 2020 year. Moscow State Regional University (MGOU) Moscow, Russia.

5. The dissertation work was supported by the Russian Foundation for Basic Research (RFBR). Theoretical and numerical study of improving the performance of optical access networks using multi-electrode SOA and multi-electrode SOA quantum dot. Grant №. 19-0700602_a.

Publications

This work includes 8 publications: 4 published in (SCOPUS, WOS) indexed journals, 2 in (VAK) indexed journals, 1 in Russian Science Citation Index (RSCI) and a program patented at "Rospatent" computer program ЭВМ.

Structure and volume of work

This work consists of introduction, a literature review chapter and 4 another chapters, conclusion, glossary, References and 2 appendices.

The total volume of the dissertation is 127 pages, including 140 references, 45 figures, 5 tables, 1 flowchart and 45 formulas.

Похожие диссертационные работы по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК

Заключение диссертации по теме «Системный анализ, управление и обработка информации (по отраслям)», Язбек Хуссейн

FINDINGS

1. A model has been developed for describing and evaluating the effectiveness of optimization, control, decision-making and information processing in the form of a modeling platform that simulates multi-electrode semiconductor optical amplifiers (ME-SOA), including ME-SOA with quantum dots, as intensity modulators for AMOOFDM signals in optical networks IMDD / PON based on the developed criteria for optimizing the parameters of each section of the ME-SOA.

2. The theoretical foundations of control of the IMDD-OOFDM signal transmission model (intensity modulation and direct detection - orthogonal frequency division multiplexing) in the access network using the 1E-SOA and 2E-SOA structure have been investigated and a method for its optimization has been developed by adding an additional control electrode (created model 3E-SOA). The multi-electrode configuration for the intensity modulator significantly improves the throughput of passive optical networks over distances from 20 to 120 km. The three-electrode (3E) configuration provides higher signal strength, which improves transmission performance over distances up to 120 km.

3. The theoretical foundations of the control of a single-electrode SOA model with quantum dots (1E-QD-SOA) were investigated, and a method for its optimization by adding additional control electrodes was developed (models 2E and 3E-QD-SOA were created). Unlike 3E-SOA, this configuration optimizes the criteria for system throughput (10 Gbps increase), signal transmission distance (20 km increase), optical input power (20 dB decrease).

4. A special mathematical and algorithmic support has been developed by writing codes that simulate ME-SOA / ME-QD-SOA as intensity modulators for AMOOFDM signals in IMDD / PON optical telecommunication systems.

5. On the basis of computer methods of information processing, a simplified model of optimal operating conditions has been created, taking into account the input optical power and bias current. The simulation results are: higher flexibility in designing an optical access network; reduction in cost, complexity and energy consumption; Achieve maximum data rates in excess of 35 Gbps by simply maintaining the same network infrastructure while changing only one component for electro-optical conversion.

6. Developed a computer program for a computer "Simulator for a transceiver of signals of adaptively modulated optical orthogonal frequency multiplexing (AMOOFDM)", Certificate of registration No., August 2020

Список литературы диссертационного исследования кандидат наук Язбек Хуссейн, 2020 год

REFERENCES

1. 10 Gbit/s asymmetric waveguide APD with high sensitivity of -30dBm / [K. Shiba, T. Nakata, T. Takeuchi et al.] // Electronics Letters. — 2006. — № 42 (20). — pp.1177-1178.

2. 100 Gb/s Single VCSEL Data Transmission Link / R. Rodes Lopez, J. Estaran Toloza, B. Li et al. // 2012 Optical Fiber Communication Conference / United States. — Los Angeles, CA: Optical Society of America, 2012.

3. 1-Tb/s dual-carrier 80-GBaud PDM-16QAM WDM transmission at 5.2 b/s/Hz over 3200 km / G. Raybon, S. Randel, A. Adamiecki et al. // Photonics Conference (IPC) / USA. — Burlingame, CA: IEEE, 2012. — pp.23-27.

4. -28 dBm receiver sensitivity using uni-travelling-carrier photodiode and decision flip-flop at 43 Gb/S in a full transceiver configuration / M. Achouche, F. Blache, P. Brindel et al. // European Conference and Exhibition on Optical Communication / Sweden. — Stockholm, 2014.

5. 40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM / [G. Cossu, F. Bottoni, R. Corsini et al.] // IEEE Photonics technology letters. — 2013. — № 25 (21). — pp.2119-2122.

6. 40-Gbit/s receiver with -21 dBm sensitivity employing filterless semiconductor optical amplifier / S. Takashima, H. Nakagawa, S. Kim et al. // Optical Fiber Communication Conference, Technical Digest / United States. — Atlanta, Georgia: Optical Society of America, 2003. — p.3.

7. 850 nm GaAs/AlGaAs DFB lasers with shallow surface gratings and oxide aperture / [P. Zhang, C. Liu, M. Xiang et al.] // Opt. Express. — 2019. — № 22 (27). — pp. 31225-31234.

8. Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems / [J. Wei, A. Hamie, R. Gidding et al.] // Opt. Express. — 2010. — № 18 (8). — pp.8556-8573.

9. Agata A. RSOA-Based 10Gb/s WDM PON using FEC and MLSE equalizers / A. Agata, Y. Horiuchi // Optical fiber communication conference / USA. — San Diego, CA: Optical Society of America, 2010.

10. Agrawal G. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers / G. Agrawal, N. Olsson // IEEE Journal of quantum electronics. — 1989. — № 25 (11). — pp.2297-2306.

11. Agrawal G.P. Fiber-Optic Communication Systems / G.P. Agrawal. — New York: John Wiley & Sons, 1991. — p.546.

12. All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers / A. Hamie, A. Sharaiha, M. Guegan, J. Le Bihan // IEEE Photonics technology letters. — 2005. — № 17 (6). — pp.1229-1231.

13. All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers / A. Hamie, A. Sharaiha, M. Guegan, B. Pucel // IEEE Photonics technology letters. — 2002. — № 14 (10). — pp.1439-1441.

14. All-optical logic or gate using two cascaded semiconductor optical amplifiers / [A. Hamie, A. Sharaiha, M. Guegan et al.] // Microwave and optical technology letters. — 2007. — № 49 (7). — pp.1568-1570.

15. All-optical logic performance of quantum-dot semiconductor amplifier-based devices / H. Sun, Q. Wang, H. Dong, N. Dutta // Microwave and Optical Technology Letters. — 2006. — № 48 (1). — pp.29-35.

16. An advanced quasi-3D model for semiconductor optical amplifiers / W. Li, G. Chen, W. Huang, X. Li // Canadian Conference on Electrical and Computer Engineering / Canada. — Niagara Falls, Ontario, 2004.

17. An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots / [T. Akiyama, M. Ekawa, M. Sugawara et al.] // IEEE Photonics technology letters. — 2005. — № 17 (8). — pp.1614-1616.

18. Analysis of Detuning-filter-assisted All-optical Wavelength Conversion Based on a Semiconductor Optical Amplifier with Strong Wavelength Dependence of Gain and Phase / [Cui Qin, Jing Zhao, Huilong Yu et al.] // Curr. Opt. Photon. — 2017. — Vol.1. — pp. 579-586.

19. Arellano, C., & Prat, J. (2005). Semiconductor optical amplifiers in access networks. Proceedings of 2005 7th International Conference Transparent Optical Networks, (13-16). Barcelona, Catalonia: IEEE.

20. Armstrong J. OFDM for Optical Communications / J. Armstrong // Journal of lightwave technology. — 2009. — № 27 (3). — pp.189-204.

21. Baney D. Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers / D. Baney, P. Gallion, R. Tucker // Optical fiber technology. — 2000. — № 6 (2). — pp.122-154.

22. Bendimerad D. Numerical Investigation of SOA Nonlinear Impairments for Coherent Transmission Systems Based on SOA Amplification / D. Bendimerad and Y. Frignac // J. Lightwave Technol. — 2017. — Vol.35. — pp. 5286-5295.

23. Berg T. Gain dynamics and saturation in semiconductor quantum dot amplifiers / T. Berg, J. Mork, J. Hvam // New Journal of Physics. — 2004. — № 6 (1). — pp.178-201.

24. Beyond 25 Gbit/s Directly Modulated, Directly Detected OFDM Using Channel Flattening by a Fabry-Perot Filter / L. Neto, M. Gay, L. Bramerie et al. // Optical Fiber Communication Conference / United States. — Los Angeles, California: HAL, 2015. — pp.3-5.

25. Bidirectional Hybrid OFDM-WDM-PON System for 40-Gb/s Downlink and 10-Gb/s Uplink Transmission Using RSOA Remodulation / [T. Dong, Y. Bao, Y. Ji et al.] // Photonics technology letters. — 2012. — № 24 (22). — pp.2024-2026.

26. Cartledge J. 100 Gbit/s Using Intensity Modulation and Direct Detection / J. Cartledge, A. Karar // 39th European Conference on Optical Communication / UK. — London: ICC, ExCeL, 2013.

27. Chen M. Real-Time Optical OFDM Long-Reach PON System Over 100 km SSMF Using a Directly Modulated DFB Laser / M. Chen, J. He, L. Chen // Journal of Optical Communication Networks. — 2014. — № 6 (1). — pp.18-25.

28. Chi J. Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides / J. Chi, L. Chao, M. Rao // IEEE Journal of quantum electronics. — 2001. — № 37 (10). — pp.1329-1336.

29. Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator / [J. Kemal, P. Marin-Palomo, V. Panapakkam et al.] // Opt. Express. — 2019. — Vol.27. — pp. 3116431175.

30. Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators / J. Wei, X. Yang, R. Gidding, J. Tang // Optics express.

— 2009. — № 17 (11). — pp.9012-9027.

31. Connelly M. Semiconductor optical amplifiers / M. Connelly. — Boston, MA: Kluwer academic publishers, 2009. — p.169.

32. Connelly M. Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate / M. Connelly // IEEE Proceedings circuits, devices and systems. — 2002. — № 149 (3). — pp.173-178.

33. Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts / [S. Lee, Ch. Forman, J. Kearns et al.] // Opt. Express. — 2019. — № 27. — pp.31621-31628.

34. Devaux F. Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter / F. Devaux, Y. Sorel, J. Kerdiles // Journal of lightwave technology. — 1993. — № 11 (12). — pp.1937-1940.

35. Direct 10-Gb/s Modulation of a Single-Section RSOA in PONs with High Optical Budget / [B. Schrenk, G. Valicourt, M. Omella et al.] // IEEE Photonics technology letters. — 2010. — № 22 (6). — pp.392-394.

36. Direct-phase and amplitude digitalization based on free-space interferometry / [V. Kleiner, A. Rudnitsky, Z. Zalevsky et al.] // Journal of Optics.

— 2017. — № 12 (19).

37. Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats / [R. Schmogrow, B. Nebendahl, M. Winter et al.] // Photonics Technology Letters, IEEE. — 2012. — № 24 (1). — pp.61-63.

38. Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture / T. Duong, N. Genay, P. Chanclou et al. // European conference of optical communication / Belgium. — Brussels, 2008.

39. Experimental Demonstration of 448-Gbps+ DMT Transmission over 30km SMF / T. Tanaka, M. Nishihara, T. Takahara et al. // Optical Fiber Communication Conference 2014 / United States. — San Francisco, California: Optical Society of America, 2014.

40. Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems / [R. Giddings, X. Jin, E. Hugues-Salas et al.] // Opt. Express. — 2010. — № 18 (6). — pp.5541-5555.

41. Experimental Demonstration of Real-Time Optical OFDM Transmission at 7.5 Gb/s Over 25-km SSMF Using a 1-GHz RSOA / [R. Giddings, E. Hugues-Salas, X. Jin et al.] // IEEE Photonics technology letters. — 2010. — № 22 (11).

— pp.745-747.

42. Fast and Efficient Dynamic WDM Semiconductor Optical Amplifier Model / [W. Mathlouthi, P. Lemieux, M. Salsi et al.] // Journal of lightwave technology. — 2006. — № 24 (11). — pp.4353-4365.

43. Gain and linewidth enhancement factor in InAs quantum-dot laser diodes / [T. Newell, D. Bossert, A. Stintz et al.] // IEEE Photonics technology letters. — 1999. — № 11 (12). — pp.1527-1529.

44. Gharba A. OFDM and resources allocation in next generation optical access networks for single and multi-users systems: Ph.D. dissertation of technical science / Gharba A. — Rennes, France, 2012.

45. Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser / [B. Dagens, A. Markus, J. Chen et al.] // Electronics Letters. — 2005. — № 41 (6). — pp.323-324.

46. Giddings R.P. 30Gb/s Real-Time Triple Sub-band OFDM Transceivers for future PONs beyond 10Gb/s/X / R.P. Giddings, E. Hugues-Salas, J.M. Tang // 39th European Conference and Exhibition on Optical Communication (ECOC 2013) / UK. — London: IET, 2013. — pp.1-3.

47. Guo L. A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme / L. Guo, M. Connelly // Optics communications. — 2008. — № 281 (17). — pp.44704473.

48. Gutierrez-Castrejon R. Uni-directional time-domain bulk SOA Simulator considering carrier depletion by amplified spontaneous emission / R. Gutierrez-Castrejon, M. Duelk // IEEE Journal of quantum electronics. — 2006. — № 42 (6). — pp.581-588.

49. Healy A. The IEEE 802.3 Working Group develops standards for Ethernet networks [online] / A. Healy // IEEE. — Available at: http://www.ieee802.org/3.

— date of the application: 11.12.2017.

50. High modulation bandwidth reflective SOA for optical access networks / R. Brenot, J. Provost, O. Legouezigou et al. // 33rd European conference and exhibition of optical communication. — Berlin, Germany: VDE, 2007.

51. High-sensitivity 25 Gbit/s avalanche photodiode receiver optical subassembly for 40 km transmission / [M. Nada, Y. Muramoto, H. Yokoyama et al.] // Electronics Letters. — 2012. — № 48 (13). — pp.777-778.

52. Hussain N. / A survey Development of Passive Optical Access Networks Technologies / N. Hussain // International journal of advanced research. — 2014.

— № 2 (2). — pp.820-828.

53. Hybrid-Integration of SOA on Silicon Photonics Platform Based on FlipChip Bonding / [ T. Matsumoto, T. Kurahashi, R. Konoike et al.] // J. Lightwave Technol. — 2019. — Vol.37. — pp. 307-313.

54. Improvement of modulation bandwidth in multisection RSOA for colorless WDM-PON / [H. Kim, B. Choi, K. Kim et al.] // Optics express. — 2009. — № 17 (19). — pp.16372-16378.

55. In-line Optical Amplification for Silicon Photonics Platform by Flip-Chip Bonded InP-SOAs / T. Matsumoto, T. Kurahashi, R. Konoike et al. // Optical Fiber Communication Conference, OSA Technical Digest (online) /. — USA: OSA, 2018. — Tu2A.4.

56. Integrated SOA-PIN Detector for High-Speed Short Reach Applications / [C. Caillaud, P. Chanclou, F. Blache et al.] // Journal of lightwave technology. — 2015. — № 33 (8). — pp.1596-1601.

57. Iwatsuki K. Convergence of Wireless and Wired Technologies towards Next Generation Access Networks / K. Iwatsuki // Electronics and Photonics. — 2013. —pp.67-79.

58. Izadyar S. Quantum dot semiconductor optical amplifier: role of second excited state on ultrahigh bit-rate signal processing / [S. Izadyar, M. Razaghi, A. Hassanzadeh et al.] // Appl. Opt. — 2017. — Vol.56. — pp. 3599-3607.

59. Komatsu K. Multiple-Input All-Optical OR Gate by Cascaded Logic Gates Based on Quantum-Dot Semiconductor Optical Amplifier / K. Komatsu, G. Hosoya, H. Yashima // Latin America Optics and Photonics Conference, OSA Technical Digest (online) /. — USA: OSA, 2018. — Th4A.8.

60. Li X. Static Gain, Optical Modulation Response, and Nonlinear Phase Noise in Saturated Quantum-Dot Semiconductor Optical Amplifiers / X. Li, G. Li // IEEE Journal of quantum electronics. — 2009. — № 45 (5). — pp.499-505.

61. Linewidth enhancement factor in InGaAs quantum-dot amplifiers / [S. Schneider, P. Borri, W. Langbein et al.] // IEEE Journal of quantum electronics. — 2004. — № 40 (10). — pp.1423-1429.

62. Low-Power Consumption 28-Gb/s 80-km Transmission With 1.3-^m SOA-Assisted Extended-Reach EADFB Laser / [W. Kobayashi, N. Fujiwara, T. Shindo et al.] // J. Lightwave Technol. — 2017. — Vol.35. — pp. 4297-4303.

63. Lu C. Reduction of high PAPR effect with FEC enhanced deep data clipping ratio in an optical OFDM system / C. Lu, K. Feng // 20th annual meeting of the IEEE lasers and electro-optics society. — IEEE, 2007. — pp.941-942.

64. Mecozzi A. Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers / A. Mecozzi, J. Mork // IEEE Journal of selected topics in quantum electronics. — 1997. — № 3 (5). — pp.1190-1207.

65. Modeling and measurement of noisy SOA dynamics for ultrafast applications / [A. Bogoni, L. Poti, C. Porzi et al.] // IEEE Journal of selected topics in quantum electronics. — 2004. — № 10 (1). — pp.197-205.

66. Modulation OSSB-OFDM with D-EML for extending the capacity of passive optical networks to 31,7Gb/s / [T. Anfray, M. Chaibi, D. Erasme et al.] // National Journal of optical guides. — 2013. — № JN0G2013 (168). — pp.1-3.

67. Morel P. Semiconductor optical amplifier modulator: from component to system: Thesis / Morel P; university of Bretagne. — Brest, 2006. — p.239.

68. Morel P. Wideband time-domain transfer matrix model equivalent circuit for short pulse propagation in semiconductor optical amplifiers / P. Morel and A. Sharaiha // IEEE journal of quantum electronics. — 2009. — № 45 (2). — pp.103-116.

69. Morioka T. Innovative Future Optical Transport Network Technologies / T. Morioka, M. Jinno, H. Takara // NTT Technical Review. — 2011. — № 9 (8).

70. Nelson L. Polarization mode dispersion and its impact on high bit-rate, fiber-optic communication systems / L. Nelson, H. Kogelnik, P. Winzer // Conference on Lasers and Electro-Optics / United States. — San Francisco, California, 2004. — p.3.

71. Noise and regeneration in semiconductor waveguides with saturable gain and absorption / F. Ohman, S. Bischoff, B. Tromborg, J. Mork // IEEE Journal of quantum electronics. — 2004. — № 40 (3). — pp.245-255.

72. Numerical Simulation of Temporal and Spectral Variation of Gain and Phase Recovery in Quantum-Dot Semiconductor Optical Amplifiers / J. Kim, C. Meuer, D. Bimberg, G. Eisenstein // IEEE Journal of quantum electronics. — 2010. — № 46 (3). — pp.405-413.

73. O-band 400 Gbit/s Client-Side Optical Transmission Link / T. Zuo et al. // OFC, 2014 / USA. — San Francisco, CA, 2014.

74. Occhi L. Phase modeling based on the alpha-factor in bulk semiconductor optical amplifiers / L. Occhi, L. Schares, G. Guekos // IEEE Journal of selected topics in quantum electronics. — 2003. — № 9 (3). — pp.788-797.

75. Occhi L. Semiconductor Optical Amplifiers made of Ridge Waveguide Bulk InGaAsP/InP: Experimental Characterisation and Numerical Modelling of Gain, Phase, and Noise: Doctoral of technical science dissertation / Occhi L. — Zurich, Switzerland, 2002.

76. Olsson N. Lightwave systems with optical amplifiers / N. Olsson // Journal of lightwave technology. — 1989. — № 7 (7). — pp.1071-1082.

77. On-Chip All-Optical Wavelength Conversion of PAM-4 Signals Using an Integrated SOA-Based Turbo-Switch Circuit / [Adnan A., E. Hajomer, Marco Presi et al.] // J. Lightwave Technol. — 2019. — Vol.37. — pp. 3956-3962.

78. Optical SEFDM System; Bandwidth Saving Using Non-Orthogonal SubCarriers / [I. Darwazeh, T. Xu, T. Gui et al.] // Photonics Technology Letters, IEEE. — 2014. — № 26 (4). — pp.352-355.

79. PAPR reduction techniques for coherent optical OFDM transmission. Transparent Optical Networks, 2009. ICTON '09 11th International Conference on, 2009 / B. Goebel, S. Hellerbrand, N. Haufe, N. Hanik // 11th International Conference on Transparent Optical Networks / Portugal. — Azores: IEEE, 2009.

— pp.1-4.

80. Photonic ADC: overcoming the bottleneck of electronic jitter / [A. Khilo, S. Spector, M. Grein et al.] // Opt. Express. — 2012. — № 20 (4). — pp.44544469.

81. Photonic integrated receiver for 40 Gbit/s transmission / [B. Mason, S. Chandrasekhar, A. Ougazzaden et al.] // Electronics letters. — 2002. — № 38 (20). — pp.1196-1197.

82. Poole I. The different types of photodiode structure and photodiode materials all have an impact on performance and usage: PN junction, PIN, avalanche and Schottky photodiodes [online] / I. Poole // Electronics notes. — 2016. — available at: http://www.radio-electronics.com/info/data/semicond/photo_diode/structures-materials.php. — date of the application: 03.02.2018.

83. Prasad R. OFDM for Wireless Communications Systems / R. Prasad. — Boston, London: Artech House, Inc., 2004. — pp.10-15.

84. Qasaimeh O. Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers / O. Qasaimeh // IEEE Transactions Electron Devices. — 2003. — № 50 (7). — pp.1575-1581.

85. Qasaimeh O. Novel Closed-Form Model for Multiple-State Quantum-Dot Semiconductor Optical Amplifiers / O. Qasaimeh // IEEE Journal of quantum electronics. — 2008. — № 44 (7). — pp.652-657.

86. Qasaimeh O. Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers / O. Qasaimeh // IEEE Journal of quantum electronics. — 2003. — № 39 (6). — pp.793-798.

87. Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s -1 and a new scheme of 3R regenerators / [M. Sugawara, T. Akiyama, N. Hatori et al.] // Measurement science and technology.

— 2002. — № 13 (11). — pp.1683-1691.

88. Self-phase modulation in single CdTe nanowires / [Ch. Xin, J. Zhang, P. Xu et al.] // Opt. Express. — 2019. — Vol.27. — pp. 31800-31809.

89. Self-seeding-based 10Gb/s over 25km optical OFDM transmissions utilizing face-to-face dual-RSOAs at gain saturation / [M. Deng, Y. Ling, X. Chen et al.] // Opt. Express. — 2014. — № 22 (10). — pp.11954-11965.

90. Semiconductor Optical Amplifier-Enabled Intensity Modulation of Adaptively Modulated Optical OFDM Signals in SMF-Based IMDD Systems / J. Wei, A. Hamie, R. Giddings, J. Tang // Journal of lightwave technology. — 2009.

— № 27 (16). — pp.3678-3688.

91. Semiconductor Optical Amplifiers in Coherent Optical-OFDM Systems / [H. Khaleghi, P. Morel, A. Sharaiha et al.] // IEEE Photonics technology letters.

— 2013. — № 24. — pp.560-562.

92. Serial 103.125-Gb/s transmission over 1 km SSMF for low-cost, short-reach optical interconnects / J. Lee, N. Kaneda, T. Pfau et al. // OFC 2014 / USA.

— San Francisco, CA: IEEE, 2014. — pp.1-3.

93. Sharaiha A. Comprehensive analysis of two cascaded semiconductor optical amplifiers for all-optical switching operation / A. Sharaiha, A. Hamie // Journal of lightwave technology. — 2004. — № 22 (3). — pp.850-858.

94. Sharaiha, A. (2010). Semiconductor optical amplifiers. Master Course PHOT-IN. Bretagne, ENIB.

95. Shieh W. OFDM for optical communication / W. Shieh, I. Djordjevic. — USA: Academic Press, 2009. — p.456.

96. Small-signal analysis of two cascaded semiconductor optical amplifiers in a counterpropagating configuration / [A. Hamie, A. Sharaiha, M. Guegan et al.] // Optics communications. — 2008. — № 281 (20). — pp.5183-5188.

97. SOA fiber laser mode-locked by gain modulation / [B. Nyushkov, S. Kobtsev, A. Komarov et al.] // Journal of Optical Society of America. — 2018. — Vol.35. — pp. 2582-2587.

98. SOA or EDFA amplifying 10Gbit/s OFDM signals for access networks / F. Saliou, P. Chanclou, B. Charbonnier et al. // 35th European Conference in Optical Communication. IEEE Xplore, 2009. — pp.1-2.

99. Sun G. Design of quantum-dot lasers with an indirect bandgap short-period Superlattice for reducing the linewidth enhancement factor / G. Sun, J. Khurgin, R. Soref // IEEE Photonics technology letters. — 2004. — № 16 (10).

— pp.2203-2205.

100. Tang J. 30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation / J. Tang, A. Shore // Journal of lightwave technology. — 2006. — № 24 (6). — pp.2318-2327.

101. Tang J. High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly Modulated DFBs / J. Tang, A. Shore, P. Lane // Journal of lightwave technology. — 2006. — № 24 (1). — pp.429-441.

102. Tang J. Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency / J. Tang, A. Shore // IEEE Journal of quantum electronics. — 1998. — № 34 (7). — pp.1263-1269.

103. Tb/s Optical Logic Gates Based on Quantum-Dot Semiconductor Optical Amplifiers / A. Rostami, H. Nejad, R. Qartavol, H. Saghai // IEEE Journal of quantum electronics. — 2010. — № 46 (3). — pp.354-360.

104. Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems / [A. Hamie, M. Hamze, J. Wei et al.] // Optics express. — 2011. — № 19 (25). — pp.25696-25711.

105. Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers / [M. Sugawara, H. Ebe, N. Hatori et al.] // Physical Review B. — 2004. — № 69 (23). — pp. 235332-235371.

106. Transmission of 40-Gb/s QPSK upstream signal in RSOA-based coherent WDM PON using offset PDM technique / H. Shim, K. Cho, U. Hong, Y. Chung // Optics express. — 2013. — № 21 (3). — pp.3721-3725.

107. Trojer E. Current and next-generation PONS: A technical overview of present and future PON technology // Ericsson. 2008. Available at: http: www.ericsson.com/ericsson/corpinfo/publications/review/2008_02/files/3_PON.p df.

108. Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices / T. Berg, S. Bischoff, I. Magnusdottir, J. Mork // IEEE Photonics technology letters. — 2001. — № 13 (6). — pp.541-543.

109. Use of dispersive optical fibre for characterization of chirp in semiconductor lasers / A. Royset, L. Bjerkan, D. Myhre, L. Hafskjaer // Electronics Letters. — 1994. — № 30. — pp.710-712.

110. Walden R. Analog-to-Digital Conversion in the Early Twenty-First Century / R. Walden // Wiley encyclopedia of computer science and engineering. — 2008.

111. Wei J. Optimization and comparison of the transmission performance of RSOA/SOA intensity-modulated optical OFDM signals for WDM-PONs / J. Wei, A. Hamie, J. Tang // Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC). — San Diego, California, 2010. — pp.1-2.

112. Wei J. The Influence of Directly Modulated DFB Lasers on the Transmission Performance of Carrier-Suppressed Single-Sideband Optical OFDM Signals Over IMDD SMF Systems / J. Wei, X. Jin, J. Tang // Journal of lightwave technology. — 2009. — № 27 (13). — pp.2412-2419.

113. Wiley Encyclopedia of Electrical and Electronics Engineering. — Madison, USA: John Wiley & Sons, Inc., 1999. — p.17616.

114. XOR performance of a quantum dot semiconductor optical amplifier-based Mach-Zehnder interferometer / H. Sun, Q. Wang, H. Dong, N. Dutta // Optics express. — 2005. — № 13 (6). — pp.1892-1899.

115. Yazbeck H. A comparison between the typical access networks and the adaptively modulated optical orthogonal frequency division multiplexing based access networks / H. Yazbeck, V.V. Belyaev // Scientific and practical conference with international participation: Engineering Systems 2019 / Russia. — Moscow, 2019. — pp.102-110.

116. Yazbeck H. Advantages of AMOOFDM systems over other technologies: a review / [H. Yazbeck, V.V. Belyaev, I.M. Tkachenko et al.] // Electrosviaz. — 2020. — № 4. — pp.55-60.

117. Yazbeck H. Comparison of typical access networks with AMOOFDM based access networks / H. Yazbeck, V.V. Belyaev // Journal of physics: IOP conference series: Materials Science and Engineering. — 2019. — Vol.675. — pp.1-8.

118. Yazbeck H. Multi-electrode QD-SOA as an intensity modulator of AMOOFDM signals in IMDD PONs / H. Yazbeck, V.V. Belyaev // Journal of physics: IOP conference series. — 2020. — Vol.1560. — pp. 1-10.

119. Yazbeck H. Theoretical and numerical study of enhancing the performance of the optical Access networks using ME-SOA / [H. Yazbeck, M. Hamzeh, V.V. Belyaev et al.] // Electrosviaz. — 2019. — № 6. — pp.46-52.

120. Yin Y. Modulation Characteristics of Reflective Quantum Dot Semiconductor Optical Amplifiers / Y. Yin, Y. Ling, J. Chen et al. // Asia Communications and Photonics Conference, OSA Technical Digest (online) /. — USA: OSA, 2017. — Su2A.32.

121. Ачильдиев В.М., Грузевич Ю.К., Солдатенков В.А. Информационные измерительные и оптико-электронные системы на основе микро- и наномеханических датчиков. М.: МГТУ им. Н.Э.Баумана. 2016. - 264 с.

122. Беляев В.В. Жидкокристаллические дисплеи. Технологии настоящего и будущего часть 1. От пикселя до гибкой подложки // Электроника: Наука, технология, бизнес. - 2015. - №8 (148). - С.36-47.

123. Беляев В.В. Жидкокристаллические дисплеи. Технологии настоящего и будущего. Часть 2. Новые технологии и области применения ЖК-дисплеев // Электроника: Наука, технология, бизнес. - 2015. - №10. - С.124-131.

124. Боголюбов А. Analysis of a Rectangular Waveguide with Allowance for Losses in the Walls / А. Боголюбов, А. Ерохин, М. Светкин // Moscow University Physics Bulletin. — 2018. — № 6 (73). — C.579-582.

125. Грузевич Ю.К. Оптико-электронные приборы ночного видения. М.: Физматлит. 2014. - 276 с.

126. Грушо А. Minimum Architecture of SDN Tolerant to Failure of a Switch / А. Грушо, Е. Тимонина, С. Шоргин // CEUR Workshop Proceedings. — 2018.

— № 2332. — C.41-50.

127. Грушо А. Search of Faulty Switch in SDN Controlled by Meta Data / А. Грушо, С. Шоргин, Е. Тимонина // AIP Conference Proceedings. — Москва, 2019. — C.090006.

128. Дербов В. Multi-pulse laser spectroscopy of: Measurement and control of the metastable state Populations / В. Дербов, Л. Мельников, И. Уманский, С. Винницкий // Phys. Rev. — 1997. — № 55. — C.3394-3400.

129. Дружинина О. Условия и алгоритмы оптимальной стабилизации относительно части переменных многосвязных нелинейных управляемых систем / О. Дружинина, В. Щенников, Е. Щенникова // Динамика сложных систем. — 2012. — № 3 (6). — C.154-158.

130. Комоцкий В. Плоский оптический волновод. Учебно-методическое пособие / В. Комоцкий. — Москва: РУДН, 2001. — 38 с.

131. Мартикайнен О. Framework of Service Components Modeling for Multimedia Distribution over Broadband Network / О. Мартикайнен, В. Наумов, К.Е. Самуйлов, М. Жидовинов. — London: Chapman & Hall, 1997.

— 291 с.

132. Мартикайнен О. Telecommunication Signalling / О. Мартикайнен, В. Наумов, К.Е. Самуйлов. — New York: John Wiley & Sons, 1999. — 6 с.

133. Математический синтез оптических наноструктур / К.П. Ловецкий, Л.А. Севастьянов, М.В. Паукшто, О.Н. Бикеев. — Москва: рудн, 2008. — 123 с.

134. Методы связанных волн расчета оптических покрытий / К.П. Ловецкий, Л.А. Севастьянов, М.В. Паукшто, А.А. Жуков. — Москва: рудн, 2008. — 123 с.

135. Милантьев В. Повышение эффективности авторезонансного ускорения электронов лазерным гауссовым излучением / В. Милантьев, С. Степин // ЖТФ. — 2005. — № 9 (175). — C.95-100.

136. Порязов С. Transit Traffic Service in Communications Networks / С. Порязов, Г. Андрианов, И. Цитович // Journal of Communications Technology and Electronics. — 2011. — № 6. — C.758-769.

137. Построение экономико-математической модели рынка телекоммуникаций в случае дуополии / [С.А. Васильев, Д.Г. Васильева, М.Э. Костенко] // Вестник РУДН. — 2010. — № 1. — C.28-39.

138. Ромашкова О. Модель витрины данных для управления ресурсами ВУЗа / О. Ромашкова // Информационно-телекоммуникационные технологии и математическое моделирование высокотехнологичных систем. — Москва, 2020. — C.194-198.

139. Рыбаков Ю. Electromagnetic field with induced massive term: Case with scalar field / Ю. Рыбаков, Г. Шикин, Ю. Попов, Б. Саха // Central European Journal of Physics. — 2011. — № 5 (9). — C.1165-1172.

140. Степанов С. Planning the resource of information transmission for connection lines of multiservice hierarchical access networks / С. Степанов, М. Степанов // Автоматика и телемеханика. — 2018. — № 8. — C.66-80.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.