Multiscale computational method for plasmonic nanoparticle lattices/Разномасштабный вычислительный метод для решеток плазмонных наночастиц тема диссертации и автореферата по ВАК РФ 01.04.05, кандидат наук Фрадкин Илья Маркович
- Специальность ВАК РФ01.04.05
- Количество страниц 162
Оглавление диссертации кандидат наук Фрадкин Илья Маркович
Contents
Page
Introduction
Chapter 1. Analytical review
Chapter 2. Hybrid computational approach for plasmonic lattices
2.1 Introduction
2.2 Effective polarizability
2.3 Scattering matrix calculation
2.4 Example: hybrid resonances
2.4.1 Homogeneous environment
2.4.2 Lattice in a waveguide
2.4.3 Lattice on a waveguide
2.4.4 Optical modes in waveguides of various thickness
2.5 Convergence and accuracy
2.5.1 Convergence
2.5.2 Accuracy
2.6 Conclusion
Chapter 3. Plasmonic lattices with complex unit cell
3.1 Introduction
3.2 Lattice with basis
3.3 Scattering matrix calculation
3.4 Example: routing plasmonic metasurface
3.5 Dipole toy model
3.6 Conclusion
Chapter 4. Stacks of plasmonic lattices
4.1 Introduction
4.2 Dipole approximation for a stack of plasmonic lattices
4.3 Thickness-independent resonance in a stack of plasmonic lattices
4.4 Spectra and near-field validation
Page
4.5 Conclusion
Chapter 5. Coupling the circularly-polarized light with waveguide
modes via plasmonic lattices
5.1 Introduction
5.2 Experimental and theoretical methods
5.3 Out-coupling QD emission from beneath the lattice
5.4 Out-coupling the guided modes
5.5 Conclusion
Conclusion
Nomenclature
Appendix A. Polarizability tensor calculation
A.l Scattered field formulation
A. 1.1 General formulation
A.1.2 Axially symmetrical case
A.2 Example of calculations
A.3 Resonant approximation for polarizability of individual particle
A.3.1 General formulation
A.3.2 Polarizability tensor calculation
A.3.3 Axially symmetrical case
A.4 Rotating a tensor
A.5 Analytical approach
A.6 Comparison of different approaches
A.7 Particles crossing the interface.....................Ill
Appendix B. Sum calculation
B.l Green's function filtering
B.2 Green's function near an interface
B.3 Convenient representation of M matrices
B.4 Analytical calculation of convolution for a homogeneous environment
B.5 Fast calculation of convolution
B.6 Calculation of generalized dynamic interaction constant
Page
Appendix C. Supplemental materials for Chapter
C.l Polarizability of golden nanobars
C.2 Details of practical calculations
C.3 Guided mode amplitude calculation
C.4 Photoluminescence measurements setup
References
Рекомендованный список диссертаций по специальности «Оптика», 01.04.05 шифр ВАК
Поверхностные волны Дьяконова в ограниченных структурах2024 год, кандидат наук Чермошенцев Дмитрий Александрович
Extraordinary optical transmission in holographic and polycrystalline structures/Усиленное оптическое пропускание в голографических и поликристаллических наноструктурах2021 год, кандидат наук Ушков Андрей Александрович
Временная динамика и спектральные свойства одиночных квантовых излучателей и их ансамблей, находящихся вблизи нанофотонных интерфейсов, с учетом хиральности взаимодействия2020 год, кандидат наук Корнован Данил Феодосьевич
Моделирование влияния модификации структуры низкоразмерных материалов ZnO, β-C3N4, InSe и однослойного бора на их физические свойства2021 год, кандидат наук Лэй Сюе
Плазмонные наноструктуры для оптических метаматериалов2022 год, доктор наук Драчев Владимир Прокопьевич
Введение диссертации (часть автореферата) на тему «Multiscale computational method for plasmonic nanoparticle lattices/Разномасштабный вычислительный метод для решеток плазмонных наночастиц»
Introduction
Work relevance. Plasmonic materials play an important role in modern photonics. Most of their unique optical properties emerge from the negative value of the permittivity at the optical frequencies. It limits the penetration of electromagnetic fields in the metals but simultaneously confines them in the close vicinity of either plasmonic nanoparticles or plasmonic surfaces [1]. In particular, this results in an emergence of the famous Surface Plasmon Resonances (SPR) [2; 3], which correspond to the modes propagating along the metal/dielectric interfaces and Localized Surface Plasmon Resonances (LSPR) [4] in subwavelength plasmonic nanoparticles. Plasmonic modes allow us to overcome the diffraction limit, confine light at the subwavelength scale and enhance the light-matter interaction. Such opportunities found multiple application for Surface-enhanced Raman spectroscopy (SERS) [5 7], biosensors [8 11], hyperbolic [12; 13] and left-handed metamaterials [14; 15], optoelectronic [16; 17] and many other devices.
In the scope of this dissertation, special attention is paid to plasmonic metasurfaces, which are two-dimensional periodically-modulated structures made of metals. Plasmonic nanoparticles are very convenient constituents of corresponding lattices due to the disproportionally strong optical response of several-dozens-nanometers particles. These particles might be applied to design the structure that locally demonstrates the required optical response in terms of both amplitude and phase. This tool is widely applied for the purposes of flat optics [18 20], in holography [21 24] and other gradient metasurfaces. Moreover, plasmonic inclusions in some external photonic environments are often used to obtain the hybridized modes combining high field localization near the plasmonic nanoparticles with a relatively large quality factor ensured by the non-dissipative photons. Some of the structures demonstrate the effect of lattice plasmon resonance (LPR) [25 30], they are actively used for biosensors [9 11], enhancement and routing of the spontaneous emission [31 37], lasing [38 41] and other purposes [26; 29; 42; 43].
Nevertheless, theoretical description of the described structures is rather difficult in practice. Indeed, plasmonic nanoparticle polarization generates the fields confined at a scale much smaller than both wavelength and period of a typical lattice. For this reason, such universal computational approaches as the finite element method (FEM) and finite-difference time-domain method (FDTD) require building
very dense meshes for the nanoparticles, which strongly limits their performance and operational speed. A similar situation appears for the Fourier modal method (FMM) [44; 45] based approaches specialized for the consideration of periodic structures. They require to take into account a huge number of spatial harmonics and become inefficient as well. For this reason, most of the studies devoted to plasmonic lattices that provide some theoretical analysis utilize the coupled/discrete dipole approximation (DDA) for the estimation of the optical spectra.
Currently, most of the developed dipole models consider simple lattices in homogeneous environment [10; 25; 26; 28 30; 34; 35; 39; 42; 43; 46]. Only recently, there were several advancements that consider lattices of more complicated design [32; 47 49] and even lattices in the multilayer environment [50; 51]. Nevertheless, there is still a need for a computational approach that allows one to put the plasmonic lattice in different environments and describe it in some universal way. Another actual problem is an accurate description of the lattice put onto an interface between two media. The desired computational approach should simplify the consideration and application of complex plasmonic lattices that are still studied to a very limited extent, and enable widespread, detailed analysis of stacked lattices and lattices with several particles in a unit cell.
The aim of the work is to develop multiscale computational method for consideration of plasmonic nanoparticle lattices, design prospective structures and study their optical properties.
To achieve these aims, the following tasks were formulated:
1. Derivation of the scattering matrix of simple plasmonic lattice in dipole approximation. Integration of the approach into Fourier modal method. Benchmarking and validation of the approach.
2. Expansion of the computational approach to the case of plasmonic lattices with complex unit cells. Demonstration of the method performance.
3. Application of the scattering-matrix-based approach to the study of stacked plasmonic lattices. Exploring the hybridization of lattice resonances.
4. Development of the plasmonic lattice design suitable for experimental realization. Validation of the theoretical approach by comparing the computed spectra with experimentally measured ones.
Propositions for the defence.
1. The developed approach allows derivation the scattering matrix of plasmonic lattice in dipole approximation, which strongly (more than
100 times in comparison with finite element method) accelerates the computation of corresponding optical spectra.
2. The computational approach is expanded and efficiently applied to the design of the plasmonic lattices with complex unit cells and study of their optical properties.
3. The computational approach paves the way for the consideration of stacked plasmonic lattices. The effect of the thickness-independent hybrid mode in a stack of two identical square lattices of plasmonic nanodisks is demonstrated.
4. The plasmonic lattice of golden nanobars is designed for the out-coupling of quantum dots emission from the GaAs waveguide. The estimated degree of circular polarization in the far-field is up to 80%, which makes the structure prospective for the application in integrated sources of circularly-polarized light.
The scientific novelty of the dissertation includes the following.
1. The developed theoretical approach allows derivation of the scattering matrices of plasmonic lattices in dipole approximation; in particular, the case of a lattice on an interface between two materials is rigorously studied.
2. The computational approach makes it possible to consider the lattices with complex unit cell of several nanoparticles; moreover, the proposed formulation allows integrating the plasmonic lattices in a complex dielectric environment and stacking them in a universal way.
3. Thickness-independent resonance is observed for the energy of Rayleigh anomaly resulting from the hybridization of modes in a stack of two identical plasmonic lattices.
4. Plasmonic grating of the proposed design demonstrates the feasibility to out-couple the quantum dots emission from the GaAs waveguide into a light beam of 80% degree of circular polarization.
The theoretical and practical value of the study is in the development and verification of the computational approach for effective consideration of the plasmonic lattices. Its fast computational speed and high precision pave the way for the design of still unexplored complex plasmonic lattices for different purposes.
Methodology. The main theoretical derivations presented in the dissertation are based on the formalism of the Fourier modal method in the form of the scattering matrices and discrete dipole approximation. The polarizabilities of the separate
particles are calculated based on the idea of scattered field formulation via finite-element-method-based computational packaged COMSOL Multiphysics. Validation of the results is conducted by comparison with the results provided by COMSOL Multiphysics and the classical Fourier modal method.
Reliability of the obtained theoretical results is ensured by almost perfect match with the computations conducted via alternative widely-recognized computational approaches (see chapters 2-4) and agreement with the experimentally measured spectra (see Chapter 5). All the presented derivations are based on well-proven computational methods and approaches. The obtained results have been widely discussed at specialized seminars and conferences. The conclusions validity is additionally confirmed by publications in leading international peer-reviewed scientific journals.
Validation of the research results. The results obtained throughout the study were presented and discussed at the following scientific conferences, symposia, and seminars:
1. International Conference on Metamaterials and Nanophotonics METANANO 2018, Sochi, Russia, 17.09.2018
2. The 61st MIPT Scientific Conference, Dolgoprudny, Russia, 20.11.2018
3. Seminar on Solid State Theory, Department of Theoretical Physics named after I.E. Tamm, LPI RAS, 19.02.2019
4. IV International Conference on Metamaterials and Nanophotonics METANANO 2019, Saint-Petersburg, Russia, 16.07.2019
5. 9th German-Russian Week of the Young Researcher, Moscow, Russia,
24.09.2019
6. XXIV International Symposium "Nanophysics and Nanoelectronics Nizhny Novgorod, Russia, 12.03.2020
7. Low-dimensional Seminar of the Ioffe Physical-Technical Institute, on-line,
06.01.2020
8. METANANO Summer School on Nanophotonics and Metamaterials, online poster session, 06.07.2020, Best Poster Award
9. V International Conference on Metamaterials and Nanophotonics METANANO 2020, on-line, 17.09.2020
10. The 63rd MIPT Scientific Conference, Dolgoprudny, Russia, 24.11.2020
Personal contribution. All the results of the dissertation were obtained personally by the applicant or with his direct involvement. The applicant developed
the computational approach for plasmonic lattices and applied it to the design and theoretical study of all the structures considered in the dissertation. The applicant is the first author in all the main publications on the dissertation topic [Al A7]. Experimental part of the study [A4] described in chapter 5 was conducted by A.A Demenev, V.D. Kulakovskii and V.N. Antonov.
Publications. Based on the materials of the dissertation, 7 publications were published, including 7 papers in international journals indexed in Scopus and Web of Science.
Main Publications on the Dissertation Topic
Al. Fradkin, I. M. Fourier modal method for the description of nanoparticle lattices in the dipole approximation / I. M. Fradkin, S. A. Dyakov, N. A. Gip-pius // Physical Review B. 2019. Vol. 99, № 7. P. 075310.
A2. Fradkin, I. M. Nanoparticle lattices with bases: Fourier modal method and dipole approximation / I. M. Fradkin, S. A. Dyakov, N. A. Gippius // Phys. Rev. B. 2020. July. Vol. 102, issue 4. P. 045432.
A3. Fradkin, I. M. Thickness-Independent Narrow Resonance in a Stack of Plasmonic Lattices / I. M. Fradkin, S. A. Dyakov, N. A. Gippius // Physical Review Applied. 2020. Vol. 14, № 5. P. 054030.
A4. Plasmonic grating for circularly polarized outcoupling of waveguide-enhanced spontaneous emission, Editor's Pick / I. M. Fradkin [et al.] // Applied Physics Letters. 2022. Vol. 120, № 17. P. 171702.
A5. Fradkin, I. M. Light scattering by resonant nanoparticles in a 2D lattice. / I. M. Fradkin, S. A. Dyakov, N. A. Gippius // Journal of Physics: Conference Series. Vol. 1092. IOP Publishing. 2018. P. 012036.
A6. Fradkin, I. M. Scattering-matrix analysis of nanoparticle lattices in dipole approximation / I. M. Fradkin, S. A. Dyakov, N. A. Gippius // Journal of Physics: Conference Series. Vol. 1461. IOP Publishing. 2020. P. 012041.
A7. Fradkin, I. M. Dipole approximation for plasmonic lattices in layered structures / I. M. Fradkin, S. A. Dyakov, N. A. Gippius // AIP Conference Proceedings. Vol. 2300. — AIP Publishing LLC. 2020. — P. 020032.
Dissertation structure. Dissertation contains introduction, 5 chapters, conclusion and 3 appendices. It is written on 162 pages of typewritten text and includes 49 figures. The list of references includes 236 titles.
Похожие диссертационные работы по специальности «Оптика», 01.04.05 шифр ВАК
Стационарные состояния нелинейного уравнения Шрёдингера с периодически модулированной нелинейностью: математическое и численное исследование2023 год, кандидат наук Лебедев Михаил Евгеньевич
Флуктуации заряда и сверхпроводимость в сильно коррелированных электронных системах2023 год, кандидат наук Нгуен Дань Тунг
Процессы Пеннинговской ионизации в холодных ридберговских средах2021 год, кандидат наук Абузалам Алаа Мохамед Ахмед
Подход к отслеживанию траектории многороторных летательных аппаратов в неизвестных условиях / Trajectory Tracking Approach for Multi-rotor Aerial Vehicles in Unknown Environments2024 год, кандидат наук Кулатхунга Мудийанселаге Гисара Пратхап Кулатхунга
Исследование распыления твердых тел при облучении высокоэнергичными тяжелыми ионами2005 год, кандидат физико-математических наук Али Саид Халил
Список литературы диссертационного исследования кандидат наук Фрадкин Илья Маркович, 2022 год
References
1. Ignatov, A. Wood anomalies for s-polarized light incident on a one-dimensional metal grating and their coupling with channel plasmons / A. Ignatov, A. Merzlikin, A. Baryshev // Physical Review A. — 2017. — Vol. 95, № 5. — P. 053843.
2. Novotny, L. Principles of nano-optics / L. Novotny, B. Hecht. — Cambridge university press, 2012.
3. Surface plasmon—polaritons with negative and zero group velocities propagating in thin metal films / D. Y. Fedyanin [et al.] // Quantum Electronics. — 2009. — Vol. 39, № 8. — P. 745.
4. Bohren, C. F. Absorption and scattering of light by small particles / C. F. Bohren, D. R. Huffman. — John Wiley k Sons, 2008.
5. Spoof plasmons enable giant Raman scattering enhancement in Near-Infrared region / Y. V. Fedotova [et al.] // Optics express. — 2019. — Vol. 27, № 22. — P. 32578—32586.
6. Surface-enhanced Raman spectroscopy / P. L. Stiles [et al.] // Annu. Rev. Anal. Chem. — 2008. — Vol. 1. — P. 601^626.
7. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective / M. Moskovits // Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. — 2005. — Vol. 36, № 6/7. — P. 485—496.
8. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications / S. Zeng [et al.] // Chemical Society Reviews. — 2014. — Vol. 43, № 10. — P. 3426—3452.
9. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit / Y. Shen [et al.] // Nature communications, _ 2013. — Vol. 4, № 1. — P. 1—9.
10. Coupling bright and dark plasmonic lattice resonances / S. R. K. Rodriguez [et al.] // Physical Review X. — 2011. — Vol. 1, № 2. — P. 021019.
11. Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements / K. Lodewijks [et al.] // Nano letters. —
2012. — Vol. 12, № 3. — P. 1655—1659.
12. Hyperbolic metamaterials / A. Poddubny [et al.] // Nature photonics. —
2013. — Vol. 7, № 12. — P. 948—957.
13. High-frequency homogenization for layered hyperbolic metamaterials / A. Krokhin [et al.] // Physical Review B. — 2016. — Vol. 93, № 7. — P. 075418.
14. Negative index of refraction in optical metamaterials / V. M. Shalaev [et al.] // Optics letters. — 2005. — Vol. 30, № 24. — P. 3356 3358.
15. Loss-free and active optical negative-index metamaterials / S. Xiao [et al] // Nature. — 2010. — Vol. 466, № 7307. — P. 735 738.
16. Nanoscale conducting oxide PlasMOStor / H. W. Lee [et al.] // Nano letters, _ 2014. — Vol. 14, № 11. — P. 6463—6468.
17. Gate-tunable conducting oxide metasurfaces / Y.-W. Huang [et al] // Nano letters. — 2016. — Vol. 16, № 9. — P. 5319 5325.
18. Yu, N. Flat optics with designer metasurfaces / N. Yu, F. Capasso // Nature materials. — 2014. — Vol. 13, № 2. — P. 139.
19. Chen, H.-T. A review of metasurfaces: physics and applications / H.-T. Chen, A. J. Taylor, N. Yu // Reports on progress in physics. — 2016. — Vol. 79, № 7. — P. 076401.
20. Kildishev, A. V. Planar photonics with metasurfaces / A. V. Kildishev, A. Boltasseva, V. M. Shalaev // Science. — 2013. — Vol. 339, № 6125. — P. 1232009.
21. Metasurface holograms reaching 80% efficiency / G. Zheng [et al.] // Nature nanotechnology. — 2015. — Vol. 10, № 4. — P. 308^312.
22. Spin and wavelength multiplexed nonlinear metasurface holography / W. Ye [et al.] // Nature communications. — 2016. — Vol. 7. — P. 11930.
23. Broadband multiplane holography based on plasmonic metasurface / Q. Wei [et al] // Advanced Optical Materials. — 2017. — Vol. 5, № 18. — P. 1700434.
24. Ignatov, A. Excitation of plasmonic waves in metal-dielectric structures by a laser beam using holography principles / A. Ignatov, A. Merzlikin // Optics Communications. — 2018. — Vol. 410. — P. 83^87.
25. Auguie, B. Collective Resonances in Gold Nanoparticle Arrays / B. Auguie, W. L. Barnes // Phys. Rev. Lett. — 2008. — Sept. — Vol. 101, issue 14. — P. 143902.
26. Rajeeva, B. B. Design and applications of lattice plasmon resonances / B. B. Rajeeva, L. Lin, Y. Zheng // Nano Research. — 2018. — Sept. — Vol. 11, № 9. — P. 4423—4440.
27. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays / Y. Chu [et al.] // Applied Physics Letters. — 2008. — Vol. 93, № 18. — P. 181108.
28. Kravets, V. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles / V. Kravets,
F. Schedin, A. Grigorenko // Physical review letters. — 2008. — Vol. 101, № 8. — P. 087403.
29. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications / V. Kravets [et al.] // Chemical reviews. — 2018. — Vol. 118, № 12. — P. 5912—5951.
30. Guo, R. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays / R. Guo, T. K. Hakala, P. Torma // Phys. Rev. B. — 2017. — Apr. — Vol. 95, issue 15. — P. 155423.
31. Photoluminescence of two-dimensional plasmonic structures: enhancement, spectral and lifetime peculiarities below the lasing threshold /
G. M. Yankovskii [et al.] // Optical Materials Express. — 2020. — Vol. 10, X« io. — P. 2643—2654.
32. Kolkowski, R. Lattice resonances in optical metasurfaces with gain and loss / R. Kolkowski, A. F. Koenderink // Proceedings of the IEEE. — 2019.
33. Light-emitting metasurfaces / A. Vaskin [et al] // Nanophotonics. — 2019. — Vol. 8, № 7. — P. 1151—1198.
34. Collective resonances in plasmonic crystals: Size matters / S. Rodriguez [et al.] // Physica B: Condensed Matter. — 2012. — Vol. 407, № 20. — P. 4081—4085.
35. Controlling quantum dot emission by plasmonic nanoarrays / R. Guo [et al.] // Opt. Express. — 2015. — Nov. — Vol. 23, № 22. — R 28206—28215.
36. Vecchi, G. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas / G. Vecchi, V. Giannini, J. G. Rivas // Physical review letters. — 2009. — Vol. 102, № 14. — P. 146807.
37. Modified emission of extended light emitting layers by selective coupling to collective lattice resonances / M. Ramezani [et al.] // Physical Review B. — 2016. — Vol. 94, № 12. — P. 125406.
38. Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices / A. H. Schokker [et al.] // Physical Review B. — 2017. — Vol. 95, № 8. — P. 085409.
39. Lasing action in strongly coupled plasmonic nanocavity arrays / W. Zhou [et al.] // Nature nanotechnology. — 2013. — Vol. 8, № 7. — P. 506.
40. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices / D. Wang [et al.] // Nature nanotechnology. — 2017. — Vol. 12, № 9. — P. 889.
41. Schokker, A. H. Lasing in quasi-periodic and aperiodic plasmon lattices / A. H. Schokker, A. F. Koenderink // Optica. — 2016. — Vol. 3, № 7. — P. 686—693.
42. The rich photonic world of plasmonic nanoparticle arrays / W. Wang [et al] // Materials Today. — 2017.
43. Garcia, de Abajo, F. J. Colloquium: Light scattering by particle and hole arrays / F. J. Garcia de Abajo // Rev. Mod. Phys. — 2007. — Oct. — Vol. 79, issue 4. — P. 1267 1290.
44. Quasiguided modes and optical properties of photonic crystal slabs / S. G. Tikhodeev [et al.] // Physical Review B. — 2002. — Vol. 66, № 4. — P. 045102.
45. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings / M. Moharam [et al.] / / JOS A a. — 1995. — Vol. 12, № 5. — P. 1068 1076.
46. Zhao, L. The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width / L. Zhao, K. L. Kelly, G. C. Schatz // The Journal of Physical Chemistry B. — 2003. — Vol. 107, № 30. — P. 7343—7350.
47. Baur, S. Hybridization of lattice resonances / S. Baur, S. Sanders, A. Man-javacas // ACS nano. — 2018. — Vol. 12, № 2. — P. 1618 1629.
48. Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation / S. Liu [et al.] // Nano letters. — 2018. — Vol. 18, № ii. _ p. 6906 6914.
49. Humphrey, A. D. Plasmonic surface lattice resonances on arrays of different lattice symmetry / A. D. Humphrey, W. L. Barnes // Phys. Rev. B. — 2014. — Aug. — Vol. 90, issue 7. — P. 075404.
50. Berkhout, A. Perfect absorption and phase singularities in plasmon antenna array etalons / A. Berkhout, A. F. Koenderink // ACS Photonics. — 2019. — Vol. 6, № 11. — P. 2917—2925.
51. Multiresonant High-Q Plasmonic Metasurfaces / O. Reshef [et al.] // Nano letters. — 2019. — Vol. 19, № 9. — P. 6429 6434.
52. Simovski, C. Composite Media with Weak Spatial Dispersion / C. Simovski. — Jenny Stanford Publishing, 2018.
53. Raab, R. E. Multipole theory in electromagnetism: classical, quantum, and symmetry aspects, with applications. Vol. 128 / R. E. Raab, O. L. De Lange. — OUP Oxford, 2004.
54. Drachev, V. P. Hyperbolic metamaterials: new physics behind a classical problem / V. P. Drachev, V. A. Podolskiy, A. V. Kildishev // Optics express, _ 2013. — Vol. 21, № 12. — P. 15048—15064.
55. Veselago, V. G. Electrodynamics of substances with simultaneously negative and / V. G. Veselago // Usp. fix. nauk. — 1967. — Vol. 92, № 7. — P. 517—526.
56. Optically reconfigurable metasurfaces and photonic devices based on phase change materials / Q. Wang [et al.] // Nature Photonics. — 2016. — Vol. 10, № 1. — P. 60.
57. Li, G. Nonlinear photonic metasurfaces / G. Li, S. Zhang, T. Zentgraf // Nature Reviews Materials. — 2017. — Vol. 2, № 5. — R 17010.
58. Magnetic field free circularly polarized thermal emission from a chiral metasurface / S. Dyakov [et al.] // Physical Review B. — 2018. — Vol. 98, № 23. — P. 235416.
59. Functional and nonlinear optical metasurfaces / A. E. Minovich [et al] // Laser & Photonics Reviews. — 2015. — Vol. 9, № 2. — P. 195 213.
60. Bykov, V. P. Spontaneous emission in a periodic structure [Текст] / V. P. Bykov // Soviet Journal of Experimental and Theoretical Physics. — 1972. — Vol. 35. — P. 269.
61. Yablonovitch, E. Photonic band-gap structures / E. Yablonovitch // JOS A B. — 1993. — Vol. 10, .Y° 2. P. 283—295.
62. Sakoda, K. Optical properties of photonic crystals. Vol. 80 / K. Sakoda. — Springer Science & Business Media, 2004.
63. Wood, R. W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum / R. W. Wood // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. — 1902. — Vol. 4, jfo 21. — p. 396 402.
64. Strutt, J. W. On the dynamical theory of gratings / J. W. Strutt // Proc. R. Soc. Lond. A. — 1907. — Vol. 79, № 532. — P. 399 416.
65. Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves) / U. Fano // JOSA. — 1941. — Vol. 31, № 3. — P. 213—222.
66. Fano, U. Effects of configuration interaction on intensities and phase shifts / U. Fano 11 Physical Review. — 1961. — Vol. 124, № 6. — P. 1866.
67. Munk, B. A. Frequency selective surfaces: theory and design / B. A. Munk. — John Wiley & Sons, 2005.
68. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab / A. Christ [et al] // Physical review letters. — 2003. — Vol. 91, № 18. — P. 183901.
69. Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate / H. Benisty [et al.] // Applied Physics Letters. — 2000. — Vol. 76, № 5. — P. 532—534.
70. Bo,bo,, T. Biosensing using photonic crystal nanolasers / T. Baba // MRS Communications. — 2015. — Vol. 5, № 4. — P. 555—564.
71. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays / R. Adato [et al.] // Proceedings of the National Academy of Sciences. — 2009. — Vol. 106, № 46. — P. 19227—19232.
72. Optical properties of hyperbolic metamaterials (brief review) / I. A. Kolmy-chek [et al.] // JETP Letters. — 2021. — Vol. 114, № 11. — P. 653 664.
73. Highly sensitive and selective sensor chips with graphene-oxide linking layer / Y. V. Stebunov [et al.] // ACS applied materials & interfaces. — 2015. — Vol. 7, № 39. — P. 21727—21734.
74. Brolo, A. G. Plasmonics for future biosensors / A. G. Brolo // Nature Photonics, _ 2012. — Vol. 6, № 11. — P. 709—713.
75. Mejia-Salazar, J. Plasmonic biosensing: Focus review / J. Mejia-Salazar, O. N. Oliveira Jr // Chemical reviews. — 2018. — Vol. 118, № 20. — P. 10617—10625.
76. Shrivastav, A. M. A comprehensive review on plasmonic-based biosensors used in viral diagnostics / A. M. Shrivastav, U. Cvelbar, I. Abdulhalim // Communications biology. — 2021. — Vol. 4, № 1. — P. 1—12.
77. Metastructures for the Giant Enhancement of Raman Scattering in the Near Infrared Spectral Range / V. Kukushkin [et al.] // JETP Letters. — 2020. — Vol. 112, № 1. — P. 31 36.
78. Size plasmon-polariton resonance and its contribution to the giant enhancement of the Raman scattering / V. Kukushkin [et al.] // JETP Letters. — 2017. — Vol. 105, № 10. — P. 677—681.
79. Hutter, E. Exploitation of localized surface plasmon resonance / E. Hut-ter, J. H. Fendler // Advanced materials. — 2004. — Vol. 16, № 19. — P. 1685—1706.
80. Mayer, К. M. Localized surface plasmon resonance sensors / К. M. Mayer, J. H. Hafner // Chemical reviews. — 2011. — Vol. Ill, № 6. — P. 3828—3857.
81. Willets, K. A. Localized surface plasmon resonance spectroscopy and sensing / K. A. Willets, R. P. Van Duyne // Annu. Rev. Phys. Chem. — 2007. — Vol. 58. — P. 267—297.
82. Light interaction with photonic and plasmonic resonances / P. Lalanne [et al.] // Laser & Photonics Reviews. — 2018. — Vol. 12, №5. — P. 1700113.
83. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons / F. De Angelis [et al.] // Nature Nanotechnology _ 2009. — Nov. — Vol. 5. — 67 EP -. — Article.
84. Selective suppression of extinction within the plasmon resonance of gold nanoparticles / S. Linden [et al.] // Applied Physics B. — 2001. — Sept. — Vol. 73, m 4. — P. 311—316.
85. Metasurface for reciprocal spin-orbit coupling of light on waveguiding structures / Q. Jiang [et al.] // Physical Review Applied. — 2018. — Vol. 10, № 1. — P. 014014.
86. Waveguide-plasmon polaritons in photonic crystal slabs with metal nanowires / S. Tikhodeev [et al.] // physica status solidi (c). — 2005. — Vol. 2, m 2. — P. 795—800.
87. Engineering directionality in quantum dot shell lasing using plasmonic lattices / J. Guan [et al.] // Nano letters. — 2020. — Vol. 20, № 2. — P. 1468 1474.
88. Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides / S. Murai [et al.] // Optics express. — 2013. — Vol. 21, № 4. — P. 4250 4262.
89. Engineering mode hybridization in regular arrays of plasmonic nanoparticles embedded in ID photonic crystal / V. Gerasimov [et al] // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2019. — Vol. 224. — P. 303—308.
90. Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths / V. I. Za-komirnyi [et al] // Applied Physics Letters. — 2017. — Vol. Ill, № 12. — P. 123107.
91. Zundel, L. Lattice Resonances Induced by Periodic Vacancies in Arrays of Nanoparticles / L. Zundel, A. May, A. Manjavacas // ACS Photonics. — 2021. — Vol. 8, № 1. — P. 360—368.
92. Super-and Subradiant Lattice Resonances in Bipartite Nanoparticle Arrays / A. Cuartero-Gonzalez [et al.] // ACS nano. — 2020. — Vol. 14, № 9. — P. 11876—11887.
93. Chen, Y. General point dipole theory for periodic metasurfaces: magneto-electric scattering lattices coupled to planar photonic structures / Y. Chen, Y. Zhang, A. F. Koenderink // Optics express. — 2017. — Vol. 25, № 18. — P. 21358—21378.
94. Berkhout, A. A simple transfer-matrix model for metasurface multilayer systems / A. Berkhout, A. F. Koenderink // Nanophotonics. — 2020. — Vol. 9, № 12. — P. 3985—4007.
95. Berkhout, A. Strong Coupling to Generate Complex Birefringence: Metasurface in the Middle Etalons / A. Berkhout, T. A. Wolterink, A. F. Koenderink // ACS Photonics. — 2020. — Vol. 7, № 10. — P. 2799 2806.
96. Zhou, W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions / W. Zhou, T. W. Odom // Nature nanotechnology. — 2011. — Vol. 6, № 7. — P. 423.
97. Ultra-high-Q resonances in plasmonic metasurfaces / M. S. Bin-Alam [et al.] // Nature communications. — 2021. — Vol. 12, № 1. — P. 1—8.
98. Li, L. New formulation of the Fourier modal method for crossed surface-relief gratings / L. Li // JOSA A. — 1997. — Vol. 14, № 10. — P. 2758 2767.
99. Granet, G. Parametric formulation of the Fourier modal method for crossed surface-relief gratings / G. Granet, J.-P. Plumey // Journal of Optics A: Pure and Applied Optics. — 2002. — Vol. 4, № 5. — S145.
100. Matched coordinates and adaptive spatial resolution in the Fourier modal method / T. Weiss [et al.] // Optics express. — 2009. — Vol. 17, № 10. — P. 8051—8061.
101. Quantum Electric Dipole Lattice / M. Dressel [et al.] // Journal of Infrared, Millimeter, and Terahertz Waves. — 2018. — Vol. 39, № 9. — P. 799^815.
102. Dielectric ordering of water molecules arranged in a dipolar lattice / M. Belyanchikov [et al.] // Nature communications. — 2020. — Vol. 11,
j\fo i — p 1 9.
103. Chaumet, P. C. Generalization of the coupled dipole method to periodic structures / P. C. Chaumet, A. Rahmani, G. W. Bryant // Physical Review B. — 2003. — Vol. 67, № 16. — P. 165404.
104. Optical response features of Si-nanoparticle arrays / A. B. Evlyukhin [et al.] // Phys. Rev. B. — 2010. — July. — Vol. 82, issue 4. — P. 045404.
105. Utyushev, A. D. Collective lattice resonances: Plasmonics and beyond / A. D. Utyushev, V. I. Zakomirnyi, I. L. Rasskazov // Reviews in Physics. — 2021. — P. 100051.
106. Korringa, J. On the calculation of the energy of a Bloch wave in a metal / J. Korringa // Physica. — 1947. — Vol. 13, № 6/7. — P. 392 400.
107. Kohn, W. Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium / W. Kohn, N. Rostoker // Physical Review. — 1954. — Vol. 94, № 5. — P. 1111.
108. Leung, K. Multiple-scattering calculation of the two-dimensional photonic band structure / K. Leung, Y. Qiu // Physical Review B. — 1993. — Vol. 48, № 11. — P. 7767.
109. Moroz, A. Quasi-periodic Green's functions of the Helmholtz and Laplace equations / A. Moroz // Journal of Physics A: Mathematical and General. — 2006. — Vol. 39, № 36. — P. 11247.
110. Moroz, A. Metallo-dielectric diamond and zinc-blende photonic crystals / A. Moroz 11 Physical Review B. — 2002. — Vol. 66, № 11. — P. 115109.
111. Lern, H. van der. Band structure of absorptive two-dimensional photonic crystals / H. van der Lem, A. Tip, A. Moroz // JOSA B. — 2003. — Vol. 20, № 6. — P. 1334—1341.
112. Meinzer, N. Plasmonic meta-atoms and metasurfaces / N. Meinzer, W. L. Barnes, I. R. Hooper // Nature Photonics. — 2014. — Vol. 8, № 12. — P. 889.
113. Schatz, G. Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates / G. Schatz // Journal of Molecular Structure: THEOCHEM. — 2001. — Vol. 573, № 1 3. — P. 73 80.
114. Programmable and reversible plasmon mode engineering / A. Yang [et al.] // Proceedings of the National Academy of Sciences. — 2016. — Vol. 113, X« 50. — P. 14201—14206.
115. Effective surface conductivity of optical hyperbolic metasurfaces: from far-field characterization to surface wave analysis / O. Y. Yermakov [et al.] // Scientific Reports. — 2018. — Vol. 8, № 1. — P. 14135.
116. Necada, M. Multiple-scattering T-matrix simulations for nanophotonics: symmetries and periodic lattices / M. Necada, P. Törmä // arXiv preprint arXiv:2006.12968. — 2020.
117. Plasmonic surface lattice resonances at the strong coupling regime / A. Vake-vainen [et al.] // Nano letters. — 2013. — Vol. 14, № 4. — P. 1721 1727.
118. Multipolar Lattice Resonances in Plasmonic Finite-Size Metasurfaces / A. S. Kostyukov [et al.] // Photonics. Vol. 8. — Multidisciplinary Digital Publishing Institute. 2021. — P. 109.
119. Plasmonic lattice Kerker effect in ultraviolet-visible spectral range / V. Gerasi-mov [et al.] // Physical Review B. — 2021. — Vol. 103, № 3. — P. 035402.
120. Lasing at K points of a honeycomb plasmonic lattice / R. Guo [et al.] // Physical review letters. — 2019. — Vol. 122, № 1. — P. 013901.
121. Plasmons in Chains of Spherical Nanoparticles with the Account of All Pairwise Interactions / A. Pikalov [et al.] // Journal of Communications Technology and Electronics. — 2018. — Vol. 63, № 3. — P. 189—197.
122. Becerril, D. Optical band engineering via vertical stacking of honeycomb plasmonic lattices / D. Becerril, G. Pirruccio, C. Noguez // Physical Review B. — 2021. — Vol. 103, № 19. — P. 195412.
123. Murai, S. Photoluminescence from an emitter layer sandwiched between the stack of metasurfaces / S. Murai, K. Agata, K. Tanaka // Journal of Applied Physics_ _ 2021. — Vol. 129, № 18. — P. 183101.
124. Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces / S. Chen [et al] // Advanced Optical Materials. — 2019. — Vol. 7, № 14. — P. 1801477.
125. Chen, X.-D. All-Dielectric Layered Photonic Topological Insulators / X.-D. Chen, X.-T. He, J.-W. Dong // Laser & Photonics Reviews. — 2019. — Vol. 13, № 8. — P. 1900091.
126. Pikalov, A. M. Dispersion relations for plasmons in complex-shaped nanopar-ticle chains / A. M. Pikalov, A. V. Dorofeenko, Y. E. Lozovik // Physical Review g _ 2018. — Vol. 98, № 8. — P. 085134.
127. Babicheva, V. E. Metasurfaces with electric quadrupole and magnetic dipole resonant coupling / V. E. Babicheva, A. B. Evlyukhin // ACS Photonics. — 2018. — Vol. 5, № 5. — P. 2022—2033.
128. Babicheva, V. E. Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays / V. E. Babicheva, A. B. Evlyukhin // Physical Review B. — 2019. — Vol. 99, № 19. — P. 195444.
129. Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions / A. B. Evlyukhin [et al.] // Physical Review B. — 2012. — Vol. 85, № 24. — P. 245411.
130. Optimum gain for plasmonic distributed feedback lasers / A. Zyablovsky [et al.] // Physical Review B. — 2017. — Vol. 95, № 20. — P. 205417.
131. Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states / F. Todisco [et al.] // ACS nano. — 2016. — Vol. 10, № 12. — P. 11360—11368.
132. Baryshev, A. Peculiarities of plasmon-modified magneto-optical response of gold-garnet structures / A. Baryshev, H. Uchida, M. Inoue // JOSA B. — 2013. — Vol. 30, № 9. — P. 2371—2376.
133. Surface plasmon driven enhancement of linear and nonlinear magneto-optical Kerr effects in bimetallic magnetoplasmonic crystals in conical diffraction / V. Novikov [et al.] // Physical Review B. — 2022. — Vol. 105, № 15. — P. 155408.
134. Silver-based plasmonics: golden material platform and application challenges / A. S. Baburin [et al.] // Optical Materials Express. — 2019. — Vol. 9, № 2. — P. 611—642.
135. Gibbs. J. W. Fourier's series / J. W. Gibbs // Nature. — 1898. — Vol. 59, X« 1522. — P. 200—200.
136. Hewitt, E. The Gibbs-Wilbraham phenomenon: An episode in fourier analysis / E. Hewitt, R. E. Hewitt // Archive for History of Exact Sciences. — 1979. — June. — Vol. 21, .V" 2. P. 129 160.
137. Electrodynamics of continuous media. Vol. 8 / L. D. Landau [et al.]. — elsevier, 2013.
138. Draine, B. T. The discrete-dipole approximation and its application to interstellar graphite grains / B. T. Draine // The Astrophysical Journal. — 1988. — Vol. 333. — P. 848—872.
139. Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size / V. Zakomirnyi [et al.] // Optics Letters. — 2019. — Vol. 44, № 23. — P. 5743—5746.
140. Belov, P. A. Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers / P. A. Belov, C. R. Simovski // Phys. Rev. E. — 2005. — Aug. — Vol. 72, issue 2. — P. 026615.
141. Kwadrin, A. Diffractive stacks of metamaterial lattices with a complex unit cell: Self-consistent long-range bianisotropic interactions in experiment and theory / A. Kwadrin, A. F. Koenderink // Physical Review B. — 2014. — Vol. 89, № 4. — P. 045120.
142. Ko, D. Y. K. Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems / D. Y. K. Ko, J. Inkson // Physical Review B. — 1988. — Vol. 38, № 14. — P. 9945.
143. Emission properties of an oscillating point dipole from a gold Yagi-Uda nanoantenna array / S. Lobanov [et al.] // Physical Review B. — 2012. — Vol. 85, № 15. — P. 155137.
144. Taniyama, H. S-matrix calculation of radiation characteristics from dipole oscillation in two-dimensional photonic crystal slabs / H. Taniyama, M. No-tomi // Journal of Applied Physics. — 2008. — Vol. 103, № 8. — P. 083115.
145. Plasmonic nanolaser for intracavity spectroscopy and sensorics / P. Melentiev [et al.] // Applied Physics Letters. — 2017. — Vol. Ill, № 21. — P. 213104.
146. Taflove, A. Computational electrodynamics: the finite-difference time-domain method / A. Taflove, S. C. Hagness. — Artech house, 2005.
147. Johnson, P. B. Optical Constants of the Noble Metals / P. B. Johnson, R. W. Christy // Phys. Rev. B. — 1972. — Dec. — Vol. 6, issue 12. — P. 4370—4379.
148. Maystre, D. Theory of Wood's anomalies / D. Maystre // Plasmonics. — Springer, 2012. — P. 39^83.
149. Spin-orbit interactions of light / K. Y. Bliokh [et al.] // Nature Photonics. — 2015. — Vol. 9, № 12. — P. 796.
150. Spin-optical metamaterial route to spin-controlled photonics / N. Shitrit [et al.] // Science. — 2013. — Vol. 340, № 6133. — P. 724 726.
151. Polarization-controlled tunable directional coupling of surface plasmon polari-tons / J. Lin [et al] // Science. — 2013. — Vol. 340, № 6130. — P. 331 334.
152. Plasmonic meta-slit: shaping and controlling near-field focus / S.-Y. Lee [et al.] // Optica. — 2015. — Vol. 2, № 1. — P. 6—13.
153. A compound phase-modulated beam splitter to distinguish both spin & orbital angular momentum / X. Zhao [et al] // ACS Photonics. — 2019.
154. Mueller, J. B. Polarization-selective coupling to long-range surface plasmon polariton waveguides / J. B. Mueller, K. Leosson, F. Capasso // Nano letters. — 2014. — Vol. 14, № 10. — P. 5524—5527.
155. Yin, X. Polarization-controlled generation of Airy plasmons / X. Yin, L. Chen, X. Li // Optics express. — 2018. — Vol. 26, № 18. — P. 23251 23264.
156. Miroshnichenko, A. E. Polarization traffic control for surface plasmons / A. E. Miroshnichenko, Y. S. Kivshar // Science. — 2013. — Vol. 340, № 6130. — P. 283—284.
157. Polarization-controllably launching localized cosine-Gauss beam with spatially varied metallic nano-apertures / X. Zhao [et al.] // Optics express. — 2019. — Vol. 27, № 16. — P. 22053—22073.
158. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity / L. Huang [et al.] // Light: Science & Applications. — 2013. — Vol. 2, № 3. — e70 e70.
159. Ding, F. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence / F. Ding, R. Deshpande, S. I. Bozhevolnyi // Light: Science k Applications. — 2018. — Vol. 7, № 4. — P. 17178 17178.
160. Bound states in the continuum / C. W. Hsu [et al.] // Nature Reviews Materials. — 2016. — Vol. 1. .V« 9. P. 1—13.
161. Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators / C. Sauvan [et al.] // Phys. Rev. Lett. — 2013. — June. — Vol. 110, issue 23. — P. 237401.
162. Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure / Q. Bai [et al.] // Opt. Express. — 2013. — Nov. — Vol. 21, X« 22. — P. 27371—27382.
163. Vainshtein, L. A. Electromagnetic waves (2nd revised and enlarged edition) / L. A. Vainshtein // Moscow Izdatel Radio Sviaz. — 1988. — Jan.
164. From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing / T. Weiss [et al] // Physical review letters. — 2016. — Vol. 116, № 23. — P. 237401.
165. Analytical normalization of resonant states in photonic crystal slabs and periodic arrays of nanoantennas at oblique incidence / T. Weiss [et al.] // Physical Review B. — 2017. — Vol. 96, № 4. — P. 045129.
166. Design principles for sensitivity optimization in plasmonic hydrogen sensors / F. Sterl [et al] // ACS sensors. — 2020. — Vol. 5, № 4. — P. 917 927.
167. Chiral Surface Lattice Resonances / E. S. Goerlitzer [et al.] // Advanced Materials. — 2020. — Vol. 32, № 22. — P. 2001330.
168. Bianisotropy for light trapping in all-dielectric metasurfaces / A. B. Evlyukhin [et al.] // Physical Review B. — 2020. — Vol. 101, № 20. — P. 205415.
169. Polarization Switching Between Electric and Magnetic Quasi-Trapped Modes in Bianisotropic All-Dielectric Metasurfaces / A. B. Evlyukhin [et al.] // Laser & Photonics Reviews. — 2021. — Vol. 15, № 12. — P. 2100206.
170. Akimov, A. Optical Fano resonances in photonic crystal slabs near diffraction threshold anomalies / A. Akimov, N. A. Gippius, S. G. Tikhodeev // JETP letters. — 2011. — Vol. 93, № 8. — P. 427.
171. Deep learning with coherent nanophotonic circuits / Y. Shen [et al.] // Nature Photonics. — 2017. — Vol. 11, № 7. — P. 441 446.
172. Fang, Y. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits / Y. Fang, M. Sun // Light: Science & Applications. — 2015. — Vol. 4, № 6. — e294—e294.
173. Programmable photonic circuits / W. Bogaerts [et al] // Nature. — 2020. — Vol. 586, № 7828. — P. 207 216.
174. Plasmonic antennas for directional sorting of fluorescence emission / H. Aouani [et al.] // Nano letters. — 2011. — Vol. 11, № 6. — P. 2400 2406.
175. Broadband Light Out-Coupling Enhancement of Flexible Organic Light-Emitting Diodes Using Biomimetic Quasirandom Nanostructures / R. Wang [et al.] // Advanced Optical Materials. — 2015. — Vol. 3, № 2. — P. 203—210.
176. Extracting Light from Polymer Light-Emitting Diodes Using Stamped Bragg Gratings / J. M. Ziebarth [et al] // Advanced Functional Materials. — 2004. — Vol. 14, № 5. — P. 451 456.
177. Tarriir, T. Analysis and design of grating couplers / T. Tamir, S.-T. Peng // Applied physics. — 1977. — Vol. 14, № 3. — P. 235 254.
178. Gaussian beams from variable groove depth grating couplers in planar waveguides / K. A. Bates [et al.] // Applied optics. — 1993. — Vol. 32, № 12. — P. 2112—2116.
179. Mehta, K. K. Precise and diffraction-limited waveguide-to-free-space focusing gratings / K. K. Mehta, R. J. Ram // Scientific reports. — 2017. — Vol. 7,
j\fo i — p_ i 8.
180. Taillaert, D. Compact efficient broadband grating coupler for silicon-on-insu-lator waveguides / D. Taillaert, P. Bienstman, R. Baets // Optics letters. — 2004. — Vol. 29, № 23. — P. 2749 2751.
181. Apodized waveguide grating couplers for efficient coupling to optical fibers / X. Chen [et al] // IEEE Photonics Technology Letters. — 2010. — Vol. 22, X« 15. _ p. H56—1158.
182. High-efficiency grating-couplers: demonstration of a new design strategy / R. Marchetti [et al.] // Scientific reports. — 2017. — Vol. 7, № 1. — P. 1—8.
183. Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency / W. S. Zaoui [et al.] // Optics express. — 2012. — Vol. 20, № 26. — B238 B243.
184. Michaels, A. Inverse design of near unity efficiency perfectly vertical grating couplers / A. Michaels, E. Yablonovitch // Optics express. — 2018. — Vol. 26, № 4. — P. 4766—4779.
185. Wide bandwidth and high coupling efficiency Si 3 N 4-on-SOI dual-level grating coupler / W. D. Sacher [et al.] // Optics express. — 2014. — Vol. 22, № 9. _ p. 10938—10947.
186. A high efficiency silicon nitride waveguide grating coupler with a multilayer bottom reflector / J. Hong [et al.] // Scientific reports. — 2019. — Vol. 9, № 1. — P. 1—8.
187. Fully etched apodized grating coupler on the SOI platform with- 0.58 dB coupling efficiency / Y. Ding [et al.] // Optics letters. — 2014. — Vol. 39, № 18. — P. 5348—5350.
188. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers / D. Taillaert [et al.] // IEEE Journal of Quantum Electronics. — 2002. — Vol. 38, № 7. — P. 949 955.
189. A compact two-dimensional grating coupler used as a polarization splitter / D. Taillaert [et al.] // IEEE Photonics Technology Letters. — 2003. — Vol. 15, № 9. — P. 1249—1251.
190. A grating-coupler-enabled CMOS photonics platform / A. Mekis [et al.] // IEEE Journal of Selected Topics in Quantum Electronics. — 2010. — Vol. 17, .V" 3. P. 597—608.
191. Waveguide grating coupler with subwavelength microstructures / R. Halir [et al.] // Optics letters. — 2009. — Vol. 34, № 9. — P. 1408 1410.
192. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6x 3.6 ^m2 footprint / N. Zhou [et al] // Science advances. — 2019. — Vol. 5, № 5. — eaau9593.
193. Forked grating coupler optical vortex beam interface for silicon photonics / C. T. Nadovich [et al.] // 2016 Photonics North (PN). — IEEE. 2016. — P. 1—1.
194. Resonant and non-resonant generation and focusing of surface plasmons with circular gratings / J. M. Steele [et al.] // Optics Express. — 2006. — Vol. 14, № 12. — P. 5664 5670.
195. Spiral plasmonic nanoantennas as circular polarization transmission filters / K. Bachman [et al.] // Optics express. — 2012. — Vol. 20, № 2. — P. 1308—1319.
196. Enhancing resonances of optical nanoantennas by circular gratings / J. Qi [et al.] // Optics express. — 2015. — Vol. 23, № 11. — P. 14583 14595.
197. Optical grating coupler biosensors / J. Vörös [et al.] // Biomaterials. — 2002. — Vol. 23, № 17. — P. 3699 3710.
198. Ramuz, M. Optical biosensors based on integrated polymer light source and polymer photodiode / M. Ramuz, D. Leuenberger, L. Bürgi // Journal of Polymer Science Part B: Polymer Physics. — 2011. — Vol. 49, № 1. — P. 80—87.
199. Angular selection of transmitted light and enhanced spontaneous emission in grating-coupled hyperbolic metamaterials / D. Lee [et al.] // Optics Express. _ 2021. — Vol. 29, № 14. — P. 21458 21472.
200. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials / K. V. Sreekanth [et al.] // Scientific reports. — 2014. — Vol. 4, № 1. — P. 1—7.
201. Recent advances in resonant waveguide gratings / G. Quaranta [et al.] // Laser & Photonics Reviews. — 2018. — Vol. 12, № 9. — P. 1800017.
202. Compact spectrometer based on a disordered photonic chip / B. Redding [et al.] // Nature Photonics. — 2013. — Vol. 7, № 9. — P. 746 751.
203. Fully integrated quantum photonic circuit with an electrically driven light source / S. Khasminskaya [et al.] // Nature Photonics. — 2016. — Vol. 10, .V" 11. P. 727 732.
204. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths / O. Kahl [et al.] // Scientific reports. — 2015. — Vol. 5, № 1. — P. 1—11.
205. Cavity-enhanced and ultrafast superconducting single-photon detectors / A. Vetter [et al] // Nano letters. — 2016. — Vol. 16, № 11. — P. 7085 7092.
206. Size effect of the Ge2Sb2Te5 cell atop the silicon nitride O-ring resonator on the attenuation coefficient / P. Lazarenko [et al] // APL Materials. — 2021. — Vol. 9, № 12. — P. 121104.
207. Transparent, optical, pressure-sensitive artificial skin for large-area stretch-able electronics / M. Ramuz [et al.] // Advanced Materials. — 2012. — Vol. 24, № 24. — P. 3223—3227.
208. Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources / G. Lozano [et al] // Light: Science k Applications. — 2013. — Vol. 2, № 5. — e66 (<5G.
209. Metallic nanostructures for efficient LED lighting / G. Lozano [et al.] // Light: Science k Applications. — 2016. — Vol. 5, № 6. — el6080^el6080.
210. Plasmon resonances in a two-dimensional lattice of metal particles in a dielectric layer: Structural and polarization properties / A. Shaimanov [et al.] // Journal of Experimental and Theoretical Physics. — 2017. — Vol. 124, № 4. — P. 584—591.
211. Fourier-imaging spectroscopy of two-dimensional gold nanodisk array on photoluminescent layer / S. Pavlov [et al.] // Semiconductors. — 2020. —Vol. 54,
№ 14. _ p. 1893—1896.
212. Deuterogenic plasmonic vortices / Y. Yang [et al.] // Nano Letters. — 2020. — Vol. 20, № 9. — P. 6774 6779.
213. Polarization-Independent Wavefront Manipulation of Surface Plasmons with Plasmonic Metasurfaces / L. Chen [et al.] // Advanced Optical Materials. — 2020. — Vol. 8, № 22. — P. 2000868.
214. Polarization-controlled surface plasmon holography / Q. Xu [et al] // Laser & Photonics Reviews. — 2017. — Vol. 11, № 1. — P. 1600212.
215. Ultracompact broadband plasmonic Polarimeter / K. Lee [et al.] // Laser & Photonics Reviews. — 2018. — Vol. 12, № 3. — P. 1700297.
216. Polarization-to-Phase Coupling at a Structured Surface for Plasmonic Structured Illumination Microscopy / C. Zhang [et al.] // Laser & Photonics Reviews. _ 2018. — Vol. 12, № 10. — P. 1800148.
217. Metasurface-Enhanced Lab-on-Fiber Biosensors / M. Consales [et al.] // Laser & Photonics Reviews. — 2020. — P. 2000180.
218. Pham,, K. A. A. Caracterisation de la chiralite optique dans des systemes plas-moniques : PhD thesis / Pham Kim Anh Aline. — 2018. — 2018GREAY051.
219. Revah, M. Spin-locking metasurface for surface plasmon routing / M. Revah, A. Yaroshevsky, Y. Gorodetski // Scientific Reports. — 2019. — June. — Vol. 9, № 1. — P. 8963.
220. Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs / S. Lobanov [et al.] // Physical Review B. — 2015. — Vol. 92, № 20. — P. 205309.
221. Rakic, A. D. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum / A. D. Rakic // Applied optics. — 1995. — Vol. 34, № 22. — P. 4755 4767.
222. Purcell, E. M. Spontaneous emission probabilities at radio frequencies /
E. M. Purcell // Confined Electrons and Photons. — Springer, 1995. — P. 839—839.
223. Craig, F. B. Absorption and scattering of light by small particles / F. B. Craig,
F. Bohren, D. Huffman // Inc: John Wiley & Sons, New York, USA. — 1983.
224. Chen, P. Y. Spectral decomposition of the Lippmann-Schwinger equation applied to cylinders / P. Y. Chen, D. J. Bergman, Y. Sivan // arXiv preprint arXiv: 1705.01747. — 2017.
225. Electrodynamics of noble metal nanoparticles and nanoparticle clusters / T. Jensen [et al.] // Journal of Cluster Science. — 1999. — Vol. 10, № 2. — P. 295—317.
226. Remarkable Predictive Power of the Modified Long Wavelength Approximation / I. L. Rasskazov [et al] // The Journal of Physical Chemistry C. — 2021. — Vol. 125, № 3. — P. 1963 1971.
227. Moroz, A. Depolarization field of spheroidal particles / A. Moroz / / JOS A B. — 2009. — Vol. 26, № 3. — P. 517 527.
228. Ford, G. W. Electromagnetic interactions of molecules with metal surfaces / G. W. Ford, W. H. Weber // Physics Reports. — 1984. — Vol. 113, № 4. — P. 195—287.
229. Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale / P. P. Ewald // Annalen der physik. — 1921. — Vol. 369, № 3. — P. 253—287.
230. Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation / I. Stevanovic [et al.] // IEEE Transactions on Microwave Theory and Techniques. — 2006. — Vol. 54, LEMA-ARTI-CLE-2006—014. — P. 3688 3697.
231. Papanicolaou, V. G. Ewald's method revisited: Rapidly convergent series representations of certain Green's functions / V. G. Papanicolaou // Journal of Computational Analysis and Applications. — 1999. — Vol. 1, № 1. — P. 105—114.
232. De Wette, F. Internal field in general dipole lattices / F. De Wette, G. Schacher // Physical Review. — 1965. — Vol. 137, 1A. — A78.
233. Collin, R. E. Field theory of guided waves / R. E. Collin. — McGraw-Hill, 1960.
234. Green's functions for Maxwell's equations: application to spontaneous emission / F. Wijnands [et al.] // Optical and Quantum Electronics. — 1997. — Vol. 29, № 2. — P. 199—216.
235. Gramotnev, D. K. Plasmonics beyond the diffraction limit / D. K. Gramotnev, S. I. Bozhevolnyi // Nature photonics. — 2010. — Vol. 4, № 2. — P. 83 91.
236. Resonant mode coupling of optical resonances in stacked nanostructures / N. A. Gippius [et al.] // Optics Express. — 2010. — Vol. 18, № 7. — P. 7569—7574.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.