Напряженно-деформированное состояние и устойчивость ребристых пологих оболочек с учетом ползучести материала тема диссертации и автореферата по ВАК РФ 05.23.17, кандидат технических наук Кудрявцев, Василий Константинович

  • Кудрявцев, Василий Константинович
  • кандидат технических науккандидат технических наук
  • 2006, Санкт-Петербург
  • Специальность ВАК РФ05.23.17
  • Количество страниц 147
Кудрявцев, Василий Константинович. Напряженно-деформированное состояние и устойчивость ребристых пологих оболочек с учетом ползучести материала: дис. кандидат технических наук: 05.23.17 - Строительная механика. Санкт-Петербург. 2006. 147 с.

Оглавление диссертации кандидат технических наук Кудрявцев, Василий Константинович

Введение

Глава 1. Нелинейные математические модели деформирования пологих ребристых оболочек при учете ползучести материала

1.1. Основные соотношения для пологих ребристых оболочек с учетом геометрической нелинейности

1.2. Физические соотношения для упругих оболочек

1.3. Физические соотношения при учете ползучести материала

1.4. Функционал полной энергии деформации пологой ребристой оболочки при учете поперечных сдвигов

1.5. Уравнения равновесия пологой ребристой оболочки при учете поперечных сдвигов

1.6. Модель деформирования пологой ребристой оболочки при не учете поперечных сдвигов

1.7. Уравнения в смешанной форме для пологой ребристой оболочки при учете ползучести материала 31 1.8.0 краевых условиях на контуре оболочки 37 1.9. Выводы

Глава 2. Алгоритмы расчета напряженно-деформированного состояния пологих ребристых оболочек при учете ползучести материала

2.1. Функционал полной энергии деформации пологой ребристой оболочки с учетом поперечных сдвигов в безразмерных параметрах

2.2. Применение метода Ритца для получения интегральных уравнений равновесия для ребристых пологих оболочек при учете поперечных сдвигов

2.3. Блок-схема алгоритма расчета пологих ребристых оболочек при учете поперечных сдвигов и ползучести материала

2.4. Функционал полной энергии деформации пологой ребристой оболочки при неучете поперечных сдвигов в безразмерных параметрах

2.5. Применение метода Ритца для получения интегральных уравнений равновесия для пологих ребристых оболочек при неучете поперечных сдвигов

2.6. Блок-схема алгоритма расчета пологих ребристых оболочек при учете ползучести материала и неучете поперечных сдвигов

2.7. Программа расчета пологих ребристых оболочек при учете ползучести материала

2.8. Выводы

Глава 3. Устойчивость упругих пологих ребристых оболочек

3.1. Алгоритм исследования устойчивости пологих ребристых оболочек

3.2. Устойчивость пологих оболочек, подкрепленных различным числом ребер

3.3. Характер распределения напряжений в ребристых оболочках

3.4. Применение критерия Мизеса для анализа появления пластических деформаций

3.5. Результаты экспериментального исследования устойчивости оболочек

3.6. Выводы

Глава 4. Расчет напряженно-деформированного состояния и устойчивости пологих ребристых оболочек с учетом ползучести материала

4.1. Линейный вариант задачи для оболочек постоянной толщины (для полимерных материалов)

4.2. Понижение критической нагрузки при длительном нагружении оболочки постоянной толщины

4.3. Понижение критической нагрузки при длительном нагружении ребристой оболочки

4.4. Выводы

Рекомендованный список диссертаций по специальности «Строительная механика», 05.23.17 шифр ВАК

Введение диссертации (часть автореферата) на тему «Напряженно-деформированное состояние и устойчивость ребристых пологих оболочек с учетом ползучести материала»

Тонкостенные оболочечные конструкции находят большое применение в различных областях техники, так как обладают разнообразием форм и достаточно высокой жесткостью. Для повышения жесткости они подкрепляются ребрами жесткости. При длительном воздействии нагрузки в них может проявиться свойство ползучести материала, т.е. изменение во времени деформаций и напряжений при неизменной нагрузке, что может привести к потере прочности или даже к потере устойчивости. Так как теория ползучести сравнительно молодая наука, то решения задач устойчивости и определения напряженно-деформированного состояния (НДС) для ребристых оболочек исследованы не достаточно. Поэтому исследование ребристых пологих оболочек с учетом ползучести материала является актуальным.

В настоящее время разработаны несколько торий ползучести. Сведения о них можно найти в работах Н.И. Безухова [15], Н.Н. Малинина [113], Ю.Н. Работнова [146], Л.М. Качанова [93],

A.Р. Ржаницина [149], Н.Х. Арутюняна [13], ХарлабаВ.Д. [167,168],

B.И. Климанова и С.А. Тимашева [95] и др. Исследование НДС и устойчивости оболочек в условиях ползучести материала проведено в работах И.Г. Терегулова [162], Гудрамовича B.C. и ПошиваловаВ.П. [47], Куршина JI.M. [105], Климанова В.И. и С.А. Тимашева [95], и др. В работе Климанова В.И. и Тимашева С.А. рассматриваются ребристые пологие оболочки, однако не учитываются сдвиговая и крутильная жесткость ребер или жесткость ребер "размазывается" по всей оболочке. В этой работе представлен обширный материал по экспериментальному исследованию оболочек и обзор работ при исследовании конструкций с учетом ползучести материала.

Первоначально под ползучестью понимали свойство твердых тел деформироваться во времени при действии постоянных нагрузок. В настоящее время это понятие расширено в результате изучения случаев переменных нагрузок и температур. Ползучесть материала зависит от многих факторов: типа материала, вида напряженного состояния, температуры и свойств окружающей среды, масштабов образцов и др. Так для бетона и полимеров при длительном действии нагрузок и нормальной температуре характерно затухающее деформирование, для металлов при высоких температурах — незатухающее. В соответствии с этим различают два типа материалов: с ограниченной ползучестью (полимеры, бетон) и неограниченной (металлы).

Пока не существует единой обобщенной теории ползучести, одинаково пригодной для всех конструктивных материалов. Все многообразие ее вариантов можно разделить на три группы: варианты теории упругой наследственности, теории старения и теории упругоползучего тела. Основное отличие их состоит в подходе к вопросу об обратимости деформаций ползучести при частичной или полной разгрузке.

Основы теории упругой наследственности заложили Больцман и Вольтерра и развили впоследствии Ю.Н. Работнов, М.И. Розовский, Г.Н. Маслов, Н.Х. Арутюнян, А.Р. Ржаницин. Эта теория постулирует полную обратимость деформаций ползучести при разгрузках, поэтому ее варианты применимы лишь к бетону старого возраста. Эта теория достаточно хорошо отображает поведение деформируемых полимерных материалов.

Теорию старения разработали Дишингер и Уитли и развили Н.И. Буданов, И.И. Улицкий, Я.Д. Лившиц и др. Классическая теория основана на предположении о полной необратимости деформаций ползучести при разгрузке и вследствие этого не может быть использована для описания длительных процессов с изменяющимися напряжениями и деформациями.

При решении прикладных задач широкое применение находит более сложная, но и более совершенная теория упругоползучего тела (наследственная теория старения). Основы ее, заложенные Г.Н. Масловым и Н.Х. Арутюняном, развиты в трудах С.В. Александровского, А.А. Гвоздева, И.Е. Прокоповича,

А.Р. Ржаницина и др. Теория упругоползучего тела, учитывающая частичную обратимость деформаций ползучести, наиболее пригодна для описания длительных деформаций бетона. В области эксплуатационных значений напряжений (сг< 0,5 R где R — призменная прочность бетона) степень нелинейной зависимости деформаций ползучести бетона от напряжений невелика, поэтому можно ограничиться линейной теорией.

Для описания поведения длительно загруженных тонкостенных оболочек можно использовать линейные теории упругоползучего тела и наследственности соответственно.

Для конструкций из материалов с неограниченной ползучестью ставятся задачи определения (по различным критериям устойчивости) критического времени tk. В конструкциях из материалов с ограниченной ползучестью задача устойчивости рассматривается на бесконечном интервале времени, при этом основным является установление длительной критической нагрузки qD. При нагрузках, меньших длительной критической, прогибы оболочки стабилизируются во времени. А в интервале нагрузок qD <q<qM в оболочке, несмотря на затухание скорости деформаций ползучести, могут накопиться большие перемещения, что со временем приведет к прощелкиванию. В этом случае также возможно определение критического времени tk как момента смены форм равновесия.

Существуют разнообразные критерии устойчивости. При исследовании оболочек предлагалось считать критическим момент, соответствующий переходу от одной формы равновесия к другой, бесконечному возрастанию прогиба, обращению скорости прогибов в бесконечность и др. Методы решения задач для оболочек в условиях ползучести материала изложены в работах: А.С. Вольмира и П.Г. Зыкина, Ю.Н. Работнова, И.И. Воровича и Н.И. Минаковой, И.Е. Прокоповича, Н.А. Магаховой и Н.Р. Михеевой, М.А. Колтунова и П.М. Огибалова, J1.M. Куршина, И.Г. Терегулова и Р.З. Муртазина и др. Систему уравнений ползучести оболочек ввиду нелинейности нельзя проинтегрировать непосредственно, поэтому получают приближенные решения с использованием вариационных методов, метода конечных элементов, метода перемещений, метода Бубнова-Галеркина.

После алгебраизации задачи, система интегральных уравнений решается итерационным методом. Причем начальное приближение находится из решения упругой задачи. В силу сложности построения теории длительной устойчивости оболочек, многие исходные гипотезы и предпосылки, а также значения параметров, характеризующих свойства материалов, из которых изготавливаются отдельные элементы оболочек, следует брать из правильно поставленного эксперимента.

Результаты экспериментов над подкрепленными ребрами оболочек из оргстекла представлены в работе В.И. Климанова и С.А. Тимашева [95]. Там же приводятся функции влияния K(t- т) и R(t - т) для этого материала:

R^Ae^'-t*-1.

Здесь Г(а) — гамма функция; а, Р, А — параметры, определяемые экспериментально (табл. 1, взято из работы [95]).

Механические характеристики оргстекла

Таблица 1

Элемент модели £-10"7 кПа Функции влияния Коэффициент функции влияния а р-ю3 А-10 обшива 0,33126 кх 0,05 0,045 0,26945

Кг 0,20 0,833 0,13184 ребра 0,29091 Кр 0,30 0830 0,4980

При этом физические соотношения принимаются в виде о о о о о о

Ц) о

Здесь K?(t- т) функция влияния, характеризующая ползучесть материала обшивки при сжатии (растяжении); K^it-i) — функция влияния, характеризующая ползучесть материала обшивки при сдвиге; Eq,Gq,v0 — модули упругости первого и второго рода и коэффициент

Пуассона для материала обшивки.

Основы теории ребристых оболочек были заложены еще в 40-х годах в работах В.З.Власова [24] и А.И.Лурье [110]. В их работах заложены два основных подхода к учету дискретности подкрепления в виде ребер. Ребристая оболочка представляется В.З. Власовым как контактная система, состоящая из гладкой оболочки и работающих совместно с ней тонких стержней. А.И. Лурье обшивку и ребра рассматривает как одно целое, и для них на основе вариационного принципа получаются уравнения равновесия и граничные условия. Оба считали, что ребра взаимодействуют с обшивкой по линии. В дальнейшем большинство авторов следовало одному из этих двух подходов.

Третий подход к ребристым оболочкам основан на сведении их к конструктивно-ортотропной схеме, т.е. дискретно-подкрепляющие оболочку ребра заменяются путем их "размазывания" сплошным слоем постоянной толщины и в уравнения равновесия вводятся соответствующие жесткостные коэффициенты, учитывающие увеличение жесткости всей конструкции (метод конструктивной анизотропии).

В конце 60-х годов П.А. Жилиным [54] было предложено рассматривать ребристую как оболочку ступенчато-переменной толщины. При этом автоматически учитывается, что контакт между обшивкой и ребрами происходит по всей поверхности полосы, а не по линии. Аналогичный подход к ребристой оболочке при решении нелинейных задач применил позже В.В. Карпов [71-75].

Современное состояние теории ребристых оболочек характеризуется работами Абовского Н.П., Амиро И .Я., Власова В.З, Грачева О.А., Гребня Е.С., Гречанинова И.П., Григолюка Э.И., ГузяА.Н., Енджиевского Л.В., Жилина П.А., Заруцкого В.А., Кантора Б.Я., Карпова В.В., Климанова В.И., Корнеева B.C., Лурье А.И., Маневича А.И., Милейковского И.Е., Михайлова Б.К.,

Немировского Ю.В., Постнова В.А., Преображенского И.Н.,

РассудоваВ.М., Теребушко О.И., Тимашева С.А., Бискова и Хачисона, Фишера С. и Берта С. и др.

Хотя имеется большое число работ по исследованию ребристых оболочек, но, в основном, это работы, касающиеся цилиндрических оболочек, выполненные без учета нелинейных факторов и на основе модели Кирхгофа-Лява (без учета сдвиговых деформаций)

Чаще всего рассматриваются замкнутые цилиндрические оболочки, решение для которых находится в виде рядов. В работах Амиро И.Я. и Заруцкого В.А. [7, 8] даны обзоры состояния исследования ребристых оболочек как при статической постановке, так и в динамической. Следует отметить еще обзор работ в области статики ребристых оболочек, составленный Кантором Б.Я. и др. [68]. К приведенным выше обзорам, на наш взгляд, следует добавить еще работы ученых Красноярского края: Абовского Н.П., Енджиевского Л.В. и др. [1-3, 51] кроме того работы Тимашева С.А. [163] и Климанова В.И. [95].

Исследования, как правило, выполняются с использованием для описания НДС обшивки теории упругих тонких оболочек, основанной на гипотезах Кирхгофа-Лява, а для описания НДС ребер — теории тонких стержней Кирхгофа-Клебша. Почти во всех работах принимается, что ребра присоединены к обшивке вдоль линий главных кривизн и передают на обшивку реакции, распределенные вдоль этих линий. В линейной постановке используется статический критерий устойчивости и задача сводится к решению систем дифференциальных или интегральных уравнений нейтрального равновесия.

С целью упрощения задачи в конкретных исследованиях пренебрегается некоторыми факторами. В большинстве работ считается, что ребра и обшивка прикреплены по линии, при этом авторы пренебрегают влиянием сдвиговой и крутильной жесткостью ребер на

НДС конструкции.

Исследования устойчивости ребристых оболочек при длительном нагружении, когда может проявиться ползучесть материала, исследована недостаточно. Устойчивость оболочек постоянной толщины в условиях ползучести материала исследована в работах И.Г. Терегулова [162]. Устойчивость ребристых пологих оболочек в условиях ползучести материала исследована В.И. Климановым и С.А. Тимашевым [95].

Исходя из анализа состояния исследований устойчивости ребристых пологих оболочек при длительном нагружении, ставятся следующие задачи и цели исследования: разработка математической модели деформирования пологих ребристых оболочек с учетом геометрической нелинейности и возможности развития ползучести материала; разработка алгоритма решения нелинейных задач теории оболочек (геометрическая и физическая нелинейность); исследование влияния длительности нагружения на снижение критической нагрузки.

В работе не ставится задача детального исследования процессов ползучести в материале конструкции, а ставится задача исследования влияния нелинейных факторов при длительном воздействии нагрузки. Поэтому рассматривается простая теория ползучести (линейная теория наследственной ползучести) и анализируется устойчивость тонкостенных ребристых оболочек при длительном нагружении с учетом геометрической нелинейности и возникновения ползучести. Так как функции влияния находятся экспериментально, а экспериментальных данных, описанных в литературе недостаточно, то выбран материал (оргстекло), для которого эти данные приведены в работе Климанова В.И. и Тимашева С.А. [95].

Для достижения цели исследования были поставлены следующие задачи: вывод нелинейных интегральных уравнений деформирования пологих ребристых оболочек с учетом ползучести материала; разработка алгоритма решения дважды нелинейных задач (геометрической и физической); исследование развития ползучести материала, когда прогибы оболочки соизмеримы с ее толщиной; исследование снижения критической нагрузки при длительном нагружении оболочки вследствие развития ползучести материала.

Научная новизна работы: разработана математическая модель деформирования пологих ребристых оболочек с учетом геометрической нелинейности, дискретного введения ребер, сдвиговой и крутильной жесткости ребер, поперечных сдвигов и возникновения ползучести материала; разработан алгоритм решения геометрически и физически нелинейных задач на основе метода Ритца и итерационных процессов; исследован процесс роста прогибов при длительном нагружении оболочки, приводящий к потере устойчивости и особенности этого процесса для тонкостенных ребристых оболочек при учете геометрической нелинейности; построены кривые снижения критической нагрузки для различных оболочек из оргстекла.

Практическое значение работы состоит в том, что математическое и программное обеспечение расчетов устойчивости пологих ребристых оболочек с учетом длительного воздействия нагрузок и возможности возникновения ползучести материала, геометрической нелинейности могут найти применение в проектных организациях (например, в ОАО "СПбЗНИИПИ жилищно— гражданских зданий") и в учебном процессе строительных вузов (например, СПбГАСУ, ВолгГАСУ). Результаты работы получили врнедрение в ОАО "СПбЗНИИПИ жилищно—гражданских зданий", учебном процессе СПбГАСУ для студентов специальностей "Промышленное и гражданское строительство", "Прикладная математика".

Основные научные положения, выносимые на защиту: математическая модель деформирования пологих ребристых оболочек с учетом геометрической нелинейности, дискретного введения ребер, сдвиговой и крутильной жесткости, поперечных сдвигов и возникновения ползучести материала; методика исследовании модели, ориентированная на использование компьютерных технологий и позволяющая перейти от сложных интегро—дифференциальных уравнений к итерационным процессам решения нелинейных алгебраических уравнений; исследование особенностей деформирования тонкостенных оболочечных конструкций (местной и общей потери устойчивости) и влияния этих особенностей на развитие ползучести материала при длительном нагружении; исследование снижения критической нагрузки при длительном нагружении и развитии ползучести материала.

Достоверность научных положений подтверждается применением вариационных принципов при получении уравнений равновесия, обоснованных численных методов решения полученных уравнений, сравнением результатов с результатами других авторов и с результатами экспериментов.

Апробация работы Результаты работы докладывались на 58-й и 59-й международной научно-технической конференции молодых ученых и студентов СПбГАСУ (2005 г., 2006 г.), на 63-й научной конференции профессоров, преподавателей, научных работников, инженеров и аспирантов университета (СПбГАСУ, 2005 г.). Полностью работа докладывалась на расширенном научном семинаре кафедры Прикладной математики и информатики под руководством д.ф.-м.н., проф. Вагера Б.Г. (май, 2006 г.).

Публикации

По результатам исследования опубликованы четыре научных статьи. Публикаций по перечню ВАК — 1.

Структура и объем работы

Текст диссертации изложен на 147 страницах, состоит из введения, четырех глав, заключения, списка литературы, из 186 наименований, приложений на 28 страницах. Работа содержит 16 рисунков и 5 таблиц.

Похожие диссертационные работы по специальности «Строительная механика», 05.23.17 шифр ВАК

Заключение диссертации по теме «Строительная механика», Кудрявцев, Василий Константинович

4.4. Выводы

Как показали исследования, при длительном нагружении "прощелкивание" оболочки (потеря устойчивости) может произойти при нагрузках, гораздо меньших, чем мгновенная критическая нагрузка из-за развития ползучести в материале оболочки. Для ребристых оболочек функции влияния в обшивке и ребрах должны быть разные, а отсутствие экспериментальных данных затрудняет проводить расчеты. Для некоторых материалов (например, оргстекло) осредненные значения функций влияния приведены в работе [95].

Разработанный алгоритм расчета напряженно-деформированного состояния и устойчивости оболочек при длительном нагружении позволяет проводить расчеты для разных значений функций влияния, т.е. рассматривать различные материалы оболочки при нормальной температуре.

Выявлено, что с увеличением параметров кривизны к^, кц, увеличивается скорость снижения критической нагрузки.

До "прощелкивания" оболочки может произойти разрушение в угловых точках оболочки, между ребрами, так как там наибольший уровень прогибов для некоторых оболочек.

Кривая снижения критической нагрузки при некоторой нагрузке стабилизируется, и эта нагрузка служит критической долговременной нагрузкой.

Заключение

По результатам диссертационной работы можно сделать следующие выводы:

1. Разработана математическая модель пологой ребристой оболочки с учетом геометрической нелинейности, дискретного введения ребер, сдвиговой и крутильной жесткости ребер, поперечных сдвигов и учета развития ползучести материала, позволяющая исследовать напряженно-деформированное состояние и устойчивость оболочек при длительном нагружении.

2. Разработан алгоритм исследования полученной модели на основе метода Ритца и итерационных процессов (итерация при решении геометрически нелинейных задач и итерация по временной координате при решении задач ползучести), реализованный в виде программного комплекса для ЭВМ.

3. Исследованы особенности напряженно-деформированного состояния и устойчивости для оболочек, имеющих прогибы соизмеримые с толщиной (увеличение напряженного состояния в угловых точках и между ребрами, возможность местной и общей форм потери устойчивости), которые могут существенно повлиять на развитие ползучести материала при длительном нагружении.

4. На примере оболочек из оргстекла показано существенное снижение критической нагрузки при развитии ползучести в материале.

5. Для ребристых оболочек ползучесть материала быстрее развивается в угловых точках оболочки и между ребрами, так как в этих точках прогибы и напряжения при учете геометрической нелинейности максимальны.

Список литературы диссертационного исследования кандидат технических наук Кудрявцев, Василий Константинович, 2006 год

1. Абовский Н.П. Смешанные вариационные уравнения для пологой ребристой оболочки // Строительная механика и расчет сооружений. 1969. №4. -С. 20-22.

2. Абовский Н.П., Андреев Н.П., Деруга А.П. Вариационные принципы теории упругости и теории оболочек / Под ред. Н. П. Абовского -М.: Наука, 1978.-228 с.

3. Абовский Н.П., Чернышов В.Н., Павлов А. С. Гибкие ребристые пологие оболочки: Учеб. пособие для вузов. Красноярск, 1975. -128 с.

4. Алумяэ Н.А. Дифференциальные уравнения состояния равновесия тонкостенных упругих оболочек в послекритической стадии // ПММ. Т. 13. 1949. Вып. 1. С. 95-107.

5. Алумяэ Н.А. Одна вариационная формулировка для исследования тонкостенных упругих оболочек в послекритической стадии // ПММ. Т. 14. 1950. Вып. 2. С. 197-203.

6. Алфутов Н.А. Устойчивость цилиндрической оболочки, подкрепленной поперечным силовым набором и нагруженной внешним равномерным давлением // Инженерный сборник. 1956. Т. 23.-С. 36-46.

7. Амиро И.Я., Заруцкий В.А. Исследования в области динамики ребристых оболочек // Прикладная механика. 1981. Т. 17. № 11. С. 3-20.

8. Амиро И.Я., Заруцкий В.А. Методы расчета оболочек. Т. 2. Теория ребристых оболочек. Киев: Наукова думка, 1980. - 368 с.

9. Амиро И.Я., Заруцкий В.А. Экспериментальное и теоретическое определение собственных частот колебаний подкрепленных цилиндрических оболочек // Прикладная механика. 1977. Т. 13. № 10.-С. 6-13.

10. Амиро И.Я., Заруцкий В.А., Поляков П.С. Ребристые цилиндрические оболочки. Киев: Наукова думка, 1973. - 248 с.

11. Андреев Л.В., Ободан Н.И., Лебедев А.Г. Устойчивость оболочек при неосесимметричной деформации. М.: Наука, 1988. - 208 с.

12. Андреев Л.В., Павленко А.В. Экспериментальные исследования влияния параметров оболочки и подкрепления на величину критической нагрузки при импульсном внешнем давлении // Гидроаэромеханика и теория упругости. Днепропетровск. 1975. № 19.-С. 147-150.

13. Арутюнян Н.Х. Некоторые вопросы теории ползучести. М.: Гостехиздат, 1952.

14. Бакунин В.Н., Образцов И. Ф., Потапахин В.А. Динамические задачи нелинейной теории многослойных оболочек. М.: Наука, 1998. -456 с.

15. Безухое Н.И. Основы теории упругости, пластичности и ползучести. -М.: Высшая школа, 1968. 512 с.

16. Бердичевский В.Л. Вариационные принципы механики сплошной среды. М.: Наука, 1983. - 448 с.

17. Блехман И.И., Мышкис А.Д., Пановко Я.Г. Механика и прикладная математика. М.:Наука,1983. - 328 с.

18. Болотин J5.B. Динамическая устойчивость упругих систем. М.: Гостехиздат, 1956.

19. Бубнов И.Г. Строительная механика корабля. Ч. 1-2. СПб., 1912, 1914.

20. Вайнберг Д.В., Ройтфарб И.З. Расчет пластин и оболочек с разрывными параметрами // Расчет пространственных конструкций. -М.: Стройиздат, 1965. Вып. 10. С. 39-80.

21. Валишвили Н.В. Методы расчета оболочек вращения на ЭЦВМ. М.: Машиностроение, 1976.-278 с.

22. Валишвили Н.В., Сшкин В.Б. Применение метода прямых для решения нелинейных задач динамики пологих оболочек // МТТ. 1970. №3.-С. 140-143.

23. Ван Фо Фы Г.А. Приложение функций Матье и функций Дирака к исследованию пластин и оболочек // Прикладная механика. 1958. Т.2. Вып. 3.

24. Власов В.З. Контактные задачи по теории оболочек и тонкостенных стержней // Изв. АН СССР. ОТН. 1949. № 6. С. 819-838.

25. Власов В.З. Новый практический метод расчета складчатых покрытий и оболочек // Строительная промышленность. 1932. № 11. -С. 33-37; № 12.-С. 21-26.

26. Власов В.З. Общая теория оболочек и ее приложение в технике. -М.; Д.: Гостехиздат, 1949. 784 с.

27. Волошенко-Климовицкий Ю.А. Динамический предел текучести. М.: Наука, 1965.

28. Вольмир А. С. Гибкие пластины и оболочки. М.: Гостехиздат, 1956. -419с.

29. Вольмир А. С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972.-432 с.

30. Ворович И.И. Математические проблемы нелинейной теории пологих оболочек. М.: Наука, 1989. - 376 с.

31. By Р. У., УитмерЕ.А. Аналитические и экспериментальные исследования нелинейных нестационарных деформаций подкрепленных панелей // Ракетная техника и космонавтика. 1975. Т.13. № 9. С. 53-62.

32. Гавршенко Г.Д. Устойчивость несовершенных ребристых цилиндрических оболочек при линейном и нелинейном докритическом состоянии // Устойчивость пластин и оболочек. -Саратов: Изд-во Сарат. ун-та, 1981. С. 20-22.

33. Герсеванов Н.М. Функциональные прерыватели в строительной механике и их приложение к расчету ленточных фундаментов // ВИОС «Основания и фундаменты». М.: Стройиздат, 1933. Сб. № 1.-С. 7-15.

34. Глухова Т.В. Уравнения движения пологих ребристых оболочек // Исследования по механике строительных конструкций и материалов. Л., ЛИСИ. 1986. - С. 38-42.

35. Голда Ю.Л., Преображенский КН., Штукарее B.C. Экспериментальное исследование устойчивости оболочек с отверстиями // Прикладная механика. 1973. № 1. С. 27-32.

36. Голъденблат И.К, Николаенко Н.А. Теория ползучести строительных материалов. М.: Гостехиздат, 1960.

37. Гольденвейзер А.А. Теория упругих тонких оболочек. М.: Гостехиздат, 1953.

38. Грачев О.А. О влиянии эксцентриситета ребер на устойчивость оболочек при внешнем давлении // Прикладная механика. 1985. Т. 21. № 1. С. 53-60.

39. Грачев О.А., Игнатюк В.И. Об устойчивости трансверсально-изотропных ребристых оболочек вращения // Строительная механика и расчет сооружений. 1986. № 3. М.: Стройиздат. - С. 61-64.

40. Гребень Е.С. Основные соотношения технической теории ребристых оболочек // Изв. АН СССР. Механика. 1965. №3. С. 81-92.

41. Григолюк Э.И., Кабанов В.В. Устойчивость оболочек. М.: Наука, 1978.-359 с.

42. Григолюк Э.И., Куликов Г.М. Многослойные армированные оболочки: Расчет пневматических шин. М., Машиностроение, 1988.-287 с.

43. Григолюк Э.И., Фильштинский Л.А. Перфорированные пластины и оболочки. М.: Наука, 1970. - 556 с.

44. Григолюк Э.И., Чулков П.П. Устойчивость и колебания трехслойных оболочек. М.: Машиностроение, 1973. - 215 с.

45. Григолюк Э.И., Шалашилин В.И. Проблемы нелинейного деформирования: Метод продолжения решения по параметру в нелинейных задачах механики твердого деформированного тела. -М.: Наука. 1988.-232 с.

46. Гудрамович B.C., Пошивалое В.П. Выпучивание оболочек в условиях ползучести. — В кн.: Прочность и надежность элементов конструкций. Киев: Наукова Думка, 1982, с. 49-58.

47. Гузъ А.Н. Концентрация напряжений около отверстий в тонких оболочках (обзор) // Прикладная механика. Киев, 1969. Т.5. Вып. З.-С. 1-17.

48. Давиденко Д.Ф. Об одном новом методе численного решения систем нелинейных уравнений // ДАН СССР. Т. 88. 1953. Вып. 4.

49. Диамант Г.И., Заруцкий В.А., Сивак Э. Ф. Исследование влияния ребер на собственные частоты и формы колебаний цилиндрических оболочек // Строительная механика и расчет сооружений. 1978. № З.-С. 48-50.

50. Енджиевский JI.B. Нелинейные деформации ребристых оболочек. Красноярск: Изд-во. Красноярск, ун-та, 1982.-295 с.

51. Ершов Н.Ф., Попов А.Н. Прочность судовых конструкций при локальных динамических нагружениях. JL: Судостроение, 1989. -200 с.

52. Жигалко ЮЛ. Некоторые вопросы динамики подкрепленных оболочек // Исследования по теории пластин и оболочек. 1979. Вып. 14. С. 172-184.

53. Жилин П.А. Линейная теория ребристых оболочек // Изв. АН СССР. Механика твердого тела. 1970. № 4. С. 150-162.

54. Жилин П.А. Общая теория ребристых оболочек // Прочность гидротурбин: Труды ЦКТИ. Л., 1971. Вып. 88. - С. 46-70.

55. ЗавриееК.С. Основы теории функциональных прерывателей в применении к строительной механике // Тр. Тбилисского ин-та инж. ж.-д. транспорта. 1938. Вып. 6. С. 19-75.

56. Игнатьев В.А. Расчет регулярных статически неопределимых стержневых систем. Саратов: Изд-во Сарат. ун-та, 1979. - С. 296.

57. Игнатьев О.В., Игнатьева И.А., Карпов В.В. Вариационно-параметрический подход к расчету пологих оболочек ступенчато-переменной толщины // Исследования по механике материалов и конструкций. Вып. 9 / ПУПС. -СПб., 1996.-С. 44-54.

58. Игнатьев О.В., Карпов В.В., Филатов В.Н. Вариационно-параметрический метод в нелинейной теории оболочек ступенчато-переменной толщины. Волгоград: ВолгГАСА, 2001. - 210 с.

59. Игнатьев О.В., Карпов В.В., Филиппов Д. С. Местная и общая потеря устойчивости ребристых пологих оболочек // Труды молодых ученых. СПбГАСУ. СПб., 2000. - С. 87-89.

60. Ильин В.П., Карпов В.В. Связанность форм потери устойчивости ребристых оболочек // Труды XIV Всесоюзной конференции по теории пластин оболочек. Кутаиси, 1987.

61. Ильин В.П., Карпов В.В. Устойчивость ребристых оболочек при больших перемещениях. Л.: Стройиздат. Ленингр. отд-ние, 1986. -168 с.

62. Ильин В.П., Карпов В.В. Устойчивость ребристых оболочек, допускающих большие прогибы // II Всесоюзн. симпозиум «Устойчивость в механике деформируемого твердого тела»: Тез. докл. Калинин, 1986. - С. 159.

63. Ильин В.П., Карпов В.В., Масленников A.M. Численные методы решения задач строительной механики. Минск: Вышейшая школа, 1990.-349 с.

64. Кабанов В.В. Устойчивость неоднородных цилиндрических оболочек. М.: Машиностроение, 1982. - 253 с.

65. Кантор Б.Я. Нелинейные задачи теории неоднородных пологих оболочек. Киев: Наукова думка, 1971. - 136 с.

66. Кантор Б.Я., Катарянов С.И., Офий В.В. Обзор теории оболочек, подкрепленных ребрами с 1972-80 гг. // Институт проблем машиностроения АН УССР, 1982. № 167. 78 с.

67. Канторович Л.В. Один прямой метод приближенного решения задач о минимуме двойного интеграла // Изв. АН СССР, ОМЕН, 1933, №5. с. 647-652.

68. Кармишин А.В., Скурлатов Э.Д., Старцев В.Г., Фельдштейн В.А. Нестационарная аэроупругость тонкостенных конструкций. М.: Машиностроение, 1982.

69. Карпов В.В. Геометрически нелинейные задачи для пластин и оболочек и методы их решения. Изд-во АСВ; СПбГАСУ. М.; СПб., 1999.- 154 с.

70. Карпов В.В. Метод последовательного наращивания ребер и его применение к расчету оболочек ступенчато-переменной толщины // Проблемы прочности материалов и конструкций на транспорте. -М.: Транспорт, 1990. С. 162-167.

71. Карпов В.В. Применение процедуры Рунге-Кутта к функциональным уравнениям нелинейной теории пластин и оболочек // Расчет пространственных систем в строительной механике. Саратов.: Изд-во Сарат. ун-та, 1972. - С. 3-7.

72. Карпов В.В. Различные схемы конструктивно-ортотропных оболочек и их применение к расчету оболочек дискретно-переменной толщины // Исследования по механике строительных конструкций и материалов: Межвуз. темат. сб. тр. / ЛИСИ. Л., 1988.

73. Карпов В.В. Численная реализация метода продолжения по параметру в нелинейных задачах пластин и оболочек. Численные методы решения задач строительной механики, теории упругости и пластичности. Волгоград: ВолгИСИ, 1990. - С. 121-122.

74. Карпов В.В., Игнатьев О.В. Метод последовательного изменения кривизны // Математическое моделирование, численные методы и комплексы программ: Межвуз. темат. сб. тр. / СПбГАСУ. СПб., 1996.-С. 131-135.

75. Карпов В.В., Игнатьев О.В., Игнатьева И.А. Непологие оболочки ступенчато-переменной толщины // Проблемы прочности материалов и сооружений на транспорте: Тезисы докладов, представленных на III Международную конференцию. СПб. 1995. - С. 72-74.

76. Карпов В.В., Игнатьев О.В., Сальников А.Ю. Нелинейные математические модели деформирования оболочек переменной толщины и алгоритмы их исследования. М.: АСВ, СПб.: СПбГАСУ, 2002. —420 с.

77. Карпов В.В., Кривошеий И. С., Петров В.В. Исследование несимметричной потери устойчивости пологих оболочек на прямоугольном плане // Труды X Всесоюзной конференции по теории оболочек и пластин. Тбилиси: Мецниереба, 1975. - С. 628-634.

78. Карпов В.В., Михайлов Б.К Исследование влияния жесткости ребер на устойчивость пологих оболочек с учетом нелинейности деформаций // Численные методы в задачах математической физики.: Межвуз. темат. сб. тр. / ЛИСИ. JL, 1983. - С. 135-142.

79. Карпов В.В., Петров В.В. Уточнение решений при использовании шаговых методов в теории гибких пластинок и оболочек // Изв. АН СССР, сер. МТТ. 1975. №5. -С. 189-191.

80. Карпов В.В., Сальников А.Ю. Модель пологой оболочки с вырезами в виде краевой задачи для односвязной области // Математическоемоделирование, численные методы и комплексы программ: Межвуз. темат. сб. тр. / СПбГАСУ. СПб., 1999. - С. 67-72.

81. Карпов В.В., Сальников А.Ю., Юлин А.В. Динамическая устойчивость пологих оболочек ступенчато-переменной толщины при конечных прогибах // Проблемы прочности материалов и сооружений на транспорте / Череповец. ЧГУ, 2002. С. 154-156.

82. Карпов В.В., Сальников А.Ю. Устойчивость и колебания пологих оболочек ступенчато-переменной толщины при конечных прогибах. СПб, СПбГАСУ, 2002. - 124 с.

83. Карпов В.В., Шацков В.В. Некоторые варианты расчета гибких пологих ребристых оболочек // Аналитические и численные решения прикладных задач математической физики: Межвуз. темат. сб. тр./ ЛИСИ. Л, 1986. С. 34-38.

84. Карпов В.В., Кудрявцев В.К. Устойчивость ребристых пологих оболочек при длительном нагружении. Вестник ВолгГАСУ, сер. Строительство и архитектура, выпуск 6 (21). Волгоград, ВолгГАСУ, 2006. с.160-168.

85. Качанов Л.М. Теория ползучести. М.: Физматгиз, 1960.

86. Каюк Я.Ф. Концентрация напряжений в тонких оболочках при больших прогибах // Концентрация напряжений. Т. 2. Киев: Наукова думка, 1968.

87. Климанов В.К, Тимашев С.А. Нелинейные задачи подкрепленных оболочек. Свердловск: УНЦ АН СССР, 1985.-291 с.

88. Колебания продольно сжатых цилиндрических и слабоконических оболочек / А.С. Пальчевский, А.А. Прядко, П.Г. Капля и др. // Прикладная механика. 1980. Т. 16. № 9. С. 56-63.

89. Корнишин М.С. Нелинейные задачи теории пластин и пологих оболочек и методы их решения. М.: Наука, 1964. 192 с.

90. Коротенко Н.А. Закритические деформации пологой цилиндрической панели, подкрепленной тонкостенными ребрами. // Исследования по теоретическим основам расчета строительных конструкций. Л. 1983. С. 62-69.

91. Кохманюк С.С., Янютин Е.Г., Романенко Л.Г. Колебания деформируемых систем при импульсных и подвижных нагрузках. -Киев: Наукова думка, 1980. 232 с.

92. Кривошеее Н.И., Корнишин М.С. К выводу сеточных уравнений изгиба пластин с отверстиями и пластин ступенчато-переменной жесткости // Изв. вузов, раздел «Строительство и архитектура». -Новосибирск, 1970, № 8, С. 50-54.

93. Крысько В.А. Нелинейная статика и динамика неоднородных оболочек. Саратов: Изд-во Сарат. ун-та, 1976. - 216 с.

94. Кудрявцев В.К. Устойчивость упругих пологих ребристых оболочек /Математические моделирование, числены методы и комплексы программ: Межвуз. Темат. Сб. тр./ СПбГАСУ. — СПб., 2006. — с. 44-48.

95. Куршин JI.M. К расчету на устойчивость оболочек в условиях ползучести по теории старения. — В кн.: Проблемы устойчивости в строительной механике. М.: Стройиздат, 1965, с. 280-287.

96. Кузнецов В.В. Об использовании метода продолжения решения по длине отрезка интегрирования при расчете круглых гофрированных пластин // Изв. АН СССР. Сер. Механика твердого тела. 1993. № 2. -.С. 189-191.

97. Лурье А.И. Общая теория упругих тонких оболочек // ПММ. Т. 4. 1940. Вып. 2.

98. Лурье А.И. Общие уравнения оболочки, подкрепленной ребрами жесткости. Л., 1948. - 28 с.

99. Малинын А.А. Колебания и устойчивость оболочек вращения с дискретными включениями и отверстиями // Прикладная механика. 1973. Т. 9. № 10.-С. 29-34.

100. Малинин А.А. Колебания оболочек с отверстиями // Изв. вузов. Сер. Машиностроение. 1971. № 7. С. 22-26.

101. Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1968. — 400 с.

102. Маневич А.И. К теории связанной потери устойчивости подкрепленных тонкостенных конструкций // Прикл. математика и механика, 1982. 46. № 2. С. 337-345.

103. Маневич А.И. Устойчивость и оптимальное проектирование подкрепленных оболочек. Киев; Донецк: Вища школа, 1979. - 152 с.

104. Масленников A.M. Численный метод решения задач теории пластин и оболочек, подкрепленных ребрами: Дис. . д-ра техн. наук /ЛИСИ. Л., 1970.-275 с.

105. Милейковский И.Е., Гречанинов И.П. Устойчивость прямоугольных в плане пологих оболочек // Расчет пространственных конструкций: Сб. статей. М.: Стройиздат, 1969. Вып. 12. С. 168— 176.

106. Михайлов Б.К. Пластины и оболочки с разрывными параметрами. -Л.: Изд-во ЛГУ, 1980.- 196 с.

107. Морозов Н.Ф. Нелинейные колебания тонких пластинок с учетом инерции вращения. Дифф. уравн., 4, № 5, 1969. С. 932-937.

108. Муштари Х.М. Некоторые обобщения теории тонких оболочек с приложениями к решению задач устойчивости упругого равновесия // ПММ. 1939. Т. 2. № 4. С. 439-456.

109. Муштари Х.М., Галимов КЗ. Нелинейная теория упругих оболочек. Казань: Таткнигоиздат, 1957.-431с.

110. Назаров А.Г. Импульсные функции в приложении к задачам строительной механики // Исследования по теории сооружений. -М.: Стройиздат, 1949. Вып. 4. С. 216-227.

111. Назаров Н.А. О колебаниях пологих оболочек, подкрепленных ребрами жесткости // Прикладная механика. 1965. Т. 1. № 3. С. 5358.

112. Немчинов Ю.К, ТолбатовЮ.А. Свободные колебания пологих цилиндрических оболочек, подкрепленных ребрами жесткости // Строительная механика и расчет сооружений. 1975. № 3. С. 55-57.

113. Новицкий В.В. Решение некоторых задач строительной механики с помощью 5-функций // Научно-методический сборник. ВВИА. 1957. № 13.-С. 95-128.

114. Новожилов В.В. Теория тонких оболочек. Л.: Судпромиздат, 1962.-431 с.

115. Новожилов В.В. Основы нелинейной теории упругости. М.: Гостехиздат, 1948.-212 с.

116. Образцов И.Ф. Вариационные методы расчета тонкостенных авиационных конструкций. -М.: Машиностроение, 1966. 392 с.

117. Образцов И.Ф., ОнановГ.Г. Строительная механика скошенных тонкостенных систем. -М.: Машиностроение, 1973. 659 с.

118. Перцев А.К, Платонов Э.Г. Динамика оболочек и пластин. Л.: Судостроение, 1987. - 316 с.

119. Петров В.В. К расчету пологих оболочек при конечных прогибах / Науч. доклады высшей школы // Строительство. 1959. № 1. С. 2735.

120. Петров В.В. Метод последовательных нагружений в нелинейной теории пластинок и оболочек.-Саратов: Изд-во Сарат. ун-та, 1975.-119с.

121. Писаренко Г. С., Можаровский Н.С. Уравнения и краевые задачи теории пластичности и ползучести. Киев: Наукова Думка, 1981. — 496 с.

122. Потапов В.Д. Об устойчивости вязкоупругих оболочек при длительном нагружении. — Прикладная механика, 1980, т. 16, вып. 5, с. 51-56.

123. Постное В.А. Численные методы расчета судовых конструкций. Л.: Судостроение, 1977. 277 с.

124. Постное В.А., Корнеев B.C. Изгиб и устойчивость оболочек вращения // Труды X Всесоюзной конференции по теории оболочек и пластин Тбилиси: Мецниереба, 1975. - С. 635-644.

125. Постное В.А., Корнеев B.C. Использование метода конечных элементов в расчете устойчивости подкрепленных оболочек // Прикладная механика. 1976. № 1. С. 27-35.

126. Почтман Ю.М., Тугай О.В. Динамическая оптимизация многослойных цилиндрических оболочек, подкрепленных двумя регулярными системами ребер// Прикладная механика. 1980. Т. 16. № 1.-С. 47-54.

127. Преображенский КН. Устойчивость и колебания пластинок и оболочек с отверстиями. -М.: Машиностроение, 1981. 191 с.

128. Преображенский КН., Грищак В.З. Устойчивость и колебания конических оболочек. -М.: Машиностроение, 1986. 240 с.

129. Приближенное решение операторных уравнений // М.А. Красносельский, Г.М. Вайникко, П.П. Забрейко и др. М.: Наука, 1969.-456 с.

130. Прокопович И.Е. Влияние длительных процессов на напряженное и деформированное состояние сооружений. М.: Госстройиздат, 1963.

131. Пшеничное Г.И. Теория тонких упругих сетчатых оболочек и пластин. М.: Наука, 1982. - 352 с.

132. Пшеничное Г.И., Тагиев И.Г. К расчету пологих упругих ребристых оболочек // Строительная механика и расчет сооружений. 1986. № 1.-С. 21-24.

133. Работное Ю.Н. Механика деформируемого твердого тела. М.: Наука, 1988.-712 с.

134. Работное Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. —752с.

135. Рекомендации по расчету подкрепленных оболочек положительной кривизны на устойчивость // Госстрой СССР и др. Свердловск, 1974-С. 76.

136. Рикардс Р.Б., Голдманис М.В. Оптимизация ребристых оболочек из композитов, работающих на устойчивость при внешнем давлении // Механика композитных материалов. М, 1980. № 3 - С. 468-475.

137. Ржаницин А.Р. Некоторые вопросы механики систем, деформирующихся во времени. М. — Л.: Гостехиздат, 1949.

138. Свободные колебания ребристых цилиндрических оболочек / П.И. Галана, В.А. Заруцкий, В.И. Мацнер и др. // Прикладная механика. 1974. Т. 10. №7.-С. 49-55.

139. Свободные колебания элементов оболочечных конструкций // Я.М. Григоренко, Е.И. Беспалов, А.Б. Китайгородский, А.И. Шинкарь. Киев: Наукова думка, 1986. - 172 с.

140. Семенюк Н.П. Собственные колебания подкрепленных цилиндрических оболочек, нагруженных неравномерным внешним давлением // Прикладная механика. 1978. Т. 14. № 7. -С. 37-42.

141. Скворцов В.Р. Деформирование существенно неоднородных тонкостенных конструкций и его анализ в рамках концепции оболочек со структурой. Дис. . д-р техн. наук. СПбГМТУ. СПб, 1992.-335 с.

142. Соколов Е.В. Напряжения и деформации в элементах пространственных конструкций. Труды инст. Пимаш. Вып. 7. СПб. 1997.-104 е.

143. Спиро В.Е. Устойчивость произвольных ортотропных оболочек вращения, подкрепленных кольцевыми ребрами с учетом поперечного сдвига // Труды НТО судостроительной промышленности. Л., 1971. Вып. 154. - С. 116-160.

144. Статика и динамика тонкостенных обол очечных конструкций / А.В. Кармишин, В.А. Лясковец, В.И. Мяченков, А.Н. Фролов. М.: Машиностроение, 1975. - 376 с.

145. Теребушко O.K. О влиянии параметров подкрепления на динамическую устойчивость цилиндрической оболочки // Прикладная механика. 1977. 13. № 3. С. 10-16.

146. Теребушко O.K. Устойчивость и закритическая деформация оболочек, подкрепленных редко расставленными ребрами // Расчет пространственных конструкций. Сб. статей. -М.: Стройиздат, 1964. Вып. 9.-С. 131-160.

147. Теребушко O.K. Устойчивость и оптимальное проектирование пластин, подкрепленных ребрами // Прикладная механика. 1982. 18. № 6. С. 69-74.

148. Терегулов КГ. Изгиб и устойчивость тонких пластин и оболочек при ползучести. М.: Наука, 1969, — 206.

149. Тимашев С.А. Устойчивость подкрепленных оболочек. М.: Стройиздат, 1974.-256 с.

150. Тимонин A.M. Напряженное состояние многослойных ортотропных оболочек вращения с учетом геометрической нелинейности и деформации сдвига: Автореф. дис. . канд. наук. Киев, 1982. -19 с.

151. УлицкийК. И. Ползучесть бетона. М,: Стройиздат, 1949.

152. Филин А.П. Элементы теории оболочек. Л.: Стройиздат, 1987. -384 с.

153. Ха.рлаб В.Д. К общей линейной теории ползучести //Известия ВНИИГ, т. 68,1961. с. 217-240.

154. Харлаб В.Д. Энергетическая теория нелинейной ползучести и длительной прочности хрупко разрушающихся материалов //Механика стержневых систем и сплошных сред. Вып. 14: Межвуз. темат. сб. тр. Л., ЛИСИ, 1981.-е. 11-17.

155. Чернышов В.Н. Расчет гибких ребристых пологих оболочек: Автореферат дис. канд. техн. наук. Новосибирск, 1980. - 19 с.

156. Шалашилин В.И. Алгоритмы метода продолжения по параметру для больших осесимметричных прогибов оболочек вращения // Численные и экспериментальные методы исследования прочности, устойчивости и колебаний конструкций. М.: МАИ, 1983. - С. 6871.

157. Шалашилин В.И. Метод продолжения по параметру и его применение к задаче больших прогибов непологой круговой арки // Изв. АН СССР. МТТ. 1979. №4. С. 178-184.

158. Шереметьев МЛ., Пелех Б.Л. К построению уточненной теории пластин // Инж. журнал. 1964. Т. 4. Вып. 3. М, - С. 504-509.

159. Bakouline N., Ignatiev О. Karpov V. Variation parametric research technique of variable by step width shallow shells with finite deflections // International Journal for Computational Civil and Structural Engineering. V. I / Issue 3. 2000, pp. 1-6.

160. Byskov E., Hansen J. С. Postbuckling and imperfection sensitivity analysis of axially stiffened cylindrical shells with mode interaction // J. Struct. Mech., 1980. 8. № 2. P. 205-224.

161. Campbell J.D. The dinamic yielding of mild stell / Acta Metallurgia. Vol. 6., 1953. №6.

162. Chrobot В. Mathematical models of ribbed shells, Studia Geotechnica et Mechanica. Vol. IV. 1982. №. 3-4. P. 55-68.

163. Yl%.Donell L.N. A new theory for buckling of thin cylinders under axial compression and bending 11 Trans. ASME, 1934. 56 p.

164. Fisher C.A., Bert C.W. Dynamic buckling of an axially compressed cylindrical shells with discrete rings and stringers // Trans ACME. Ser., E, 1973. 40, №3,-P. 736-740.

165. Karman Th. and Shen Tsien H. The buckling of spherical shells by external pressure // J. Acron. Sci. 7, 1939.

166. Karman Th. Festigkeitsprobleme in Machinenbau // Enzyklopaedie der Vathematischen Wissenshaften. Bd. LV. Teilband IV. 1910. S. 349.

167. Kicher T.R., Chao Tung-Lai. Minimum weight design of stiffend fiber composite cylinder // C.J. Aircraft, 1971. T. 8. № 7. P. 562-569.

168. Koiter W.T. General theory of mode interaction in stiffened plate and shell structures. // WTHD Report. № 590. August 1976.

169. Mar guerre K. Zur Teorie der gekremmten Platte grosser Formanderung / Jahzbuch 1939 deutseher Luftfahrtsforchung. Bd. 1. Berlin: Ablershof Buecherei, 1939.

170. Singer J. Buckling of integrally stiffened cylindrical shells a review of experiment and theory. Contr. Theory Aircraft struct/Delft, 1972. - P. 325-357.

171. Tennyson R.C. The effects of unreinforsed circular cutouts on the buckling of circular cylindrical shells under axial compression // J. of Engeneering for industry. Trans ACME, 1968, 90, ser. B, 4.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.