On prospects and limitations of variational quantum algorithms/О перспективах и ограничениях вариационных квантовых алгоритмов тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Рабинович Даниил Сергеевич
- Специальность ВАК РФ00.00.00
- Количество страниц 130
Оглавление диссертации кандидат наук Рабинович Даниил Сергеевич
Contents
Page
Introduction
Chapter 1. Main concepts in quantum computations
1.1 Notation
1.1.1 Pure quantum states
1.1.2 Projective measurements
1.1.3 Unitary evolution
1.1.4 Density operators
1.1.5 Completely Positive Trace Preserving maps
1.2 Language of quantum computing
1.2.1 Operator basis
1.2.2 Quantum gates
1.2.3 Quantum circuits
1.2.4 Standard noise models
Chapter 2. Variational Quantum Algorithms
2.1 Variational Quantum Algorithms
2.1.1 Variational ansatz
2.2 Variational quantum eigensolver
2.3 Quantum Approximate Optimization Algorithm
2.3.1 Combinatorial optimization problems
2.3.2 Energy vs ground state overlap
2.4 Parameter Concentration
2.5 Layerwise training saturation
2.6 Discussion
Chapter 3. Gate error robustness of Variational Quantum
Algorithms
3.1 Parameter perturbation noise
3.2 Perturbative analysis in presence of stochastic parameter perturbation
3.3 Numerical simulations of stochastic perturbations
Page
3.3.1 VQE for Ising Hamiltonian
3.3.2 QAOA for MAX-3-SAT, MAX-CUT and state preparation
3.3.3 Shift of optimal parameters in the presence of noise
3.4 Perturbations to the individual parameters
3.5 Discussion
Chapter 4. Mitigating quantum gate errors using hardware
inspired Zero Noise Extrapolation
4.1 Error mitigation techniques
4.2 Qubit permutations as a mean of varying the strength of the noise . 64 4.2.1 Zero noise extrapolation with permutation fit
4.3 Numerical results for ZNE with permutation fit
4.3.1 Problems under consideration
4.3.2 Exact extrapolation with all permutations
4.3.3 Scaling with a noise strength and a problem size
4.3.4 ZNE with different noise models
4.3.5 Comparison with existing ZNE techniques
4.4 Conclusions
Chapter 5. Hardware native variational ansatz for quantum
approximate optimization
5.1 QAOA implementations
5.2 Hardware specific modification to QAOA ansatz
5.2.1 Ion-based quantum computers
5.2.2 Ion native QAOA ansatz
5.3 Symmetry protection
5.4 Benchmarking the ansatz
5.4.1 Sherrington-Kirkpatrick Hamiltonians
5.4.2 Exhaustive solution of all instances for n = 6 qubits
5.4.3 A large system size
5.5 Discussion and Conclusion
List of symbols and abbreviations
Bibliography
Page
List of Figures
List of Tables
Appendix A. Zero Noise Extrapolation
A.1 Relative deviation from linear trend
Appendix B. Ion native QAOA
B.1 Structure of symmetric state space V
B.2 Exhaustive benchmarking of ion native QAOA ansatz
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Variational quantum algorithms for local Hamiltonian problems/Вариационные квантовые алгоритмы для решения задач минимизации локальных гамильтонианов2023 год, кандидат наук Уваров Алексей Викторович
О математической структуре моделей квантовых вычислений на основе минимизации гамильтониана / On the mathematical structure of quantum models of computation based on hamiltonian minimisation2022 год, доктор наук Биамонте Джейкоб Дэниел
Оптимизация функционалов предыскажения сигнала по типу Виннера-Гаммерштейна, для устранения интермодуляционных компонент, возникающих при усилении мощности2024 год, кандидат наук Масловский Александр Юрьевич
Общий подход к теории и методологии метода анализа сингулярного спектра2023 год, доктор наук Голяндина Нина Эдуардовна
Дважды стохастический вариационный вывод с полунеявными и несобственными распределениями2022 год, кандидат наук Молчанов Дмитрий Александрович
Введение диссертации (часть автореферата) на тему «On prospects and limitations of variational quantum algorithms/О перспективах и ограничениях вариационных квантовых алгоритмов»
Introduction Relevance of the work
The concept of quantum computation hinges on the clever manipulation of amplitudes of quantum states in an attempt to prepare a state with desired properties. The use of quantum hardware is the key here, as quantum systems naturally exploit properties such as superposition and entanglement, allowing for the manipulation of an exponential number of degrees of freedom. Indeed, a general n-qubit quantum state possesses 2n degrees of freedom, quickly making large problems intractable for classical devices [1; 2]. This has led researchers to believe that a universal quantum computer would be inherently more powerful than any classical device [3].
The first celebrated quantum algorithms, such as Deutsch-Josza's [4], Shor's [5], and Grover's [6], indeed promised significant speedup—exponential in the case of Deutsch-Josza's and Shor's, and quadratic in Grover's case. However, several decades after their original proposals, the implementation of practically relevant algorithms on real hardware remains limited to the smallest sizes [7; 8]. Indeed, in the current era of Noisy Intermediate-Scale Quantum (NISQ) devices, the size of feasible quantum circuits is limited by the precision of individual operations and the coherence times of qubits [9]. The successful implementation of large-scale quantum algorithms on such devices cannot be achieved without error correction protocols [10; 11], which are not fully available yet, given the current operation imprecision.
In response to these challenges, a new paradigm of quantum computation has emerged. In this paradigm, called Variational Quantum Algorithms (VQAs) [12; 13], quantum hardware works in tandem with a classical computer. In a process reminiscent of machine learning [14; 15], a short parameterized quantum circuit (called an ansatz) is trained using feedback loop from the classical co-processor. In this loop the classical computer optimizes the parameters of the circuit to minimize a specific objective function. Typical examples of VQAs include Variational Quantum Eigensolvers (VQEs) [16—20]—algorithms designed to find the ground state and energy of physically inspired problems, Quantum Approximate Optimization Algorithm (QAOA) [21—34], designed to approximately solve combinatorial optimization problems, quantum machine learning [14; 35—40] and beyond.
Despite some advantages, such as a degree of noise resilience [41—43] and robustness against the systematic limitations of NISQ devices [44—47], certain drawbacks of these algorithms have been identified. These include trainability limitations [48; 49] and the infamous barren plateau effect [50—55] which can also be induced by noise [56]. From the practical standpoint, the performance of variational algorithms is still known to deteriorate in the presence of gate errors [12; 57—60], which strongly restricts the number of operations which can be used in the circuit [45].
In this regard, it remains crucial to study the limitations of variational quantum algorithms to understand their potential for practical realizations. By understanding these limitations, it becomes possible to develop strategies that would enhance the performance of these algorithms on real platforms, ultimately pushing NISQ devices to their maximum potential.
Dissertation goals
This thesis aims to investigate the limitations and prospects of variational quantum algorithms. Specifically, we theoretically study the performance of quantum algorithms within the limitations, induced by imperfect NISQ devices. In particular, we:
1. Study the structure of optimal parameters for the Quantum Approximate Optimization Algorithm and analyze the effects of suboptimal training strategies.
2. Examine the impact of parameter perturbations on the quality of solutions found by Variational Quantum Eigensolvers and the Quantum Approximate Optimization Algorithm. Analytically investigate the scaling of perturbations to the expectation values with respect to the strength of the noise.
3. Investigate the sensitivity of different layers of Quantum Approximate Optimization circuit to the parameter perturbations and explore the potential for the reduction of the algorithm execution time.
4. Analyze the role of inhomogeneously distributed errors in quantum computers. Study how the measured expectation value depends on the specific abstract-to-physical qubit mapping used for circuit execution.
5. Explore the effects of inhomogeneously distributed errors on the ability to perform zero noise extrapolation—a strategy that recovers noiseless expec-
tations from noisy expectation values. Identify if provable guarantees for protocol performance can be established.
6. Conduct numerical experiments across a range of problem Hamiltonians, noise models, and error distributions to validate the proposed zero noise extrapolation protocol.
7. Assess the role of the compilation problem in the execution of the Quantum Approximate Optimization Algorithm, which limits its implementation on noisy devices.
8. Propose modifications to the ansatz that eliminate the need for a compilation step, thereby bypassing the gate-based model. Numerically benchmark the proposed ansatz, assuming a trapped-ion-based quantum computer.
Statements defended
1. For the QAOA circuit with the n qubit problem Hamiltonian H = 1 — \t)(t\, where t G {0,1}xn is an arbitrary bitstring, we
a) Prove a linear relation 7 + 2^ = tt between the optimal parameters for p =1 depth circuit with an arbitrary problem size n [32].
b) Numerically validate the linear relation 7p + 2/3p = tt between optimal parameters of the final QAOA layer for circuits of up to n = 17 qubits and depth p = 5 [32].
2. For the QAOA circuit with the n qubit problem Hamiltonian H = 1 — \t)(t\ for an arbitrary bitstring t G {0,1}xn, trained layerwise, we
a) Prove the existence of nontrainable quantum states whose overlap with the target state \t) can not be improved [31].
b) Formulate and prove necessary conditions for the onset of layerwise training saturations [31]. These conditions explain properties of quantum states, for which training saturations has been numerically confirmed by E. Campos in the joint work [31].
3. We consider a parametrized quantum circuit of q gates of the form Uk(Ok) = e %Akdk ,A2k = 1. Under the weak parameter perturbation assumption, when every parameter of the circuit receives a stochastic perturbation of typical scale a ^ 1 we prove that the expectation value of any observable is perturbed by a term
proportional to a2 [61]. Applying this to the VQE circuits, we show that the noise induced energy error is bounded by the term, proportional to qa2.
4. Under the inhomogeneous error distribution assumption, when the gate errors between distinct pairs of qubits are different, a method of zero noise extrapolation is proposed. In this method, the effective strength of the noise is varied by considering different logical-to-physical qubit mappings.
a) The method is proven to recover exact noiseless value (up to terms quadratic in the strength of the noise) for circuits of regular graph topology when all qubit permutations are considered [62].
b) The numerical simulations of the proposed method are conducted using up to 100 permutations. The simulations demonstrate that the method allows recovering the VQE noiseless energy for transverse field Ising model and water molecule with accuracy of 10-2 (and beyond) for up to 12 qubits [62].
5. QAOA ansatz can be modified to utilize native system interactions, allowing to bypass the gate-based model [34]. For the example of ion based quantum computer, this allows to modify QAOA to solve arbitrary instances of the Sherrington-Kirk-patrick Hamiltonian of n = 6 qubits, guaranteeing more than 62.5% overlap with the ground state, using no more than 6 layers of the developed ansatz [34].
Scientific novelty
1. Previous works have demonstrated the effect of parameter concentrations [24; 63—65], and in the joint work [30] we have analytically proven the scaling of optimal parameters with respect to system size for a problem of state preparation. In this thesis, we focus on the structure of optimal circuit parameters for the same problem and prove, as well as numerically validate, a linear relation between the parameters of individual layers. This allows truncating the space of variational parameters, thereby simplifying circuit optimization.
2. Layerwise optimization—a suboptimal training strategy in which circuit parameters are optimized layer by layer—is known to simplify optimization [24; 36]. However, in the joint work [31], this training strategy has
been shown to saturate, i.e. not being able to improve performance beyond a certain level. In this thesis, we explain the onset of training saturation by demonstrating the existence of non-trainable states with layerwise QAOA and establishing necessary conditions for saturation. Thus, violating these conditions removes training saturation and improves algorithmic performance.
3. The effect of parameter miscalibration has been studied before (see for instance [66—68]), yet its impact on the algorithmic performance remains underexplored. In this thesis, we prove that in the presence of parameter perturbation, the expectation value of any observable is perturbed by a term proportional to a2, where a is the strength of the perturbation. This study allows us to quantify the robustness of VQAs against stochastic perturbations and propose strategies for the algorithm execution time reduction.
4. Existing methods of zero noise extrapolation typically require enlarging the circuit [68—72], which introduces new sources of noise, e.g. noise caused by limited coherence times. In this thesis, we propose a hardware-inspired method of zero noise extrapolation, leveraging the inhomogeneous distribution of errors in NISQ devices and allowing the recovery of noiseless expectation values from noisy circuits.
5. Previous realizations of hardware-native interactions in QAOA have typically been limited to minimizing the system native Hamiltonian [45]. Our proposal for an ion-compatible circuit for QAOA allows solving more general, non-native problem Hamiltonians, bypassing the gate-based model and simplifying algorithmic implementations.
Theoretical and practical significance
The results of the thesis can be used to assist the optimization and simplify the execution of variational quantum algorithms. The obtained structure of the QAOA optimal parameters and the proven necessary conditions for layerwise training saturation open the pathway towards efficient implementation of variational algorithms. The proposed techniques allow (i) quantifying the effect of noise on the performance
of variational algorithms, and (ii) partially alleviate the effect of noise either by performing error mitigation, or by bypassing the main source of noise.
The validity of the work is supported by numerical experiments and mathematical proofs, where applicable.
Presentations and validation of the results
The results of the thesis have been presented at the following conferences and seminars:
1. Scientific Seminar of Steklov Mathematical Institute of Russian Academy of Sciences (December 3, 2024, Moscow, Russia)
2. 8th International Conference on Quantum Techniques in Machine Learning (November 25-29, 2024, Melbourne, Australia)
3. Scientific Seminar of Russian Quantum Center (October 25, 2024, Moscow, Russia)
4. 24th Asian Quantum Information Science Conference (August 26-30, 2024, Sapporo, Japan)
5. VII International Conference on Quantum Technologies (July 9-12, 2023, Moscow, Russia)
6. VI International Conference on Quantum Technologies (July 12-16, 2021, Moscow, Russia)
Structure of the dissertation
The dissertation consists of introduction, five chapters, conclusions, bibliography, list of symbols and abbreviations, list of figures, and supplementary material.
Publications
The work in this thesis is based on the following publications:
1. Progress towards analytically optimal angles in quantum approximate optimisation / D. Rabinovich [et al.] // Mathematics. 2022. Vol. 10, no. 15. P. 2601
2. Training saturation in layerwise quantum approximate optimization / E. Campos [et al.] // Physical Review A. 2021. Sept. 15. Vol. 104, no. 3. P. L030401
3. Robustness of variational quantum algorithms against stochastic parameter perturbation / D. Rabinovich [et al.] // Phys. Rev. A. 2024. Apr. Vol. 109, issue 4. P. 042426. URL: https : / /link. aps . org/doi/10 . 1103/ PhysRevA.109.042426
4. Mitigating quantum gate errors for variational eigensolvers using hardware-inspired zero-noise extrapolation / A. Uvarov [et al.] // Phys. Rev. A. 2024. July. Vol. 110, issue 1. P. 012404. URL: https://link.aps. org/doi/10.1103/PhysRevA.110.012404
5. Ion-native variational ansatz for quantum approximate optimization / D. Rabinovich [et al.] // Physical Review A. 2022. Vol. 106, no. 3. P. 032418
Acknowledgments
I would like to express my gratitude to my supervisor Professor Jacob Bia-monte for assisting me over the course of my PhD studies and on the challenging path toward completing this dissertation. I also thank all my colleagues and collaborators from Deep Quantum Laboratory, especially Andrey Kardashin, Alexey Uvarov, and Akshay Vishwanathan, for the fruitful joint work and endless scientific discussions. Special gratitude goes to Ernesto Campos and Soumik Adhikary for the continuous scientific collaboration, which greatly helped me throughout this challenging four-year journey.
I would also like to thank Professors Vladimir Palyulin, Irina Bobkova and Vladimir Voikov for their support in my career and wise advice when I needed it the most.
Finally, I would like to thank my parents, brother, and most importantly my wife, Elena Rabinovich, for the unwavering care, support, and encouragement in both my scientific career and personal life.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Байесовский подход в глубинном обучении: улучшение дискриминативных и генеративных моделей2020 год, кандидат наук Неклюдов Кирилл Олегович
Подход к отслеживанию траектории многороторных летательных аппаратов в неизвестных условиях / Trajectory Tracking Approach for Multi-rotor Aerial Vehicles in Unknown Environments2024 год, кандидат наук Кулатхунга Мудийанселаге Гисара Пратхап Кулатхунга
Алгоритмы обработки многоточечных измерений в распределенных космических системах2023 год, кандидат наук Афанасьев Антон Андреевич
Квантовые вычисления в гетероядерных массивах ультрахолодных атомов2025 год, кандидат наук Али Ахмед Мохамед Фарук Мохамед
Эффективные подходы на основе данных к задачам стохастического оптимального распределения потоков электроэнергии/Efficient Data-Driven Approaches in Stochastic Optimal Power Flow2025 год, кандидат наук Лукашевич Александр Леонидович
Заключение диссертации по теме «Другие cпециальности», Рабинович Даниил Сергеевич
Results
Overall the thesis presents the following results.
1. Depth p =1 QAOA optimal parameters for state preparation relate as 7 + 2^ = w, regardless of the system size. This behavior is numerically validated for the last layer of the QAOA circuit up to system size n = 17 and circuit depth p = 5.
2. The existence of non-improvable states, i.e. those for which training would saturate, is demonstrated for layerwise QAOA for the problem of state preparation. Necessary conditions for the onset of layerwise training saturation are established.
3. In the presence of parameter perturbation noise, expectation values of any observable are proven to receive perturbations quadratic in the typical scale of parameter perturbation. For applications in VQE and QAOA, this allows us to establish the noise threshold that can still be tolerated by the algorithm. Additionally, a strategy to reduce the execution time of variational algorithms is proposed.
4. We propose a novel zero noise extrapolation strategy, which utilizes the inhomogeneity of errors in NISQ devices. The protocol is proven to recover the perfect noiseless expectation value for circuits of regular graph topology when all permutations are considered. In numerical simulations for up to n = 12 qubits, the proposed protocol demonstrates orders of magnitude improvement in the energy of noisy VQE.
5. A hardware-specific modification to QAOA is proposed. The modified circuit is able to minimize all instances of n = 6 qubit graph optimization problems with weights Kij = ±1, and shows potential for solving problems for at least up to 20 qubits. For n = 6 qubits required circuit depth is shown to be smaller than that of the unmodified QAOA.
Список литературы диссертационного исследования кандидат наук Рабинович Даниил Сергеевич, 2025 год
Bibliography
1. Lloyd, S. Universal quantum simulators / S. Lloyd // Science. — 1996. — Vol. 273, no. 5278. — P. 1073—1078.
2. Feynman, R. P. Simulating physics with computers / R. P. Feynman // Feyn-man and computation. — cRc Press, 2018. — P. 133—153.
3. Feynman, R. P. Quantum mechanical computers. / R. P. Feynman // Found. Phys. — 1986. — Vol. 16, no. 6. — P. 507—532.
4. Deutsch, D. Rapid solution of problems by quantum computation / D. Deutsch, R. Jozsa // Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences. — 1992. — Vol. 439, no. 1907. — P. 553—558.
5. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer / P. W. Shor // SIAM review. — 1999. — Vol. 41, no. 2. — P. 303—332.
6. Grover, L. K. A fast quantum mechanical algorithm for database search / L. K. Grover // Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. — 1996. — P. 212—219.
7. Realization of a scalable Shor algorithm / T. Monz [et al.] // Science. —
2016. — Vol. 351, no. 6277. — P. 1068—1070.
8. Operating quantum states in single magnetic molecules: implementation of Grover's quantum algorithm / C. Godfrin [et al.] // Physical review letters. —
2017. — Vol. 119, no. 18. — P. 187702.
9. Preskill, J. Quantum computing in the NISQ era and beyond / J. Preskill // Quantum. — 2018. — Vol. 2. — P. 79.
10. Georgescu, I. 25 years of quantum error correction / I. Georgescu // Nature Reviews Physics. — 2020. — Vol. 2, no. 10. — P. 519—519.
11. Shor, P. W. Scheme for reducing decoherence in quantum computer memory / P. W. Shor // Physical review A. — 1995. — Vol. 52, no. 4. — R2493.
12. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets / A. Kandala [et al.] // Nature. — 2017. — Vol. 549, no. 7671. — P. 242—246.
13. Variational quantum algorithms / M. Cerezo [et al.] // Nature Reviews Physics. — 2021. — Vol. 3, no. 9. — P. 625—644.
14. Quantum machine learning / J. Biamonte [et al.] // Nature. — 2017. — Vol. 549, no. 7671. — P. 195—202.
15. Morales, M. E. Variational learning of Grover's quantum search algorithm / M. E. Morales, T. Tlyachev, J. Biamonte // Physical Review A. — 2018. — Vol. 98, no. 6. — P. 062333.
16. A variational eigenvalue solver on a photonic quantum processor / A. Peruzzo [et al.] // Nature communications. — 2014. — Vol. 5. — P. 4213.
17. Quantum Chemistry in the Age of Quantum Computing / Y. Cao [et al.] // Chemical Reviews. — 2019. — Oct. — Vol. 119, no. 19. — P. 10856—10915.
18. Quantum computational chemistry / S. McArdle [et al.] // Reviews of Modern Physics. — 2020. — Vol. 92, no. 1. — P. 015003.
19. Wecker, D. Progress towards practical quantum variational algorithms / D. Wecker, M. B. Hastings, M. Troyer // Physical Review A. — 2015. — Vol. 92, no. 4. — P. 042303.
20. Hybrid quantum-classical approach to correlated materials / B. Bauer [et al.] // Physical Review X. — 2016. — Vol. 6, no. 3. — P. 031045.
21. Farhi, E. A quantum approximate optimization algorithm / E. Farhi, J. Goldstone, S. Gutmann // arXiv preprint arXiv:1411.4028. — 2014.
22. Lloyd, S. Quantum approximate optimization is computationally universal / S. Lloyd // arXiv preprint arXiv:1812.11075. — 2018.
23. Morales, M. E. On the universality of the quantum approximate optimization algorithm / M. E. Morales, J. Biamonte, Z. Zimboras // Quantum Information Processing. — 2020. — Vol. 19, no. 9. — P. 1—26.
24. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices / L. Zhou [et al.] // Phys. Rev. X. — 2020. — June. — Vol. 10, issue 2. — P. 021067. — URL: https://link. aps.org/doi/10.1103/PhysRevX.10.021067.
25. Niu, M. Y. Optimizing qaoa: Success probability and runtime dependence on circuit depth / M. Y. Niu, S. Lu, I. L. Chuang // arXiv preprint arXiv:1905.12134. — 2019. — May.
26. Farhi, E. Quantum supremacy through the quantum approximate optimization algorithm / E. Farhi, A. W. Harrow // arXiv preprint arXiv:1602.07674. — 2016.
27. Reachability deficits in quantum approximate optimization / V. Akshay [et al.] // Physical Review Letters. — 2020. — Vol. 124, no. 9. — P. 090504.
28. The quantum approximate optimization algorithm and the sherrington-kirk-patrick model at infinite size / E. Farhi [et al.] // Quantum. — 2022. — Vol. 6. — P. 759.
29. Wauters, M. M. Polynomial scaling of QAOA for ground-state preparation of the fully-connected p-spin ferromagnet / M. M. Wauters, G. B. Mbeng, G. E. Santoro // arXiv preprint arXiv:2003.07419. — 2020.
30. Parameter concentrations in quantum approximate optimization / V. Akshay [et al.] // Physical Review A. — 2021. — Vol. 104, no. 1. — P. L010401.
31. Training saturation in layerwise quantum approximate optimization / E. Campos [et al.] // Physical Review A. — 2021. — Sept. 15. — Vol. 104, no. 3. — P. L030401.
32. Progress towards analytically optimal angles in quantum approximate optimisation / D. Rabinovich [et al.] // Mathematics. — 2022. — Vol. 10, no. 15. — P. 2601.
33. Circuit depth scaling for quantum approximate optimization / V. Akshay [et al.] // Physical Review A. — 2022. — Vol. 106, no. 4. — P. 042438.
34. Ion-native variational ansatz for quantum approximate optimization / D. Rabinovich [et al.] // Physical Review A. — 2022. — Vol. 106, no. 3. — P. 032418.
35. Kardashin, A. Quantum machine learning tensor network states / A. Kardashin, A. Uvarov, J. Biamonte // Frontiers in Physics. — 2021. — Vol. 8. — P. 586374. — URL: https://doi.org/10.3389/fphy.2020.586374.
36. Layerwise learning for quantum neural networks / A. Skolik [et al.] // Quantum Machine Intelligence. — 2021. — Vol. 3, no. 1. — P. 1—11.
37. Evaluating analytic gradients on quantum hardware / M. Schuld [et al.] // Physical Review A. — 2019. — Vol. 99, no. 3. — P. 032331.
38. Adhikary, S. Supervised learning with a quantum classifier using multi-level systems / S. Adhikary, S. Dangwal, D. Bhowmik // Quantum Information Processing. — 2020. — Vol. 19. — P. 1—12.
39. Adhikary, S. Entanglement assisted training algorithm for supervised quantum classifiers / S. Adhikary // Quantum Information Processing. — 2021. — Vol. 20, no. 8. — P. 254.
40. Supervised learning with quantum-enhanced feature spaces / V. Havliccek [et al.] // Nature. — 2019. — Vol. 567, no. 7747. — P. 209—212.
41. Noise-resilient variational hybrid quantum-classical optimization / L. Gentini [et al.] // Physical Review A. — 2020. — Vol. 102, no. 5. — P. 052414.
42. Noise Resilience of Variational Quantum Compiling / K. Sharma [et al.] // New Journal of Physics. — 2020. — Apr. — Vol. 22, no. 4. — P. 043006.
43. Machine learning of noise-resilient quantum circuits / L. Cincio [et al.] // PRX Quantum. — 2021. — Vol. 2, no. 1. — P. 010324.
44. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor / M. P. Harrigan [et al.] // Nature Physics. — 2021. — Vol. 17, no. 3. — P. 332—336.
45. Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator / G. Pagano [et al.] // Proceedings of the National Academy of Sciences. — 2020. — Vol. 117, no. 41. — P. 25396—25401.
46. Guerreschi, G. G. QAOA for Max-Cut requires hundreds of qubits for quantum speed-up / G. G. Guerreschi, A. Y. Matsuura // Scientific reports. — 2019. — Vol. 9, no. 1. — P. 1—7.
47. Understanding Quantum Control Processor Capabilities and Limitations through Circuit Characterization / A. Butko [et al.] // 2020 International Conference on Rebooting Computing (ICRC). — 2020. — P. 66—75.
48. Theory of overparametrization in quantum neural networks / M. Larocca [et al.] // Nature Computational Science. — 2023. — Vol. 3, no. 6. — P. 542—551.
49. Analytic theory for the dynamics of wide quantum neural networks / J. Liu [et al.] // Physical Review Letters. — 2023. — Vol. 130, no. 15. — P. 150601.
50. Uvarov, A. On barren plateaus and cost function locality in variational quantum algorithms / A. Uvarov, J. D. Biamonte // Journal of Physics A: Mathematical and Theoretical. — 2021. — Vol. 54, no. 24. — P. 245301.
51. Barren plateaus in quantum neural network training landscapes / J. R. Mc-Clean [et al.] // Nature Communications. — 2018. — Vol. 9, no. 1. — P. 1—6.
52. Harrow, A. W. Random quantum circuits are approximate 2-designs / A. W. Harrow, R. A. Low // Communications in Mathematical Physics. — 2009. — Vol. 291. — P. 257—302.
53. Brandao, F. G. Local random quantum circuits are approximate polynomial-designs / F. G. Brandao, A. W. Harrow, M. Horodecki // Communications in Mathematical Physics. — 2016. — Vol. 346. — P. 397—434.
54. Barren plateaus preclude learning scramblers / Z. Holmes [et al.] // Physical Review Letters. — 2021. — Vol. 126, no. 19. — P. 190501.
55. Effect of barren plateaus on gradient-free optimization / A. Arrasmith [et al.] // Quantum. — 2021. — Vol. 5. — P. 558.
56. Noise-induced barren plateaus in variational quantum algorithms / S. Wang [et al.] // Nature communications. — 2021. — Vol. 12, no. 1. — P. 6961.
57. Evaluating the Noise Resilience of Variational Quantum Algorithms / E. Fontana [et al.] // Physical Review A. — 2021. — Aug. — Vol. 104, no. 2. — P. 022403. — arXiv: 2011.01125.
58. Shaydulin, R. QAOA with N • p > 200 / R. Shaydulin, M. Pistoia. — 2023. — eprint: 2303.02064 (quant-ph).
59. High-Round QAOA for MAX &-SAT on Trapped Ion NISQ Devices / E. Pelofske [et al.] // 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). Vol. 01. — 2023. — P. 506—517.
60. Sack, S. H. Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation / S. H. Sack, D. J. Egger // Phys. Rev. Res. — 2024. — Mar. — Vol. 6, issue 1. — P. 013223. — URL: https://link.aps.org/doi/10.1103/PhysRevResearch.6.013223.
61. Robustness of variational quantum algorithms against stochastic parameter perturbation / D. Rabinovich [et al.] // Phys. Rev. A. — 2024. — Apr. — Vol. 109, issue 4. — P. 042426. — URL: https://link.aps.org/doi/10.1103/ PhysRevA.109.042426.
62. Mitigating quantum gate errors for variational eigensolvers using hardware-inspired zero-noise extrapolation / A. Uvarov [et al.] // Phys. Rev. A. — 2024. — July. — Vol. 110, issue 1. — P. 012404. — URL: https://link.aps.org/doi/10. 1103/PhysRevA.110.012404.
63. The quantum approximate optimization algorithm and the sherring-ton-kirkpatrick model at infinite size / E. Farhi [et al.] // arXiv preprint arXiv:1910.08187. — 2019. — Oct.
64. Streif, M. Training the quantum approximate optimization algorithm without access to a quantum processing unit / M. Streif, M. Leib // Quantum Science and Technology. — 2020. — Vol. 5, no. 3. — P. 034008.
65. Crooks, G. E. Performance of the quantum approximate optimization algorithm on the maximum cut problem / G. E. Crooks // arXiv preprint arXiv:1811.08419. — 2018. — Nov.
66. Simple Mitigation Strategy for a Systematic Gate Error in IBMQ / D. Bultrini [et al.]. — 2020. — arXiv: 2012.00831 [quant-ph]. — URL: https://arxiv. org/abs/2012.00831.
67. Merrill, J. T. Progress in compensating pulse sequences for quantum computation / J. T. Merrill, K. R. Brown. — 2012. — arXiv: 1203.6392 [quant-ph]. — URL: https://arxiv.org/abs/1203.6392.
68. Digital zero noise extrapolation for quantum error mitigation / T. Giurgica-T-iron [et al.] // 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). — 2020. — P. 306—316.
69. Temme, K. Error mitigation for short-depth quantum circuits / K. Temme, S. Bravyi, J. M. Gambetta // Physical Review Letters. — 2017. — Vol. 119, no. 18. — P. 180509.
70. Error Mitigation Extends the Computational Reach of a Noisy Quantum Processor / A. Kandala [et al.] // Nature. — 2019. — Mar. — Vol. 567, no. 7749. — P. 491—495. — (Visited on 06/08/2023).
71. Cloud Quantum Computing of an Atomic Nucleus / E. F. Dumitrescu [et al.] // Phys. Rev. Lett. — 2018. — May. — Vol. 120, issue 21. — P. 210501. — URL: https://link.aps.org/doi/10.1103/PhysRevLett.120.210501.
72. Zero-noise extrapolation for quantum-gate error mitigation with identity insertions / A. He [et al.] // Phys. Rev. A. — 2020. — July. — Vol. 102, issue 1. — P. 012426. — URL: https://link.aps.org/doi/10.1103/PhysRevA.102.012426.
73. Griffiths, D. J. Introduction to quantum mechanics / D. J. Griffiths, D. F. Schroeter. — Cambridge university press, 2018.
74. Nielsen, M. A. Quantum Computation and Quantum Information: 10th Anniversary Edition / M. A. Nielsen, I. L. Chuang. — 10th. — USA : Cambridge University Press, 2011.
75. Superconducting quantum computing: a review / H.-L. Huang [et al.] // Science China Information Sciences. — 2020. — Vol. 63. — P. 1—32.
76. Saffman, M. Quantum information with Rydberg atoms / M. Saffman, T. G. Walker, K. M0lmer // Reviews of modern physics. — 2010. — Vol. 82, no. 3. — P. 2313—2363.
77. Morgado, M. Quantum simulation and computing with Rydberg qubits / M. Morgado, S. Whitlock // arXiv e-prints. — 2020. — arXiv—2011.
78. S0rensen, A. Quantum computation with ions in thermal motion / A. S0rensen, K. M0lmer // Physical Review Letters. — 1999. — Vol. 82, no. 9. — P. 1971.
79. S0rensen, A. Entanglement and quantum computation with ions in thermal motion / A. S0rensen, K. M0lmer // Phys. Rev. A. — 2000. — July. — Vol. 62, issue 2. — P. 022311. — URL: https://link.aps.org/doi/10.1103/PhysRevA. 62.022311.
80. Wallman, J. J. Noise tailoring for scalable quantum computation via randomized compiling / J. J. Wallman, J. Emerson // Phys. Rev. A. — 2016. — Nov. — Vol. 94, issue 5. — P. 052325. — URL: https://link.aps.org/doi/10. 1103/PhysRevA.94.052325.
81. Compact Ion-Trap Quantum Computing Demonstrator / I. Pogorelov [et al.] // PRX Quantum. — 2021. — June. — Vol. 2, issue 2. — P. 020343. — URL: https://link.aps.org/doi/10.1103/PRXQuantum.2.020343.
82. Benchmarking an 11-qubit quantum computer / K. Wright [et al.] // Nature Communications. — 2019. — Vol. 10, no. 1. — P. 5464. — URL: https://doi. org/10.1038/s41467-019-13534-2.
83. Variational quantum algorithms for dimensionality reduction and classification / J.-M. Liang [et al.] // Physical Review A. — 2020. — Vol. 101, no. 3. — P. 032323.
84. The theory of variational hybrid quantum-classical algorithms / J. R. Mc-Clean [et al.] // New Journal of Physics. — 2016. — Vol. 18, no. 2. — P. 023023.
85. Parameterized quantum circuits as machine learning models / M. Benedetti [et al.] // Quantum Science and Technology. — 2019. — Vol. 4, no. 4. — P. 043001.
86. Verdon, G. A quantum algorithm to train neural networks using low-depth circuits / G. Verdon, M. Broughton, J. Biamonte // arXiv preprint arXiv:1712.05304. — 2017.
87. Theory of variational quantum simulation / X. Yuan [et al.] // Quantum. — 2019. — Vol. 3. — P. 191.
88. Variational fast forwarding for quantum simulation beyond the coherence time / C. Cirstoiu [et al.] // npj Quantum Information. — 2020. — Vol. 6, no. 1. — P. 82.
89. Long-time simulations with high fidelity on quantum hardware / J. Gibbs [et al.] // arXiv preprint arXiv:2102.04313. — 2021.
90. Variational quantum simulation of general processes / S. Endo [et al.] // Physical Review Letters. — 2020. — Vol. 125, no. 1. — P. 010501.
91. Quantum-assisted quantum compiling / S. Khatri [et al.] // Quantum. — 2019. — Vol. 3. — P. 140.
92. Jones, T. Robust quantum compilation and circuit optimisation via energy minimisation / T. Jones, S. C. Benjamin // Quantum. — 2022. — Vol. 6. — P. 628.
93. Variational quantum compiling with double Q-learning / Z. He [et al.] // New Journal of Physics. — 2021. — Vol. 23, no. 3. — P. 033002.
94. Quantum circuit learning / K. Mitarai [et al.] // Physical Review A. — 2018. — Vol. 98, no. 3. — P. 032309.
95. Xu, X. Variational circuit compiler for quantum error correction / X. Xu, S. C. Benjamin, X. Yuan // arXiv preprint arXiv:1911.05759. — 2019.
96. Uvarov, A. Variational quantum eigensolver for frustrated quantum systems / A. Uvarov, J. D. Biamonte, D. Yudin // Phys. Rev. B. — 2020. — Aug. — Vol. 102, issue 7. — P. 075104. — URL: https://link.aps.org/doi/10.1103/ PhysRevB.102.075104.
97. Cost function dependent barren plateaus in shallow parametrized quantum circuits / M. Cerezo [et al.] // Nature communications. — 2021. — Vol. 12, no. 1. — P. 1791.
98. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states / J. R. McClean [et al.] // Physical Review A. — 2017. — Vol. 95, no. 4. — P. 042308.
99. Garcia-Saez, A. Addressing hard classical problems with adiabatically assisted variational quantum eigensolvers / A. Garcia-Saez, J. Latorre // arXiv preprint arXiv:1806.02287. — 2018.
100. Exploring entanglement and optimization within the hamiltonian variational ansatz / R. Wiersema [et al.] // PRX Quantum. — 2020. — Vol. 1, no. 2. — P. 020319.
101. Nakaji, K. Expressibility of the alternating layered ansatz for quantum computation / K. Nakaji, N. Yamamoto // Quantum. — 2021. — Vol. 5. — P. 434.
102. Scaling of variational quantum circuit depth for condensed matter systems / C. Bravo-Prieto [et al.] // Quantum. — 2020. — Vol. 4. — P. 272.
103. Uvarov, A. V. Machine learning phase transitions with a quantum processor / A. V. Uvarov, A. S. Kardashin, J. D. Biamonte // Phys. Rev. A. — 2020. — July. — Vol. 102, issue 1. — P. 012415. — URL: https://link.aps.org/doi/10. 1103/PhysRevA.102.012415.
104. On the practical usefulness of the Hardware Efficient Ansatz / L. Leone [et al.] // arXiv preprint arXiv:2211.01477. — 2022.
105. Superconducting qubits: Current state of play / M. Kjaergaard [et al.] // Annual Review of Condensed Matter Physics. — 2020. — Vol. 11. — P. 369—395.
106. Siddiqi, I. Engineering high-coherence superconducting qubits / I. Siddiqi // Nature Reviews Materials. — 2021. — Vol. 6, no. 10. — P. 875—891.
107. Zhuang, J. .-. Hardware-efficient variational quantum algorithm in trapped-ion quantum computer / J. .-. Zhuang, Y. .-. Wu, L. .-. Duan. — 2024. — arXiv: 2407.03116 [quant-ph]. — URL: https://arxiv.org/abs/ 2407.03116.
108. Biamonte, J. Universal variational quantum computation / J. Biamonte // Physical Review A. — 2021. — Vol. 103, no. 3. — P. L030401.
109. Noisy intermediate-scale quantum algorithms / K. Bharti [et al.] // Reviews of Modern Physics. — 2022. — Vol. 94, no. 1. — P. 015004.
110. Can error mitigation improve trainability of noisy variational quantum algorithms? / S. Wang [et al.] // Quantum. — 2024. — Vol. 8. — P. 1287.
111. Quantum computation of electronic transitions using a variational quantum eigensolver / R. M. Parrish [et al.] // Physical review letters. — 2019. — Vol. 122, no. 23. — P. 230401.
112. Quantum chemistry calculations on a trapped-ion quantum simulator / C. Hempel [et al.] // Physical Review X. — 2018. — Vol. 8, no. 3. — P. 031022.
113. Simulating noisy variational quantum eigensolver with local noise models / J. Zeng [et al.] // Quantum Engineering. — 2021. — Vol. 3, no. 4. — e77.
114. Strategies for solving the Fermi-Hubbard model on near-term quantum computers / C. Cade [et al.] // Physical Review B. — 2020. — Vol. 102, no. 23. — P. 235122.
115. Numerical hardware-efficient variational quantum simulation of a soliton solution / A. Kardashin [et al.] // Physical Review A. — 2021. — Vol. 104, no. 2. — P. L020402.
116. Certified variational quantum algorithms for eigenstate preparation / A. Kardashin [et al.] // Physical Review A. — 2020. — Nov. — Vol. 102, no. 5. — P. 052610. — arXiv: 2006.13222. — URL: https://journals.aps.org/pra/ abstract/10.1103/PhysRevA.102.052610.
117. Reachability deficits in quantum approximate optimization of graph problems / V. Akshay [et al.] // Quantum. — 2021. — Vol. 5. — P. 532.
118. An Adaptive Variational Algorithm for Exact Molecular Simulations on a Quantum Computer / H. R. Grimsley [et al.] // Nature Communications. — 2019. — Dec. — Vol. 10, no. 1. — P. 3007.
119. Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor / H. L. Tang [et al.] // PRX Quantum. — 2021. — Apr. — Vol. 2, no. 2. — P. 020310.
120. Adaptive Pruning-Based Optimization of Parameterized Quantum Circuits / S. Sim [et al.] // Quantum Science and Technology. — 2021. — Apr. — Vol. 6, no. 2. — P. 025019.
121. A semi-agnostic ansatz with variable structure for variational quantum algorithms / M. Bilkis [et al.] // Quantum Machine Intelligence. — 2023. — Vol. 5, no. 2. — P. 43.
122. Sapova, M. D. Variational Quantum Eigensolver Techniques for Simulating Carbon Monoxide Oxidation / M. D. Sapova, A. K. Fedorov // Communications Physics. — 2022. — Aug. — Vol. 5, no. 1. — P. 199. — (Visited on 10/23/2023).
123. Kyriienko, O. Generalized Quantum Circuit Differentiation Rules / O. Kyri-ienko, V. E. Elfving // Physical Review A. — 2021. — Nov. — Vol. 104, no. 5. — P. 052417.
124. Verteletskyi, V. Measurement Optimization in the Variational Quantum Eigensolver Using a Minimum Clique Cover / V. Verteletskyi, T.-C. Yen, A. F. Izmaylov // The Journal of Chemical Physics. — 2020. — Mar. — Vol. 152, no. 12. — P. 124114.
125. Quantum Algorithms for Electronic Structure Calculations: Particle/Hole Hamiltonian and Optimized Wavefunction Expansions / P. K. Barkoutsos [et al.] // Physical Review A. — 2018. — Aug. — Vol. 98, no. 2. — arXiv: 1805.04340.
126. The Variational Quantum Eigensolver: A Review of Methods and Best Practices / J. Tilly [et al.] // Physics Reports. — 2022. — Nov. — Vol. 986. — P. 1—128.
127. How Will Quantum Computers Provide an Industrially Relevant Computational Advantage in Quantum Chemistry? / V. E. Elfving [et al.] // arXiv:2009.12472. —. — arXiv: 2009.12472 [physics, physics:quant-ph].
128. Claes, J. Instance independence of single layer quantum approximate optimization algorithm on mixed-spin models at infinite size / J. Claes, W. van Dam // Quantum. — 2021. — Vol. 5. — P. 542.
129. XY mixers: Analytical and numerical results for the quantum alternating operator ansatz / Z. Wang [et al.] // Physical Review A. — 2020. — Vol. 101, no. 1. — P. 012320.
130. Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems / L. T. Brady [et al.] // Physical Review Letters. — 2021. — Feb. — Vol. 126, no. 7. — P. 070505. — URL: https: //link.aps.org/doi/10.1103/PhysRevLett.126.070505.
131. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem / E. Farhi [et al.] // Science. — 2001. — Vol. 292, no. 5516. — P. 472—475.
132. Kadowaki, T. Quantum annealing in the transverse Ising model / T. Kad-owaki, H. Nishimori // Physical Review E. — 1998. — Vol. 58, no. 5. — P. 5355.
133. Evidence for quantum annealing with more than one hundred qubits / S. Boixo [et al.] // Nature physics. — 2014. — Vol. 10, no. 3. — P. 218—224.
134. Farhi, E. A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem / E. Farhi, J. Goldstone, S. Gutmann // arXiv preprint arXiv:1412.6062. — 2014.
135. Quantum approximate optimization algorithm for MaxCut: A fermionic view / Z. Wang [et al.] // Physical Review A. — 2018. — Vol. 97, no. 2. — P. 022304.
136. Simulations of frustrated Ising Hamiltonians using quantum approximate optimization / P. C. Lotshaw [et al.] // Philosophical Transactions of the Royal Society A. — 2023. — Vol. 381, no. 2241. — P. 20210414.
137. Campos, E. Abrupt transitions in variational quantum circuit training /
E. Campos, A. Nasrallah, J. Biamonte // Physical Review A. — 2021. — Vol. 103, no. 3. — P. 032607.
138. For fixed control parameters the quantum approximate optimization algorithm's objective function value concentrates for typical instances /
F. G. Brandao [et al.] // arXiv preprint arXiv:1812.04170. — 2018. — Dec.
139. Sack, S. H. Quantum annealing initialization of the quantum approximate optimization algorithm / S. H. Sack, M. Serbyn // arXiv preprint arXiv:2101.05742. — 2021. — Jan.
140. Clarke, J. Superconducting quantum bits / J. Clarke, F. K. Wilhelm // Nature. — 2008. — Vol. 453, no. 7198. — P. 1031—1042.
141. Gambetta, J. M. Building logical qubits in a superconducting quantum computing system / J. M. Gambetta, J. M. Chow, M. Steffen // npj quantum information. — 2017. — Vol. 3, no. 1. — P. 1—7.
142. Coupled dynamics of spin qubits in optical dipole microtraps / L. V. Gerasi-mov [et al.]. — 2022. — URL: https://arxiv.org/abs/2205.03383.
143. Morgado, M. Quantum simulation and computing with Rydberg-interacting qubits / M. Morgado, S. Whitlock // AVS Quantum Science. — 2021. — Vol. 3, no. 2. — P. 023501. — eprint: https://doi.org/10.1116/5.0036562. — URL: https://doi.org/10.1116/5.0036562.
144. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator / J. Zhang [et al.] // Nature. — 2017. — Vol. 551, no. 7682. — P. 601—604. — URL: https://doi.org/10.1038/nature24654.
145. Materials challenges for trapped-ion quantum computers / K. R. Brown [et al.] // Nature Reviews Materials. — 2021. — Vol. 6, no. 10. — P. 892—905.
146. A quantum information processor with trapped ions / P. Schindler [et al.] // New Journal of Physics. — 2013. — Vol. 15, no. 12. — P. 123012.
147. Optimized fast gates for quantum computing with trapped ions / E. P. Gale [et al.] // Physical Review A. — 2020. — Vol. 101, no. 5. — P. 052328.
148. Towards fault-tolerant quantum computing with trapped ions / J. Benhelm [et al.] // Nature Physics. — 2008. — Vol. 4, no. 6. — P. 463—466.
149. Monroe, C. R. Quantum computing with ions / C. R. Monroe, D. J. Wineland // Scientific American. — 2008. — Vol. 299, no. 2. — P. 64—71.
150. Egan, L. N. Scaling Quantum Computers with Long Chains of Trapped Ions : PhD thesis / Egan Laird Nicholas. — University of Maryland, College Park, 2021.
151. Variational quantum chemistry requires gate-error probabilities below the fault-tolerance threshold / D. Arvidsson-Shukur [et al.] // APS March Meeting Abstracts. Vol. 2023. — 2023. — K64—006.
152. Kattemolle, J. Ability of error correlations to improve the performance of variational quantum algorithms / J. Kattemolle, G. Burkard // Physical Review
A. — 2023. — Vol. 107, no. 4. — P. 042426.
153. Optimizing variational quantum algorithms using pontryagin's minimum principle / Z.-C. Yang [et al.] // Physical Review X. — 2017. — Vol. 7, no. 2. — P. 021027.
154. Evaluation of Parameterized Quantum Circuits With Cross-Resonance Pulse-Driven Entanglers / M. M. Ibrahim [et al.] // IEEE Transactions on Quantum Engineering. — 2022. — Vol. 3. — P. 1—13.
155. Quantum error mitigation / Z. Cai [et al.] // Rev. Mod. Phys. — 2023. — Dec. — Vol. 95, issue 4. — P. 045005. — URL: https://link.aps.org/doi/10. 1103/RevModPhys.95.045005.
156. Experimental error mitigation via symmetry verification in a variational quantum eigensolver / R. Sagastizabal [et al.] // Phys. Rev. A. — 2019. — July. — Vol. 100, issue 1. — P. 010302. — URL: https://link.aps.org/doi/10.1103/ PhysRevA.100.010302.
157. Low-cost error mitigation by symmetry verification / X. Bonet-Monroig [et al.] // Phys. Rev. A. — 2018. — Dec. — Vol. 98, issue 6. — P. 062339. — URL: https://link.aps.org/doi/10.1103/PhysRevA.98.062339.
158. Endo, S. Practical quantum error mitigation for near-future applications / S. Endo, S. C. Benjamin, Y. Li // Physical Review X. — 2018. — Vol. 8, no. 3. — P. 031027.
159. Virtual Distillation for Quantum Error Mitigation / W. J. Huggins [et al.] // Phys. Rev. X. — 2021. — Nov. — Vol. 11, issue 4. — P. 041036. — URL: https://link.aps.org/doi/10.1103/PhysRevX.11.041036.
160. Koczor, B. Exponential Error Suppression for Near-Term Quantum Devices /
B. Koczor // Phys. Rev. X. — 2021. — Sept. — Vol. 11, issue 3. — P. 031057. — URL: https://link.aps.org/doi/10.1103/PhysRevX.11.031057.
161. Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser / N. Akerman [et al.] // New Journal of Physics. — 2015. — Nov. — Vol. 17, no. 11. — P. 113060. — URL: https://doi.org/ 10.1088/ 13672630/17/11/113060.
162. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits / C. J. Ballance [et al.] // Phys. Rev. Lett. — 2016. — Aug. — Vol. 117, issue 6. — P. 060504. — URL: https://link.aps.org/doi/10.1103/PhysRevLett.117. 060504.
163. Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation / A. Bermudez [et al.] // Phys. Rev. X. — 2017. — Dec. — Vol. 7, issue 4. — P. 041061. — URL: https://link.aps.org/doi/10. 1103/PhysRevX.7.041061.
164. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits / H. Levine [et al.] // Phys. Rev. Lett. — 2018. — Sept. — Vol. 121, issue 12. — P. 123603. — URL: https://link.aps.org/doi/10.1103/PhysRevLett.121.123603.
165. Trapped-ion quantum computing: Progress and challenges / C. D. Bruzewicz [et al.] // Applied Physics Reviews. — 2019. — Vol. 6, no. 2. — P. 021314.
166. Phase transition in Random Circuit Sampling / A. Morvan [et al.]. — 2023. — URL: https://arxiv.org/abs/2304.11119.
167. Kuroiwa, K. Penalty Methods for a Variational Quantum Eigensolver / K. Kuroiwa, Y. O. Nakagawa // Physical Review Research. — 2021. — Vol. 3, no. 1. — P. 013197.
168. Evidence for the utility of quantum computing before fault tolerance / Y. Kim [et al.] // Nature. — 2023. — Vol. 618, no. 7965. — P. 500—505.
169. Li, Y. Efficient variational quantum simulator incorporating active error minimization / Y. Li, S. C. Benjamin // Physical Review X. — 2017. — Vol. 7, no. 2. — P. 021050.
170. Kattemolle, J. Effects of correlated errors on the quantum approximate optimization algorithm / J. Kattemolle, G. Burkard // arXiv preprint arXiv:2207.10622. — 2022.
171. Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry / K. Dalton [et al.] // npj Quantum Information. — 2024. — Vol. 10, no. 1. — P. 18.
172. Programmable quantum simulations of spin systems with trapped ions / C. Monroe [et al.] // Rev. Mod. Phys. — 2021. — Apr. — Vol. 93, issue 2. — P. 025001. — URL: https://link.aps.org/doi/10.1103/RevModPhys.93. 025001.
173. Cirac, J. I. Quantum Computations with Cold Trapped Ions / J. I. Cirac, P. Zoller // Physical Review Letters. — 1995. — May. — Vol. 74, no. 20. — P. 4091—4094.
174. A universal qudit quantum processor with trapped ions / M. Ringbauer [et al.] // Nature Physics. — 2022. — Vol. 18, no. 9. — P. 1053—1057.
175. Single ion qubit with estimated coherence time exceeding one hour / P. Wang [et al.] // Nature Communications. — 2021. — Vol. 12, no. 1. — P. 233. — URL: https://doi.org/10.1038/s41467-020-20330-w.
176. Porras, D. Effective Quantum Spin Systems with Trapped Ions / D. Porras, J. I. Cirac // Phys. Rev. Lett. — 2004. — May. — Vol. 92, issue 20. — P. 207901. — URL: https://link.aps.org/doi/10.1103/PhysRevLett.92.207901.
177. Deng, X.-L. Effective spin quantum phases in systems of trapped ions / X.-L. Deng, D. Porras, J. I. Cirac // Phys. Rev. A. — 2005. — Dec. — Vol. 72, issue 6. — P. 063407. — URL: https://link.aps.org/doi/10.1103/PhysRevA. 72.063407.
178. Environment-Assisted Quantum Transport in a 10-qubit Network / C. Maier [et al.] // Phys. Rev. Lett. — 2019. — Feb. — Vol. 122, issue 5. — P. 050501. — URL: https://link.aps.org/doi/10.1103/PhysRevLett.122.050501.
179. Experimental performance of a quantum simulator: Optimizing adiabatic evolution and identifying many-body ground states / P. Richerme [et al.]. — 2013. — July.
180. Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator / P. Richerme [et al.]. — 2013. — Sept.
181. Non-local propagation of correlations in quantum systems with long-range interactions / P. Richerme [et al.] // Nature. — 2014. — July. — Vol. 511, no. 7508. — P. 198—201.
182. Many-body localization in a quantum simulator with programmable random disorder / J. Smith [et al.]. — 2016. — June.
183. Coherent imaging spectroscopy of a quantum many-body spin system / C. Senko [et al.]. — 2014. — July.
184. A site-resolved two-dimensional quantum simulator with hundreds of trapped ions / S.-A. Guo [et al.] // Nature. — 2024. — P. 1—6.
185. Obstacles to variational quantum optimization from symmetry protection / S. Bravyi [et al.] // Physical Review Letters. — 2020. — Vol. 125, no. 26. — P. 260505.
186. Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm / B. T. Gard [et al.] // npj Quantum Information. — 2020. — Vol. 6, no. 1. — P. 1—9.
187. Quantum-optimal-control-inspired ansatz for variational quantum algorithms / A. Choquette [et al.] // Physical Review Research. — 2021. — Vol. 3, no. 2. — P. 023092.
188. Panchenko, D. The Sherrington-Kirkpatrick model: an overview / D. Panchenko // Journal of Statistical Physics. — 2012. — Vol. 149, no. 2. — P. 362—383.
189. Sherrington, D. Solvable model of a spin-glass / D. Sherrington, S. Kirk-patrick // Physical Review Letters. — 1975. — Vol. 35, no. 26. — P. 1792.
190. Van Dam, W. How powerful is adiabatic quantum computation? / W. Van Dam, M. Mosca, U. Vazirani. — 2001.
191. Altshuler, B. Anderson localization makes adiabatic quantum optimization fail / B. Altshuler, H. Krovi, J. Roland // Proceedings of the National Academy of Science. — 2010. — July. — Vol. 107, no. 28. — P. 12446—12450. — arXiv: 0912.0746 [quant-ph].
192. Jiang, Z. Near-optimal quantum circuit for Grover's unstructured search using a transverse field / Z. Jiang, E. G. Rieffel, Z. Wang //. — 2017. — June. — Vol. 95, no. 6. — P. 062317. — arXiv: 1702.02577 [quant-ph].
193. Self-verifying variational quantum simulation of lattice models / C. Kokail [et al.] // Nature. — 2019. — Vol. 569, no. 7756. — P. 355—360.
194. Romero, J. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions / J. Romero, A. Aspu-ru-Guzik // Advanced Quantum Technologies. — 2021. — Vol. 4, no. 1. — P. 2000003.
195. Variational quantum unsampling on a quantum photonic processor / J. Car-olan [et al.] // Nature Physics. — 2020. — Vol. 16, no. 3. — P. 322—327.
196. Analyzing the performance of variational quantum factoring on a superconducting quantum processor / A. H. Karamlou [et al.] // npj Quantum Information. — 2021. — Vol. 7, no. 1. — P. 156.
197. Noise robustness and experimental demonstration of a quantum generative adversarial network for continuous distributions / A. Anand [et al.] // Advanced Quantum Technologies. — 2021. — Vol. 4, no. 5. — P. 2000069.
198. Experimental demonstration of a quantum generative adversarial network for continuous distributions / A. Anand [et al.] // arXiv preprint arXiv:2006.01976. — 2020.
199. "Zhores"—Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology / I. Zacharov [et al.] // Open Engineering. — 2019. — Vol. 9, no. 1. — P. 512—520.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.