Нелинейная ползучесть неоднородных многослойных цилиндров и сфер тема диссертации и автореферата по ВАК РФ 01.02.04, кандидат технических наук Литвинов, Степан Викторович

  • Литвинов, Степан Викторович
  • кандидат технических науккандидат технических наук
  • 2010, Москва
  • Специальность ВАК РФ01.02.04
  • Количество страниц 200
Литвинов, Степан Викторович. Нелинейная ползучесть неоднородных многослойных цилиндров и сфер: дис. кандидат технических наук: 01.02.04 - Механика деформируемого твердого тела. Москва. 2010. 200 с.

Оглавление диссертации кандидат технических наук Литвинов, Степан Викторович

Введение.

Глава 1. Состояние вопроса. Формулировка задачи.

1.1. Обзор исследований, посвященных постановке и методам решения задач теории упругости и ползучести неоднородных тел. Методика решения задач ползучести.

1.2. Обзор областей применения и известных решений задач термоупругости для неоднородных полимерных цилиндров.

1.3. Применение численных методов к решению задач механики деформируемого твердого тела.

1.4. Цели и задачи исследования. Формулировка задачи термоупругости неоднородных тел в цилиндрических координатах. Основные соотношения механики упругорелаксирующей среды.

Глава 2. Одномерные плоские задачи термовязкоупругости для неоднородных полимерных тел.

2.1. Вывод разрешающих уравнений. Граничные и начальные условия.

2.2. Равнонапряженный цилиндр. Обратная задача для радиально неоднородного цилиндра.

2.3. Алгоритм расчета.

2.4. Плоское напряженное состояние многослойного неоднородного полимерного цилиндра.

2.5. Плоское деформированное состояние многослойного неоднородного полимерного цилиндра.

2.6. Решение с использованием метода конечных элементов.

2.7. Выводы по главе 2.

Глава 3. Центрально-симметричная задача теории упругости в сферических координатах.

3.1. Вывод разрешающих уравнений.

3.2. Ползучесть соляного массива со сферической полостью.

3.3. Напряженное состояние многослойного неоднородного полимерного сферического тела.

3.4. Выводы по главе 3.

Глава 4. Прогнозирование прочности адгезионных соединений при осевом растяжении.

4.1. Ползучесть адгезионных соединений.

4.2. Тонкостенная трубка.

4.3. Выводы по главе 4.

Глава 5. Осесимметричная задача термовязкоупругости для полого полимерного цилиндра с учётом двумерной неоднородности материала.

5.1. Постановка краевой задачи термоползучести для двумерного неоднородного цилиндра.

5.2. Конечно-разностная аппроксимация краевой задачи термоползучести.

5.3. Методика решения разностных уравнений. Использование решения упругой задачи.

5.4. Решение модельных задач.

5.5. Решение задачи теплопроводности вариационно-разностным методом.

5.6. Тестовая задача расчета теплового экрана.

5.7. Релаксационный процесс в полимерном цилиндре, находящимся под воздействием переменного температурного поля.

5.8. Выводы по главе 5.

Выводы по диссертационной работе.

Условные обозначения и сокращения.

Рекомендованный список диссертаций по специальности «Механика деформируемого твердого тела», 01.02.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Нелинейная ползучесть неоднородных многослойных цилиндров и сфер»

Надежное и экономичное проектирование конструкций и сооружений в первую очередь связано с определением напряженно-деформированного состояния и оценкой прочности элементов конструкций и всего сооружения в целом при различных режимах нагружения и учетом реальных свойств материалов. Стоящая перед конструкторами задача выбора рациональных конструктивных форм, обеспечивающих требуемую несущую способность и жесткость сооружений при минимальном расходе материалов, требует, возможно, более точного описания напряженно-деформированного состояния.

При длительном действии постоянной нагрузки, во многих материалах (металлы при высоких температурах, полимеры, полимербетоны, бетоны) наблюдается развитие деформаций во времени (явление ползучести).

Прогнозирование поведения конструкций и их элементов во времени является важным направлением механики, и поэтому не случайно к нему приковано внимание многочисленных исследователей как у нас в стране, так и за рубежом.

Характерной особенностью многочисленных конструкций, материал которых обладает свойством ползучести, является его неоднородность, как естественная, так и технологическая (косвенная), появляющаяся в процессе изготовления, обработки и эксплуатации отдельных узлов.

В механике неоднородной вязкоупругой среды рассматриваются, три основных типа неоднородности: непрерывная, кусочно-однородная и стохастическая. Функции, описывающие изменение механических свойств материала, являются соответственно непрерывными, кусочно-постоянными и случайными. Задачи первого типа неоднородности приводят к дифференциальным уравнениям с переменными коэффициентами, во втором случае вопрос заключается в стыковке решений на границах областей с однородными свойствами или решаются задачи с осредненными механическими характеристиками, в последнем случае используется аппарат математической статистики.

В данной диссертационной работе рассматривается неоднородность первого типа, когда упругие и релаксационные параметры материала являются непрерывными функциями координат. Неоднородность указанного вида возникает в процессе сооружения конструкций (затвердение бетона, цементирование, полимеризация), при облучении радиационными потоками, при наличии температурного поля.

Конструктивные элементы в виде полых цилиндров являются одними из широко распространенных деталей в конструкциях реактивных двигателей, где они могут имитировать заряды РДТТ (ракетные двигатели на твердом топливе), тепловых защит, реакторных установок и многих других элементов, использующихся в различных областях техники.

Исследованию влияния упругой неоднородности на н.д.с. полых цилиндров посвящены работы Б.И. Биргера, П.М. Василенко, Я.М. Григоренко, Н.Д. Панкратовой, В. А. Ломакина, М.А. Колтунова, С.Г. Михлина, С.Г. Лехницкого и других авторов.

В связи с вышесказанным представляется актуальной проблема расчета непрерывно неоднородных цилиндров, находящихся под длительным воздействием температурных полей и статических нагрузок, как в одномерной (плоская осесимметричная задача), так и в двумерной постановках (осесим-метричная задача в цилиндрических координатах).

В соответствии с поставленной целью решены следующие задачи:

• Проведено теоретическое исследование релаксационных явлений в гомогенных и гетерогенных полимерных цилиндрах при некоторых условиях температурного и силового нагружения в осе-симметричном и центрально симметричном случаях.

• Теоретическими исследованиями было показано существенное влияние релаксационных процессов на величины температурных напряжений при двухосном напряженном состоянии.

• На базе применения вариационно-разностного метода разработана методика решения, алгоритм численной реализации и программа расчета на ЭВМ осесимметричной задачи теплопроводности и термоупругости конечного цилиндра с учетом зависимости теплофизических характеристик материала от температуры и двумерной неоднородности деформационных свойств материала при произвольных граничных условиях на торцовых поверхностях.

Рассмотрена задача о процессе охлаждения изделия в форме полого цилиндра в условиях ползучести с учетом температурной зависимости механических характеристик. Для определения температурного поля решается задача теплопроводности. На основе вариационно-разностной постановки решается задача о напряженно-деформированном состоянии цилиндра с учетом высокоэластических деформаций.

Научная новизна работы заключается в следующем:

- проведено решение задачи термовязкоупругости для многослойного цилиндрического тела в плоской осесимметричной постановке с учетом непрерывной неоднородности и термовязкоупругости каждого слоя;

- проведено решение задачи термовязкоупругости для многослойного сферического тела в плоской центрально-симметричной постановке с учетом непрерывной неоднородности и термовязкоупругости каждого слоя;

- разработана на базе применения вариационно-разностного метода методика решения осесимметричной задачи термовязкоупругости с учетом двумерной неоднородности материала при произвольных граничных условиях на торцовых и образующих поверхностях;

- разработана и реализована в пакете программ на ЭВМ методика расчета двумерно неоднородных полимерных цилиндров в условиях термовязкоупругости.

Достоверность полученных результатов обеспечивается:

- сравнением результатов при решении задач для однородного материала с известными аналитическими решениями и экспериментальными данными.

- проверкой выполнения всех граничных условий, дифференциальных и интегральных соотношений;

- сравнением результатов с решениями независимыми методами (МКР, МКЭ).

Практическая ценность работы. Решена практически важная технологическая задача для неоднородного полимерного цилиндра, находящегося в стадии охлаждения с учетом деформаций ползучести. На основе разработанных методов и алгоритмов расчета проведен анализ влияния на напряженно-деформированное состояние различных физических факторов, в том числе нелинейного деформирования материала.

Решена практически важная задача расчета клеевого соединения, с учетом деформаций ползучести, двух цилиндрических тел.

На защиту выносятся алгоритмы, методики и результаты, представляющие научную новизну.

Апробация работы. Основные положения и результаты диссертационной работы были представлены на выступлениях:

• Ш-я международная научно-практическая конференция (Нальчик, 2007);

• IV-я международная научно-практическая конференция (Нальчик, 2008);

• V-я международная научно-практическая конференция (Нальчик, 2009);

• «Строительство-2007» - международная научно-практическая конференция (Ростовский Государственный Строительный Университет).

Публикации. Основные содержания диссертации опубликовано в двух монографиях, десяти статьях и материалах конференции; из них одна — в журнале ВАК РФ.

Объем работы. Диссертация состоит из введения, пяти глав, списка литературы, 3 приложения, изложена на 200 страницах машинописного текста, содержит 37 рисунков, 7 таблиц.

Похожие диссертационные работы по специальности «Механика деформируемого твердого тела», 01.02.04 шифр ВАК

Заключение диссертации по теме «Механика деформируемого твердого тела», Литвинов, Степан Викторович

Выводы по диссертационной работе

1. Проведено теоретическое исследование релаксационных явлений в многослойных неоднородных цилиндрах (в осесимметричном случае) и сферах (в центрально-симметричном случае) при некоторых условиях температурного и силового нагружения. В основу этих исследований положено нелинейное обобщенное уравнение Максвелла при учете первого «старшего» члена спектра времен релаксации полимера.

2. Предложены варианты решения задачи о длительной прочности адгезионных соединений с оценкой прочности при нормальном отрыве.

3. Рассмотрена задача о процессе охлаждения изделия в форме полого цилиндра в условиях ползучести с учетом температурной зависимости механических характеристик. Для определения температурного поля решается задача теплопроводности. На основе вариационно-разностной постановки решается задача о напряженно-деформированном состоянии цилиндра с учетом высокоэластических деформаций.

4. На базе применения вариационно-разностного метода разработана методика решения, алгоритм численной реализации и программа расчета на ЭВМ осесимметричной задачи теплопроводности и термоупругости конечного цилиндра.

Условные обозначения и сокращения г, в, z — цилиндрические координаты; t — текущее время;

R, Z - фиктивные массовые силы;

R, Z ~ поверхностные нагрузки; ar, <jg, oz, rrz - нормальные и касательные компоненты тензора напряжений; ег, Eq, ez, yrz ~ полные относительные удлинения и сдвиговая деформация; и, и, w - перемещения; е^ - упругая относительная деформация;

- относительная деформация, вызванная температурой; т ет= J a(T)d.T

То

-s - высокоэластическая деформация;

Зеis dt

- скорость высокоэластической деформации;

7)1 - релаксационная вязкость;

T)qs — начальная релаксационная вязкость;

EooS — модуль высокоэластичности; m*s - модуль скорости;

E,G,v — модуль Юнга, модуль сдвига, коэффициент Пуассона; а - коэффициент линейного расширения; д - коэффициент температуропроводности;

Т — текущая температура;

TQ — начальная температура;

Р — среднее напряжение;

A.,fi — параметры Ламе;

К — коэффициент объемного сжатия;

Ра> Ръ ~ внутреннее и внешнее давление;

НН — решение для неоднородного цилиндра по нелинейной теории;

НО — решение для однородного цилиндра по нелинейной теории;

НЛ — решение для неоднородного цилиндра по линейной теории; н.д.с. — напряженно-деформированное состояние;

ПДС — плоское деформированное состояние;

ПНС — плоское напряженное состояние.

Список литературы диссертационного исследования кандидат технических наук Литвинов, Степан Викторович, 2010 год

1. Абибов A.JL, Молодцов Г.А. Исследование остаточных (внутренних) напряжений в армированном эпоксидном полимере // Механика полимеров. -1965- №4. С. 76-80.

2. Численные методы в теории упругости и теории оболочек / Абовский Н.П. и др.: // Учебное пособие. Красноярск: Изд. Красноярского унта, 1986.-384 с.

3. Абрамов С.К., Ефремушкин Ю.В. Влияние наполнителя на динамические механические свойства эпоксидного связующего в композициях // Вопросы прочности конструкционных пластмасс. — Ростов-н/Д, 1971.

4. Адамович А.Г., Уржумцев Ю.С. Проблемы прогнозирования длительной прочности полимерных материалов // Обзор мех. композит материалов. -1974. №4. - С. 694-704.

5. Александров А.В. Сопротивление материалов. Основы теории упругости и пластичности: Учеб. для строит, спец. вузов / А.В. Александров,

6. B.Д. Потапов. 2-к изд., испр. - М.: Высш. шк. 2002. - 400 е.: ил.

7. Александрович А.И. Плоская неоднородная задача теории упругости // Вестник Московского университета. Математика и механика. — 1973. — №1. С. 105-115.

8. Алфрей Т. Механические свойства высокополимеров. М.: ИЛ, 1952.

9. Амбарцумян С.А. Уравнение плоской задачи разносопротивляющейся или разномодульной теории // Механика. — 1966. — T.XIX. — №2. —1. C. 3-19.

10. Андреев В.И. К вопросу расчета неоднородных цилиндров. МИСИ им. В.В. Куйбышева. ВИНИТИ. М., 1982. - 15 с.

11. Андреев В.И. Некоторые задачи и методы механики неоднородных тел: монография. — М.: Издательство АСВ, 2002. — 288 с.

12. Андреев В.И. Об одном методе решения в перемещениях плоской задачи теории упругости для радиально неоднородного тела // Прикладная механика. 1987. - №4. - С. 61-67.

13. Андреев В.И. Упругое и упругопластическое равновесие толстостенных цилиндрических и сферических непрерывно неоднородных тел: дис. д-ра. техн. наук. М., 1985. — 427 с.

14. Андреев В.И., Смолов А.В. К вопросу расчета двухслойных корпусов высокого давления с учетом неоднородности материала // Сопротивление материалов и теория сооружений. — Киев: Будивильник, 1985. -Вып. 47.-С. 48-52.

15. Упругость и ползучесть неоднородной полой сферы / Андреев В.И. и др. // Всес. Конф. «Фундам. исслед. и новые технологии в строительном материаловедении»: тез. докл. Белгород, 1989. - С.6.

16. Арутюнян Н.Х., Зевин А.А. Об одном классе ядер для описания ползучести стареющих сред// ДАН СССР. 1981. - Т 258. - №3. - С. 559561.

17. Арутюнян Н.Х., Колмановский В.Б. Теория ползучести неоднородных тел.-М.: Наука, 1983.-336 с.

18. Архангельский А .Я. Приемы программирования в Delphi. Изд. 2-е, пе-рераб. и доп. М.: ООО «Бином-Пресс», 2004. - 848 с.

19. Аскадский А.А. Деформация полимеров. М.: Химия, 1973. - 448 с.

20. Бабич В.Ф. Исследование влияния температуры на механические характеристики полимеров: дис. . канд. техн. наук. — М., 1966.

21. Бартенев Г.М., Зеленов Ю.В. Температурно-частотные зависимости деформации и механических потерь каучукоподобных полимеров при периодическом режиме нагружения. //ВМС.- 1962. -№1.

22. Расчет конструкций на тепловые воздействия / В.Д. Бажанов и др. // -М.: Машиностроение, 1989. 600 с.

23. Басов К.A. ANSYS: Справочник пользователя. М.: ДМК Пресс, 2005. - 640 е., ил.

24. Расчет конструкций на тепловые воздействия / Н.И. Безухов и др. // -М.: Машиностроение, 1969. 600 с.

25. Безухов Н.И. Баженов B.JL, Гольденблат И.И. и др. Расчет на прочность, устойчивость и колебания в условиях высоких температур / Под ред. И.И. Голеденблата. — М.: Машиностроение, 1965. — 567 с.

26. Беляев Н.И., Рядно А.А. Методы теории теплопроводности. 4.1.: учебное пособие для вузов в 2 частях. М.: Высш. школа, 1982. - 327 с.

27. Беляев Н.И., Рядно А.А. Методы теории теплопроводности. 4.IL: учебное пособие для вузов в 2 частях. М.: Высш. школа, 1982. - 327 с.

28. Вернадский А.Д., Желязков Ж., Рабинович A.JI. и др. // Сб. докладов на конференции по механике. — Варна, 1970.

29. Вернадский А.Д., Рабинович A.JI. К методике стандартных испытаний на растяжение образцов полимерных материалов малых размеров // Стандартизация. 1965. — №2.

30. Биник М., Спиллерс В.Р., Фрейденталь A.M. Неоднородный толстостенный цилиндр, подверженный действию внутреннего давления // Ракетная техника и космонавтика. — 1962. — №8: — С. 40—82.

31. Биргер Б.И., Баранов В.П. Расчет температурных напряжений в орто-тропном цилиндре// Механика полимеров. 1972. — №2. — С. 310-314.

32. Бленд Д. Теория линейной вязкоупругости. — М.: Мир. 1965.

33. Бойл Дж., Спенс Дж. Анализ напряжений в конструкциях при ползучести. М.: Мир, 1986. - 360 с.

34. Болотин В.В., Воронцов А.Н., Мурзаханов Р.Х. Анализ технологических напряжений в намоточных изделиях из композитов на протяжении всего процесса изготовления // Механика композит, материалов. 1980. -№3. — С. 500-508.

35. Брызгалин Г.И. К описанию ползучести материала обладающего изменяющимися во времени свойствами // Механика полимеров. 1965. — №1. - С. 61-64.

36. Бугаков И.И. Ползучесть полимерных материалов. М.: Наука, 1973. — 287 с.

37. Варвак П.М., Варвак Л.П. Метод сеток в задачах расчета строительных конструкций. М.: Стройиздат, 1977. - С. 154.

38. Варданян Г.С. Экспериментальный метод определения температурных напряжений и их концентраций // Изв. АН Арм.ССР. Физмат, науки. -1961.-№5.-С. 31-40.

39. Варданян Г.С, Мусатов Л.Г., Габриэлян С.Л. Применение функционального подобия к прогнозированию деформаций ползучести и длительной прочности полимеров // Механика копозитных материалов. — 1984.-№2.

40. Гарофало Ф. Законы ползучести и длительной прочности. М.: Металлургия, 1968.

41. Гейтвуд Б.Е. Температурные напряжения применительно к самолетам, снарядам, турбинам и ядерным реакторам. М.: Изд-во. ин. лит-ры, 1960.-253 с.

42. Годунов С.К. Метод ортогональной прогонки для решения систем разностных уравнений // Вычислит, математ. и математ. физика. 1962. -№6. - С. 972-982.

43. Годунов С.К. О численном решении краевых задач для систем обыкновенных дифференциальных уравнений // Успехи математической науки.- 1961.-XVI. Вып. 3/99/.-С. 171-174.

44. Григоренко Я.М., Василенко П., Панкратова Н.Д. К определению температурных полей и напряжений в ортотропных слоистых цилиндрах // Матем. методы и физико-мех. поля. 1983. — Вып. 18. - С. 67-72.

45. Гуль В.В. Структура и прочность полимеров. М.: Химия, 1978. -С. 325.

46. Гуревич Г.И. Об обобщении уравнения Максвелла на случай 3-х измерений с учетом малых деформаций упругого последствия // Труды ИФЗ АН СССР.-№2(169). 1959.

47. Грдина Ю.В., Дельтува JI.A. // Механика полимеров. 1968. - №6. - С. 375.

48. Григорьев А.С. Плоская задача нелинейной ползучести неоднородного тела. М.: Из.АН СССР (Физика земли). -1984. -№1.

49. Григорьев А.С. О решении плоской задачи для линейно-вязкого неоднородного тела. М.: АН СССР (Физика земли). - 1984. -№2.

50. Дарков А.В., Шапошников Н.Н. Строительная механика: Учебник. 11-у изд., стер. СПб.: Издательство «Лань», 2008. - 656 е.: ил.

51. Дубровский В.Б., Облевич 3. Строительные материалы и конструкции защит от ионизирующих излучений: Совм. сов.-пол. изд. / под. ред. В.Б.Дубровского. М.: Стройиздат, 1988. - 240 с.

52. Ержанов Ж.С., Бергман Э.И. Ползучесть соляных пород. Алма-Ата: Наука, 1978.

53. Зевин А.А. Расчет конструкций из неоднородного материала, деформирующегося во времени: дис. . д-ра техн. наук. — М., 1981 .

54. Желязков Ж. С. Техническая мысль. — 1968. — №3.

55. Желязков Ж., Вернадский А.Д., Болг. АН. // Техническая мысль. — 1969. — №6.

56. Журков С.Н., Абасов Л.Д. Высокомолекулярные соединения. 3, 441, 450.-1960.

57. Израилев Ю.Л. и др. Точные аналитические решения трехмерных задач термоупругости // Проблемы точности. 1985. №5. - С.27-32.

58. Ильюшин А.А., Огибалов П.М. Упругопластические деформации полых цилиндров. М.: МТУ, 1960. - 277 с.

59. Ионов В.Н. Температурные напряжения в упругом цилиндре // Изв. вузов Сер. Машиностроение. 1958. - №7. - С.75-80.

60. Имамов А. Метод сплайнов для решения операторных уравнений в гильбертовом пространстве // Методы сплайн-функции (вычислительные системы). 1975. - Вып. 6. - С. 89-95.

61. Каплун А.Б., Морозов Е.М., Олферьева М.А. ANSYS в руках инженера. Практическое руководство. М.: Кдиториал УРСС, 2003. - 272 с.

62. Качанов Л.М. О времени разрушения в условиях ползучести // Изд. АН СССР, ОТН.- 1958.-№8.

63. Кейлис-Борок В.И., Ульянова В.И. К вопросу о ползучести цилиндров под действием нормального давления // Труды ИФЗ АН СССР. 1959. -№2(169).

64. Коваленко А.Д. Основы термоупругости. Киев.: Наукова думка, 1970. -307 с.

65. Колтунов М.А., Васильев Ю.Н., Пасько Д.Н. Прочность полых цилиндров. М.: Машиностроение, 1981. - С. 264.

66. Колтунов М.А., Васильев Ю.Н. Черных В.А. Упругость и прочность цилиндрических тел. — М.: Высш. школа, 1975. — 526 с.

67. Колчин Г.Б. О применительности итеррационного метода в задачах теории упругости неоднородных тел. // Прикладная математика и про-грамирование. — Кишинев: АН СССР, 1969. — Вып. 2.

68. Колчин Г.Б., Фаверман Э.А., Теория упругости неоднородных тел // Библиографический указатель. — Кишинев: Штиница, 1972. 248 с.

69. Колчин Г.Б., Фаверман Э.А. Теория упругости неоднородных тел // Библиографический указатель. — Кишинев: Штиница, 1977. — 148 с.

70. Константинова С.А., Спирков B.JI. Карташов Ю.М. Ползучесть образцов каменной соли в условиях одноосного сжатия // ФТПРПИ. 1979. -№5.-С. 43-46.

71. Теория оптимизации режима охлаждения толстостенных изделий из композиционных материалов / В.Н. Коротков и др. // Механика композита. материалов // 1982. -№6. -С. 1051-1055.

72. Коренев Б.Г. Задачи теории теплопроводности и термоупругости. Решение в Бесселевых функциях. М.: Наука, 1980. — 400 с.

73. Влияние концентрации и дисперсности кварца на физико-механические свойства перхлорвиниловых пленок / Г.И. Крус и др. // Механика полимеров. 1964. - №6. - С. 10-23.

74. Лазуркин Ю.С. Механические свойства полимеров в стеклообразном состоянии.: дис. . д-ра техн.наук. -М., 1954.

75. Леонтьев Н.Н., Демин И.И. Метод конечных элементов в теории сооружений: Учеб. пособие. — М.: МИСИ, 1979. — 75 с.

76. Липатов Ю.С. Физико-химия наполненных полимеров. — Киев.: Науко-ва думка, 1967.

77. Лисицин Б.М., Булыга К.Б. Приближенное решение задач теплопроводности и термоупроугости с учетом неоднородности среды. — М.: Наука, 1965.

78. Ломакин В.А. Теория упругости неоднородных тел. М.: Наука, 1977. -367 с.

79. Лукаш П.А. Основы нелинейной строительной механики. — М.: Строй-издат, 1978.-208 с.

80. Лурье А.И. Пространственные задачи теории упругости. — М.: Наука, 1955.

81. Лизарев А.Д. Свободные колебания и устойчивость кольцевых пластин при неравномерном растяжении и сжатии// Изв. АН СССР, Мех. твердого тела. 1982. - №5. С. 136-142.

82. Сопротивление жестких полимерных материалов / А.К.Малмейстер и др. // Рига: Зинатне, 1972. - С. 498.

83. Месчян С.Р. Механические свойства грунтов и лабораторные методы их определения. — М.: Недра, 1974. — 191 с.

84. Михлин С.Г. Плоская задача теории упругости для неоднородной среды // Труды сейсм. ин-та АН СССР. 1935. - №66.

85. Молчанов И.Н. Численные методы решения некоторых задач теории упругости. Киев: Наукова думка, 1979. - 315 с.

86. Москвитин В.В. Сопротивление вязкоупругих материалов (применительно к зарядам ракетных двигателей на твердом топливе). М.: Наука, 1972.-327 с.

87. Мусатов Л.Г. Ползучесть эпоксидно-неноколовых полимеров // Труды МИСИ им. В .В .Куйбышева. 1972. - №104. - С. 94-100.

88. Мясников К.В., Леонов Е.А., Ромадин Н.М. Разработка научно-технических основ создания подземных хранилищ с помощью ядерныхвзрывов в массиве каменной соли // Сб. Peaceful Nuclear Explosions, III, 1974, Vienna, p. 179-191.

89. Мяченков В.И., Мальцев В.М. Методы и алгоритмы расчета пространственных конструкций на ЭВМ ЕС. — М.: Машиностроение, 1984. -277 с.

90. Олынак В., Урбановский В. Неоднородный толстостенный упругопла-стический цилиндр под действием внутреннего давления // Бюл Польск. АН, отд. 4. 1956. - Т.4. -№3. - С. 163-174.

91. Никишин B.C. Задачи теории упругости для неоднородных сред. М.: ВЦ АН СССР, 1976. - 60 с.

92. Писаренко Г.С, Можаровский Н.С. Уравнения и краевые задачи теории пластичности и ползучести. Киев.: Наукова думка, 1981. — 493 с.

93. Подстригач Я.С, Ломакин В.А., Коляно Ю.М. Термоупругость тел неоднородной структуры. М.: Наука, 1984. — 368 с.

94. Поляков В.Л., Федоренко А.Г., Горбаткина Ю.А. // Физико-химия и механика ориентированных стеклопластиков. -М.: Наука, 1967. С. 139.

95. Попов А.И., Кузнецов С.В. Вязкоупругие напряжения температурной усадки в линейноармированных средах // Механика полимеров, 1978. - №4. — С. 737-740.

96. Попов А.И., Кузнецов С.В. Температурно-усадочные напряжения в регулярном однонаправленном композите // Труды МИСИ им. В.Куйбышева. 1976. -№137. - С. 64-69.

97. Попов А.И., Паша М.А., Наумов А.А. Исследование начальных напряжений в стеклопластике поляризационно-оптическим методом // Труды МИСИ им.В.В.Куйбышева. 1970. - №84-86. - С. 319-327.

98. Проскуряков Н.М. Физико-механические свойства соляных пород. — М.: Недра, 1969.

99. Рабинович A.JI. Введение в механику армированных полимеров. — М.: Наука, 1970.-483 с.

100. Рабинович A.JI. Некоторые основные воросы механики армированных пластиков: дис. . д-ра техн. наук. — М., 1966.

101. Рабинович A.JI., Штарков М.Г., Дмитриева Е.Н. // Труды МФТИ. -1959.-Вып. 3.

102. Работнов Ю.Н. Равновесие упругой среды с последействием // ПММ. -1948.-№12. -С. 93-102.

103. Рвачев B.JL, Синекоп Н.С, Кравченко JI.K. Осесимметричная задача теории упругости для неоднородного цилиндра // Прикладная механика. 1986.-№1. С. 18-43.

104. Ржаницын А.Р. Теория ползучести. М.: Стройиздат, 1968. - 416 с.

105. Розовский М.И. Ползучесть и длительное разрушение материалов // Техн. физика. 1951. - T.XXI. - №11. М.: Мир, 1972. - 418 с.

106. Самарский А.А., Андреев В.Б. Разностные методы для эллиптических уравнений. М.: Наука, 1976. - 352 с.

107. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989. -430 с.

108. Сахаров А.С., Гуляр А.И., Топор А.Г. Численное решение задач термоупругого равновесия неосесимметрично нагруженных тел вращения // Прикладная механика. 1986. - 22, №6. - С.7-13.

109. О кинетике твердения и некоторых прочностных и деформационных характеристиках пласстмасс из ненасыщенных полиэфирных смол / И. Симеонов и др. // Сб. материалов междунар. конф. по механике, сплош. сред.— Варна, 1966.

110. Сегерлинд JI. Применение метода конечных элементов. — М.: Мир, 1979.-С. 392.

111. Слонимский Г.Л., Аскадский А.А. Механика полимеров. 1965. - №1. -С. 36.

112. Смолов А.В. Напряженно-деформированное состояние неоднородных упругих цилиндров под действием силовых и температурных нагрузок: дис. . канд. техн. наук. М., 1987. - 184 с.

113. Соголова Т.И. Механика полимеров. — 1965. —№1,3.

114. Соляник-Красса К.В. Осесимметричная задача теории упругости. М.: Стройиздат, 1987. — 337 с.

115. Спенс Дж., Бойл Дж. Анализ напряжений в конструкциях при ползучести.-М.: Мир, 1986.-С. 300.

116. Изменение структуры и свойств отвержденных смол под влиянием наполнителя / Е.Б. Тростянская и др.. // Механика полимеров. -1972. -№1. С. 26.

117. Туребаева Р.Д. Ползучесть неоднородного массива с цилиндрической полостью: дис. . канд. техн. наук. М., 1994. - 117 с.

118. Турусов Р.А. Механические явления в полимерах и композитах (в процессе формирования): дис. . .д-ра физ-мат. наук. ., — М., 1983, 363 с.

119. Турусов Р.А. и др. Некоторые задачи и методы механики вязкоупругой полимерной среды. Ростов н/Д: РГСУ, 2009. - 209 с.

120. Турусов Р.А. Юбилейная конференция молодых ученых по теоретическим проблемам физической химии. -М.: НИИТЭХИМ, 1965. С. 77.

121. Турусов Р.А. Температурные напряжения и релаксационные явления в осесимметричных задачах механики жестких полимеров. дис. . канд. физ-мат. наук. - М., 1970. - С. 104.

122. Турусов Р.А., Фрейдин А.С. Свойства и расчет адгезионных соединений. М.: Химия, 1990 - 256 с.

123. Уржумцев Ю.С. Методы прогнозирования ползучести некоторых полимерных материалов: дис. д-ра техн. наук. — М., 1969.

124. Феодосьев В.И. Прочность теплонапряженных узлов жидкостных ракетных двигателей. М.: Оборонизд., 1963. - 212 с.

125. Ферри Дж. Вязкоупругие свойства полимеров. — М.: Наука,1948. Т.1. С. 432.

126. Форсайт Дж., Мальком М., Моулер К. Машинные методы математических вычислений. М.: Мир, 1970. - 339 с.

127. Флейшман Н.П., Майданчик И. И. Решение линейных краевых задач для обыкновенных дифференциальных уравнений методом погружения. Львов: Львовск. гос. ун-т, 1982 (Рук. деп. в ВИНИТИ 23.XI.82, №5805-82 деп.) - 22.

128. Храневская И.Е. Некоторые задачи теории упругости неоднородных тел: дис. канд. физ-мат. наук. Новосибирск, 1972.

129. Черник К.И. Эпоксидные компаунды и их примение. Л.: Судостроение, 1967.

130. Черноиван А.В. Прогнозирование устойчивости соляного массива, вмещающего подземную емкость для низкотемпературного хранения газа. дис. канд. техн. наук. — М., 1982. 140 с.

131. Шевляков Ю.А. Матричные алгоритмы в теории упругости неоднородных сред. Киев-Одесса: Вища школа, 1977. - 216 с.

132. Шестериков С.А., Локошенко A.M. Ползучесть и длительная прочность металлов // Итоги науки и техники. ВИНИТИ АН СССР -Т. 13 Механика деформируемого твердого тела. М., - 1980. - С. 3-104.

133. Релаксация и длительная прочность трубок при сложном напряженном состоянии / С.А. Шестериков и др. // Научн. пр. ин-т. мех. Моск. унта, -1973.-№23.

134. Шноль Э.Э., Введенская Н.В. Об одном методе расчета напряжений в круговом цилиндре // Вычислительная математика — 1962. №7.

135. Языев Б.М. Нелинейная ползучесть непрерывно неоднородных цилиндров: дис. . канд. техн. наук.-М., 1990.-С. 171.

136. Alfrey Т. Non-homogeneous stresses in viscoelastlc media // Quart: appl. Math. 1944.-v.2.-№2.

137. Bartenew G.M. Relaxations theorie des bruchs von polimeren in glasszustand // Plaste U.Kautshuk. - 1974. - №7. - pp. 481-485.

138. Ferry T.D. Viscoelastic properties of polimers // John Wiley & Sons — 1981. -P. 633.

139. Filon L.N.G. On the elastic eguilibrium of circular cylinders under certain practical systems of load // Phil Trans of the Roual Society of London. -1902 -Ser.A -v. 198 №4. - pp. 147-233.

140. Gross B. Mathematical structure of the theories of viscoelasticity // Paris: Herrmann. 1953.-P.75.

141. Leaderman H. Elastic and creep properties of filamentous materials and other high polimers // Washington. 1943. - P. 278.

142. Maxwell J.C. Sentrific papers // Cambridge Univercity Priss. London. -1890.-v.2-P. 26.

143. Oden.J.T., Lee. J.K. Jheory of mixed and hybrid finite element approximations in lineary elasticity // Sect. Notes Marh. 1976. - №.303 - pp. 90-109.

144. Odgvist F.K.G. Mathematical theory of creep and rupture // Oxford 2-nded Clarendon press 1974 - V.IX. - P. 200.

145. Tauchert T.R. Thermal streses in an ortotropic cylinder, with themprature -dependent elastic //Dev. Theor and Appl. Mech 1976. - V.8 - pp. 201212.

146. Boltzmann Z. Ponn. Ann. Erg, 1876, - №4. - P.624.

147. Kohlrousch F. Ponn. Ann. Erg, 1863. -pp. 119- 337; - 1866. pp. 207399;- 1876. pp. 158-337;.

148. Rawson D., Randolf P., Boardman C., Wheeler V. Post explosion environment resulting from the Salmon event (22.X.1964) // J. of Geophysical Research. 1966. V.71. - №14. - pp.415-426.

149. Coleman, B.D. Normal stress effect in secondary fluids. — J. App. Phys., 1984.-v. 35.-N l.-P. 765-768.

150. Rouse, P.E. Theory of the linear viscoelastic Properties of Dilute Solution of Cooling Polymers. J. Chem. Phys., 1993. - v. 21. -N. 7. - P. 1280.

151. Kirkwood, J.G. The General Theory of Irreversible Processes in Solution of Macromolecules. J. Polim. Sci., 1984. - v. 12. - P. 1-14.

152. Bueche, F. Physical prosperities of polymers. London: Intersciense, 1993. - 324 p.

153. Lodg, F.S. A network theory of flow birefringence and stress in concentrated polymer Solution. Trans. Farad. Soc., 1996. - v. 52. - № 397. - P. 354357.

154. Jamamoto, M. The theory of the statistic structure. J. Phys. Soc., Japan, 1988. - v. 13.-P. 1200-1208.

155. Takaynagi, M. Application of the theory of elasticity and viscosity of two-phase systems to polymer plant. J. Appl. Polymer Sci., 1998. - v. 10. - P. 113-115.

156. De Witt, T.W. A reological equation of state which preducte non-Newtoniane viscosity, normal stress and dynamics modele J. Appl. Phys., 1995-v. 26.-P. 889-892.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.