О векторах Бете gl(2|1)-инвариантных интегрируемых моделей тема диссертации и автореферата по ВАК РФ 01.01.03, кандидат наук Ляшик Андрей Николаевич
- Специальность ВАК РФ01.01.03
- Количество страниц 118
Оглавление диссертации кандидат наук Ляшик Андрей Николаевич
Contents
Introduction
1 Quantum R-matrix structure
2 Spin chain as basic example
3 Algebraic Bethe ansatz for gl2
4 0[2|1-invariant Bethe vector
5 Scalar product of Bethe vectors
6 Norm of eigenvector
Appendix A. Multiple Actions of the Monodromy Matrix in gI(2|1)-Invariant Integrable Models
Appendix B. Scalar products of Bethe vectors in models with gl(2| 1) symmetry 1. Super-analog of Reshetikhin formula
Appendix C. Scalar products of Bethe vectors in models with gl(2| 1) symmetry 2. Determinant representation
Appendix D. Form factors of the monodromy matrix entries in g[(2|1)-invariant integrable models
Рекомендованный список диссертаций по специальности «Математическая физика», 01.01.03 шифр ВАК
Развитие алгебраической теории коллективных движений атомных ядер2020 год, доктор наук Ганев Хубен Ганев
Общий подход к теории и методологии метода анализа сингулярного спектра2023 год, доктор наук Голяндина Нина Эдуардовна
Изомонодромные деформации и квантовая теория поля2018 год, кандидат наук Гавриленко Павел Георгиевич
Струнное представление и непертурбативные свойства калибровочных теорий1999 год, кандидат физико-математических наук Антонов, Дмитрий Владимирович
Многообразия с редуцированной голономией в суперструнных теориях2005 год, кандидат физико-математических наук Сантиллан Освальдо Пабло
Введение диссертации (часть автореферата) на тему «О векторах Бете gl(2|1)-инвариантных интегрируемых моделей»
Introduction
Quantum integrable models are a special class of physical models. These models describe non trivial systems of interacting particles and at the same time they can be studied accuracy using mathematical tools. They offer us a unique training ground for a deep study of non trivial physical phenomena explicitly.
A wide class of quantum integrable models is associated with higher rank algebras. Integrable models with symmetries of high rank appear in condensed matter physics, in particular in the 0Ím|n invariant XXX Heisenberg spin chain, in multi-component Bose/Fermi gas [25], and in the study of models of cold atoms (the Hubbard model [21], the t-J model [22, 23, 24]). Also spin chains of higher rank are interesting in the context of computing correlation functions in N =4 supersymmetric Yang-Mills theory [10, 11].
The role of the scalar product of Bethe vectors is extremely important in the study of correlation functions of local operators of the underlying quantum models [15, 17, 18]. One can reduce the problem of calculation of the form factors and the correlation functions of local operators to the calculation of the scalar products of the Bethe vectors [28, 29].
The study of integrable systems with high rank symmetry is still a challenging task. Until recently, such models have either not been studied at all, or have been studied under various simplifying hypotheses. The results presented in the thesis are the first in this direction.
My thesis presents the results of four articles in which I am one of the co-authors. The articles are devoted to the study of Bethe vectors and their scalar products in quantum integrable models with gi^-algebra symmetry. This research is the development of mathematical apparatus of the study of correlation functions of these systems. In fact, this thesis is completely devoted to the description of Bethe vectors and to study of their properties.
This section contains an overview of the results of the thesis, where we present generalization of Algebraic Bethe Anzats to the case gi^-invariant integrable models and scalar products of Bethe vectors in this case.
Похожие диссертационные работы по специальности «Математическая физика», 01.01.03 шифр ВАК
Perturbative and non-perturbative studies in light-front field theory and operator solutions of some two-dimensional models [Пертурбативные и непертурбативные исследования в теории поля в переменных светового фронта и операторные решения некоторых двумерных моделей]2021 год, доктор наук Мартинович Любомир
Моделирование влияния модификации структуры низкоразмерных материалов ZnO, β-C3N4, InSe и однослойного бора на их физические свойства2021 год, кандидат наук Лэй Сюе
Неклассические методы вероятностного и статистического анализа моделей смеси распределений2022 год, доктор наук Панов Владимир Александрович
Плазмонные наноструктуры для оптических метаматериалов2022 год, доктор наук Драчев Владимир Прокопьевич
Динамика обучения и ландшафт функции потерь нейронных сетей с масштабно-инвариантными параметрами2024 год, кандидат наук Кодрян Максим Станиславович
Заключение диссертации по теме «Математическая физика», Ляшик Андрей Николаевич
Conclusion
In this paper we obtained determinant representations for form factors of the monodromy matrix entries in integrable models described by fll(2| 1) and fll(112) superalgebras. The method is based on the determinant formula for a particular case of Bethe vectors scalar product [27]. This formula allows one to calculate form factors of the diagonal operators Tn. Further calculation of form factors of the off-diagonal operators Tik is based on the zero modes method [23].
The obtained results can be used for the calculation of form factors and correlation functions in the supersymmetric t-J model. For this model the solution of the quantum inverse scattering problem is known [11,28]. Therefore, form factors of local operators can be easily reduced to the ones considered in the present paper.
The calculation of form factors in models with gl(mln) symmetry remains to be done. Any results in this field would be desirable in view of their possible application to Hubbard model and supersymmetric gauge theories. It is clear that the zero modes method works in this case as well. Therefore, it would be enough to obtain a determinant formula for only one form factor. All other form factors would be achieved from the initial one as special limits of the Bethe parameters. However, the problem of calculating the initial form factor meets serious technical difficulties.
Acknowledgements
N.A.S. thanks LAPTH in Annecy-le-Vieux for the hospitality and stimulating scientific atmosphere, and CNRS for partial financial support. The work of A.L. has been funded by the Russian Academic Excellence Project 5-100 and by joint NASU-CNRS project F14-2016. The work of S.P. was supported in part by the RFBR grant 16-01-00562-a. N.A.S. was supported by the grants RFBR-15-31-20484-mol-a-ved and RFBR-14-01-00860-a.
Список литературы диссертационного исследования кандидат наук Ляшик Андрей Николаевич, 2020 год
References
[1] L.D. Faddeev, E.K. Sklyanin, L.A. Takhtajan, Quantum inverse problem. I, Theor. Math. Phys. 40 (1979) 688-706.
[2] L.D. Faddeev, L.A. Takhtajan, The quantum method of the inverse problem and the Heisenberg XYZ model, Usp. Math. Nauk 34 (1979) 13; Russ. Math. Surv. 34 (1979) 11 (Engl. transl.).
[3] L.D. Faddeev, in: A. Connes, et al. (Eds.), Les Houches Lectures Quantum Symmetries, North Holland, 1998, p. 149.
[4] P.P. Kulish, N.Yu. Reshetikhin, Diagonalization of GL(N) invariant transfer matrices and quantum N-wave system (Lee model), J. Phys. A 16 (1983) L591-L596.
[5] A.G. Izergin, V.E. Korepin, The quantum inverse scattering method approach to correlation functions, Commun. Math. Phys. 94 (1984) 67-92.
[6] V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993.
[7] N. Kitanine, J.M. Maillet, V. Terras, Form factors of the XXZ Heisenberg spin-12 finite chain, Nucl. Phys. B 554 (1999) 647-678, arXiv:math-ph/9807020.
[8] N. Kitanine, J.M. Maillet, N.A. Slavnov, V. Terras, Master equation for spin-spin correlation functions of the XXZ chain, Nucl. Phys. B 712 (2005) 600-622, arXiv:hep-th/0406190.
[9] N.A. Slavnov, The algebraic Bethe ansatz and quantum integrable systems, Russ. Math. Surv. 62 (4) (2007) 727-766.
[10] N.A. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz, Theor. Math. Phys. 79 (2) (1989) 502-508.
[11] J.M. Maillet, V. Terras, On the quantum inverse scattering problem, Nucl. Phys. B 575 (2000) 627-644, arXiv:hep-th/9911030.
[12] N.A. Slavnov, Nonequal-time current correlation function in a one-dimensional Bose gas, Theor. Math. Phys. 82 (3) (1990) 273-282.
[13] T. Kojima, V. Korepin, N. Slavnov, Determinant representation for dynamical correlation functions of the quantum nonlinear Schrödinger equation, Commun. Math. Phys. 188 (1997) 657-689, arXiv:hep-th/9611216.
[14] N. Kitanine, K. Kozlowski, J.M. Maillet, N.A. Slavnov, V. Terras, A form factor approach to the asymptotic behavior of correlation functions, J. Stat. Mech. (2011) P12010, arXiv:1110.0803 [hep-th].
[15] N. Kitanine, K. Kozlowski, J.M. Maillet, N.A. Slavnov, V. Terras, Form factor approach to dynamical correlation functions in critical models, J. Stat. Mech. (2012) P09001, arXiv:1206.2630.
[16] J.S. Caux, J.M. Maillet, Computation of dynamical correlation functions of Heisenberg chains in a magnetic field, Phys. Rev. Lett. 95 (2005) 077201, 3 pp., arXiv:cond-mat/0502365.
[17] J.S. Caux, P. Calabrese, N.A. Slavnov, One-particle dynamical correlations in the one-dimensional Bose gas, J. Stat. Mech. (2007) P01008, arXiv:cond-mat/0611321.
[18] N.Yu. Reshetikhin, Calculation of the norm of Bethe vectors in models with SU(3)-symmetry, Zap. Nauc. Semin. LOMI 150 (1986) 196-213; J. Math. Sci. 46 (1989) 1694-1706 (Engl. transl.).
[19] B. Pozsgay, W.-V. van, G. Oei, M. Kormos, On form factors in nested Bethe ansatz systems, J. Phys. A, Math. Gen. 45 (2012) 465007, arXiv:1204.4037.
[20] S. Belliard, S. Pakuliak, E. Ragoucy, N.A. Slavnov, The algebraic Bethe ansatz for scalar products in SU (3)-invariant integrable models, J. Stat. Mech. (2012) P10017, arXiv:1207.0956.
[21] S. Belliard, S. Pakuliak, E. Ragoucy, N.A. Slavnov, Form factors in SU(3)-invariant integrable models, J. Stat. Mech. (2013) P04033, arXiv:1211.3968.
[22] S. Pakuliak, E. Ragoucy, N.A. Slavnov, Form factors in quantum integrable models with GL(3)-invariant Ä-matrix, Nucl. Phys. B 881 (2014) 343-368, arXiv:1312.1488.
[23] S. Pakuliak, E. Ragoucy, N.A. Slavnov, Zero modes method and form factors in quantum integrable models, Nucl. Phys. B 893 (2015) 459-481, arXiv:1412.6037.
[24] S. Pakuliak, E. Ragoucy, N.A. Slavnov, Form factors of local operators in a one-dimensional two-component Bose gas, J. Phys. A 48 (43) (2015) 435001, arXiv:1503.00546.
[25] N.A. Slavnov, Scalar products in GL(3)-based models with trigonometric Ä-matrix. Determinant representation, J. Stat. Mech. (03) (2015) P03019, arXiv:1501.06253.
[26] S. Pakuliak, E. Ragoucy, N.A. Slavnov, Bethe vectors for models based on the super-Yangian Y(g[(m|n)), arXiv:1604.02311.
[27] A. Hutsalyuk, A. Liashyk, S. Pakuliak, E. Ragoucy, N.A. Slavnov, Scalar products of Bethe vectors in models with g[(2|1) symmetry 2. Determinant representation, arXiv:1606.03573.
[28] F. Göhmann, V.E. Korepin, Solution of the quantum inverse problem, J. Phys. A, Math. Gen. 33 (2000) 1199-1220, arXiv:hep-th/9910253.
[29] F.C. Zhang, T.M. Rice, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37 (1988) 3759-3761.
[30] P.W. Anderson, Singular forward scattering in the 2D Hubbard model and a renormalized Bethe ansatz ground state, Phys. Rev. Lett. 65 (1990) 2306-2308.
[31] P. Schlottmann, Integrable narrow-band model with possible relevance to heavy Fermion systems, Phys. Rev. B 36 (1987) 5177-5185.
[32] D. Förster, Staggered spin and statistics in the supersymmetric t-J model, Phys. Rev. Lett. 63 (1989) 2140-2143.
[33] F.H.L. Essler, V.E. Korepin, Higher conservation laws and algebraic Bethe Ansatze for the supersymmetric t-J model, Phys. Rev. B 46 (1992) 9147-9162.
[34] A. Foerster, M. Karowski, Algebraic properties of the Bethe ansatz for an spl(2, 1)-supersymmetric t-J model, Nucl. Phys. B 396 (1993) 611-638.
[35] F. Göhmann, Algebraic Bethe ansatz for the gl(112) generalized model and Lieb-Wu equations, Nucl. Phys. B 620 (2002) 501-518, arXiv:cond-mat/0108486.
[36] P.P. Kulish, E.K. Sklyanin, On the solution of the Yang-Baxter equation, Zap. Nauc. Semin. LOMI 95 (1980) 129-160; J. Sov. Math. 19 (1982) 1596-1620 (Engl. transl.).
[37] S. Belliard, E. Ragoucy, The nested Bethe ansatz for 'all' closed spin chains, J. Phys. A, Math. Gen. 41 (2008) 295202, arXiv:0804.2822 [math-ph].
[38] V.E. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys. 86 (1982) 391-418.
[39] V.G. Drinfeld, A new realization of Yangians and quantized affine algebras, Sov. Math. Dokl. 36 (1988) 212-216.
[40] A. Molev, Yangians and Classical Lie Algebras, Math. Surv. Monogr., vol. 143, American Mathematical Society, Providence, RI, 2007.
[41] A. Hutsalyuk, A. Liashyk, S. Pakuliak, E. Ragoucy, N.A. Slavnov, Multiple actions of the monodromy matrix in g[(2|1)-invariant integrable models, arXiv:1605.06419.
[42] E. Mukhin, V. Tarasov, A. Varchenko, Bethe eigenvectors of higher transfer matrices, J. Stat. Mech. 0608 (2006) P08002, arXiv:math/0605015.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.