Молекулярно-массовое распределение и гидродинамические характеристики кардовых полибензимидазолов тема диссертации и автореферата по ВАК РФ 02.00.06, кандидат химических наук Фоменков, Александр Игоревич
- Специальность ВАК РФ02.00.06
- Количество страниц 125
Оглавление диссертации кандидат химических наук Фоменков, Александр Игоревич
ВВЕДЕНИЕ.
Актуальность.
Цель работы.
Задачи работы.
Научная новизна.
СПИСОК УСЛОВНЫХ СОКРАЩЕНИЙ.
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР.
1. Топливные элементы с фосфорнокислотным электролитом.
2. Неорганическая матрица для ФК электролита.
3. Основные проблемы ФКТЭ с неорганической матрицей и преимущества использования полимерных матриц.
4. Полимерная матрица для ФК электролита.
Полибензимидазолы.
Альтернативные полимерные матрицы.
5. Характеристики ФК МЭБ с полимерной мембраной.
6. Основные подходы к синтезу полибензазолов.
Полициклоконденсация в ПФК или реакция Иеакуры.
Полщиклокондесация в реагенте Итона.
ПЦК в расплаве.
Двустадийная полициклоконденсация.
7. Молекулярно-массовое распределение продуктов линейной необратимой поликонденсации.
8. Гель-проникающая хроматография для анализа полимеров.
ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.
Синтез полимеров и очистка исходных соединений.
Очистка и хранение растворителей.
Методы исследования.
ГЛАВА 3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.
1. ГИДРОДИНАМИЧЕСКИЕ СВОЙСТВА КАРДОВЫХ
ПОЛИБЕНЗИМИДАЗОЛОВ.
Краткие выводы.
2. ИСПОЛЬЗОВАНИЕ МЕТОДА ГЕЛЬ-ПРОНИКАЮЩЕЙ ХРОМАТОГРАФИИ ДЛЯ ИССЛЕДОВАНИЯ ЗАКОНОМЕРНОСТЕЙ
СИНТЕЗА ПБИ.
Разработка методики эксюпозионной хроматографии ПБИ.
Исследование закономерностей синтеза ПБИ.
Краткие выводы.
3. ИССЛЕДОВАНИЕ РАБОТОСПОСОБНОСТИ МЕМБРАН
В МАКЕТАХ МЭБ.
ВЫВОДЫ.
БЛАГОДАРНОСТИ.
Рекомендованный список диссертаций по специальности «Высокомолекулярные соединения», 02.00.06 шифр ВАК
Новые подходы к синтезу и химической модификации полибензимидазолов2005 год, кандидат химических наук Рыбкин, Юрий Юрьевич
Синтез новых полибензимидазолов для высокотемпературных топливных элементов на водороде2010 год, кандидат химических наук Пономарев, Иван Игоревич
Синтез, структура и свойства новых ароматических азотсодержащих мономеров для полибензимидазолов2013 год, кандидат наук Валяева, Ася Николаевна
Синтез ароматических полиамидинов на основе динитрилов и диаминов2013 год, кандидат химических наук Холхоев, Бато Чингисович
Протонпроводящие мембраны на основе смесей гетероцепных термостойких полимеров2020 год, кандидат наук Григорьева Мария Николаевна
Введение диссертации (часть автореферата) на тему «Молекулярно-массовое распределение и гидродинамические характеристики кардовых полибензимидазолов»
В настоящее время ведутся интенсивные исследования в области развития альтернативных экологически безопасных источников энергии [']. Одной из важнейших проблем в этой области является разработка топливного элемента на 'основе полимерно-электролитной мембраны, в котором происходит прямое преобразование энергии химической реакции в электричество, а в качестве топлива используют водород или метанол. Наиболее интенсивно изучаемыми материалами для изготовления мембраны являются полибензимидазолы (ПБИ) различного строения [2]. Известно, что многие свойства полимерных пленок, в частности механические свойства, протонная проводимость и другие могут зависеть от молекулярно массовых характеристик полимера и структуры раствора, из которого получена пленка. Поэтому изучение свойств растворов ПБИ и их молекулярно массовых характеристик является в настоящее время весьма актуальной задачей.
Актуальность
В настоящее время существует проблема принципиального улучшения потребительских свойств топливных элементов (ТЭ) как высокоэффективных, экологически чистых преобразователей запасенной энергии топлива в электрическую энергию (с последующим возможным преобразованием в механическую и т.п.). Высокая эффективность ТЭ при конверсии энергии топлива в полезную работу обусловлена отсутствием ограничений, накладываемых циклом Карно для тепловых машин, что типично для двигателей внутреннего сгорания и аналогичных систем.
Представляется, что наибольшее распространение получат ТЭ, на протонпроводящей твердой полимерной мембране. В качестве топлива наиболее перспективными являются водород и метанол. Основные потребности в промышленной реализации энергетических установок на базе ТЭ могут быть очерчены следующим образом:
Транспортные приложения: замена двигателей внутреннего сгорания на электродвигатели с питанием от батарей ТЭ позволит увеличить эффективность конверсии энергии топлива в механическую и снизить вредные выбросы в атмосферу, что существенно улучшит экологию крупных городов.
Стационарные приложения: стационарные и полустационарные энергоустановки на базе ТЭ могут решить проблему бесперебойного обеспечения электроэнергией и теплом промышленных предприятий, медицинских учреждений (больниц, госпиталей), удаленных радио- и телекоммуникационных точек (в том числе операторов сотовой связи), частных потребителей, отдельных удаленных населенных пунктов и индивидуальных построек, в том числе в жилом секторе. Возможность совместного использования вырабатываемой электроэнергии и выделяемого при работе ТЭ тепла позволяет повысить общую эффективность использования топлива до 80%.
Главным компонентом в ТЭ является протонпроводящая мембрана, способная работать в жестких условиях. К этим условиям относятся высокие температуры процессов, иногда превышающие 180 °С, и химически активная по отношению к мембранам сильнокислая среда. Кроме того, в реальных условиях работы ТЭ метанол, используемый в качестве топлива, весьма агрессивен, а также агрессивны и продукты его частичного окисления; окислители (например, кислород) и катализаторы, что связано с о химически стойких систем, матриц для иммобилизации катализаторов, твердых электролитов для протонпроводящих мембран [3, 4,5] и др. Одним из наиболее изученных классов ПГА, использованных в качестве сепаратора ТЭ в виде полимерно-электролитных комплексов с ортофосфорной кислотой, являются полибензимидазолы (ПБИ) [6, 1, 8]. Однако в процессе работы топливного элемента ортофосфорная кислота мигрирует из мембраны в катодное пространство топливной ячейки, что приводит к снижению эффективности работы элемента.
Интерес исследователей к синтезу ПБИ наиболее бурно развивался в 60-90 гг., однако большинство существующих ограничений и трудностей, связанных с синтезом и переработкой этих полимеров, действуют и поныне. Используемые в настоящее время традиционные методы синтеза в полифосфорной кислоте (ПФК) и реагенте Итона (РИ) (смесь МеБОзН с Р2О5), являются наиболее эффективными и позволяют получать ПБИ, несмотря на ряд недостатков и синтетических ограничений. Зачастую выбор растворителя для синтеза ПБИ зависит от химического строения используемых мономеров, что может накладывать ограничения на его применение и приводить к получению сшитых или низкомолекулярных полимеров. Следует отметить, что в литературе практически отсутствуют данные детальных исследований молекулярно-массовых характеристик ПБИ, перспективных для приложений альтернативной энергетики. Наиболее вероятно, что это связано с большой степенью практической ориентации этих исследований.
Цель работы
Основное внимание уделено кардовым ПБИ, содержащим фталидный фрагмент.
Задачи работы
• Изучение зависимости ММР от условий синтеза и химического строения звена ПБИ.
• Изучение гидродинамических характеристик кардовых ПБИ в различных растворителях.
• Получение полиэлектролитных мембран для среднетемпературных топливных элементов, их изучение и сравнение характеристик с мировыми аналогами.
Научная новизна
Научная новизна диссертационной работы заключается в том, что впервые:
• Исследованы молекулярно-массовые и гидродинамические характеристики кардовых ПБИ и установлены основные закономерности их гидродинамического поведения в широком круге растворителей.
• Исследованы гидродинамические характеристики некоторых кардовых полибензимидазолов в комплексном растворителе вода/спирт/щелочь, что позволило найти экологически приемлемые условия для переработки и формования пленок из этих полимеров.
• Разработана методика анализа ММР полибензимидазолов различного строения методом гель-проникающей хроматографии.
• Определена зависимость между условиями синтеза и ММР некоторых ПБИ.
• Показано, что синтез ПБИ методом полициклоконденсации в реагенте Итона при определенных условиях сопровождается образованием фракции микрогеля. Описаны наиболее вероятные побочные реакции, приводящие к её образованию.
• Продемонстрирована возможность использования исследованных ПБИ как материала для мембран топливных элементов и соответствие характеристик полученных мембран показателям мировых аналогов.
СПИСОК УСЛОВНЫХ СОКРАЩЕНИЙ
ТЭ - топливный элемент ДМФА - диметилформамид. ДМАА - диметилацетамид. МП — К-метил-2-пирролидон. МСК — метансульфокислота.
ДФФДК - 4,4'-дифенилфталиддикарбоновая кислота.
ТАДФО - 3,3'4,4'-тетрааминодифенилоксид.
ДАБ — 3,3'-диаминобензидин.
ТАДФС - 3,3',4,4'-тетрааминодифенилсульфон.
ДАБК — 3,4-диаминобензойная кислота.
ПФК — полифосфорная кислота.
РИ - реагент Итона.
ПБИ — полибензимидазолы.
ПБА — полибензазолы.
ПГА — полигетероарилены.
ПЦК — полициклоконденсация.
МЭБ — мембранно-электродный блок
ФК - фосфорная кислота
ФКТЭ - фосфорнокислотный топливный элемент
ПТФЭ - политетрафторэтилен
МЭБ — мембранно-электродный блок
ММХ - молекулярно-массовые характеристики
ГПХ - гель-проникающая хроматография
ММР — молекулярно-массовое распределение
ЭХ - эксклюзионная хроматография
НРЦ — напряжение разомкнутой цепи
Mw — средневесовая молекулярная масса
Мп - среднечисловая молекулярная масса
D - коэффициент диффузии
Rh - гидродинамический радиус
ПАЭК - полиариленэфиркетоны
ДРС — динамическое рассеяние света
СРС — статическое рассеяние света
Похожие диссертационные работы по специальности «Высокомолекулярные соединения», 02.00.06 шифр ВАК
Пиримидинсодержащие полимеры на основе имидов ненасыщенных дикарбоновых кислот2009 год, кандидат химических наук Санжиева, Евгения Владимировна
Явления переноса в мини-топливных элементах с прямым окислением метанола2007 год, кандидат технических наук Бокач, Дмитрий Алексеевич
Ароматические полибензимидазолы для высокотемпературных протонпроводящих мембран2009 год, кандидат химических наук Лейкин, Алексей Юрьевич
Физико-химические закономерности формирования и структура полимерных пленок при электрохимическом инициировании полимеризации2000 год, доктор химических наук Колзунова, Лидия Глебовна
Транспортные свойства композиционных мембран с азотсодержащими основаниями2013 год, кандидат химических наук Лысова, Анна Александровна
Заключение диссертации по теме «Высокомолекулярные соединения», Фоменков, Александр Игоревич
выводы
1. Впервые проведено комплексное исследование молекулярно-массовых и гидродинамических характеристик кардовых полибензимидазолов, синтезированных в реагенте Итона, сочетанием различных методов: статического и динамического рассеяния света, вискозиметрии, диффузионно-седиментационного анализа.
2. Методами вискозиметрии и динамического рассеяния света исследованы гидродинамические характеристики некоторых кардовых полибензимидазолов в комплексных средах вода/спиртовая щелочь при разных пропорциях растворителей и концентрациях щелочей и показана их зависимость от состава растворителя.
3. Разработана методика анализа ММР полибензимидазолов различного строения методом гель-проникающей хроматографии (ГПХ) в среде ДМФА-LiCl при комнатной температуре с калибровкой по полистирольным стандартам.
4. Установлено, что в полибензимидазолах различного химического строения, в том числе не содержащих фталидных фрагментов, синтезированных в реагенте Итона, при определенных условиях (сочетании температуры, продолжительности реакции и состава реакционной среды) образуется фракция микрогеля.
5. Разветвленное строение основной фракции подтверждено сопоставлением результатов ГПХ с данными статического и динамического рассеяния света и диффузионно-седиментационного анализа.
6. На основании полученных данных выдвинуто предположение о том, что наиболее вероятным направлением протекания побочной реакции, приводящей к ветвлению и сшиванию макромолекул при синтезе изучаемых полибензимидазолов, является электрофильная атака концевой карбоксильной группы полимера на бензольные ядра основной цепи.
7. Проведенные исследования позволили найти оптимальные технологические параметры синтеза и переработки порошка полимера в пленки из растворов в амидных растворителях и водно-спиртовых смесях.
8. Показана возможность практического использования пленок на основе исследованных полибензимидазолов в качестве протонпроводящих мембран среднетемпературных водородо-воздушных топливных элементов (ТЭ). Полученные результаты свидетельствуют о высокой конкурентоспособности созданных мембран на рынке ТЭ.
БЛАГОДАРНОСТИ
Автор выражает сердечную благодарность своим научным руководителям А.Р. Хохлову и И.В. Благодатских за руководство диссертационной работой, постоянную помощь, заботу и поддержку.
Автор благодарен коллегам из Лаборатории физической химии полимеров и Группы синтеза гетероциклических полимеров ИНЭОС РАН, помогавшим выполнению настоящей работы. Автор особенно признателен И.И. Пономареву, Т.П. Брагиной, Г.И. Тимофеевой, Д.И. Разоренову, Ю.А. Волковой и Ив.И. Пономареву за непосредственное участие в ряде экспериментов, помощь в интерпретации результатов и плодотворные идеи а также А.С. Перегудову за запись и помощь в интерпретации ЯМР спектров.
Автор считает необходимым отдельно поблагодарить сотрудников Кафедры физики полимеров и кристаллов МГУ им. М.В. Ломоносова: Л.В. Гусева — за создание благоприятного микроклимата в коллективе и всестороннюю поддержку на протяжении всего срока проведения работы; М.О. Галлямова - за помощь в систематизации литературных данных по топливным элементам.
Список литературы диссертационного исследования кандидат химических наук Фоменков, Александр Игоревич, 2009 год
1. Sopian К., Wan Daud W.R. // Challenges and future developments in proton exchange membrane fuel cells. Renewable Energy. 2006. V. 31. № 5 P. 719-727.
2. Jayakody J.R.P., Chung S.H., Durantino L., Zhang H., Xiao L., Benicewicz B.C., Greenbauma S.G. // NMR Studies Of Mass Transport In High Acid Content Fuel Cell Membranes Based On PBI/Phosphoric Acid. J. Electrochem. Soc. 2007. V. 2. № 154. P. B242.о
3. A.JI. Русанов, Д.Ю. Лихачев, К.Мюллен. // Электролитические протонпроводящие мембраны на основе ароматических конденсационных полимеров. Успехи химии, 2002,71,862-877.
4. Бюлер К. Термостойкие полимеры // Пер. с нем. под ред. Выгодского Я.С. М. «Химия», 1984. (Buhler K.-U. // Spezialplaste, Akademie-Verlag, Berlin, 1978).
5. B.B. Коршак, Н.М. Козырева, А.И. Кирилин. Н.И. Бекасова, Л.Г. Комарова, Е.С. Кронгауз, В.А. Сергеев, В.И. Неделысин, А.А. Жданов, М.М. Левицкий, В.П. Алексеева. // Успехи в области элементоорганических полимеров, М. "Наука", 1988, 320.
6. J.-T. Wang, S.Wasmus, R.F.Savinell. // Real-time Mass Spectrometric Study of Methanol Crossover in a Direct Methanol Fuel Cell. J. Electrochem. Soc., 1996, 143, 1233.
7. S.R. Samms, S. Wasmus, R.F. Savinell. // A Direct Methanol Fuel Cell using Acid Doped Polybenzimidazole as a Polymer Electrolyte. J. Electrochem. Soc., 1996,143, 1225.
8. R.F. Savinell, E. Yeager, D. Tryk, U. Landau, J.S. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers. // Polymer electrolyte for operation at temperatures up to 200°C. J. Electrochem. Soc., 1994, 141, L46-L48.
9. L. Qingfeng, H.A. Hjuler, N.J. Bjerrum // Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes. Electrochim. Acta. 2000. V. 45. P. 42194226.
10. Plast. Technol. 1981. V. 27. №3. P. 33.
11. Maiti S., Mandal B.K. // Aromatic polyethers by nucleophilic displacement polymerization. Progr. Polym. Sci. 1986. V. 12. P. 111.
12. Mullins M.J., Woo E.P. // Synthesis and properties of poly(aromatic ketones). J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1987. V. 27. №2. P. 313-341.
13. Yaroslavtsev A.B. // Modification of solid state proton conductors. Solid State Ionics. 2005. V. 176. №39-40. P. 2935.i «у
14. Ярославцев А.Б. // Протонная проводимость неорганических гидратов. Успехи химии. 1994. Т. 63. №5. С. 449.
15. Q. Li, R. Не, J.O. Jensen, N.J. Bjerrum // PBI-Based Polymer Membranes for High Temperature Fuel Cells Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells. 2004. V.4. N3. P.147-159.
16. J.C. Yang, Y.S. Park, S.H. Seo, H.J. Lee, J.S. Hoh // Development of a 50 kW PAFC power generation system. J. Power Sources 2002, V.106, P. 68-75. Библиогр.: с. 74—75.
17. O.E. Kongstein, T. Berning, B. Borresen, F. Seland, R. Tunold // Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy 2007. V. 32. P. 418-422.
18. G. Liu, H. Zhang, Y. Zhai, Y. Zhang, D. Xu, Zh.-g. Shao // Pt4Zr02/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI. Electrochem. Commun. 2007. V.9. P. 135-141.
19. Y. Zhai, H. Zhang, D. Xing, Zh.-G. Shao // The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test. J. Power Sources 2007. V.164. P.126-133.
20. Y. Zhai, H. Zhang, G. Liu, J. Ни, B. Yia // Degradation Study on MEA in H3P04/PBI High-Temperature PEMFC Life Test. J. Electrochem. Soc. 2007. V.154. N1. P. B72-B76.
21. Y. Zhai, H. Zhang, Y. Zhang, D. Xing // A novel H3P04/Nafion-PBI composite membrane for enhanced durability of high temperature РЕМ fuel cells. J. Power Sources 2007. V. 169. P. 259-264.
22. Ch. Pan, Q. Li, J.O. Jensen, R. Heb, L.N. Cleemann, M.S. Nilsson, N.J. Bjerrum, Q. Zeng // Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells. J. Power Sources 2007. Y.172. P. 278-286.
23. L. Xiao, H. Zhang, E. Scanlon, L. S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, B.C. Benicewicz // High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process. Chem. Mater. 2005. V.17. P. 5328-5333.
24. T.J. Schmidt, J. Baurmeister // Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J. Power Sources 2008. V.176. P.428-434.
25. K.C. Neyerlin, A. Singh, D. Chu // Kinetic characterization of a Pt-Ni/C catalyst with a phosphoric acid doped PBI membrane in a proton exchange membrane fuel cell. J. Power Sources 2008, V.176. P. 112-117.
26. V.V. Korshak, M.M. Teplyakov // J. Macromolec. Sci. C, 1971, 5,. № 2. P. 409.
27. E.C. Кронгауз, A.JI. Русанов, Т.Л. Ренард. // Полифосфорная кислота в реакциях циклизации и полициклизации. Успехи химии. 1970, 39, № 9, 1591.
28. В.В. Коршак, М.М. Тепляков / Прогресс полимерной химии. М., 1969. 198 с.
29. В.В. Коршак / Термостойкие полимеры. М., 1969. 411.
30. М. Ueda, М. Sato, A. Mochizuki. // Synthesis of polyamides by direct poly condensation with N,N'-phenylphosphonobis2(3H)-benzothiazolone. as a new activating agent. Macromolecules, 1985,18,2723.
31. C.S. Marvel. //New Aspects of Polycyclisation. Polymer Preprints, 1964, 5, № 1,167.
32. C.S. Marvel. // Ladder Polyheteroarylenes Progress and Problems. Polymer Preprints, 1965, 6, № 1, 15.
33. C.S. Marvel. // SPE J, 1965, 5, № 1, 29.
34. C.S. Marvel. Pure Appl. Chem // Thermally stable polymers. 1968, 16, №23, 351.
35. C.S. Marvel. // Some reactivity ratios of esters of acrylic acid. Appl. Polymer Symp., 1973, 22,47.
36. C.S.Marvel. // J. Macromolec. Sci. C, 1975,13, № 2,219.
37. В.В. Коршак, А.Л. Русанов, Д.С. Тугуши // Восстановительная полигетероциклизация новый метод синтеза полигетероариленов. Успехи химии, 1981, 50, № 12, 2250-2269.
38. V.V.Korshak, A.L.Rusanov, D.S. Tugushi. // Reactions using nitro-containing monomers for the synthesis of aromatic polymers. Polymer, 1984, 25, № 11, 1539.
39. В.В. Коршак, Г.В. Казакова, А.Л. Русанов //Высокомолек. соед. А, 1989, 31, № 1, 5.
40. Y. Imai, К. Uno, Y. Iwakura // Makromolek. Chem., 1965, 83,179.
41. N. Yoda, F. Kurihara//J. Polymer Sci. Macromolec. Revs., 1971, 5, 109.
42. В.В. Коршак, Е.С. Кронгауз, A.JI. Русанов, А.П. Травникова // Высокомолек. соед. А, 1974, 16, №1,35.
43. Y. Imai, L. Taoka, К. Uno, Y. Iwakura. // Makromolek. Chem., 1965, 83, 167.
44. G.F. D'Alelio, H.E. Kieffer // J. Macromolec. Sci. A, 1968, 2, № 6, 1275.
45. P.E. Eaton, G.R. Carlson, J.T. Lee // J.Org.Chem., 1973, 38, 4071.
46. M. Ueda, K. Uchiyama, T. Kano. // Synthesis, 1984, 323.
47. M. Ueda, T. Kano // Makromol. Chem. Rapid Commun., 1984, 5. 833.
48. M. Ueda, H. Sugita, M. Sato // J. Polymer Sci.,1986, 24,1019.
49. В.В. Коршак // Успехи химии, 1982, 51, № 12,2096.
50. E.W. Neuse // Advances in Polymer Sci., 1982, 47 , 1.
51. C.S. Marvel // SPE J., 1964, 20, № 3, 220.
52. W.W. Moyer, C. Cole, T. Anyos // J. Polymer Sci. A, 1965,3, № 6, 2107.
53. В.В. Коршак, Г.М. Цейтлин, А.И. Павлов //Докл. АН СССР, 1965,163, № 1, 116.
54. V.V. Korshak, A.L. Rusanov, L.Kh. Plieva / Faserforschung und Textiltechnik,1977, 28, №8,371.
55. А.Я. Чернихов, B.A. Исаева // Обзорная информация. Сер. Пластмассы и син-тетич. смолы. М., 1980, 35 с.
56. Н. Vogel, C.S. Marvel //J. Polymer Sci., 1961,50, № 154, 511.
57. В.В. Коршак, А.Л. Русанов // Изв. АН СССР Сер. хим., 1970, № 2, 289.
58. В.В. Коршак, А.Л. Русанов // Polymery, 1970, 15, № 8, 400.
59. G. Lorenz, М. Gallus, W. Giessler, F. Bodesheim, H. Wieden, G.E. Nischk // Makromolek. Chem., 1969,130, 65.
60. H.H. Вознесенская, В.И. Берендяев, Б.В. Котов, B.C. Воишев, А.Н. Праведников // Высокомолек. соед. Б, 1974, 16, № 2,114.
61. В.В. Коршак, В.А. Сергеев, А.Л. Русанов, A.M. Берлин, Т.В. Лекае, И.М. Гвертели, Д.С. Тугуши, Л.Г. Кипиани, В.Д. Воробьев, М.В. Черкасов, А.А. Изынеев // А. с. 619493 СССР, Б. И. 1978, № 30, 84.
62. В.В. Коршак, А.Л. Русанов, И.М. Гвардцители, Л.Г. Кипиани, A.M. Берлин, Д.С. Тугуши, Т.В. // Лекае. Докл. АН СССР, 1977,237, № 6, 1370.
63. В.В. Коршак, И.М. Гверддители, Л.Г. Кипиани, Д.С. Тугуши, А.Л. Русанов // Высокомолек. соед. А., 1979, 21, № 1, 122.
64. Силинг М.И. // Поликонденсация. Физикохимические основы и математическое моделирование М., Химия, 1988.
65. Коршак В.В., Виноградова С.В. // Неравновесная поликоденсация. М. Наука, 1972.
66. Flory P.J. // Molecular Size Distribution in Linear Condensation Polymers. J. Amer. Chem. Soc. 1936, v.58, N.9, p.1877-1885.
67. Flory P.J. // J. Chem. Phys. 1944, v. 12, N.2, p.425.
68. Flory P.J. // Random Reorganization of Molecular Weight Distribution in Linear Condensation Polymers. J. Amer. Chem. Soc. 1942, v.64, N.9, p.2205-2212.
69. Case L.S. // J. Polym. Sci. 1958, v.29, N.2, p.455.
70. Gold L. // J. Chem. Phys. 1959, v.30, N.6, p. 1248.
71. Stafford J.W. // J. Polym. Sci. 1983, v.21, N.6, p.1627.
72. Кучанов С.И., Письмен Л.М. // Высокомолек. соед. 1972, А14, N2, С.131.
73. Кучанов С.И., Письмен Л.М. // Высокомолек. соед. 1972, А14, N24, С.886.70
74. Флори П. / Статистическая механика цепных молекул. М.5 Мир, 1971.1. QA
75. Павлова С. С. А. // В сб. Поликонденсационные процессы и полимеры, Нальчик, 1980, с.132.
76. Кучанов С.И., Брун Е.Б. // Усп. хим.1979, т.48, N2, с.297.
77. Turska E.J. // Prakt. Chem. 1971, V.313, N.3, P.387.
78. Turska E.J., Dems A. // J. Polym. Sci., Polym. Symp. 1973, N.42, P.419.
79. Кучанов С.И., Кештов М.Л., Васнев B.A. и др. //ДАН СССР 1981, Т.261, N5, с.1164.ос
80. Kuchanov S.I., Keshtov M.L., Halatur P.J. et al. // On the principle of equal reactivity in solution polycondensation. Macromol. Chemie, 1983, V.184, N1, p.105.
81. Ерухимович И.Я. // Высокомолек. соед. 1977, A19, N10, C.2388.
82. Jacobson H., Stockmayer W.H. // J. Chem. Phys. 1950, v.18, N.12, p.1600.
83. Semlyen J.A. // Advances Polym. Sci. 1976, v.21, N.l, p.41.
84. Flory P.J. // Kinetics of Polyesterification: A Study of the Effects of Molecular Weight and Viscosity on Reaction Rate. J. Amer. Chem. Soc. 1939, v.61, N.12, p.3334-3340.
85. Благодатских И.В., Горшков A.B. // Исследование адсорбционных свойств кольцевых и линейных макромолекул в критической области, Высокомолек. Соед. А, 1997, Т.39, No.10, С.1681-1689.
86. Благодатских И.В. // Анализ молекулярной неоднородности сложных полимерных систем с использованием методов жидкостной хроматографии», Диссертация на соискание ученой степени доктора химических наук, ИНЭОС РАН, Москва, 2008.
87. Френкель С .Я. / Введение в статическую теорию полимеризации. М. —Л. Наука 1965.
88. Оудиан Дж. / Основы химии полимеров. М. Мир. 1974.
89. Postal H., Raff P.Z. // J. Phys. Chem. 1936. V. 32. N1., P. 117.
90. Соколов Л.Б. / Основы синтеза полимеров методом поликонденсации. М. Химия, 1979.
91. Соколов Л.Б., Турецкий Л.В. // Высокомолек. соед., 1960, Т.2, N5, С.710.
92. Коршак В.В., Виноградова С.В., Лебедева А.С. // Высокомолек. соед., 1960, Т.2, N1, С.61.
93. Соколов Л.Б., Кудим Т.В. //ДАН СССР, 1964, Т. 158, N5, С.1139.
94. Schnell Н. // Angew. Chem. 1956 V. 68., N20., P. 633.
95. Гурьянова В.В., Алкиева О.Ф., Чевтаева В.Т., Америк В.В., Мулахметов A.M., Павлов А.В. // Высокомолек. соед., 1983, Т.25, N11, С.2279.
96. Wittbecker E.L. Spliethaff W.B., Stine C.R. // Appl. Polym. Sci. 1965, V.9, N2, P.213.
97. Некрасов И.К., Кудим T.B., Соколов Л.Б. // Высокомолек. соед., 1972, Т.А14, N4, С.789.
98. Голубев В.М., Герасимова С.К., Медведь С.С., Соколов Л.Б. // Высокомолек. соед., 1970, Т. 12, N6, С.427.
99. Соколов Л.Б. // Высокомолек. соед., 1980, Т.А22, N5, С.1185.
100. Федоров А.А., Савинов В.М., Соколов Л.Б., Златогорский МЛ., Гречишкин B.C. // Высокомолек. соед., 1973, Т.Б13, N1, С.74.
101. Morgan L.W., Kwolek S.L. //J. Polym. Sci. 1964, A2, N1, P. 181.
102. Korshak V.V., Turska E., Timofeeva G.I., Dems A. // Polymer 1967, V.19, P.l68.
103. Turska E., Dems A. // J. Polym. Sci. 1968, part C, V.22, N4, P.407.
104. Благодатских И.В., Павлова С. -С.А., Дубровина Л.В., Брагина Т.П., Коршак В.В. // ДАН СССР 1985, Т.281, N2., С.353.
105. Благодатских И.В., Дубровина Л.В., Коршак В.В., Павлова С. -С.А. // Депон. в ВИНИТИ, N38323-84, 08.06.1984.
106. Qunying Wu, Guyu Xiao, Deyue Yan. // Synthesis of soluble sulfonated polybenzimidazoles derived from 2-sulfonate terephtalic acid. e-Polymers, 2008, N73, p.l.
107. Энтелис С.Г., Евреинов В.В., Кузаев А.И. / Реакционноспособные олигомеры. М.: Химия, 1985, 304 с.
108. Горшков А.В. / Критическая хроматография макромолекул, Дис. докт. физ.-мат. наук, М.: ИХФ РАН, 2003.
109. Inessa Blagodatskikh et al. // Macrocyclic oligomers of an aromatic polyetherketone based on bisphenol A and difluorobenzophenone. e-Polymers. 2005. № 058 p. 1-8.
110. Нефедов П. П., Лавренко П. Н. / Транспортные методы в аналитической химии полимеров.
111. Belenkii B.G., Vilenchik L.Z. / Modem liquid chromatognphy of macromolecules, Amst., 1983.1 9П
112. Styragel Columns Care and Use Manual (www.waters.com).
113. Bodicomb J., Нага M. // Light Scattering Study of Ionomers in Solution. 4. Angular Measurements of Sulfonated Polystyrene Ionomers in a Polar Solvent (Dimethylformamide), Macromolecules, 1994, V.27, No.25, P.7369-7377.109
114. Bodicomb J., Нага M. // Light Scattering Study of Ionomer Solutions. 3. Dynamic Scattering from Sulfonated Polystyrene Ionomers in a Polar Solvent (Dimethylformamide), Macromolecules, 1994, V.27, No .4, P.923-929.
115. Bodicomb J., Нага M. // Light Scattering Study of Ionomers in Solution. 5. CONTIN Analysis of Dynamic Scattering Data from Sulfonated Polystyrene Ionomers in a Polar Solvent (Dimethylformamide), Macromolecules, 1995, V.28, No.24, P.8190-8197.
116. Still J.K., Campbell T.W. // Condensation monomers. New York: Wiley. 1972. P. 632.
117. Vogel H., Marvel. C.S. // J. Polym. Sci. 1961. V. 50. P. 511.
118. А. Гордон, P. Форд. / Спутник химика. M: «Мир», 1976, 541.
119. А.А. Конкин. / Термо-жаростойкие и негорючие волокна. «Химия», 1978,422.
120. Polymer Handbook. Ed. by Brandrup I., Immergurt E.H. New York: Intersci. Publ. 1966.
121. Berr C.E. // Isolation of Cyclic Dimer from Polyethylene Isophtalate, J.Polym.Sci., 1955, V.15, No.80, P.591-592.
122. Zimm B.H. // Apparatus and Methods for Measurements and Interpretation of the Angular Variation of Light Scattering, J.Chem.Phys., 1948, V.16, P. 1099-1116.
123. Stepanek P. / Dynamic Light Scattering. The Method and Some Applications / Ed. by Brown W. Oxford: Clarendron Press, 1993. P. 177.
124. Svedberg Т., Pedersen K.O. / The ultracentrifuge. New York: Oxford Univ. Press, 1940.
125. Волков В.A. / "Коллоидная химия. Поверхностные явления и дисперсные системы" (учебник). МГТУ им. А.Н.Косыгина, 2001.
126. Dewar M.J.S., Zoebisch E.F., Healy E.F., Stewart J.J. // Development and use of quantum mechanical molecular models. 76. AMI: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985. V. 1071.13 P. 3902-3909.
127. Ronova I.A., Pavlova S.S.A. // The Effect of Conformational Rigidity on Several Physical Properties of Polymers. High Perform. Polym. 1998. V. 10. P.309.
128. Roovers J., Cooney J.D., Toporovski P.M. // Synthesis and Characterization of Narrow Molecular Weight Distribution Fractions of Poly(aryl ether ether ketone), Macromolecules 1990, V.23, No.ll, P.1611-1618.
129. Wang Fei, Roovers J., Toporowski P. // Molecular Characterization of Narrow Weight Distribution Fractions of Methyl Substituted Poly(aryl ether ether ketone), Polym. Prepr. 1993, V.34, No.l, P.580-582.1 OQ
130. Tennikova T.B., Horak D., Svec F., Tennikov M.B., Kever E.E., Belenkii B.G. // Hydrolysed macroporous glycidyl methacrylate-ethylene dimethacrylate copolymer with narrow pore size distribution. J. Chromatogr. 1989. V. 475. P. 187.
131. Tennikova T.B., Blagodatskikh I.V. Svec F., Tennikov M.B. // Phase transition chromatography of polyesters on macroporous glycidyl methacrylate—ethylene dimethacrylate copolymers. J. Chromatogr. 1990. V. 509. P. 233.
132. Tennikova T.B., Blagodatskikh I.V. Svec F., Tennikov M.B. // Phase transition chromatography of polyesters on macroporous glycidyl methacrylate—ethylene dimethacrylate copolymers. J. Chromatogr. 1990. V. 509. P. 233.
133. Лёйкин А.Ю., Русанов A.JI., Бегунов P.C., Фоменков А.И. // Синтез и свойства поли2-(4'-оксифенилен)-5-бензимидазола. и протонпроводящей мембраны на его основе. Высокомолекулярные соединения, серия А, 2008 принята в печать.
134. Рафаэль Р.А., Тейлор Е.С., Винберг X. / Успехи органической химии, Пер. с англ. под ред. Л.И. Кунянца М: Изд. иностр. лит. 1963.(Raphael R.A., Taylor Е.С. Wynberg Н.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.