Направленная модификация катодных материалов со структурой трифилина / Three-dimensional modification of triphylite-type cathode materials тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Назаров Евгений Евгеньевич
- Специальность ВАК РФ00.00.00
- Количество страниц 136
Оглавление диссертации кандидат наук Назаров Евгений Евгеньевич
Table of contents
Chapter 1. Introduction
Chapter 2. Literature review
2.1. Li-ion batteries, their application and motivation
2.2. Crystal structure and defect chemistry of LiFePO4
2.3. Substitution of Fe by higher redox potential 3d metals
2.4. Application of conductive carbon coatings
2.5. Synthesis of triphylite-type cathodes
2.6. Motivation and objectives
Chapter 3. Methodology
3.1. Synthesis methods
3.1.1. Solvothermal synthesis
3.1.2. Carbon coating application technique
3.1.3. Co-precipitation synthesis
3.2. Characterization techniques
3.2.1. Chemical composition estimation
3.2.2. Synchrotron X-ray, X-ray and neutron powder diffraction
3.2.3. 57Fe Mossbauer spectroscopy
3.2.4. Fourier transform infrared spectroscopy
3.2.5. Raman spectroscopy
3.2.6. Low-temperature nitrogen adsorption
3.2.7. Thermogravimetry
3.2.8. Tap density measurements
3.2.9. Scanning electron microscopy
3.2.10. Transmission electron microscopy
3.2.11. Electrochemical measurments
Chapter 4. Crystal structure modification
4.1. Characterization of Li-rich LFMP
4.2. Phase transformations during operation of the cathode material
Chapter 5. The surface modification and influence of carbon coating on the electrochemical properties of Lii+s(Fe0.5Mn0.5)1-sPO4
5.1. Characterization of Li-rich LFMP/C composites
5.2. Electrochemical properties of Li-rich LFMP/C composites
Chapter 6. Microstructure modifications of LFMP
6.1. Development of dittmarite precursor synthesis process
6.2. Dittmarite-LFMP-LFMP/C transformation
6.3 Upscaling of the precursor synthesis process
6.4 Electrochemical properties of microspherical LFMP
Chapter 7. Summary and outlook
Chapter 8. Conclusions
Bibliography
List of Figures
List of Tables
Acknowledgments
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Катодные материалы для двухионных аккумуляторов на основе полимерных аминов2022 год, кандидат наук Обрезков Филипп Александрович
Высокоэнергоемкие катодные материалы для литий-ионных аккумуляторов на основе модифицированных Ni-обогащенных слоистых оксидов переходных металлов (High-energy-density cathode materials for Li-ion batteries based on modified Ni-rich layered transition metal oxides)2024 год, кандидат наук Орлова Елена Дмитриевна
Li-проводящий керамический электролит со структурой NASICON для твердотельных аккумуляторов2024 год, кандидат наук Сюй Сеюй
Local atomic and electronic structure of new cathode materials: computational design, operando diagnostics and rational synthesis (Локальная атомная и электронная структура новых катодных материалов: моделирование, operando диагностика и рациональный синтез)2021 год, кандидат наук Мохамед Абделазиз Мохамед Абделазиз
Создание 2D-полупроводниковых структур методом прямого лазерного синтеза (Laser-writing of 2D semiconductors)2025 год, кандидат наук Аверченко Александр Владимирович
Введение диссертации (часть автореферата) на тему «Направленная модификация катодных материалов со структурой трифилина / Three-dimensional modification of triphylite-type cathode materials»
Chapter 1. Introduction
Modern trends in automotive and large grid storage systems dictate new requirements for active components: the materials should be stable during operation, have a high energy density in order to give an energy output necessary for the process, and more importantly - safety. Li ion batteries (LIBs) are considered as a predominant energy source for the above-mentioned applications. Among all known cathode materials for LIBs, lithium transition metal phosphates also referred as to triphylites meet most of the necessary requirements for the implementation in the described industries.
The thesis topic is relevant since the present research is focused on the modification of one of the most attractive cathode materials, LiFe0.5Mn0.5PO4 (LFMP) for the utilization in the area of electric transportation and large grid storage systems capable of replacing the conventional LiFePO4 (LFP). The materials modification includes the crystal structure design and the formation of Lh+a(Fe0.5Mn0.5)1-aPO4 (Lirich LFMP), surface modification and utilization of PAN as a carbon-coating agent, and morphology control with the application of dittmarite-type precursors. The outlined modifications not only allow reducing the impact of the materials drawbacks on its electrochemical performance, but also create a solid basis for semi-industrial production of the material.
The aim of the work is to investigate the influence of the outlined modifications on the key operational properties of LFMP: electrochemical performance, cycling stability, and kinetics. In order to fulfill the thesis goal, the following objectives should be addressed:
1. Solvothermal synthesis of Li-rich LFMP using lithium phosphate as a precursor, detailed description of the materials crystal structure and investigation of its Li+ de/intercalation mechanism.
2. Optimization of the carbon-coating technique with the utilization of PAN as a carbon-coating agent, description of the PAN-derived carbon-coated Li-rich LFMP operational properties and comparison of the obtained results with glucose-derived Li-rich LFMP/C.
3. Development of the dittmarite-type precursor (NH4Fe0.5Mn0.5PO4'H2O) by co-precipitation synthesis route with the production of spherical morphology particles. Investigation of the dittmarite-triphylite transformation process, characterization of the electrochemical properties of the produced LFMP.
A set of modern physicochemical methods was applied including powder x-ray diffraction (XRD), neutron powder diffraction, synchrotron powder and operando diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS),
Mossbauer spectroscopy, Raman spectroscopy, dynamic light scattering, inductively coupled plasma optical emission spectroscopy (ICP-OES), cycling voltammetry (CV), galvanostatic cycling, potentiostatic intermittent titration (PIT), impedance spectroscopy was used to characterize the materials under study.
The following statements to be defended disclose the scientific novelty of the present thesis work:
1. The joint neutron and synchrotron data-based crystal structure refinement reveals the presence of 7% of excess Li+. The refined chemical composition coincides well with Mossbauer spectroscopy results, indicating the occurrence of Fe3+ ions in the crystal lattice. According to operando X-ray diffraction and PIT data analysis the total Li+ solid-solution-type de/intercalation process covers 57% and 61% of the total charge and discharge respectively.
2. PAN as a carbon-coating precursor was applied for the surface modification of Li-rich LFMP cathode material. The obtained LFMP/C composite with PAN-derived carbon nanocoating was compared to the LFMP/C with glucose-decomposed carbon nanolayer. The utilization of PAN results in less charge transfer resistance during Mn2+ ^ Mn3+ transition affecting the overall cycling stability of the material. Capacity retention of the material after 1000 cycles at 5C-10C current density is 78±2%. As a comparison, the conventional glucose-derived carbon coating demonstrates only 43±3% in the same conditions.
3. The designed synthesis route involving the usage of dittmarite-type precursors for the production of LFMP results in the formation of microspherical powder with tap density of 1.44 g-cm-3. The produced material demonstrates more than 138 mAh-g-1 at C/10 and 90 mAh-g-1 at 5C current density and retains more than 85% and 86% of its initial capacity after 250 cycles at 5C and 1C rate respectively.
The achieved results of the discussed modifications implementation for the technology of triphylite-type cathode materials form the practical value of the thesis. The additional Li ions introduction in the crystal structure allows influencing the materials de/intercalation mechanism and potentially leads to the production of high-power cathode materials capable of withstanding increased current densities without severe degradation. The thoroughly investigated carbon-coating process grants the possibility of a targeted production of whether high-power or high-energy cathode materials depending on the carbon precursor type and its concentration. The developed strategy of LFMP microspherical production using dittmarite as a precursor could be treated as an alternative industrial route for manufacturing triphylite-type cathodes materials.
The validity and reliability of the obtained results are proved by the application of modern physico-chemical techniques with high reproducibility of the experimental results, most of the experiments were run multiple times in order to exclude any uncertainties in the interpretation. Additional confirmation comes
from the results publication in peer-reviewed scientific journals and presentation at international and national conferences.
Author's personal contribution includes aims settings, experiment design, literature review and analysis, results published in peer-reviewed journals, and presentations of the results at conferences. The author developed the methodology for the solvothermal production of Li-rich LFMP. Crystal structure description and microstructure characterization were performed by the author as well as functional groups distribution by IR. The sample preparation for the neutron and synchrotron powder diffraction, and Mossbauer spectroscopy was processed by the applicant. Electrochemical cells for galvanostatic cycling, impedance spectroscopy, CV, PIT, and operando synchrotron diffraction experiment were assembled by the author. The carbon-coating technique with the application of PAN as a carbon-coating agent was modified by the author, all the samples with different carbon content were produced by the author. The carbon content, functional groups distribution, and graphitization degree for all the samples were determined by the applicant. The electrochemical tests were performed by the author. The synthesis route for the production of LFMP using dittmarite-type precursors was developed by the applicant. The experiments concerning the description of crystal structure, morphology characterization and electrochemical performance of the material were performed by the author.
The PhD research was conducted in the Center for Energy Science and Technology of Skolkovo Institute of Science and Technology (Skoltech) under supervision of Prof. S.S. Fedotov and Prof. E.V. Antipov Dr. O.A. Tyablikov (Skolkovo Institute of Science and Technology) and T.V. Ivanova. (Mendeleev University of Chemical Technology of Russia, Skolkovo Institute of Science and Technology) were assisting with the development and technical aspects of the synthesis of cathode materials mentioned in the thesis. The precise crystal structure refinement of Li-rich LFMP based on joint XRD and NPD data was performed by Dr. I.A. Trussov (Skolkovo Institute of Science and Technology), operando synchrotron diffraction results were treated together with A.D. Dembitskiy (Skolkovo Institute of Science and Technology). Neutron diffraction experiment was conducted in the FRM II neutron facility of the Technical University of Munich with assistant of Dr. A. Senyshyn Mossbauer spectroscopy experiment was conducted at Lomonosov Moscow State University by Dr. I.A. Presnyakov, Dr. I.S. Glazkova, and Dr. A.V. Sobolev. The PIT and impedance experiments were planned and discussed together with Prof. V.A. Nikitina Transmission microscopy experiments were conducted by Dr. A.V. Morozov the obtained results were discussed together with Dr. A.V. Morozov and Prof. A.M. Abakumov.
The thesis experimental results were published in 8 pieces including 3 research papers in peer-reviewed scientific journals and were presented at 5 conferences. The results were presented in the following conferences during oral talks and poster sessions: the III school of young scientists: Electrochemical devices, processes, materials, and technologies, Novosibirsk, Russia, September 9-13 2023, IV Baikal material science forum, Ulan-Ude, Russia, July 1-7 2022, X national crystal chemistry conference Terskol, Kabardino-Balkar republic, Russia, July 5-9 2021, XII scientific conference for young scientists "Mendeleev 2021", Saint-Petersburg, Russia, September 6-10 2021, XXI Mendeleev congress on general and applied chemistry, Saint-Petersburg, Russia, September 9-13 2019. List of Conferences:
1. E. E. Nazarov, O. A. Tyablikov, E. V. Antipov, Mild hydrothermal synthesis of LiFe1-xMnxPO4: investigation the influence of synthesis parameters on structure and electrochemical properties of the material // 21st Mendeleev congress on general and applied chemistry, book of abstracts, 2019, V. 6, p. 395
2. Е. Е. Назаров, О. А. Тябликов, С. С. Федотов, Е. В. Антипов, Синтез, структура и свойства катодного материала на основе обогащенного литием Li1+5(Fe0.5Mn0.5)1-sPO4 // X национальный кристаллохимический конгресс, сборник тезисов, 2021, с. 266-267
3. E. E. Nazarov, S. S. Fedotov, E. V. Antipov, carbon coating precursor' influence on electrochemical properties of LiFe0.5Mn0.5PO4/C // XII international conference on chemistry for young scientists "Mendeleev 2021", book of abstracts, 2021, p.292
4. Е. Е. Назаров, О. А. Тябликов, С. С. Федотов, Е.В. Антипов, Современные методы модификации катодных материалов со структурой трифилина // IV Байкальский материаловедческий форум, 2022 c. 126-127
5. Е. Е. Назаров, Т. В. Иванова, Е. В. Антипов, С. С. Федотов. Применение прекурсора со структурой диттмарита для производства катодных материалов LiFexMn1-xPO4 с повышенной насыпной плотностью // III школа молоды ученых "Электрохимические устройства: процессы, материалы, технологии", 2023, с. 71
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
The Role of Carbon and Nanocomposite Hybrid Materials as Supports for Transition Metal Sulfide-based Catalysts in Higher Alcohols Synthesis from Syngas (Роль углерода и нанокомпозитных гибридных материалов в качестве носителей для катализаторов на основе сульфидов переходных металлов в синтезе высших спиртов из синтез-газа)2022 год, кандидат наук Осман Мохамед Изелдин Абдалла
Моделирование влияния модификации структуры низкоразмерных материалов ZnO, β-C3N4, InSe и однослойного бора на их физические свойства2021 год, кандидат наук Лэй Сюе
Optical properties of graphene and Two dimensional transition metal dichalcogenides/Оптические свойства графена и двумерных дихалькогенидов переходных металлов2022 год, кандидат наук Элсайед Марва Али Абделразик
Синтез, кристаллическая структура и свойства сложных оксидов со структурой перовскита на основе неодима, щелочноземельных и 3d-переходных металлов2020 год, кандидат наук Хоссейн Аслам
Магнитная анизотропия оксидных наноархитектур2022 год, кандидат наук Омельянчик Александр Сергеевич
Заключение диссертации по теме «Другие cпециальности», Назаров Евгений Евгеньевич
Chapter 8. Conclusions
A novel Li-rich LFMP (Lh.072(2)Mn0.456(3)Fe0.473(2)PO4) was synthesized via a facile solvothermal route. The material's crystal structure refinement based on the joint neutron and synchrotron diffraction data revealed 7% Li+ at the M2 site, which corroborates with the results of 57Fe Mossbauer spectroscopy clearly identifying the presence of a matching amount of Fe3+. According to HAADF-STEM, IR and Mossbauer spectroscopy neither Fe(Mn)/Li antisite nor hydrotriphylite-type (phosphorus deficiency) defects were detected.
It was shown that designing the defect structure with Li ions at the M2 site significantly extends Li+ solid solution de/intercalation regions for both charge and discharge processes, positively influencing the power capabilities of the material. Based on operando synchrotron diffraction, the solid solution mechanism covers 57% and 61% of the material's de/intercalation process during charge and discharge respectively. Comparing the obtained results with the previously published data on LFMP, additional Li+ introduction leads to the total solid solution region extension of 6% during charge and 10% during discharge.
The utilization of PAN as a carbon-coating source enabled boosting capacity retention of the material at 5C-10C rates up to 78±2% after 1000 cycles as compared with only 43±3% for the glucose-derived carbon-coated samples due to the decreased charge transfer resistance in the Mn2+ ^ Mn3+ electrochemical activity region by one order of magnitude.
A co-precipitation synthesis technique for producing the dittmarite-type precursor NH4Fe0.5Mn0.5PO4'H2O with spherical morphology and mean particles diameter of 32 pm was developed. The macro- and microstructure evolution during the dittmarite-triphylite transformation was investigated by means of BET, SEM and ED. An 8% tap density decrease from 1.56 to 1.44 g-cm-3 for the precursor and LFMP material correspondingly was observed, with the specific surface area increasing 20 times due to the NH4+ and H2O substitution by Li+ leading to the precursor's primary particles fracturing and formation of radially aligned elongated individual particles of LFMP stacked along the 001 direction of the unit cell.
Despite higher charge transfer resistance of the agglomerated LFMP in contrast to Glu- and PAN-derived carbon-coated nanomaterials, the dittmarite-derived microspherical LiFe0.5Mn0.5PO4-based electrode material demonstrates decent electrochemical performance and exhibits 138 mAh-g-1 and 90 mAh-g-1 with volumetric energy density of 720 Wh-l-1 and 447 Wh-l-1at C/10 and 5C current densities. The material retains 85±4% and 86±2% of its initial discharge capacity after 250 cycles at 1C and 5C current loads.
Список литературы диссертационного исследования кандидат наук Назаров Евгений Евгеньевич, 2024 год
Bibliography
1. Scrosati B., Garche J. Lithium Batteries: Status, Prospects and Future // Journal of Power Sources. 2010. Vol. 195. P. 2419-2430.
2. Global CO2 emissions from passenger cars 2020 [Electronic resource] // Statista. URL: https://www.statista.com/statistics/1107970/carbon-dioxide-emissions-passenger-transport/ (accessed: 23.06.2022).
3. Solomon S. et al. Irreversible climate change due to carbon dioxide emissions // Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2009. Vol. 106, № 6. P. 1704-1709.
4. AL Shaqsi A.Z., Sopian K., Al-Hinai A. Review of energy storage services, applications, limitations, and benefits // Energy Reports. 2020. Vol. 6. P. 288-306.
5. Wentker M., Greenwood M., Leker J. A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials: 3 // Energies. Multidisciplinary Digital Publishing Institute,
2019. Vol. 12, № 3. P. 504.
6. Asenbauer J. et al. The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites // Sustainable Energy & Fuels. Royal Society of Chemistry, 2020. Vol. 4, № 11. P. 5387-5416.
7. Bruce P., Scrosati B., Tarascon J.-M. Nanomaterials for Rechargeable Lithium Batteries // Angewandte Chemie (International ed. in English). 2008. Vol. 47. P. 2930-2946.
8. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries // J. Electrochem. Soc. IOP Publishing, 1997. Vol. 144, № 4. P. 1188.
9. Sun C. et al. High-Voltage Cycling Induced Thermal Vulnerability in LiCoO2 Cathode: Cation Loss and Oxygen Release Driven by Oxygen Vacancy Migration // ACS Nano. American Chemical Society,
2020. Vol. 14, № 5. P. 6181-6190.
10. Vinckeviciute J. et al. Fundamental insights about interlayer cation migration in Li-ion electrodes at high states of charge // J. Mater. Chem. A. 2019. Vol. 7, № 19. P. 11996-12007.
11. Manthiram A. A reflection on lithium-ion battery cathode chemistry: 1 // Nat Commun. Nature Publishing Group, 2020. Vol. 11, № 1. P. 1550.
12. Churikov A.V. et al. Determination of lithium diffusion coefficient in LiFePÜ4 electrode by galvanostatic and potentiostatic intermittent titration techniques // Electrochimica Acta. 2010. Vol. 55, № 8. P. 2939-2950.
13. Nazarov E.E. et al. A Comprehensive Review of Defects Genealogy in Olivines: From the Mineral World to Modern Electrode Materials: 13 // Energies. Multidisciplinary Digital Publishing Institute, 2023. Vol. 16, № 13. P. 5083.
14. Hoang K., Johannes M. Tailoring Native Defects in LiFePO4: Insights from First-Principles Calculations // Chem. Mater. American Chemical Society, 2011. Vol. 23, № 11. P. 3003-3013.
15. Sumanov V.D. et al. "Hydrotriphylites" Lh-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries // Chem. Mater. 2019. Vol. 31, № 14. P. 5035-5046.
16. Kandhasamy S., Nallathamby K., Minakshi M. Role of structural defects in olivine cathodes // Progress in Solid State Chemistry. 2012. Vol. 40, № 1. P. 1-5.
17. Hong L., Yang K., Tang M. A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine // npj Comput Mater. 2019. Vol. 5, № 1. P. 118.
18. Zeng H. et al. Ab initio identification of the Li-rich phase in LiFePÜ4 // Physical Chemistry Chemical Physics. Royal Society of Chemistry, 2018. Vol. 20, № 25. P. 17497-17503.
19. Drozhzhin O.A. et al. Exploring the Origin of the Superior Electrochemical Performance of Hydrothermally Prepared Li-Rich Lithium Iron Phosphate Lh+5Fe1-sPO4 // J. Phys. Chem. C. 2020. Vol. 124, № 1. P. 126-134.
20. Pimenta V. et al. Synthesis of Li-Rich NMC: A Comprehensive Study // Chem. Mater. American Chemical Society, 2017. Vol. 29, № 23. P. 9923-9936.
21. Bianchini M. et al. Li-Rich Li1+xMn2- XO4 Spinel Electrode Materials: An Operando Neutron Diffraction Study during Li+ Extraction/Insertion // J. Phys. Chem. C. 2014. Vol. 118, № 45. P. 25947-25955.
22. Sumanov V.D. et al. Phase boundary propagation mode in nano-sized electrode materials evidenced by potentiostatic current transients analysis: Li-rich LiFePO4 case study // Electrochimica Acta. 2021. Vol. 368. P. 137627.
23. Koleva V.G., Boyadzhieva T.J., Stoyanova R.K. Crystal and Morphology Design of Dittmarite-Type Ammonium Iron-Manganese Phosphates, NH4Mm-xFexPO4'H2O, as Precursors for Phospho-olivine Electrodes // Crystal Growth & Design. American Chemical Society, 2019. Vol. 19, № 7. P. 3744-3754.
24. Amisse R. et al. Singular Structural and Electrochemical Properties in Highly Defective LiFePO4 Powders // Chem. Mater. 2015. P. 13.
25. Aksyonov D.A. et al. Hydroxyl Defects in LiFePO4 Cathode Material: DFT+ U and an Experimental Study // Inorg. Chem. 2021. Vol. 60, № 8. P. 5497-5506.
26. Ryu H.-H. et al. Reducing cobalt from lithium-ion batteries for the electric vehicle era // Energy Environ. Sci. 2021. Vol. 14, № 2. P. 844-852.
27. Dahbi M. et al. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage // Journal of Power Sources. 2011. Vol. 196. P. 9743-9750.
28. Tolganbek N. et al. Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review // Journal of Alloys and Compounds. 2021. Vol. 882. P. 160774.
29. Yi T.-F. et al. Carbon-coated LiMn1-xFexPO4 (0<x<0.5) nanocomposites as high-performance cathode materials for Li-ion battery // Composites Part B: Engineering. 2019. Vol. 175. P. 107067.
30. Bakenov Z., Taniguchi I. Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons // Journal of Power Sources. 2010. Vol. 195, № 21. P. 74457451.
31. Piper L.F.J. et al. Elucidating the Nature of Pseudo Jahn-Teller Distortions in LixMnPO4: Combining Density Functional Theory with Soft and Hard X-ray Spectroscopy // J. Phys. Chem. C. American Chemical Society, 2013. Vol. 117, № 20. P. 10383-10396.
32. Yamaguchi K., Sawyer D. The Redox Chemistry of Manganese(III) and -(IV) Complexes // Israel Journal of Chemistry. 1985. Vol. 25.
33. Hanf L. et al. Mn2+ or Mn3+? Investigating transition metal dissolution of manganese species in lithium ion battery electrolytes by capillary electrophoresis // ELECTROPHORESIS. 2020. Vol. 41, № 9. P. 697-704.
34. Fisher C.A.J., Islam M.S. Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour // J. Mater. Chem. The Royal Society of Chemistry, 2008. Vol. 18, № 11. P. 1209-1215.
35. Gardiner G.R., Islam M.S. Anti-Site Defects and Ion Migration in the LiFe0.5Mn0.5PO4 Mixed-Metal Cathode Material // Chemistry of Materials. 2010. Vol. 22, № 3. P. 1242-1248.
36. Huynh L.T.N. et al. Structure and Electrochemical Behavior of Minor Mn-Doped Olivine LiMnxFe1-xPO4 // Journal of Chemistry. Hindawi, 2019. Vol. 2019. P. e5638590.
37. Fang H. et al. Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries // Electrochimica Acta. 2012. Vol. 71. P. 266-269.
38. Jang D. et al. Structural and Electrochemical Properties of Doped LiFe0.48Mn0.48Mg0.04PO4 as Cathode Material for Lithium ion Batteries // Journal of Electrochemical Science and Technology. The Korean Electrochemical Society. Vol. 4, № 3. P. 102-107.
39. Niu Y.-H. et al. Controllable synthesis of aluminium-doped LiMnPO4/C cathode materials with stable electrochemical performance for lithium-ion battery // Materials Science and Engineering: B. 2024. Vol. 299. P. 117009.
40. Shin H.C., Cho W.I., Jang H. Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black // Electrochimica Acta. 2006. Vol. 52, № 4. P. 1472-1476.
41. Driscoll L.L. et al. Under pressure: offering fundamental insight into structural changes on ball milling battery materials // Energy Environ. Sci. The Royal Society of Chemistry, 2023. Vol. 16, № 11. P. 5196-5209.
42. Yang C.-C., Chen W.-H. Microsphere LiFe0.5Mn0.5PO4/C composite as high rate and long-life cathode material for lithium-ion battery // Materials Chemistry and Physics. 2016. Vol. 173. P. 482-490.
43. Zou B.-K. et al. Mixed-carbon-coated LiMn0.4Fe0.6PO4 nanopowders with excellent high rate and low temperature performances for lithium-ion batteries // Electrochimica Acta. 2016. Vol. 196. P. 377-385.
44. Xi Y., Lu Y. Toward Uniform In Situ Carbon Coating on Nano-LiFePO4 via a Solid-State Reaction // Ind. Eng. Chem. Res. American Chemical Society, 2020. Vol. 59, № 30. P. 13549-13555.
45. Lei J. et al. High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries // ACS Appl. Mater. Interfaces. American Chemical Society, 2020. Vol. 12, № 30. P. 33702-33709.
46. Iarchuk A.R. et al. Influence of Carbon Coating on Intercalation Kinetics and Transport Properties of LiFePO4 // ChemElectroChem. 2019. Vol. 6, № 19. P. 5090-5100.
47. Chen W.-M., Huang Y.-H., Yuan L.-X. Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries // Journal of Electroanalytical Chemistry. 2011. Vol. 660, № 1. P. 108-113.
48. Wang X. et al. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries // Chemical Engineering Journal. 2020. Vol. 379. P. 122371.
49. Podgornova O.A. et al. Increasing the efficiency of carbon coating on olivine-structured cathodes by choosing a carbon precursor // Journal of Electroanalytical Chemistry. 2022. Vol. 907. P. 116059.
50. Chen W.-P. et al. Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte // J. Am. Chem. Soc. American Chemical Society, 2021. Vol. 143, № 15. P. 5717-5726.
51. Teoh H., Metz P.D., Wilhelm W.G. Electrical conductivity of pyrolyzed polyacrylonitrile // Molecular Crystals and Liquid Crystals. Taylor & Francis, 1982. Vol. 83, № 1. P. 297-306.
52. Qiao M. et al. Study on the Changes of Structures and Properties of PAN Fibers during the Cyclic Reaction in Supercritical Carbon Dioxide: 3 // Polymers. Multidisciplinary Digital Publishing Institute, 2019. Vol. 11, № 3. P. 402.
53. Beyler C.L., Hirschler M.M. Thermal decomposition of polymers // SFPE handbook of fire protection engineering. National Fire Protection Association Quincy, MA, 2002. Vol. 2, № 7. P. 111-131.
54. A review of heat treatment on polyacrylonitrile fiber // Polymer Degradation and Stability. Elsevier, 2007. Vol. 92, № 8. P. 1421-1432.
55. Setnescu R. et al. IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile // Carbon. 1999. Vol. 1, № 37. P. 1-6.
56. Xu Z. et al. Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation // Advanced Energy Materials. 2022. Vol. 12, № 35. P. 2201323.
57. Yang X. et al. Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries // Journal of Alloys and Compounds. 2015. Vol. 639. P. 458-464.
58. Luchinin N.D. et al. a-TiPO4 as a Negative Electrode Material for Lithium-Ion Batteries // Inorg. Chem. American Chemical Society, 2021. Vol. 60, № 16. P. 12237-12246.
59. Shraer S.D. et al. Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries // Nat Commun. Nature Publishing Group, 2022. Vol. 13, № 1. P. 4097.
60. Fedotov S.S. et al. Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential // Nat Commun. Nature Publishing Group, 2020. Vol. 11, № 1. P. 1484.
61. Han Q. et al. PAN-based carbon fiber@SnO2 for highly reversible structural lithium-ion battery anode // Ionics. 2018. Vol. 24, № 4. P. 1049-1055.
62. Magiran | In-Situ Synthesis of LiFePO4/Carbon Cauliflower-Like by Hydrothermal Reaction for Using in Lithium Ion Batteries // Analytical & Bioanalytical Electrochemistry. Vol. 9, № 5. P. 630-639.
63. Golestani E. et al. Tartaric acid assisted carbonization of LiFePO4 synthesized through in situ hydrothermal process in aqueous glycerol solution // Electrochimica Acta. 2018. Vol. 259. P. 903-915.
64. Mi C. et al. In situ Synthesis and Properties of Carbon-Coated LiFePO4 as Li-Ion Battery Cathodes. // Journal of The Electrochemical Society. 2005. Vol. 152. P. A483-A487.
65. Yang L. et al. LiFePÜ4 nanoplates with {010} exposed active planes prepared by hydrothermal method // J Mater Sci: Mater Electron. 2016. Vol. 27, № 11. P. 12258-12263.
66. Yao Y. et al. Surfactant Assisted Synthesis of Rod-like LiFePÜ4/C Composite with Cluster Texture as Cathode Material for Lithium Ion Batteries // International Journal of Electrochemical Science. 2019. Vol. 14, № 3. P. 2442-2451.
67. Candela P.A. 3.12 - Ores in the Earths Crust // Treatise on Geochemistry / ed. Holland H.D., Turekian K.K. Oxford: Pergamon, 2003. P. 411-431.
68. Sharikov F.Yu. et al. Exploring the Peculiarities of LiFePÜ4 Hydrothermal Synthesis Using In Situ Calvet Calorimetry // Crystal Growth & Design. American Chemical Society, 2018. Vol. 18, № 2. P. 879-882.
69. Bezerra C.A.G. et al. High-purity LiFePÜ4 prepared by a rapid one-step microwave-assisted hydrothermal synthesis // J Mater Sci. 2021. Vol. 56, № 16. P. 10018-10029.
70. Qiang Y. et al. Hydrothermal Synthesis of Leaf-like LiFePÜ4/C Cathode Composites // Chinese Journal of Inorganic Chemistry. 2015. Vol. 31. P. 880-887.
71. Ghafarian-Zahmatkesh H., Javanbakht M., Ghaemi M. Ethylene glycol-assisted hydrothermal synthesis and characterization of bow-tie-like lithium iron phosphate nanocrystals for lithium-ion batteries // Journal of Power Sources. 2015. Vol. 284. P. 339-348.
72. Newton J.E., Preece J.A., Pollet B.G. Control of nanoparticle aggregation in PEMFCs using surfactants // International Journal of Low-Carbon Technologies. 2012. Vol. 7, № 1. P. 38-43.
73. Liu Y. et al. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePÜ4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries // Nanomaterials (Basel). 2017. Vol. 7, № 11. P. 368.
74. Kim M.-S. et al. Synthesis of LiMn0.75Fe0.25PÜ4/C microspheres using a microwave-assisted process with a complexing agent for high-rate lithium ion batteries // J. Mater. Chem. A. The Royal Society of Chemistry, 2014. Vol. 2, № 27. P. 10607-10613.
75. Madurga S. et al. Ionization and Conformational Equilibria of Citric Acid: Delocalized Proton Binding in Solution // J. Phys. Chem. A. 2017. Vol. 121, № 31. P. 5894-5906.
76. Privman V. Vladimir Privman // International Journal of Parallel, Emergent and Distributed Systems. 2017. Vol. 32, № 1. P. 157-158.
77. Johnson I.D. et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePÜ4/C nanocomposite high-rate cathodes for lithium-ion batteries // Journal of Power Sources. 2016. Vol. 302. P. 410-418.
78. Xiuqin O. et al. Temperature-dependent crystallinity and morphology of LiFePO4 prepared by hydrothermal synthesis // J. Mater. Chem. The Royal Society of Chemistry, 2012. Vol. 22, № 18. P. 9064-9068.
79. Ruiz-Jorge F. et al. Effect of Fast Heating and Cooling in the Hydrothermal Synthesis on LiFePO4 Microparticles // Ind. Eng. Chem. Res. American Chemical Society, 2020. Vol. 59, № 19. P. 93189327.
80. Koleva V.G., Boyadzhieva T.J., Stoyanova R.K. Crystal and Morphology Design of Dittmarite-Type Ammonium Iron-Manganese Phosphates, NH4Mn1-xFexPO4'H2O, as Precursors for Phospho-olivine Electrodes // Crystal Growth & Design. American Chemical Society, 2019. Vol. 19, № 7. P. 3744-3754
81. Koleva V. et al. Dittmarite precursors for structure and morphology directed synthesis of lithium manganese phospho-olivine nanostructures // CrystEngComm. 2014. Vol. 16. P. 7515-7524
82. Hsieh C.-T. et al. Synthesis of iron phosphate powders by chemical precipitation route for high-power lithium iron phosphate cathodes // Electrochimica Acta. 2012. Vol. 83. P. 202-208.
83. Bi J. et al. Controllable synthesis of Li3PO4 hollow nanospheres for the preparation of high performance LiFePO4 cathode material // Particuology. 2016. Vol. 24. P. 142-150.
84. Eventoff W., Martin R., Peacor D.R. The crystal structure of heterosite // American Mineralogist. GeoScienceWorld, 1972. Vol. 57, № 1-2. P. 45-51.
85. Zhu Y. et al. Research status in preparation of FePO4: a review // Ionics. 2014. Vol. 20, № 11. P. 15011510.
86. Cao Z. et al. Thermodynamic analysis and application for preparing FePO4 from nitric acid pressure leach laterite residue by selective leaching in phosphoric acid and induced precipitation // Hydrometallurgy. 2022. Vol. 212. P. 105896.
87. Zhang X. et al. Preparation of Battery-Grade FePO4'2H2O Using the Stripping Solution Generated from Resource Recycling of Bauxite Residue // Bull Environ Contam Toxicol. 2022. Vol. 109, № 1. P. 8694.
88. Babkin A.V. et al. Preparation of battery-grade LiFePO4 by the precipitation method: a review of specific features // Russ Chem Bull. 2024. Vol. 73, № 1. P. 14-32.
89. Chang Z.-R. et al. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries // Electrochimica Acta. 2009. Vol. 54, № 20. P. 4595-4599.
90. Chen M. et al. High-performance LiFePO4 cathode material from FePO4 microspheres with carbon nanotube networks embedded for lithium ion batteries // Journal of Power Sources. 2013. Vol. 223. P. 100-106.
91. Yang S. et al. Solvothermal Synthesis of Monodisperse LiFePO4 Micro Hollow Spheres as High Performance Cathode Material for Lithium Ion Batteries // ACS Appl. Mater. Interfaces. American Chemical Society, 2013. Vol. 5, № 18. P. 8961-8967.
92. Zuo P. et al. A novel nanoporous Fe-doped lithium manganese phosphate material with superior long-term cycling stability for lithium-ion batteries // Nanoscale. The Royal Society of Chemistry, 2015. Vol. 7, № 27. P. 11509-11514.
93. Song Y. et al. Separation and recovery of lithium from Li3PO4 leaching liquor using solvent extraction with saponified D2EHPA // Separation and Purification Technology. 2019. Vol. 229. P. 115823.
94. Song Y.J. Recovery of lithium as li3PO4 from waste water in a LIB recycling process // Journal of Korean Institute of Metals and Materials. 2018. Vol. 56, № 10. P. 755-762.
95. Zhao C. et al. Lithium carbonate recovery from lithium-containing solution by ultrasound assisted precipitation // Ultrasonics Sonochemistry. 2019. Vol. 52. P. 484-492.
96. Pang H. et al. Facile fabrication of NH4CoPO4'H2O nano/microstructures and their primarily application as electrochemical supercapacitor // Nanoscale. 2012. Vol. 4. P. 5946-5953.
97. Pang H. et al. Template-free Controlled Fabrication of NH4MnPO4-H2O and MmP2O7 Micro-Nanostructures and Study of Their Electrochemical Properties // International Journal of Electrochemical Science. 2012. Vol. 7, № 12. P. 12340-12353.
98. Wang X. et al. NH4CoPO4-H2O Microflowers and Porous Co2P2O7 Microflowers: Effective Electrochemical Supercapacitor Behavior in Different Alkaline Electrolytes // International Journal of Electrochemical Science. 2013. Vol. 8, № 3. P. 3768-3785.
99. Wu C. et al. Ordered LiMPO4 (M = Fe, Mn) nanorods synthesized from NH4MPO4-H2O microplates by stress involved ion exchange for Li-ion batteries // CrystEngComm. 2014. Vol. 16. P. 2239.
100. Liu J. et al. Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4'H2O as precursor // Journal of Alloys and Compounds. 2012. Vol. 518. P. 58-62.
101. Wu M.-S. et al. Assessment of the Wettability of Porous Electrodes for Lithium-Ion Batteries // Journal of Applied Electrochemistry. 2004. Vol. 34, № 8. P. 797-805.
102. Alyoshin V.A. et al. Platelike LiMPÜ4 (M = Fe, Mn, Co, Ni) for Possible Application in Rechargeable Li Ion Batteries: Beyond Nanosize // J. Phys. Chem. C. American Chemical Society, 2014. Vol. 118, № 31. P. 17426-17435.
103. Smith R.M., Martell A.E. Critical Stability Constants. Boston, MA: Springer US, 1989. Vol. 6. 647 P.
104. Oh S.-M. et al. High Capacity O3-Type Na[Lio.o5(Nio.25Feo.25Mno.5)o.95]Ü2 Cathode for Sodium Ion Batteries // Chem. Mater. American Chemical Society, 2014. Vol. 26, № 21. P. 6165-6171.
105. Housecroft C.E., Sharpe A.G. Inorganic Chemistry. Pearson Education, 2oo5. 1o22 p.
106. Dippel A.-C. et al. Beamline Po2.1 at PETRA III for high-resolution and high-energy powder diffraction: 3 // J Synchrotron Rad. International Union of Crystallography, 2015. Vol. 22, № 3. P. 675687.
107. Kieffer J., Wright J.P. PyFAI: a Python library for high performance azimuthal integration on GPU // Powder Diffraction. Cambridge University Press, 2013. Vol. 28, № S2. P. S339-S35o.
108. Coelho A.A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++: 1 // J Appl Cryst. International Union of Crystallography, 2018. Vol. 51, № 1. P. 210-218.
109. Erb, Donald. pybaselines: A Python library of algorithms for the baseline correction of experimental data. Zenodo, 2o22.
110. Toby B.H., Von Dreele R.B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package // Journal of Applied Crystallography. 2013. Vol. 46, № 2. P. 544549.
111. Matsnev M.E., Rusakov V.S. SpectrRelax: An application for Mössbauer spectra modeling and fitting // AIP Conference Proceedings. American Institute of Physics, 2012. Vol. 1489, № 1. P. 178185.
112. Abramoff D.M.D. Image Processing with ImageJ. Biophotonics international, 2oo4. Vol. 11. №7. P. 36-42
113. Levin E.E., Vassiliev S.Yu., Nikitina V.A. Solvent effect on the kinetics of lithium ion intercalation into LiCoO2 // Electrochimica Acta. 2o17. Vol. 228. P. 114-124.
114. Montella C. Apparent diffusion coefficient of intercalated species measured with PITT // Electrochimica Acta. 2006. Vol. 51, № 15. P. 3102-3111.
115. Harrington D. Multiple Electrochemical Impedance Spectra Parameterization (MEISP+). Version 2.0 Kumho Petrochemical Co. Ltd., Kumho Chemical Laboratories, P.O. Box 64, Yuseong, Taejeon, 305-600, Korea. Fax: 82 42 862 5651. http://powergraphy.com. Contact Kumho for price. // J. Am. Chem. Soc. American Chemical Society, 2002. Vol. 124, № 7. P. 1554-1555.
116. Glaser T. Mössbauer Spectroscopy and Transition Metal Chemistry. Fundamentals and Applications. Edited by Philipp Gütlich, Eckhard Bill and Alfred X. Trautwein. // Angewandte Chemie International Edition. 2011. Vol. 50, № 43. P. 10019-10020.
117. Perea A. et al. Operando 57Fe Mössbauer and XRD investigation of LixM%Fe1-yPO4/C composites (y = 0; 0.25) // RSC Adv. The Royal Society of Chemistry, 2012. Vol. 2, № 5. P. 2080-2086.
118. Zaghib K. et al. Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries // Ionics. 2008. Vol. 14, № 5. P. 371-376.
119. Wang K. et al. An additional discharge plateau of Mn3+ in LiFe0.5Mn0.5PO4 at high current rates // Electrochemistry Communications. 2015. Vol. 55.
120. Kosova N.V., Podgornova O.A., Gutakovskii A.K. Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods // Journal of Alloys and Compounds. 2018. Vol. 742. P. 454-465.
121. Wang K. et al. Density functional theory and electrochemistry studies on LiFexMm-xPO4 solid solutions // Chinese Journal of Chemical Physics. 2019. Vol. 32, № 6. P. 687-692.
122. Yang H. et al. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient // Carbon. 2020. Vol. 158. P. 102-109.
123. Drozhzhin O.A. et al. Switching between solid solution and two-phase regimes in the Lh-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study // Electrochimica Acta. 2016. Vol. 191. P. 149-157.
124. Yamada A., Kudo Y., Liu K.-Y. Phase Diagram of LixM%Fe1-yPO4 (0 < x, y < 1) // Journal of The Electrochemical Society. 2001. Vol. 148. A 1153.
125. Dong Y.Z., Zhao Y.M., Duan H. Crystal structure and lithium electrochemical extraction properties of olivine type LiFePO4 // Materials Chemistry and Physics. 2011. Vol. 129, № 3. P. 756-760.
126. Ravnsb^k D.B. et al. Extended Solid Solutions and Coherent Transformations in Nanoscale Olivine Cathodes // Nano Lett. 2014. Vol. 14, № 3. P. 1484-1491.
127. Biendicho J., West A. Thermally-induced cation disorder in LiFePO4 // Solid State Ionics. 2011. Vol. 203. P. 33-36.
128. Jiang X. et al. Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO4 Cathodes for High-Performance Lithium-Ion Batteries: 6 // Materials. Multidisciplinary Digital Publishing Institute, 2024. Vol. 17, № 6. P. 1299.
129. Amisse R. et al. Nonstochiometry in LiFe0.5Mn0.5PO4: Structural and Electrochemical Properties // J. Electrochem. Soc. IOP Publishing, 2013. Vol. 160, № 9. P. A1446.
130. Choi D. et al. Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries // Energy Environ. Sci. The Royal Society of Chemistry, 2011. Vol. 4, № 11. P. 4560-4566.
131. Kim S.-W. et al. Phase Stability Study of Lh-xMnPO4 ( 0 < x < 1 ) Cathode for Li Rechargeable Battery // J. Electrochem. Soc. IOP Publishing, 2009. Vol. 156, № 8. P. A635.
132. Chen G., Richardson T.J. Thermal instability of Olivine-type LiMnPO4 cathodes // Journal of Power Sources. 2010. Vol. 195, № 4. P. 1221-1224.
133. Zhu G.-N., Wang C.-X., Xia Y.-Y. A Comprehensive Study of Effects of Carbon Coating on Li4Ti5O12 Anode Material for Lithium-Ion Batteries // J. Electrochem. Soc. IOP Publishing, 2010. Vol. 158, № 2. P. A102.
134. Szymanski H.A., Erickson R.E. Infrared Band Handbook. Boston, MA: Springer US, 1970.
135. Nikitina V.A. Charge transfer processes in the course of metal-ion electrochemical intercalation // Current Opinion in Electrochemistry. 2020. Vol. 19. P. 71-77.
136. Yonemura M. et al. Comparative Kinetic Study of Olivine LixMPO4 ( M = Fe , Mn) // J. Electrochem. Soc. IOP Publishing, 2004. Vol. 151, № 9. P. A1352.
137. Nai J. et al. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries // Nano Res. 2021. Vol. 14, № 7. P. 2053-2066.
138. Rein D. et al. The roles of Co-precipitation pH, phase-purity and alloy formation for the ammonia decomposition activity of Ga-promoted Fe/MgO catalysts // Applied Catalysis A: General. 2017. Vol. 548. P. 52-61.
139. Karafiludis S. et al. Phase stability studies on transition metal phosphates aided by an automated synthesis // CrystEngComm. The Royal Society of Chemistry, 2023. Vol. 25, № 30. P. 4333-4344.
140. Yakubovich O.V. et al. Layer structure of (NH4)CoPO4-H2O // Acta Cryst C. International Union of Crystallography, 1999. Vol. 55, № 2. P. 151-153.
141. O. V. Yakubovich, M. A. Simonov, N.V. Belov, "Crystal structure of synthetic triphyline LiFePO4, Dokl. Akad. Nauk SSSR, 235:1 (1977), 93-95.
142. Королев Л.В., Лупанов А.П., Придатко Ю.М. Плотная упаковка полидисперсных частиц в композитных строительных материалах // Современные проблемы науки и образования. - 2007. - № 6-1.C. 109-114
143. Jaszczur M., Mlynarczykowska A. A General Review of the Current Development of Mechanically Agitated Vessels: 8 // Processes. Multidisciplinary Digital Publishing Institute, 2020. Vol. 8, № 8. P. 982.
144. Mugumya J.H. et al. Synthesis and Theoretical Modeling of Suitable Co-precipitation Conditions for Producing NMC111 Cathode Material for Lithium-Ion Batteries // Energy Fuels. American Chemical Society, 2022. Vol. 36, № 19. P. 12261-12270.
145. Bujalski W. et al. Suspension and Liquid Homogenization in High Solids Concentration Stirred Chemical Reactors // Chemical Engineering Research and Design. 1999. Vol. 77, № 3. P. 241-247.
146. El Khalfaouy R. et al. Synthesis and Characterization of LiMnPO4 Cathode Material via Dittmarite-Type NH4MnPO4-H2O an Intermediate Compound // Arab J Sci Eng. 2019. Vol. 44, № 1. P. 123-129.
147. Wang L. et al. Crystal Orientation Tuning of LiFePO4 Nanoplates for High Rate Lithium Battery Cathode Materials // Nano Lett. American Chemical Society, 2012. Vol. 12, № 11. P. 5632-5636.
148. Koleva V., Zhecheva E., Stoyanova R. Facile synthesis of LiMnPO4 olivines with a plate-like morphology from a dittmarite-type KMnPO4'H2O precursor // Dalton Trans. The Royal Society of Chemistry, 2011. Vol. 40, № 28. P. 7385-7394.
149. Noisong P., Danvirutai C. Kinetics and Mechanism of Thermal Dehydration of KMnPO4'H2O in a Nitrogen Atmosphere // Ind. Eng. Chem. Res. American Chemical Society, 2010. Vol. 49, № 7. P. 3146-3151.
150. Janz G.J. et al. Physical properties data compilations relevant to energy storage. 1. Molten salts: Eutectic data // NASA STI/Recon Technical Report N. 1978. Vol. 78. P. 31589.
151. Thommes M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure and Applied Chemistry. De Gruyter, 2015. Vol. 87, № 9-10. P. 1051-1069.
152. Raju K. et al. Rational Design of 2D Manganese Phosphate Hydrate Nanosheets as Pseudocapacitive Electrodes // ACS Energy Lett. American Chemical Society, 2020. Vol. 5, № 1. P. 23-30.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.