Нелинейный тепломассоперенос при затвердевании многокомпонентных растворов и расплавов тема диссертации и автореферата по ВАК РФ 01.04.14, кандидат физико-математических наук Иванов, Александр Андреевич
- Специальность ВАК РФ01.04.14
- Количество страниц 128
Оглавление диссертации кандидат физико-математических наук Иванов, Александр Андреевич
СПИСОК ИСПОЛЬЗУЕМЫХ ОБОЗНАЧЕНИЙ
ВВЕДЕНИЕ
1. НАПРАВЛЕННОЕ ЗАТВЕРДЕВАНИЕ ОТ ОХЛАЖДАЕМОЙ ГРАНИЦЫ
1.1. Режим затвердевания с плоским фронтом
1.2. Термическое и концентрационное переохлаждения
1.3. Режим затвердевания с двухфазной зоной
2. НЕСТАЦИОНАРНОЕ ЗАТВЕРДЕВАНИЕ БИНАРНЫХ СИСТЕМ С ДВУХФАЗНОЙ ЗОНОЙ В АВТОМОДЕЛЬНОМ РЕЖИМЕ
2.1. Затвердевание во фронтальном режиме
2.2. Затвердевание с двухфазной зоной
2.3. Аналитическое решение вблизи точки зарождения двухфазной зоны
2.4. Аналитическое решение при малых изменениях доли твердой фазы
2.5. Выводы
3. НЕСТАЦИОНАРНОЕ ЗАТВЕРДЕВАНИЕ
ТРЕХКОМПОНЕНТНЫХ СИСТЕМ С ДВУХФАЗНЫМИ
ЗОНАМИ В АВТОМОДЕЛЬНОМ РЕЖИМЕ
3.1. Фазовая диаграмма и экспериментальные данные
3.2. Математическая модель процесса
3.3. Линейный профиль температуры и интегрирование уравнений диффузии в двухфазных зонах
3.4. Выводы
4. УЧЕТ НЕЛИНЕЙНОСТЕЙ КРИВЫХ ФАЗОВОЙ ДИАГРАММЫ И ТЕМПЕРАТУРЫ ПРИ ЗАТВЕРДЕВАНИИ ТРЕХКОМПОНЕНТНЫХ СИСТЕМ С ДВУХФАЗНЫМИ
ЗОНАМИ
4.1. Аналитическое решение при нелинейных уравнениях поверхности ликвидус и кривой котектики (линейный температурный профиль)
4.2. Аналитическое решение при нелинейных уравнениях поверхности ликвидус и кривой котектики (учет нелинейности температуры)
4.3. Выводы
Рекомендованный список диссертаций по специальности «Теплофизика и теоретическая теплотехника», 01.04.14 шифр ВАК
Аналитическое описание нестационарных процессов направленного затвердевания растворов и расплавов2006 год, кандидат физико-математических наук Малыгин, Алексей Павлович
Зарождение и динамика двухфазной зоны в процессах направленного затвердевания2003 год, доктор физико-математических наук Александров, Дмитрий Валерьевич
Математическое моделирование нестационарных процессов направленного затвердевания при наличии двухфазной зоны2009 год, кандидат физико-математических наук Низовцева, Ирина Геннадьевна
Математическое моделирование фазовых переходов вещества, содержащего примесь2000 год, кандидат физико-математических наук Журавлева, Елена Николаевна
Модель высокоскоростного затвердевания в проблеме неравновесных фазовых переходов2006 год, доктор физико-математических наук Галенко, Петр Константинович
Введение диссертации (часть автореферата) на тему «Нелинейный тепломассоперенос при затвердевании многокомпонентных растворов и расплавов»
Актуальность проблемы. Задача о фазовом переходе жидкость-твердое тело при описании замерзания воды впервые была рассмотрена в 1889 году в пионерских работах Джозефа Стефана. В этих работах была сформулирована математическая модель процесса теплопереноса с граничным условием четвертого рода баланса тепла на движущемся фронте затвердевания для описания полевых измерений температуры и толщины льда за полувековую историю наблюдений. Одним из недостатков такого описания является то обстоятельство, что оно не учитывает зависимость температуры фазового перехода от растворенных в жидкости примесей. Увеличение концентрации примеси понижает температуру фазового перехода. Впоследствии подход Стефана стал использоваться в металлургии для моделирования процессов кристаллизации расплавов. Это объясняется схожестью физической картины затвердевания расплавов и замерзания воды. Накопление примесей перед границей твердая фаза - жидкость, связанное с вытеснением растворенных веществ замерзающей фазой в жидкую матрицу расплава, приводит к возникновению концентрационного переохлаждения. По мере движения границы фазового перехода в глубь расплава происходит увеличение градиента концентрации примеси перед фронтом и в некоторый момент времени фронтальное описание процесса, вообще говоря, будет уже неприменимо. Это вызвано тем обстоятельством, что появление переохлажденной области перед плоским фронтом затвердевания приводит как к возникновению неустойчивости последнего и формированию дендритных структур, так и к появлению зародышей твердой фазы. Если концентрационное переохлаждение компенсируется за счет интенсивного выделения скрытой теплоты кристаллизации растущими элементами твердой фазы, то такая область двухфазного состояния вещества - двухфазная зона может рассматриваться без учета механизмов нуклеации и роста частиц. В силу нелинейности уравнений тепломассопереноса и подвижности границ получение точных аналитических решений задач подобного рода не представляется возможным, поэтому обычно они решаются численными методами. В данной работе было построено приближенное аналитическое решение для задачи направленной кристаллизации бинарных систем. Описание системы с помощью бинарной модели, концентрация примеси в которой моделирует все растворенные компоненты, является не всегда пригодным. Часто при кристаллизации многокомпонентных систем, необходимо учитывать влияние не только основного компонента растворенных примесей, но и всех остальных (особенно, если среди них можно выделить доминирующий). Такая ситуация характерна для огромного числа процессов, протекающих как в лабораторных, так и в естественных условиях. Простейшим примером таких процессов является кристаллизация химически различимых трехкомпонентных систем, в которых один компонент может рассматриваться в качестве примеси к бинарной системе. В настоящей работе приведена такая модель и получены несколько приближенных аналитических решений.
Цель работы. Теоретическое исследование процесса затвердевания бинарных и трехкомпонентных систем при наличии движущихся областей фазового перехода, развитие и дополнение математической модели и построение приближенных аналитических решений проблемы Стефана. В частности, исследование процесса кристаллизации бинарных систем в автомодельном режиме с наличием двухфазной зоны, в которой доли фаз не изменяются со временем; разработка и развитие модели кристаллизации трехкомпонентных растворов и расплавов с формированием двух зон многофазного состояния вещества - основной и котектической; построение ее приближенных аналитических решений.
Научная новизна. Диссертационная работа посвящена исследованию нелинейной динамики нестационарных процессов затвердевания многокомпонентных растворов и расплавов при наличии нескольких двухфазных зои и содержит новые аналитические результаты, описывающих кристаллизацию многокомпонентных систем в применении к описанию естественных природных явлений и металлургических процессов. Получены точные аналитические решения для бинарных систем в предположении малого изменения долей фаз во времени, что характерно для установившихся и медленно протекающих процессов кристаллизации. Для трехкомпонентных систем был получен ряд аналитических решений с различными допущениями. Каждое решение в явном виде определяет распределения температуры и концентрации примесей, доли твердых фаз и законы движения границ фазового перехода. Все полученные в работе результаты не имеют прямых аналогов в литературе и являются принципиально новыми.
Достоверность полученных результатов. Подтверждается адекватностью моделей процессов направленной кристаллизации многокомпонентных растворов и расплавов, обоснованностью принятых допущений, точностью математических методов решения, выкладок и расчетов, согласованностью с имеющимися экспериментальными данными, данными численных и приближенных аналитических решений.
На защиту выносятся:
1. Модель затвердевания бинарных систем в автомодельном режиме с образованием двухфазной зоны, в которой доля твердой фазы мало меняется во времени, ее аналитическое решение;
2. Метод аналитического решения задачи кристаллизации трехкомпонентных растворов и расплавов в автомодельном режиме с двумя двухфазными зонами при предположении линейности поверхности ликвидус и одинакового линейного профиля температуры в двухфазных зонах и твердом веществе;
3. Метод аналитического решения той же задачи для общего вида поверхности ликвидус и различных линейных профилей температуры в двухфазных зонах и твердом веществе.
Практическое значение. Полученные в диссертации результаты имеют непосредственное приложение в металлургии (формирование кристаллов и слитков) и геофизике (замерзание морской воды) и являются важными для прогнозирования динамики нестационарных процессов. Построенная модель и метод ее решения объясняют наблюдаемый механизм кристаллизации и дополняют уже существующие знания по этой тематике. Найденные явные выражения всех характеристик процесса и образовавшегося кристалла позволяют предсказывать поведение системы для получения материалов с необходимыми свойствами.
Апробация работы. Основные результаты диссертации докладывались и обсуждались на представительных научных конференциях: XIV Всероссийская школа-конференция молодых ученых и студентов „Математическое моделирование в естественных науках" (Пермь, 2005), Четырнадцатая всероссийская научная конференция студентов физиков и молодых ученых ВНКСФ-14 (Уфа, 2008), XII Российская конференция „Строение и свойства металлических и шлаковых расплавов" (Екатеринбург,
2008), Юбилейная X Всероссийская молодежная школа-семинар по проблемам физики конденсированного состояния вещества (Екатеринбург,
2009), а также на семинарах кафедры математической физики Уральского государственного университета им. A.M. Горького.
Публикации. По теме диссертации опубликовано 13 научных работ, из них 5 статей в реферируемых научных журналах, определенных ВАК. Список публикаций приведен в конце диссертации.
Структура и объем работы. Текст диссертации состоит из введения, четырех глав основного содержания, заключения и списка используемой литературы. Общий объем диссертации составляет 128 страниц машинописного текста, она содержит 36 рисунков, 2 таблицы и 102 ссылки на источники цитируемой литературы.
Похожие диссертационные работы по специальности «Теплофизика и теоретическая теплотехника», 01.04.14 шифр ВАК
Нелинейная динамика двухфазной зоны в процессах затвердевания расплавов2006 год, кандидат физико-математических наук Асеев, Данил Леонидович
Корректность задач тепломассопереноса в неоднородных средах2010 год, доктор физико-математических наук Петрова, Анна Георгиевна
Математическое моделирование физических процессов при литейной сварке2010 год, кандидат физико-математических наук Кропотин, Николай Валентинович
Численное решение нестационарных теплофизических задач с фазовым переходом в интервале температур1998 год, доктор физико-математических наук Попов, Владимир Николаевич
Исследование закономерностей кристаллизации сплавов и затвердевания отливок с целью формирования требуемых структуры и свойств литых постоянных магнитов2011 год, кандидат технических наук Блощицина, Юлия Владимировна
Заключение диссертации по теме «Теплофизика и теоретическая теплотехника», Иванов, Александр Андреевич
4.3 Выводы
В четвертой главе диссертации проводилось аналитическое исследование процесса кристаллизации трехкомпонентной системы с двухфазными зонами с рассмотрением общего вида поверхности ликвидус и различных профилей температур в зонах:
1. Построен более общий, чем в третьей главе, метод аналитического решения задачи процесса направленной кристаллизации трехкомпонентной смеси с двумя двухфазными зонами от охлаждаемой границы.
2. В процессе решения были использованы уравнения для концентрационных полей в форме Шейла. Это приближение не является критичным и было введено в целях упрощения выкладок. Кроме того, в третьей главе было показано, что в общем случае выражения получаются практически те же.
3. Было показано, что вариации начальной концентрации примесей приводят к незначительному изменению закона движения границ твердая фаза-котектическая зона и основная зона-жидкая фаза и влияют существенно на отношение между протяженностью двухфазных зон. Основная тенденция такая: чем больше концентрация компоненты, начинающей затвердевать в котектической двухфазной зоне, тем больше эта зона, и тем меньше основная.
4. Предложенный метод решения нелинейной задачи направленного затвердевания может быть использован для решения задач с большим числом компонентов, причем законы движения внешних к двухфазным зонам границ (с чистыми твердыми и жидкими фазами) останутся те же, так как определяются только параметрами затвердевания и видом фазовой диаграммы. Найти протяженность двухфазных зон и распределения концентраций примесей в них можно аналогично тому, как это сделано в данной диссертации.
ЗАКЛЮЧЕНИЕ
Диссертационная работа „Нелинейный тепломассоперенос при затвердевании многокомпонентных растворов и расплавов" посвящена проблеме направленной кристаллизации бинарных и трехкомпоиентпых сплавов при наличии одной или нескольких зон двухфазного состояния вещества и содержит новые аналитические решения сложных нелинейных задач с подвижными границами. Применение некоторых допущений, взятых из экспериментальных данных и объясненных с точки зрения теплофизики, и строгость математических теории позволили получить новые и согласующиеся с ранее полученными решениями и экспериментальными данными результаты.
Во второй главе исследована нелинейная динамика процесса затвердевания бинарных растворов и расплавов в автомодельном режиме при несильных временных изменениях доли твердой фазы в двухфазной зоне. Такая ситуация часто реализуется на стадиях развитой кристаллизации. Для этого случая были получены точные аналитические решения термодиффузионной задачи Стефана, определены в явном виде распределения температуры и концентрации примеси во всех регионах протекания процесса, доли твердой фазы в двухфазной зоне, а также законы движения границ между зонами. Предложенный способ решения отличается от известного подхода решения задачи с помощью разложений в ряды по автомодельной переменной, так как описывает поведение системы не только вблизи точки зарождения зоны или в случае узкой зоны.
В третьей главе рассматривалась задача кристаллизации трехкомпо-нентных систем с наличием двух двухфазных зон - основной и котек-тической. Сильная нелинейность модели таких процессов не позволяет найти аналитическое решение в общем виде. В работе были предложены несколько допущений, согласующихся с физическими свойствами процесса и данными экспериментов. Предполагалась линейной поверхность ликвидус, характеризующая зависимость температуры фазового перехода от концентраций компонент системы, кроме этого, предполагалась линейность температур в двухфазных зонах и твердом веществе, причем их профили принимались совпадающими. В результате было получено аналитическое решение уравнений тепломассопереиоса в двухфазных зонах, что позволило найти распределения температуры и концентраций всех компонент во всех регионах, доли твердых фаз в обеих двухфазных зонах и скорости и законы движения межфазных границ. В процессе решения оказалось, что процесс является автомодельным, если температура на границе жидкая фаза - основная двухфазная зона постоянна. Кроме того, было показано, что концентрация компонента, который начинает затвердевать в котектической двухфазной зоне, имеет слабо выраженный максимум на границе раздела двухфазных зон.
В четвертой главе теоретически исследован процесс затвердевания трехкомпонентных систем при наличии движущихся областей фазового перехода и нелинейного уравнения поверхности ликвидус, что является обобщение случая, рассмотренного в третьей главе. Развита математическая модель и построены два приближенных аналитических решения проблемы Стефана при линейном температурном профиле в двухфазных зонах с одинаковым и отличающимся профилем. В работе были определены распределения температуры и концентраций примеси, найдены доли твердой фазы в областях фазового перехода и законы движения их границ. Было продемонстрировано, что вариации начальной концентрации примесей приводят к незначительному изменению закона движения границ твердая фаза-котектическая зона и основная зопа-жидкая фаза и влияют существенно на отношение между протяженностью двухфазных зон. Кроме этого, показано, что найденные законы движения внешних границ всей области фазового перехода не зависят от количества рассматриваемых компонент и справедливы для кристаллизации многокомпонентной системы.
Основное содержание работы опубликовано в работах: в статьях в ведущих рецензируемых научных журналах, определенных ВАК:
1. Александров Д.В., Иванов А.А. Задача Стефана затвердевания трехкомпонентных систем при наличии двиоюущихся областей фазового перехода // ЖЭТФ, 2009.- Т. 135, вып. 5 - С. 942-950.
2. Alexandrov D.V., Ivanov A.A. Analytical solution for a problem of directional solidification in a ternary system // Acta Physica Polonica A, 2009.- Vol. 115, N 4.- P. 786-790.
3. Alexandrov D.V., Ivanov A.A., Malygin A.P. Self-similar solidification of binary alloys // Acta Physica Polonica A, 2009 - Vol. 115, N 4.- P. 795799.
4. Alexandrov D.V., Ivanov A.A. Solidification of a ternary melt from a cooled boundary, or nonlinear dynamics of mushy layers // International Journal of Heat and Mass Transfer, 2009.- Vol. 52.- P. 4807-4811.
5. Alexandrov D.V., Ivanov A.A. Nonlinear dynamics of directional solidification of ternary solutions with mushy layers // Heat Mass Transfer, 2009 - Vol. 45,- P. 1467-1472.
Другие публикации:
6. Александров Д.В., Иванов А.А. Нелинейный анализ морфологической устойчивости плоского фронта кристаллизации // Тезисы XIV Всероссийской школы-конференции молодых ученых и студентов „Математическое моделирование в естественных науках", Пермь, 5-7 октября 2005.- С. 27-28.
7. Александров Д.В., Иванов А.А. Аналитическое исследование процесса направленной кристаллизации трехкомпонентных сплавов с двухфазными зонами // Тезисы Четырнадцатой всероссийской научной конференции студентов-физиков и молодых ученых, ВНКСФ-14, Уфа, 26 марта-3 апреля 2008 - С. 106-107.
8. Александров Д.В., Малыгин А.П., Иванов А.А. Аналитическое описание направленной кристаллизации двухкомпонентных систем при наличии зоны двухфазного состояния вещества в автомодельных условиях // Тезисы Четырнадцатой всероссийской научной конференции студентов-физиков и молодых ученых, ВНКСФ-14, Уфа, 26 марта-3 апреля 2008,- С. 107.
9. Александров Д.В., Малыгин А.П., Иванов А.А. К теории нестационарного затвердевания при наличии двухфазной зоны // Расплавы, 2008,- N 5.- С. 69-76.
10. Александров Д.В., Малыгин А.П., Иванов А.А. Автомодельное затвердевание с двухфазной зоной от охлаждаемой стенки // Вестник Удмуртского университета, 2008.- Вып. 1,- С. 14-25.
11. Александров Д.В., Иванов А.А. Аналитическое исследование прогресса затвердевания трехкомпонентных систем // Труды XII Российской конференции „Строение и свойства металлических и шлаковых расплавов", Екатеринбург, 22-26 сентября 2008,- С. 104-107.
12. Александров Д.В., Малыгин А.П., Иванов А.А. Нелинейная динамика процессов затвердевания при наличии двухфазной зоны в автомодельном рео/симе j j Труды XII Российской конференции „Строение и свойства металлических и шлаковых расплавов", Екатеринбург, 22-26 сентября 2008 - С. 145-148.
13. Александров Д.В., Иванов А.А. Направленная кристаллизация трехкомпонентных сплавов с образованием двухфазных зон: аналитическое решение // Тезисы докладов Юбилейной X Всероссийской молодежной школы-семинара по проблемам физики конденсированного состояния вещества, Екатеринбург, 9-15 ноября 2009.- С. 67.
Список литературы диссертационного исследования кандидат физико-математических наук Иванов, Александр Андреевич, 2010 год
1. Карташов Э.М. Аналитические методы в теории теплопроводности твердых тел.- М.: Высшая Школа, 1985 480 с,
2. Федорюк М.В. Асимптотические методы для линейных обыкновенных дифференциальных уравнений.- М.: Наука, 1983.- 352 с.
3. Найфэ А.Х. Методы возмущений,- М.: Мир, 1976.
4. Деч Г. Руководство к практическому применению преобразования Лапласа М.: Наука, 1965 - 288 с.
5. J. Stefan. Uber einige Probleme der Theorie der Warmeleitung // Sitzungsberichte dc Mathematisch-Naturawissenschaftlichen Classe der Kaiserlichen, Akademie der Wissenschaften. 1889. Vol. 98(2a). - P. 473-484.
6. J. Stefan. Uber die Theorie der Eisbildung, insbesondere uber die Eisbildung im Polarmeere // Sitzungsberichte de Mathematisch-Naturawissenschaftlich.cn Classe der Kaiserlichen, Akademie der Wissenschaften. 1889. Vol. 98(2a). - P. 965-983.
7. J. Payer. Die Oesterreichisch-Unhgarische Nordpol-Expedition in den Jahren 1872-1874. Wien: Alfred Hoelder, 1876. - 696 p.
8. M.G. Worster. Solidification of Fluids, in Perspectives in Fluid Dynamics, eds. G.K. Batchelor, H.K. Moffatt, M.G. Worster. -Cambridge: Cambridge Univ. Press, 2000.
9. M.G. Worster. Solidification of an alloy from a cooled boundary //J. Fluid Mech. 1986. Vol. 167. - P. 481-501.
10. Чернов А.А., Гиваргизов Е.И., Багдасаров X.C. Современная кристаллография. Т. 3. Образование кристаллов.- М.: Наука, 1980370 с.
11. Русанов А.И. Термодинамика поверхностных явлений,- Л.: ЛГУ, I960.- 180 с.
12. Вабищевич П.Н. Численные методы решения задач со свободной границей. М.: МГУ, 1987. - 164 с.
13. Samarskii А.А., Vabishchevich P.N. Computational heat transfer. -Chichester: Wiley, 1995.
14. Лодиз P., Паркер P. Рост монокристаллов. M.: Мир, 1974. - 544 с.
15. Чалмерс Б. Теория затвердевания. М.: Металлургия, 1968. - 288 с.
16. Флеминге М.К. Процессы затвердевания. М.: Мир, 1977. - 423 с.
17. Buyevich Yu.A., Alexandrov D.V., Mansurov V.V. Macrokinctics of crystallization. New York: Begell House, Inc., 2001.
18. Вайнгард У. Введение в физику кристаллизации металлов. М.: Мир, 1967. - 159 с.
19. Tiller W.A., Rutter J.M. The effect of growth conditions upon the solidification of a binary alloy // Can. J. Phys., 1956 Vol. 34 - P. 96-121.
20. Rutter J.M. Chalmers B. A prismatic substructure formed during solidification of metals // Can. J. Phys., 1953.- Vol. 31.- P. 15-39.
21. Mullins W.W., Sekerka R.F. Stability of a planar interface during solidification of a dilute binary alloy // J. Appl. Phys., 1964. Vol. 35, N 2.- P. 444-451.
22. Ландау Л.Д. К теории медленного горения // ЖЭТФ, 1944 Т. 14.- С. 240-249.
23. Воронков В.В. Условия образования ячеистой структуры фронта кристаллизации // ФТТ, 1964 Т. 6, вып. 10 - С. 2984-2988.
24. Буевич Ю.А. Неустойчивость автомодельного фронта фазового перехода // ИФЖ, 1981.- Т. 40, N 5.- С. 818-927.
25. Мансуров В.В. Проблемы затвердевания бинарных расплавов // Дисс. на соиск. уч. степ. докт. физ.-мат. наук, 1992.- 271 с.
26. Буевич Ю.А., Искакова Л.Ю., Мансуров В.В. Нелинейная устойчивость и формирование структур при направленном затвердевании бинарного расплава. Часть I // Расплавы, 1989, N 6 С. 44-50.
27. Буевич Ю.А., Искакова Л.Ю., Мансуров В.В. Нелинейная устойчивость и формирование структур при направленном затвердевании бинарного расплава. Часть II // Расплавы, 1990, N 2.- С. 65-73.
28. Sekerka R.F. A procedure for explicit evaluation of the Mullins-Sekerka interface stability criterion //J. Appl. Phys., 1965 Vol. 36, N 1.- P. 264-268.
29. Sekerka R.F. Morphological stability //J. Crystal Growth, 1968. Vol. 3-4,- P. 71-81.
30. Delves R.T. Theory of the stability of a solid-liquid interface during growth from a stirred melt //J. Crystal Growth, 1971- Vol. 8 P. 13-25.
31. Hurle D.T.J., Jakeman E., Wheeler A.A. Effects of solutal convection on the morphological stability of a binary alloy //J. Crystal Growth, 1982.- Vol. 58.- P. 163-179.
32. Young G.W., Davis S.H. Directional solidification with buoyancy in systems with small segregation coefficient // Phys. Rev. B, 1986.- Vol. 34,- P. 3388-3396.
33. Novick-Cohen A., Sivashinsky G.I. On the solidification front of a dilute binary alloy: thermal diffusivity effects and breathing solutions // Phys. D, 1986.- Vol. 20.- P. 237-258.
34. Wheeler A. A. The effect of a periodic growth rate on the morphological stability of a freezing binary alloy //J. Crystal Growth, 1984.- Vol. 67.- P. 8-26.
35. Tarshish L.A., Tiller W.A. The effect of interface-attachment kinetics on the morphological stability of a planar interface during solidification // Proc Intern Conf. Crystal Growth, Boston, 1966 P. 709-719.
36. Laxmanan V. Morphological transitions in the rapid solidification regime: a re-examination of the fundamental validity of the absolute stability concept of Mullins and Sekerka // Acta Metallurgica, 1989-Vol. 37, N 4,- P. 1109-1119.
37. Merchant G.J., Davis S.H. Morphological instability in rapid directional solidification // Acta Metall. Mater., 1990 Vol. 38, N 12,- P. 26832693.
38. Durand I., Kassner K., Misbah C., Muller-Krumbhaar H. Strong coupling between diffusive and elastic instabilities in directional solidification // Phys. Rev. Lett., 1996,- Vol. 76, N 16,- P. 3013-3016.
39. Cantat I., Kassner K., Misbah C., Muller-Krumbhaar H. Directional solidification under stress // Phys. Rev. E, 1998.- Vol. 58, N 5.- P. 6027-6040.
40. Буравцев B.H., Маломед Б.А. О неустойчивости плоского фронта кристаллизации слабого раствора // ЖЭТФ, 1983.- Т. 85, вып. 5.-С. 1743-1747.
41. Langer J.S., Muller-Krumbhaar Н. Theory of dendritic growth // Acta Metallurgica, 1978,- Vol. 26, N 1.- P. 1681-1708.
42. Langer J.S. Instabilities and pattern formation in crystal growth // Rev. Mod. Phys., 1980,- Vol. 52.- P. 1-28.
43. Авдонин H.A. Математическое описание процессов кристаллизации. Рига: Зинатне, 1980. - 180 с.
44. Кояло М.В. Исследование возможности переохлаждения расплава в двумерном случае // Вопросы теории кристаллизации. 1974. Вып. 1. - С. 78-84.
45. Иванцов Г.П. Диффузионное переохлаждение при кристаллизации бинарного сплава // ДАН СССР. 1951. Т. 81, N 2. - С. 179-182.
46. Борисов В.Т. Теория двухфазной зоны металлического слитка. -М.: Металлургия, 1987. 224 с.
47. Сулимцев И.И., Матвеев Ю.Е., Борисов В.Т., Голиков И.Н. ЭксIпериментальное определение диффузионного переохлаждения в двухфазной зоне бинарного сплава // Проблемы стального слитка. М.: Металлургия, 1976. - Т. 6. - С. 76-82.
48. D. М. Anderson, М. G. Worster. A new oscillatory instability in a mushy layer during the solidification of binary alloys // J. Fluid Mech. 1996. Vol. 307. - P. 245-267.
49. T. P. Schulze, M. G. Worster. Weak convection, liquid inclusions and the formation of chimneys in mushy layers // J. Fluid Mech. 1999. Vol. 388. -P. 197-215.
50. H.E. Huppert, M.G. Worster. Dynamic solidification of a binary alloy // Nature. 1985. Vol. 314. - P. 703-707.
51. M. G. Worster. The dynamics of mushy layers. In Interactive Dynamics of Convection and Solidification (ed. S. H. Davis, H. E. Huppert, U. Muller, M. G. Worster). Kluwer, 1992. -P. 113-138.
52. M. G. Worster. Interfaces on all scales during solidification and melting. In Interfaces for the Twenty-First Century (ed. M. K. Smith, M. J. Miksis, G. B. McFadden, G. P. Neitzel, D. R. Canright). Imperial College Press, 2002. -P. 187-201.
53. M.G. Worster. Convective flow problems in geological fluid dynamics. Ph.D. thesis. Cambridge: University of Cambridge, 1983.
54. R.N. Hills, D.E. Loper, P.H. Roberts. A thermodynamically consistent model of a mushy zone // Q. J. Appl. Maths. 1983. Vol. 36. - P. 505-539.
55. S. H. Davis. Theory of Solidification. Cambridge University Press, 2001.
56. M. G. Worster. Convection in mushy layers // Annu. Rev. Fluid Mech.- 1997. Vol. 29. -P. 91-122.
57. G.K. Batchelor. Transport properties of two-phase materials with random structure // Ann. Rev. Fluid Mech. 1974. Vol 6. - P. 227-255.
58. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd Edn. Cambridge University Press, 1992.
59. Борисов В.Т., Матвеев Ю.Е. Определение температур в начале двухфазной зоны бинарных сплавов // ФММ. 1962. Т. 13, N 3.- С. 456-470.
60. Webb B.W., Viskanta R. // Heat transfer. 1986. Proc. 8th Int. Conf., San Francisko, Calif., Aug. 17-22, 1986, V. 4: General papers.- Wash, e. a.
61. Борисов В.Т. Кристаллизация бинарного сплава при сохранении устойчивости // ДАН СССР. 1961. Т. 136, N 3. - С. 583-586.
62. Буевич Ю.А., Искакова Л.Ю., Мансуров В.В. // ЖПМТФ. 1990. N 4. - С. 46-53.
63. Искакова Л.Ю., Мансуров В.В. К теории двухфазной зоны металлического слитка // Расплавы. 1994. N 1. - С. 82-87.
64. Александров Д.В. К теории затвердевания с квазиравиовеспой двухфазной зоной // Доклады АН. 2000. Т. 375, N 2. - С. 172176.
65. А. О. P. Chiareli, М. G. Worster. On measurement and prediction of the solid fraction within mushy layers //J. Cryst. Growth. 1992. Vol. 125. -P. 487-494.
66. V. R. Voller. A similarity solution for the solidification of a multicomponent alloy // Intl J. Heat Mass Transfer. 1997. Vol. 40. -P. 2869-2877.
67. Alexandrov D.V., Malygin A.P. Self-similar solidification of an alloy from a cooled boundary // International Journal of Heat and Mass Transfer. 2006. Vol. 49. - P. 763-769.
68. Александров Д.В., Иванов A.A., Малыгин А.П. Автомодельное затвердевание с двухфазной зоной от охлаждаемой стенки // Вестник Удмуртского университета. 2008. Вып. 1. - С. 14-25.
69. М. G. Worster. Natural convection in a mushy layer //J. Fluid Mech. 1991. Vol. 224. -P. 335-359.
70. Wettlaufer J.S., Worster M.G., Huppert H.E. Solidification of leads: Theory, experiment, and field observations // J. Geophys. Res. 2000. Vol. 105, N CI. - P. 1123-1134.
71. Alexandrov D.V., Malygin A.P., Alexandrova I.V. Solidification of leads: approximate solutions of non-linear problem // Ann. Glaciol.- 2006. Vol. 44. P. 118-122.
72. Mullins W. W., Sekerka R. F. Stability of a planar interface during solidifcation of a dilute binary alloy //J. Appl. Phys. 1964. Vol. 35.- P. 444 451.
73. R. Gradinger. Occurrence of an algal bloom under Arctic pack ice // Mar. Ecol. Prog. Ser. 1996. Vol. 131. - P. 301.
74. Huppert H. E., Sparks R. S. J. The fluid dynamics of a basaltic magma replenished by influx of hot, dense ultrabasic magma // Contrib. Mineral. Petrol. 1980. Vol. 75. - P. 279-289.
75. J. P. Gu, C. Beckermann, A. F. Giamei. Motion and remelting of dendrite fragments during directional solidification of a nickel-base superally // Metall. Mater. Trans. 1997. Vol. 28. -P. 1533-1542.
76. С. Beckermann, J.P. Gu, W.J. Boettiriger. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings // Metall. Mater. Trans. 2000. Vol. 31. - P. 25452557.
77. F. Chen, J. W. Lu, T. L. Yang. Convective instability in ammonium chloride solution directionally solidified from below //J. Fluid Mech. 1994. Vol. 276. -P. 163-187.
78. Aitta A., Huppert H. E., Worster M.G. Difusion-controlled solidification of a ternary melt from a cooled boundary //J. Fluid Mech. 2001. Vol. 432. - P. 201.
79. Aitta A., Huppert H. E., Worster M.G. Solidification in ternary systems. In Interactive Dynamics of Convection and Solidification (ed. P. Ehrhard, D. S. Riley, P. H. Steen). Kluwer, 2001. - P. 113-122.
80. West D. R. F. Ternary Equilibrium Diagrams, 2nd Edn. Chapman and Hall, 1982.
81. Smallman R. E. Modern Physical Metallurgy. Butterworths, 1985.
82. Krane M. J. M., Incropera F. P., Gaskell D. R. Solidification of ternary metal alloys-I. Model development // Intl J. Heat Mass Transfer. -1997. Vol. 40. -P. 3827-3835.
83. M. J. M. Krane, F. P. Incropera. Solidification of ternary metal alloys-II. Prediction of convective phenomena and solidification behavior of
84. Pb-Sb-Sn alloys // Intl J. Heat Mass Transfer. 1997. Vol. 40. -P. 3837-3847.
85. M. J. M. Krane, F. P. Incropera, D. R. Gaskell. Solidification of a ternary metal alloy: A comparison of experimental measurements and model predictions in a Pb-Sb-Sn system // Metall. Mater. Trans. A. -1998. Vol. 29. -P. 843-853.
86. S. D. Felicelli, D. R. Poirier, J. C. Heinrich. Macrosegregation patterns in multicomponcnt Ni-base alloys //J. Cryst. Growth. 1997. Vol. 177. -P. 145-161.
87. S. D. Felicelli, D. R. Poirier, J. C. Heinrich. Modelling freckle formation in three dimensions during solidification of multicomponent alloys // Metall. Mater. Trans. 1998. Vol. 29. -P. 847- 855.
88. D.M. Anderson. A model for diffusion-controlled solidification of ternary alloys in mushy layers //J- Fluid Mechanics. 203. Vol. 483. - P. 165-197.
89. M.C. Flemings. Solidification Processing. New York: McGraw-Hill Book Company, 1974.
90. W.J. Boettinger, U.R. Kattner, D.K. Banerjee, in Modeling of Casting, Welding and Advanced Solidification Processes VIII, ed. by B.G. Thomas and C. Beckermann. Warredale, PA, 1998. - P. 159.
91. S. Martin, P. Kauffman. he evolution of under-ice melt ponds, or double diffusion at the freezing point //J. Fluid Mech. 1974. Vol. 64. - P. 507.
92. Д.В. Александров, И.Г. Низовцева. Нелинейная динамика ложного дна в случае замерзания морской воды // Доклады АН. 2008. Вып. 419, N 2. - Р. 262.
93. R. С. Kerr, A. W. Woods, M. G. Worster, H. E. Huppert. Solidification of an alloy cooled from above. Part 1. Equilibrium growth // J. Fluid Mech. 1990. Vol. 216. -P. 323-342.
94. R. C. Kerr, A. W. Woods, M. G. Worster, H. E. Huppert. Solidification of an alloy cooled from above. Part 2. Non-equilibrium interfacial kinetics // J. Fluid Mech. 1990. Vol. 217. -P. 331-348.
95. E. Scheil. Bemerkungen zur schichtkiistallbildung // Z. Metalld. 1942. Vol. 34. - P 70-72.
96. W. F. Linke. Solubilities of Inorganic and Metal-Organic Compounds, vol. II, 4th Edn. American Chemical Society, 1965.
97. Проценко П. И., Разумовская О. Н., Брыкова Н.А. Справочник по растворимости нитритных и нитратных солевых систем (под ред. А.Б. Ждановского). Ленинград: Химия, 1971.
98. R.C. Kerr, A.W. Woods, M.G. Worster, H.E. Huppert. Solidification of an alloy cooled from above. Part I: equilibrium growth //J. Fluid Mech. 1990. Vol. 216. - P. 323.
99. M. Hort. Abrupt Change in Magma Liquidus Temperature // J. Petrology. 1998. Vol. 39, N 5. - P. 1063-1072.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.