Модифицированные пиримидиновые нуклеозиды и ненуклеозидные реагенты в синтезе олигонуклеотидных конъюгатов, их свойства и применение тема диссертации и автореферата по ВАК РФ 02.00.10, кандидат наук Коршун, Владимир Аркадьевич
- Специальность ВАК РФ02.00.10
- Количество страниц 670
Оглавление диссертации кандидат наук Коршун, Владимир Аркадьевич
СОДЕРЖАНИЕ
Содержание 3
Список сокращений б
Введение. Модификация нуклеиновых кислот 10
ИЗБРАННЫЕ МЕТОДЫ МОДИФИКАЦИИ НУКЛЕИНОВЫХ КИСЛОТ
(обзор литературы)
Глава 1. СИНТЕЗ НУКЛЕОЗИДОВ И ОЛИГОНУКЛЕОТИДОВ, 16 МОДИФИЦИРОВАННЫХ ПРОИЗВОДНЫМИ ПОЛИЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ
1.1. Модификация по терминальным и межнуклеозидным фосфатам. 22 Ненуклеозидные модифицирующие реагенты
1.1.1 Реагенты на основе моноатомных спиртов 22
1.1.2. Реагенты на основе 1,2-диолов 25
1.1.3 Реагенты на основе 1,3-диолов 30
1.1.4. Реагенты на основе 1,4- и других диолов 40
1.1.5 Реагенты, содержащие ПАУ в цепи 41
1.1.6. Получение конъюгатов с помощью постмечения 44
1.2. Модификация нуклеозидов по углеводной части 47 1.2.1 Модификация по Г-положению 47 1.2.2. Модификация по 2'-положению 48 1.2.3 Модификация по 3'-положению 60 1.2.4. Модификация по 4'-положению 61
1.2.5 Модификация по 5'-положению 62
1.3. Модификация нуклеозидов по основанию 64 1.3.1 Арильные производные 64 1.3.2. Арилэтинильные производные 67 1.3.3 Алкинильный линкер 70
1.3.4. Алкенильные, алкильные и другие линкеры 73
1.3.5. Модификации по экзоциклическим аминогруппам 75
1.3.6 Модификации по экзоциклическим аминогруппам. Моделирование 77 канцерогенеза
1.4. Дополнение к главе 1 и заключение 79
Глава 2. МОДИФИКАЦИЯ НУКЛЕИНОВЫХ КИСЛОТ С ПОМОЩЬЮ 81 РЕАКЦИИ [3+2] ЦИКЛОПРИСОЕДИНЕНИЯ АЗИДОВ И АЛКИНОВ
2.1. Введение азидогрупы в олигонуклеотиды и ДНК 86
2.1.1 Введение азидогрупп в синтетические олигонуклеотиды в процессе 86 автоматизированного твердофазного синтеза
2.1.2. Ввведение азидогрупп в синтетические олигонуклеотиды с помощью 89 постмодификации
2.1.3 Ввведение азидогрупп в ДНК с помощью ферментов
2.2. Введение терминальных алкинов в олигонуклеотиды и ДНК
2.2.1 Введение алкинов в синтетические олигонуклеотиды в процессе автоматизированного твердофазного синтеза
2.2.2. Введение алкинов в синтетические олигонуклеотиды с помощью постмодификации
2.2.3 Ввведение терминальных алкинов в ДНК с помощью ферментов
2.3. Модификация ДНК с помощью СиААС с участием твёрдой фазы и в растворе
2.3.1 Модификация ДНК на твёрдой фазе с последующим переводом в раствор
2.3.2. Иммобилизация ДНК
2.3.3. СиААС в синтезе конъюгатов ДНК-ДНК
2.3.4 Синтез других конъюгатов ДНК
2.3.5 СиААС в синтезе аналогов олигомеров ДНК
2.3.6 Присоединение к азидам алкинов, активированных напряжением цикла
2.4. Заключение
МОДИФИЦИРОВАННЫЕ ПИРИМИДИНОВЫЕ НУКЛЕОЗИДЫ И НЕНУКЛЕОЗИДНЫЕ РЕАГЕНТЫ В СИНТЕЗЕ ОЛИГОНУКЛЕОТИДНЫХ КОНЪЮГАТОВ, ИХ СВОЙСТВА И ПРИМЕНЕНИЕ (результаты и
обсуждение)
Глава 3. НЕНУКЛЕОЗИДНЫЕ РЕАГЕНТЫ 119
3.1. Реагенты для модификации олигонуклеотидов в автоматическом 119
синтезаторе
3.1.1. Реагенты для введения в олигонуклеотиды реакционноспособных 119 функциональных групп и нефлуоресцентных модификаций. Триарилметильные масс-спектрометрические метки
3.1.2. Мечение олигонуклеотидов пиреновым флуорофором. Эксимерная 139 флуоресценция
3.1.3. 4-(2-Бензоксазолил)толан, 1-фенилэтинилпирен и 9,10- 165 бис(фенилэтинил)-антрацен как флуоресцентные красители для мечения олигонуклеотидов. Резонансный перенос энергии. Эксимерная флуоресценция 1-фенилэтинил-пирена в детекции однонуклеотидных замен
3.1.4. Реагенты для мечения олигонуклеотидов цианиновыми красителями 192
93
96 96
101
103 107
107
108 110 113
115
116
118
3.1.5. Реагенты для мечения олигонуклеотидов ксантеновыми 201
красителями. Перенос энергии флуоресценции с флуоресцеина на тетраметилродамин
3.2. Реагенты для постмодификации 216
3.2.1. Производные пирена: пиреновый бифлуорофор, 2- и 4- 216 этинилпирены
3.2.2. Активированные эфиры красителей 224
3.2.3. Азиды точек разветвления и красителей. Блоки для сборки ДНК- 227 наноструктур
Глава 4. НУКЛЕОЗИДЫ, МОДИФИЦИРОВАННЫЕ ПО УГЛЕВОДНОЙ ЧАСТИ 245
4.1. Уридин-2'-карбаматы для введения модификаций в малую бороздку ДНК. 245 Увеличение интенсивности флуоресценции пирена при гибридизации с
РНК
4.2. ^4/?абшн0-уридин-2'-карбаматы. Эксимеры пирена и фенилэтинилпиренов в 272 большой бороздке ДНК
4.3. Эксимеробразующие зонды на основе 2'-0(1-РЕРу)метилпроизводных 304 уридина
4.4. Зонды на основе 3-периленоильного производного 2'-амино-ЬЫА; 311 возрастание эмиссии при гибридизации. РЕРу на 2'-амино-ЕЫА
4.5. Бис- и трис(фенилэтинил)пиреноильные производные 2'-амино-1Л\1А. 330 Флуоресценция межцепочечных эксимеров
Глава 5. НУКЛЕОЗИДЫ, МОДИФИЦИРОВАННЫЕ ПО ОСНОВАНИЮ 345
5.1. 5-Алкинильные производные пиримидиновых нуклеозидов. Сопряжение 345 флуорофора с нуклеиновым основанием и возрастание эмиссии при гибридизации.
5.2. 5-Арилэтинил-пиримидиновые нуклеозиды с объёмным ароматическим 366 заместителем - новый класс противовирусных нуклеозидов
Глава 6. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 373
Материалы и оборудование 373
Методы к главе 3 376
Методы к главе 4 475
Методы к главе 5 531
Выводы 554
Благодарности 556
Литература 557
Приложение 1. Термическая стабильность дуплексов, содержащих 647
пиреновые и фенилэтинилпиреновые квазинуклеозиды
Приложение 2 Примеры ЯМР-спектров некоторых соединений 656
Рекомендованный список диссертаций по специальности «Биоорганическая химия», 02.00.10 шифр ВАК
Нуклеозиды, модифицированные периленом и (фенилэтинил)пиренами по 2`-положению: синтез и спектральные свойства в составе флуоресцентных олигонуклеотидных зондов2009 год, кандидат химических наук Астахова, Ирина Владимировна
Синтез и спектральные свойства олигонуклеотидных конъюгатов, содержащих новые нуклеозид-2'-карбаматные и 2,4-дигидроксибутирамидные производные флуоресцентных красителей2004 год, кандидат химических наук Дюбанкова, Наталья Николаевна
Флуоресцентные 5-алкинил-2'-дезоксиуридины: синтез, биологическая активность и спектральные свойства в составе ДНК2007 год, кандидат химических наук Скоробогатый, Михаил Валерьевич
Синтез и спектральные свойства флуоресцентных фенилэтинилпиреновых и бис(фенилэтилен)антраценовых псевдонуклеозидов и меченных ими олигонуклеотидов2000 год, кандидат химических наук Малахов, Андрей Дмитриевич
Конъюгаты нуклеозидов и флуоресцентных красителей, содержащие сопряженную систему кратных связей1998 год, кандидат химических наук Малахова, Екатерина Владимировна
Введение диссертации (часть автореферата) на тему «Модифицированные пиримидиновые нуклеозиды и ненуклеозидные реагенты в синтезе олигонуклеотидных конъюгатов, их свойства и применение»
Введение. Модификация нуклеиновых кислот
Нуклеиновые кислоты (НК) являются носителем наследственной информации живых организмов. Информация кодируется последовательностями, элементарными блоками которых служат четыре различных нуклеотида. Фундаментальным свойством нуклеиновых кислот является комплементарность, что даёт возможность короткими фрагментами НК (15— 20 нуклеотидов) осуществлять специфичное узнавание последовательностей. Поэтому такие фрагменты НК (олигонуклеотиды) служат мощными инструментами исследований в области молекулярной и физико-химической биологии, медицинской диагностики и биотехнологии. Хотя исследователи массово используют немодифицированные олигонуклеотиды (например, для сборки генов, как праймеры в полимеразной цепной реакции (ПЦР) и т.д.), огромное значение имеют модифицированные олигонуклеотиды. В зависимости от целей использования модификации могут носить самый различный характер. Например, к олигонуклеотиду могут быть ковалентно присоединены флуоресцентные красители и тушители флуоресценции, аффинные, спиновые, хемилюминесцентные и электрохимические метки, пептиды и белки, холестерин и другие липиды, углеводы, полиэтиленгликоль, антибиотики, интеркаляторы, бороздочные лиганды, метаболиты токсичных и канцерогенных соединений и т.д. Модификации могут вводиться в терминальные положения олигонуклеотида или в его среднюю часть, по нуклеиновым основаниям, сахарам или фосфатам, а также в виде псевдонуклеозидов, заменяющих природные нуклеозиды.
Для введения ковалентных модификаций в НК принципиально существуют несколько возможностей. Первый способ — это получение модифицированного нуклеозида или ненуклеотидного реагента в виде амидофосфитного производного или твердофазного носителя и его введение в растущую нуклеотидную цепь в процессе автоматизированного олигонуклеотидного синтеза. В этом случае на модификацию накладываются ограничения -она дожна быть совместима с химией олигонуклеотидного синтеза.
Второй способ - обработка немодифицированной НК или олигонуклеотида реакционноспособным производным модификатора, способным ковалентно пришиваться к полинуклеотидной цепи. В этом случае модификация осуществляется статистически. Примером такой реакции модет служить переаминирование ДНК по положению 4 остатков 2'-дезоксицитидина алифатическими аминами в присутствии бисульфита.
Третий способ состоит в использовании ферментов нуклеинового обмена для включения в НК модифицированных нуклеозидов. Наиболее широко применяется ферментативное включение нуклеозид-5'-трифосфатов в синтезирующуюся на НК-матрице растущую цепь. Установлено, что введение жёсткого (алкинильного или алкенильного) линкера в 5-положение пиримидинов и 7-положение 7-дезазапуринов часто позволяет
сохранить субстратные свойства 5'-трифосфатов таких нуклеозидов по отношению к НК-полимеразам, даже если к линкеру присоединён объёмный остаток модификатора.
Четвёртый способ состоит в первоначальном введении в НК или олигонуклеотид реакционноспособной группы, что может быть осуществлено первыми тремя способами. По этой группе далее можно проводить мечение производными модификатора. Этот способ называется постмодификацией или постмечением. Такой ступенчатый метод, как правило, требует больших затрат труда и времени, но является более гибким, поскольку для любого типа модификации можно подобрать подходящую химию присоединения.
Среди модификаций НК наиболее востребовано и практически значимо присоединение флуоресцентных красителей. Особенно широко флуоресцентное мечение используется в синтезе флуоресцентных зондов для полимеразной цепной реакции в режиме реального времени (ПЦР-РВ) и флуоресцентных праймеров для секвенирования НК. В качестве флуоресцентных красителей чаще используются ксантеновые (флуоресцеины, родамины) и цианиновые флуорофоры.
Флуоресцентные красители на основе полициклических ароматических углеводородов (ПАУ), прежде всего пирена, представляют особый интерес. Во-первых, присоединение пирена к ДНК моделирует модификацию наиболее известным канцерогенным метаболитом -диолэпоксидом бенз[а]пирена, аддукт которого с ДНК представляет собой производное 1,2-дизамещённого пирена. Во-вторых, в водных растворах флуоресценция пирена ПАУ в составе НК сильно зависит от микроокружения, так как полициклические ароматические углеводороды способны к нековалентным взаимодействиям с НК. Например, ПАУ могут интеркалировать между парами оснований или располагаться в бороздках двойной спирали ДНК. Их участие в стэкинг-взаимодействиях подтверждается увеличением стабильности дуплексов и изменением спектров флуоресценции. ПАУ иногда дают эксиплексы (сокращ. excited complex - возбужденный комплекс) с гетероциклическими основаниями НК. При сближении двух остатков пирена на расстояние ~3,5 А происходит образование эксимера (сокращ. excited dimer - возбуждённый димер). Эксиплексы и эксимеры детектируются по характерной длинноволновой флуоресценции. Поскольку флуоресценция пиренового эксимера возможна только при прямом контакте остатков пирена, пиреновую пару используют как «зонд соседства» для биомолекул. Изменения в спектрах флуоресценции ПАУ соответствуют изменениям микроокружения, вызванными взаимодействиями НК. Это делает флуорофоры на основе ПАУ ценным инструментом для изучения пространственной структуры НК при гибридизации с образованием дуплексов и триплексов, а также при взаимодействии с белками, пептидами и смешанными биополимерами.
Поэтому разработка новых удобных реагентов для модификации НК различными способами является весьма актуальной. Наибольший интерес представляют флуоресцентные
красители и гомогенные методы анализа на их основе, в которых может использоваться тушение флуоресценции, резонансный перенос энергии флуоресценции (FRET, fluorescence resonance energy transfer), эмиссия эксимеров и эксиплексов или изменение спектра флуоресценции одиночной метки в результате изменения ближайшего пространственного окружения.
Кроме того, актуальна разработка принципиально новых меток для нуклеиновых кислот, например, отщепляемых меток для масс-спектрометрической детекции. Такая метка должна быть прочно присоединена к НК, чтобы конъюгат выдерживал все аналитические манипуляции. Но в момент регистрации масс-спектра метка должна эффективно отщепляться и с высокой чувствительностью детектироваться в масс-спектрометре.
Огромное значение для химии модификации ДНК имело применение Cu(I)-катализируемой реакции [3+2] циклоприсоединения азидов и алкинов (CuAAC, Cuffl-catalyzed azide-alkyne çycloaddition). Co времени открытия в 2002 г. катализа соединениями меди(1) реакции циклоприсоединения азидов и алкинов она получила весьма широкое распространение как метод биоконъюгации. Развитие этого метода в приложении к нуклеиновым кислотам на некоторое время задержалось, поскольку соединения меди(1) в присутствии кислорода вызывают эффективное расщепление нуклеотидных последовательностей. Однако после введения в обиход хелатирующих лигандов для Cu(I) и ряда других методических усовершенствований реакция стала популярна для синтеза олиго-и полинуклеотидных конъюгатов. CuAAC позволяет использовать только те функциональные группы, которые введены в заданные положения, и не затрагивает остальную часть биомолекулы. Ортогональность CuAAC по отношению к подавляющему большинству других методов биоконъюгации расширяет возможности исследователя при синтезе сложных конъюгатов.
По химии модификации и применению конъюгатов НК имеется большое число обзоров [1-99]. Например, рассматривались реагенты и методы модификации олигонуклеотидов [2, 9-11, 14, 15, 20, 25, 38, 42-46, 52, 63, 64, 70-72, 75, 82, 84, 94, 96, 99], модифицированные олигонуклеотиды как антисмысловые и антигенные ингибиторы [1, 3, 5, 16, 19, 21, 22, 32, 36, 49, 65, 98], модификация ДНК канцерогенными метаболитами [18, 29, 57, 67], иммобилизация олигонуклеотидов на микрочипах [33,39], флуоресценция и перенос энергии на нуклеиновых кислотах [30, 31, 34, 37, 40, 71, 72, 74, 77, 78, 83-85, 92, 95], пространственные геометрические структуры и наноструктуры на основе ДНК [7, 47, 54, 60, 61,68, 69, 86-89,91,97].
В ОБЗОРЕ ЛИТЕРАТУРЫ представляло интерес рассмотреть два динамично развивающихся раздела из химии модифицированных НК — а) взаимодействие и конъюгаты НК с полициклическими ароматическими углеводородами (ПАУ) (Глава 1) и б) применение
реакции [3+2] циклоприсоединения азидов и алкинов для модификации НК (Глава 2). Основанием для выбора темы первого раздела литературного обзора является то обстоятельство, что большое число реагентов, разработанных в данной диссертации, предназначены для модификации олигонуклеотидов флуорофорами на основе ПАУ. Во втором разделе литературного обзора рассматривается исключительно полезный метод постсинтетической модификации НК, массовое применение которого началось совсем недавно, но важные полученные результаты уже требуют обобщения. В данной диссертации также описываются новые реагенты для этого метода и примеры их высокой эффективности для синтеза олигонуклеотидных конъюгатов.
Раздел диссертации РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ посвящен совершенствованию реагентов для различных типов модификации НК, преимущественно для мечения флуоресцентными красителями. Разработаны реагенты для прямого мечения олигомеров ДНК в процессе твердофазного автоматизированного синтеза и для постмодификации. Целью работы также было усовершенствование методологии постмодификации олигонуклеотидов. В результате были отработаны условия модификации ДНК с помощью Си(1)-катализируемой реакции [3+2] диполярного циклоприсоединения азидов и алкинов.
Реагенты для прямого мечения включали ненуклеозидные производные, реагенты на основе 2'-модифицированных нуклеозидов (2'-алкилпроизводные, 2'-карбаматы и амиды 2'-амино-1ЛМА - модификация по углеводной части нуклеозида) и на основе 5-алкинил-модифицированных нуклеозидов (модификация по нуклеиновому основанию). Целью работы было не только усовершенствование способов модификации ДНК известными метками, но и разработка новых меток, особенно флуоресцентных красителей на основе ПАУ. Для новых меток в составе олигонуклеотидов проводилось исследование их влияния на стабильность совершенных и несовершенных дуплексов, а также изучение спектральных и фотофизических свойств и изменения эмиссии конъюгатов при гибридизации. Кроме того, одной из задач являлась разработка для НК масс-спектрометрических меток нового типа.
В процессе работы синтезировано большое число реагентов для модификации НК — введения функциональных и реакционноспособных групп, а также ковалентной модификации флуоресцентными красителями. Были разработаны реагенты как нуклеозидной, так и ненуклеозидной природы. В качестве псевдосахарной основы ряда ненуклеозидных реагентов впервые были использованы хиральные 2,4-дигидроксибутирамиды. Впервые были синтезированы функциональные производные 1-фенилэтинилпирена (1-РЕРу) и 9,10-би(фенилэтинил)антрацена (ВРЕА) и применены для мечения олигонуклеотидов. 1-РЕРу, 2-РЕРу, 4-РЕРу, бис- и трис(фенилэтинил)пиренкарбоксамиды были впервые исследованы как флуоресцентные метки. Обнаружена способность ряда соединений пирена образовывать эксимеры в большой
бороздке ДНК. Показано, что краситель 1-РЕРу обладает рядом полезных свойств по сравнению с пиреновым флуорофором. На основе ненуклеозидных и нуклеозидных производных 1-РЕРу синтезированы эксимеробразующие зонды, пригодные для детекции однонуклеотидных замен, что продемонстрировано на примере мутаций гена 23 S РНК Helicobacter pylori. С использованием бис- и трис(фенилэтинил)пиренкарбонильных производных 2'-aMHHO-LNA осуществлена эффективная детекция комплементарных последовательностей и дискриминация мутаций. Флуоресценция периленкарбонильных производных 2'-aMHHO-LNA возгорается при гибридизации с комплементарной последовательностью. Похожий эффект наблюдается для зондов, содержащих 5-(перилен-3-илэтинил)-2'-дезоксиуридин. Эти новые флуоресцентные нуклеозиды перспективны для гомогенной флуоресцентной детекции гибридизации. Использование для присоединения флуоресцентных красителей к олигонуклеотидам Си(1)-катализируемой реакции [3+2] диполярного циклоприсоединения азидов и алкинов позволяет получать зонды для ПЦР-РВ высокого качества. Разработаны также практически значимые реагенты для мечения олигонуклеотидов масс-спектрометрически детектируемыми метками на основе S-триарилметильных соединений. Флуоресцентные 5-арилэтинил-пиримидиновые нуклеозиды представляют собой новый класс аналогов нуклеозидов, обладающих противовирусной активностью (по отношении к вирусу простого герпеса типа 1 и некоторым другим).
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ изложены в главах 3-5. Глава 3 посвящена синтезу и применению ненуклеозидных реагентов и реагентов для постмодификации. В Главе 4 представлен материал по сахар-модифицированным нуклеозидам. Наконец, Глава 5 посвящена модифицированным по основанию нуклеозидам - 5-алкинильным производными пиримидиновых нуклеозидов.
Глава 6 представляет собой ЭКСПЕРИМЕНТАЛЬНУЮ ЧАСТЬ, в которой приведены методики синтеза реагентов и олигонуклеотидных конъюгатов. Описанные низкомолекулярные соединения характеризовались подвижностью на ТСХ в определённых системах растворителей, температурами плавления (для кристаллических веществ), масс-спектрами (в том числе масс-спектрами высокого разрешения), данными элементного анализа (для некоторых веществ), УФ-спектрами (для некоторых веществ), *Н ЯМР-
13
спектрами, и, как правило, С ЯМР-спектрами. Отнесение сигналов в ЯМР-спектрах осуществлялось при помощи двойного резонанса и ^-'Н- и 1Н-13С-корреляционной спектрометрии (COSY, ROESY, HMQC, HSQC, НМВС). Олигонуклеотидные конъюгаты выделялись и очищались с помощью электрофореза в полиакриламидном геле и обращённо-фазовой ВЭЖХ. Индивидуальность конъюгатов подтверждалась ВЭЖХ, а структура -MALDI масс-спектрами.
Работа выполнена в Группе генетической инженерии интерлейкинов (1994-1997 гг), Лаборатории механизмов экспрессии генов (1997-2001 гг), Лаборатории химии нуклеиновых кислот (2002-2009 гг), Лаборатории органического синтеза (2009-2010 гг), Группе биоконъюгадии (2010-2012 гг) Института биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН.
ИЗБРАННЫЕ МЕТОДЫ МОДИФИКАЦИИ НУКЛЕИНОВЫХ КИСЛОТ
Похожие диссертационные работы по специальности «Биоорганическая химия», 02.00.10 шифр ВАК
Синтез и исследование свойств конъюгатов олиго- и полинуклеотидов с низкомолекулярными лигандами2009 год, кандидат химических наук Прохоренко, Игорь Адамович
Азидопроизводные красителей и ненуклеозидные реагенты на основе хиральных 1,3-диолов для синтеза флуоресцентных ДНК-зондов2018 год, кандидат наук Апарин Илья Олегович
Разработка подходов к направленному воздействию на нуклеиновые кислоты с помощью тандемных систем производных олигонуклеотидов1999 год, кандидат биологических наук Гайдамаков, Сергей Алексеевич
Новые пиренильные эксимер-образующие зонды на основе олиго(2'-O-метилрибонуклеотидов) для флуоресцентной детекции РНК2017 год, кандидат наук Крашенинина, Ольга Алексеевна
Синтез олигонуклеотидных конъюгатов с помощью реакции [3+2]-диполярного циклоприсоединения и их использование в конструировании ДНК-наноструктур2009 год, кандидат химических наук Устинов, Алексей Викторович
Заключение диссертации по теме «Биоорганическая химия», Коршун, Владимир Аркадьевич
выводы
1. Разработан ряд ненуклеотндных реагентов с различной псевдосахарной основой (1,3-бутандиол, 31?,55-3-гидрокси-5-гидроксиметилпирролидин, R- и £-энантиомеры 2,4-дигидроксибутирамидов, 6-аминогексанол, /ирйнс-4-аминоциклогексанол) для модификации олигонуклеотидов в процессе твердофазного автоматизированного олигонуклеотидного синтеза. Набор модификаций включает:
а) введение в олигонуклеотиды функциональных и реакционноспособных групп (алифатическая амино- и тиольная группа, терминальный ацетилен, имидазол, биотин);
б) мечение олигонуклеотидов флуоресцентными красителями (пирен, перилен, 1-фенилэтинилпирен, 9,10-бис(фенилэтинил)антрацен, флуоресцеин, тетраметилродамин, цианиновые красители СуЗ, Су3.5, Су5, Су5.5);
в) мечение олигонуклеотидов отщепляемыми масс-спектрометрическими метками на основе 5-триарилметильных соединений.
2. Синтезированы функциональные производные 1-фенилэтинилпирена (1-РЕРу) и 9,10-бис(фенилэтинил)антрацена (ВРЕА) и применены для мечения олигонуклеотидов. Флуоресценция 1-РЕРу сдвинута по сравнению с пиреном в длинноволновую область, а время жизни возбуждённого состояния на два порядка меньше, чем у пирена. 1-РЕРу гораздо меньше восприимчив к тушению флуоресценции нуклеиновыми кислотами, чем пирен, и его квантовый выход флуресценции высок (0.3-0.9). Обнаружена способность 1-РЕРу к образованию эксимеров. 1-РЕРу и ВРЕА представляют собой донорно-акцепторную пару, для которой наблюдается эффективный перенос энергии.
3. Синтезированы азидопроизводные ряда флуоресцентных красителей (перилен, диимид перилен-3,4,9,10-тетракарбоновой кислоты, флуоресцеин, тетраметилродамин, 2',7'-диметокси-4',5'-дихлорфлуоресцеин (JOE), ROX, СуЗ, Су3.5, Су5, Су5.5), позволяющие проводить эффективное пост-мечение синтетических алкинсодержащих олигонуклеотидов с помощью реакции [3+2] диполярного циклоприсоединения.
4. Получен ряд нуклеозидных производных, модифицированных функциональными группами и флуоресцентными красителями по 2'-положению углеводного остатка (производные уридин-2 '-рибо- и -2 '-я/шбино-карбаматов, а также 2'-амино-ЫЧА).
5. В качестве эксимеробразующих флуоресцентных меток предлжены бис- и трис(фенилэтинил)ииренилкарбоксамиды. Изучены их спектральные свойства как производных 2'-aMHHO-LNA и влияние на стабильность дуплекса с комплементарными и мутантными (содержащими однонуклеотидные замены) последовательностями.
6. На основе различных производных пирена предложены гомогенные флуоресцентные методы детекции однонуклеотидных замен, основанные на изменении интенсивности и соотношения эксимерной и мономерной эмиссии.
7. Обнаружено явление и исследованы структурные предпосылки образования межцепочечного эксимера двумя остатками пирена, 1-фенилэтинилпирена и 4-фенилэтинилпирена в большой бороздке ДНК-дуплекса.
8. Получены флуоресцентные производные нуклеозидов, в которых флуорофор сопряжён с нуклеиновым основанием с помощью тройной связи. Изучено изменение флуоресценции этих нуклеозидов в составе олигонуклеотидов после гибридизации с комплементарной последовательностью. У 5-арилэтинил-пиримидиновых нуклеозидов с объёмными ароматическими заместителями обнаружена противовирусная активность в отношении ряда оболочечных вирусов (вирус гепатита С, Синдбис, Varicella zoster, вирусы простого герпеса типа 1 и 2).
БЛАГОДАРНОСТИ
Автор выражает благодарность за постоянную помощь и поддержку сотрудникам, аспирантам, студентам и школьникам, с которыми он в разное время работал в Группе генетической инженерии интерлейкинов, Лаборатории механизмов экспрессии генов, Лаборатории химии нуклеиновых кислот и Лаборатории органического синтеза ИБХ РАН, -К.В. Балакину, Е.В. Манасовой, А.Д. Малахову, H.H. Дюбанковой, М.В. Скоробогатому, И.А. Прохоренко, A.B. Устинову, И.В. Астаховой, K.P. Бирих, И.А. Степановой, Е.В. Ножевниковой, И.В. Михуре, Н.Б. Пестову, В.В. Дубняковой, Л.В. Ерузинцевой, С.С. Храмышеву, A.A. Пчелинцевой, А.Л. Петруниной, O.A. Валуевой, C.B. Коркачу, а также зав.
и
Лабораторией органческого синтеза A.A. Формановскому. Автор также признателен дхн О.Г.
Чахмахчёвой и проф. [В.А. Ефимову] за их стимулирующий интерес к данной работе.
Автор благодарит за плодотворное сотрудничество соавторов публикаций В.В. Шманая, М.В. Квача, Д.А. Стеценко, М.С. Щепинова, Т.С. Зацепина, 3.0. Шенкарёва, И.И. Михалёва, П.Е. Волынского, Р.Г. Ефремова, A.C. Парамонова, Д. Линдегор, Р.Д. Эгеланда, Э.М. Саузерна, М.Дж. Гейта, А.А.Арзуманова, Г.В. Малеева, П.Л. Бернада, И.А. Куделину, C.B. Гонтарева, C.B. Кузницову, К.Т. Момыналиева, A.B. Петрова, Д.Т. Кожича, С. Хана, A.A. Козлову, В.В. Филичева, Э.Б. Педерсена, К. Пател, М. Шахголи, А.П. Ступака, Д.А. Болибруха, С.Л. Бондарева, Е. Венгеля, К. Яна, Дж. Кьемса, А.Г. Бучацкого, A.B. Перепелова, Г.А. Галегова, В.Л. Андронову, A.A. Турбана, А.П. Кадуцкого, О.П. Варнавского, Т.А. Соколову, М.А. Жилинскую, М. Сент-Винсент и Л.М. Шанга.
Автор также благодарен своему сыну A.B. Коршуну за помощь в оформлении диссертации и автореферата.
Список литературы диссертационного исследования кандидат наук Коршун, Владимир Аркадьевич, 2012 год
ЛИТЕРАТУРА
1. Uhlmann Е., Реутап A. Antisense oligonucleotides: a new therapeutic principle. Chem. Rev., 1990, 90, No. 4, 543-584.
2. Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjugate Chem., 1990,1, No. 3, 165-187.
3. Englisch I J., Gauss D.H. Chemically modified oligonucleotides as probes and inhibitors. Angew. Chem. Int. Ed., 1991, 30, No. 6, 613-629.
4. Caruthers M.H. Chemical synthesis of DNA and DNA analogues. Асе. Chem. Res. 1991, 24, No. 9, 278-284.
5. Crooke S.T. Therapeutic applications of oligonucleotides. Annu. Rev. Pharmacol. Toxicol., 1992, 32, 329-376.
6. Beaucage S.L, Iyer R.P. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron, 1992, 48, No. 12, 2223-2311.
7. Lilley D.M.J., Clegg R.M. The structure of the four-way junction in DNA. Annu. Rev. Biophys. Biomol. Struct., 1993,22, 299-328.
8. Varma R.S. Synthesis of oligonucleotide analogues with modified backbones. Synlett, 1993, No. 9, 621-637.
9. Beaucage S.L, Iyer RP. The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron, 1993, 4P, No. 10,1925-1963.
10. Beaucage S.L, Iyer RP. The synthesis of modified oligonucleotides by the phosphoramidite approach and their applications. Tetrahedron, 1993, 49, No. 28, 6123-6194.
11 .Коршун B.A., Берлин Ю.А. Введение нерадиоактивных репортерных групп в синтетические олигонуклеотиды и их детекция. Биоорган, химия, 1994, 20, № 6, 565-616.
12. Gold L., Polisky В., Uhlenbeck О., Yarus M. Diversity of oligonucleotide functions. Annu. Rev. Biochem., 1995, 64,163-191.
13. Eaton B.E., Pieken W.A. Ribonucleosides and RNA. Annu. Rev. Biochem., 1995, 64, 837-863.
14. De Mesmaeker A., Altmann K.-H., Waldner A., Wendeborn S. Backbone modifications in oligonucleotides and peptide nucleic acid systems. Curr. Opin. Struct. Biol., 1995, 5, No. 3, 343-355.
15. De Mesmaeker A., Haner R, Martin P., Moser H.E. Antisense oligonucleotides. Acc. Chem. Res., 1995,28, No. 9, 366-374.
16. Crooke S.T., Bennett C.F. Progress in antisense oligonucleotide therapeutics. Annu. Rev. Pharmacol. Toxicol., 1996, 36, 107-129.
17. Herdewijn P. Targeting RNA with conformationally restricted oligonucleotides. Liebigs Ann., 1996, No. 9, 1337-1348.
18. Gniazdowski M., Cera C. The effects of DNA covalent adducts on in vitro transcription. Chem. Rev., 1996, 96, No. 2, 619-634.
19. Matteucci M. Structural modifications toward improved antisense oligonucleotides. Perspect. Drug Discov. Design, 1996, 4, No. 1, 1-16.
20. LebedevA.V., Wickstrom E. The chirality problem in P-substituted oligonucleotides. Perspect. Drug Discov. Design, 1996, 4, No. 1, 17^10.
21. Stein C.A., Narayanan R. Antisense oligodeoxynucleotides: internalization, compartmentalization and non-sequence specificity. Perspect. Drug Discov. Design, 1996, 4, No. 1,41-50.
22. Kool E. T. Topological modification of oligonucleotides for potential inhibition of gene expression. Perspect. Drug Discov. Design, 1996, 4, No. 1, 61-75.
23. Summerton J., Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev., 1997, 7, No. 3, 187-195.
24. Kool E. T. Preorganization of DNA: design principles for improving nucleic acid recognition by synthetic oligonucleotides. Chem. Rev., 1997, 97, No. 5, 1473-1487.
25. Verma S., Eckstein F. Modified oligonucleotides: synthesis and strategy for users. Annu. Rev. Biochem., 1998, 67, 99-134.
26. Luyten I., Herdewijn P. Hybridization properties of base-modified oligonucleotides within the double and triple helix motif. Eur. J. Med. Chem., 1998, 33, No. 7/8, 515-576.
27. Roth C.M., Yarmush M.L. Nucleic Acid Biotechnology. Annu. Rev. Biomed. Eng., 1999,1, 265297.
28. Manoharan M. 2'-Carbohydrate modifcations in antisense oligonucleotide therapy: importance of conformation, confguration and conjugation. Biochim. Biophys. Acta, 1999, 1489, No. 1, 117-130.
29. Butenandt J., Burgdorf L.T., Carell T. Synthesis of DNA lesions and DNA-lesion-containing oligonucleotides for DNA-repair studies. Synthesis, 1999, No. 7, 1085-1105.
30. Прохоренко И.А., Коршун B.A., Берлин Ю.А. Резонансный перенос энергии флуоресценции в исследовании нуклеиновых кислот. Биоорган, химия, 1999, 25, № 11, 838-847.
31. Wojczewski С., Stolze К, Engels J.W. Fluorescent oligonucleotides-versatile tools as probes and primers for DNA and RNA analysis. Synlett, 1999, No. 10, 1667-1678.
32. Herdewijn P. Heterocyclic modifications of oligonucleotides and antisense technology. Antisense Nucleic Acid Drug Dev., 2000,10, No. 4, 297-310.
33. Sânchez-Carbayo M., Bornmann W., Cordon-Cardo C. DNA microchips: technical and practical considerations. Curr. Org. Chem., 2000, 4, No. 9, 945-971.
34. Davies M.J., Shah A., Bruce I.J. Synthesis of fluorescently labelled oligonucleotides and nucleic acids. Chem. Soc. Rev., 2000, 29, No. 2, 97-107.
35. Стеценко Д.А., Арзуманов А.А., Коршун В.А., Гейт М.Дж. Пептид-олигонуклеотидные конъюгаты как антисмысловые агенты нового поколения. Молекул, биология, 2000, 34, № 6, 998-1006.
36. Lebedeva I., Stein С.А. Antisense oligonucleotides: promise and reality. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 403^119.
37. Didenko V. V. DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. BioTechniques, 2001, 31, No. 5, 1106-1121.
38. Loakes D. The applications of universal DNA base analogues. Nucleic Acids Res., 2001, 29, No. 12,2437-2447.
39. Heller M.J. DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng., 2002, 4, 129-153.
40. Rist M.J., Marino J.P. Fluorescent nucleotide base analogs as probes of nucleic acid structure, dynamics and interactions. Curr. Org. Chem., 2002, 6, No. 9, 775-793.
41. Pathak T. Azidonucleosides: synthesis, reactions, and biological properties. Chem. Rev., 2002, 102, No. 5, 1623-1667.
42. Venkatesan N., Kim S.J., Kim B.H. Novel phosphoramidite building blocks in synthesis and applications toward modified oligonucleotides. Curr. Med. Chem., 2003, 10, No. 19, 1973— 1991.
43. Зацепин Т. С., Андреев С.Ю., Гианик Т., Орецкая Т. С. Нуклеиновые кислоты, содержащие остаток ферроцена: синтез и электрохимические свойства. Успехи химии, 2003, 72, № 6, 602-621.
44. Verma S., Jäger S., Thum О., Famulok M. Functional tuning of nucleic acids by chemical modifications: Tailored oligonucleotides as drugs, devices, and diagnostics. Chem. Record, 2003,3, No. 1,51-60.
45. Зацепин Т. С., Романова Е.А., Орецкая Т.С. Нуклеозиды и олигонуклеотиды с реакционноспособными группами при С(2')-атоме: синтез и применение. Успехи химии,
2004, 73, № 7, 757-791.
46. Zatsepin T.S., Oretskaya T.S. Synthesis and applications of oligonucleotide-carbohydrate conjugates. Chem. Biodiv., 2004,1, No. 10, 1401-1417.
47. Wengel J. Nucleic acid nanotechnology - towards Ängström-scale engineering. Org. Biomol. Chem., 2004, 2, No. 3, 277-280.
48. Ranasinghe R.T., Brown T. Fluorescence based strategies for genetic analysis. Chem. Commun.,
2005, No. 44, 5487-5502.
49. Zatsepin T.S., Turner J.J., Oretskaya T.S., Gait M.J. Oligonucleotide conjugates of cell penetrating peptides and gene silencing. Curr. Pharm. Design, 2005,11, No. 28, 3639-3654.
50. Zatsepin T.S., Stetsenko D.A., Gait M.J., Oretskaya T.S. Use of carbonyl group additionelimination reactions for synthesis of nucleic acids conjugates. Bioconjugate Chem., 2005, 16, No. 3, 471-489.
51. Зацепин T.C., Долинная Н.Г., Кубарева E.A., Ивановская М.Г., Метелев В.Г., Орецкая Т.С. Ковалентное связывание модифицированных нуклеиновых кислот с белками как метод изучения специфических белково-нуклеиновых взаимодействий. Успехи химии, 2005, 74, № 1, 84-103.
52. Okamoto A. Synthesis of highly functional nucleic acids and their application to DNA technology. Bull. Chem. Soc. Jpn., 2005, 78, No. 12, 2083-2097.
53. Asseline U. Development and applications of fluorescent oligonucleotides. Curr. Org. Chem., 2006,10, No. 4, 491-518.
54. Beissenhirtz M.K., Willner I. DNA-based machines. Org. Biomol. Chem., 2006, 4, No. 18, 3392-3401.
55. Wilson J.N., Kool E.T. Fluorescent DNA base replacements: reporters and sensors for biological systems. Org. Biomol. Chem., 2006, 4, No. 23, 4253^274.
56. Guengerich E.P. Interactions of carcinogen-bound DNA with individual DNA polymerases. Chem. Rev., 2006,106, No. 2, 420^152.
57. Lukin M., de los Santos С. NMR structures of damaged DNA. Chem. Rev., 2006, 106, No. 2, 607-686.
58. Klussmann S., Ed. The aptamer handbook. Wiley VCH, Weinheim, 2006.
59. Egli M., Pallan P.S. Insights from crystallographic studies into the structural and pairing properties of nucleic acid analogs and chemically modified DNA and RNA oligonucleotides. Annu. Rev. Biophys. Biomol. Struct., 2007, 36, 281-305.
60. LaBean Т.Н., Li H. Constructing novel materials with DNA. Nano Today, 2007, 2, No. 2, 2635.
61 .Alemdaroglu F.E., Herrmann A. DNA meets synthetic polymers-highly versatile hybrid materials. Org. Biomol. Chem., 2007, 5, No. 9, 1311-1320.
62. Cobb A.J.A. Recent highlights in modified oligonucleotide chemistry. Org. Biomol. Chem., 2007, 5, No. 20, 3260-3275.
63. Richert C., Griinefeld P. Synthesis and properties of oligonucleotides with acylamido substituents. Synlett, 2007, No. 1, 1-18.
64. Singh Y., Spinelli N., Defrancq E. Chemical strategies for oligonucleotide-conjugates synthesis. Curr. Org. Chem., 2008,12, No. 4, 263-290.
65. Gaynor J. W., Cosstick R. Synthesis, properties and application of nucleic acids containing phosphorothiolate linkages. Curr. Org. Chem., 2008,12, No. 4, 291-308.
66. Herdewijn P., Ed. Modified nucleosides in biochemistry, biotechnology and medicine. Wiley VCH, Weinheim, 2008.
67. Delaney J.C., Essigmann J.M. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem. Res. Toxicol., 2008, 21, No. 1, 232-252.
68. Wang K, Tang Z, Yang C. J., Kim Y, FangX., Li W., Wu Y., Medley C.D., Cao Z, Li J., Colon P., Lin H., Tan W. Molecular engineering of DNA: molecular beacons. Angew. Chem. Int. Ed., 2009, 48, No. 5, 856-870.
69. Feldkamp U., Sacca В., Niemeyer C.M. Dendritic DNA building blocks for amplified detection assays and biomaterials. Angew. Chem. Int. Ed., 2009, 48, No. 33, 5996-6000.
70. Zarytova V., Ivanova E., Venyaninova A. Design of functional diversity in oligonucleotides via zwitter-ionic derivatives of deprotected oligonucleotides. Nucleosides Nucleotides, 1998, 17, No. 1/3, 649-662.
ll.Kricka L.J., Fortina P. Analytical ancestry: "Firsts" in fluorescent labeling of nucleosides, nucleotides, and nucleic acids. Clin. Chem., 2009, 55, No. 4, 670-683.
72. Sinkeldam R. W., Greco N.J., Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem. Rev., 2010,110, No. 5, 2579-2619.
73. Kolpashchikov D.M. Binary probes for nucleic acid analysis. Chem. Rev., 2010, 110, No. 8, 4709-4723.
74. Malinovskii V.L., Wenger D., Haner R. Nucleic acid-guided assembly of aromatic chromophores. Chem. Soc. Rev., 2010, 30, No. 2, 410-^-22.
75. Singh Y., Murat P., Defrancq E. Recent developments in oligonucleotide conjugation. Chem. Soc. Rev., 2010, 39, No. 6, 2054-2070.
76. Kolevzon N., Yavin E. Site-specific DNA photocleavage and photomodulation by oligonucleotide conjugates. Oligonucleotides, 2010, 20, No. 6, 263-275.
77. Prunkl C., Berndl S., Wanninger-Weifi C., Barbaric J., Wagenknecht H.-A. Photoinduced short-range electron transfer in DNA with fluorescent DNA bases: lessons from ethidium and thiazole orange as charge donors. Phys. Chem. Chem. Phys., 2010,12, No. 1, 32-43.
78. Juskowiak B. Nucleic acid-based fluorescent probes and their analytical potential. Anal. Bioanal. Chem., 2011, 399, No. 9, 3157-3176.
79. Famulok M., Nayer G. Aptamer modules as sensors and detectors. Chem. Soc. Rev., 2011, 44, No. 12, 1349-1358.
80. Bichenkova E.V., Lang Z., Yu X., Rogert С., Douglas KT. DNA-mounted self-assembly: New approaches for genomic analysis and SNP detection. Biochim. Biophys. Acta, 2011,1809, No. 1, 1-23.
81. Sando S. Design of functional nucleic acid systems for biomolecular analysis. Bull. Chem. Soc. Jpn., 2011, 84, No. 2, 133-140.
82. Gottfried A., Weinhold E. Sequence-specific covalent labelling of DNA. Biochem. Soc. Trans., 2011, 39, No. 2, 623-628.
83. Ranasinghe R.T., Brown T. Ultrasensitive fluorescence-based methods for nucleic acid detection: towards amplification-free genetic analysis. Chem. Commun., 2011, 47, No. 13, 3717-3735.
84. Ruiz-Carretero A., Janssen P.G.A., Kaeser A., Scheming A.P.H.J. DNA-templated assembly of dyes and extended ^-conjugated systems. Chem. Commun., 2011, 47, No. 15,4340-4347.
85. Wang C., Wu C., Chen Y., Song Y, Tan W., Yang C.J. Pyrene excimer for DNA sensors. Curr. Org. Chem., 2011,15, No. 4, 465^76.
86. Bandy T.J., Brewer A., Burns J.R., Marth G., Nguen T., Stulz E. DNA as supramolecular scaffold for functional molecules: progress in DNA nanotechnology. Chem. Soc. Rev., 2011, 40, No. 1, 138-148.
87. Terring T., Voigt N. V., Nangreave J., Yan H, Gothelf K. V. DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev., 2011, 40, No. 12, 5636-5646.
88. McLaughlin C.K., Hamblin G.D., Sleiman H.F. Supramolecular DNA assembly. Chem. Soc. Rev., 2011, 40, No. 12, 5647-5656.
89. Keller S., Marx A. The use of enzymes for construction of DNA-based objects and assemblies. Chem. Soc. Rev., 2011, 40, No. 12, 5690-5697.
90. Kleiner RE., Dumelin C.E., Liu D.R. Small-molecule discovery from DNA-encoded chemical libraries. Chem. Soc. Rev., 2011, 40, No. 12, 5707-5717.
91. Roh Y.H., Ruiz R.C.H., Peng S., Lee J.B., Luo D. Engineering DNA-based functional materials. Chem. Soc. Rev. , 2011, 40, No. 12, 5730-5744.
92. Dai N., Kool E.T. Fluorescent DNA-based enzyme sensors. Chem. Soc. Rev., 2011, 40, No. 12, 5756-5770.
93. OstergaardM.E., Hrdlicka P.J. Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): Tools for fundamental research, diagnostics, and nanotechnology. Chem. Soc. Rev., 2011, 40, No. 12, 5771-5788.
94. Hocek M., Fojta M. Nucleobase modification as redox DNA labelling for electrochemical detection. Chem. Soc. Rev., 2011, 40, No. 12, 5802-5814.
95. Okamoto A. ECHO probes: a concept of fluorescence control for practical nucleic acid sensing. Chem. Soc. Rev., 2011, 40, No. 12, 5815-5828.
96. PatwaA., Gissot A., Bestel I., Barthélémy P. Hybrid lipid oligonucleotide conjugates: synthesis, self-assemblies and biomedical applications. Chem. Soc. Rev., 2011, 40, No. 12, 5844-5854.
97. SaccàB., Niemeyer C. Functionalization of DNA nanostructures with proteins. Chem. Soc. Rev., 2011, 40, No. 12, 5910-5921.
98. Sargent R.G., Kim S., Gruenert D.C. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides, 2011, 21, No. 2, 55-75.
99. Jain M.L., Bruice P.Y., Szabo I.E., Bruice T.C. Incorporation of positively charged linkages into DNA and RNA backbones: a novel strategy for antigene arid antisense agents. Chem. Rev., 2012,112, in press, dx.doi.org/10.1021/crl004265.
100. Akcha F., Burgeot T., Narbonne J.-F., Garrigues P. Metabolic activation of PAHs: role of DNA adduct formation in induced carcinogenesis. In: PAHs: An Ecotoxicological Perspective. E.T. Douven, Ed. John Wiley & Sons, 2005, Chapter 5, 65-79.
101. Luch A., Baird W.M. Metabolic Activation and Detoxification of Polycyclic Aromatic Hydrocarbons. In: The carcinogenic effects of polycyclic aromatic hydrocarbons. A. Luch, Ed. Imperial College Press, London, 2005, Chapter 2, 19-96.
102. Walker C.H. Organic pollutants: an ecotoxicological perspective. 2nd Ed. CRC Press Taylor & Francis Group, Boca Raton, 2009, Chapter 9. Polycyclic aromatic hydrocarbons, p. 181-191.
103. Harvey R.G., Geacintov N.E. Intercalation and binding of carcinogenic hydrocarbon metabolites to nucleic acids. Acc. Chem. Res., 1988, 21, No. 2, 66-73.
104. Loeb L.A., Harris C.C. Advances in chemical carcinogenesis: a historical review and prospective. Cancer Res., 2008, 68, No. 17, 6863-6872.
105. Sims P., Grover P.L., SwaislandA., Pal K, Hewer A. Metabolic activation of benzo[a]pyrene proceeds by a diol-epoxide. Nature, 1974, 252, No. 5481, 326-328.
106. Weinstein LB., Jeffrey A.M, Jennette К W., Blobstein S.H., Harvey R.G., Harris C., Autrup H., Kasai H., Nakanishi К Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science, 1976,193, No. 4253, 592-595.
107. Jeffrey A.M, Jennette K.W., Blobstein S.H., Weinstein I. В., Beland F.A., Harvey R.G., Kasai H, Miura I., Nakanishi K. Benzo[a]pyrene-nucleic acid derivative found in vivo: structure of a benzo[a]pyrenetetrahydrodiol epoxide-guanosine adduct. J. Am. Chem. Soc., 1976, 98, No. 18,5714-5715.
108. Koreeda M., Moore P.D., Yagi H, Yeh H.J.C., Jerina D.M. Alkylation of polyguanylic acid at the 2-amino group and phosphate by the potent mutagen (±)-7ß,8a-Dihydroxy-9ß,10ß-epoxy-7,8,9,10-tetrahydrobenzo[a]pyre. J. Am. Chem. Soc., 1976, 98, No. 21, 6720-6727.
109. Koreeda M., Moore P.D., Wislocki P.G., Levin W., Yagi H, Jerina D.M. Binding of benzo[a]pyrene 7,8-diol-9,10-epoxides to DNA, RNA, and protein of mouse skin occurs with high stereoselectivity. Science, 1978,199, No. 4330, 778-781.
110. Heisig V., Jeffrey A.M., McGlade M.J., Small G.J. Fluorescence-line-narrowed spectra of polycyclic aromatic carcinogen-DNA adducts. Science, 1984, 223, No. 4633, 289-291.
111. M. Eriksson, Kim S.K, Sen S., Criislund A., Jernström В., Norden В. Location of excimer-forming adducts of (+)-anti-benzo[a]pyrenediol epoxide in DNA. J. Am. Chem. Soc., 1993, 115, No. 5,1639-1644.
112. Huang W., Amin S., Geacintov N.E. Fluorescence characteristics of site-specific and stereochemically distinct benzo[a]pyrene diol epoxide-DNA adducts as probes of adduct conformation. Chem. Res. Toxicol., 2002,15, No. 2, 118-126.
113. Förster Т. Excimers. Angew. Chem. Int. Ed., 1969, 8, No. 5, 333-343.
114. Birks J. B. Excimers. Rep. Progr. Phys., 1975, 38, No. 8, 903-974.
115. De Schryver F.C., Collart P., Vandendriessche J., Goedeweeck R., Swinnen A., Van der Auweraer M. Intramolecular excimer formation in bichromophoric molecules linked by a short flexible chain. Acc. Chem. Res., 1987, 20, No. 5, 159-166.
116. Winnik F.M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev., 1993, 93, No. 2, 587-614.
117. Барашков H.H., Сахно T.B., Нурмухаметов P.H., Хахелъ O.A. Эксимеры органических молекул. Усп. химии, 1993, 62, № 6, 579-593.
118. Saigusa Н, Lim Е.С. Excimer formation in vaл der Waals dimers and clusters of aromatic molecules. Acc. Chem. Res., 1996, 29, No. 4, 171-178.
119. Lehrer S.S. Intramolecular pyrene excimer fluorescence: a probe of proximity and protein conformational change. Meth. Enzymol., 1997, 278, 286-295.
120. Weil-Malherbe H. The solubilization of polycyclic aromatic hydrocarbons by purines. Biochem. J., 1946, 40, No. 3, 351-363.
121. Boyland E. Different types of carcinogens and their possible modes of action. Cancer Res., 1952,12, No. 2, 77-84.
122. Boyland E, Green B. The interaction of polycyclic hydrocarbons and nucleic acids. Br. J. Cancer, 1962,16, No. 3, 507-517.
123. Liquori A.M., DeLerma B., Ascoli F., Botré C., Trasciatti M. Interaction between DNA and polycyclic aromatic hydrocarbons. J. Mol. Biol., 1962, 5, No. 5, 521-526.
124. Ts'o P.O.P., Lu P. Interaction of nucleic acids, I. Physical binding of thymine, adenine, steroids, and aromatic hydrocarbons to nucleic acids. Proc. Natl. Acad. Sei. USA, 1964, 51, No. 1, 17-24.
125. Ts'o P.O.P., Lu P. Interaction of nucleic acids, I. Chemical linkage of the carcinogen 3,4-benzpyrene to DNA induced by photoradiation. Proc. Natl. Acad. Sei. USA, 1964, 51, No. 2, 271-280.
126. Boyland E, Green B. The effect of formaldehyde and thermal denaturation on the solubilization of polycyclic hydrocarbons by aqueous solutions of deoxyribonucleic acid. Biochem. J., 1964, 92, No. 1, 4c-7c.
127. Kodama M, Tagashira Y., Imamura A., Nagata C. Effect of secondary structure DNA upon solubility of aromatic hydrocarbons. J. Biochem., 1966, 59, No. 3, 257-264.
128. Chen F.-M. A simple method for studying the solubilization of polycyclic aromatic hydrocarbons in DNA solutions. Anal. Biochem., 1983,130, No. 2, 346-352.
129. Chen F.-M. Binding of pyrene to DNA, base sequence specificity and its implication. Nucl. Acids Res., 1983, 20, No. 11, 7231-7250.
130. Nelson H.P., Jr., DeVoe H. Physical binding of pyrene and phenanthrene to native and denatured DNA: measurements by spectral and coupled-column liquid chromatography methods. Biopolymers, 1984, 23, No. 5, 897-911.
131. Wolfe A., Shimer G.H., Jr., Meehan T. Polycyclic aromatic hydrocarbons physically Intercalate into duplex regions of denatured DNA. Biochemistry, 1987, 26, No. 20, 63926396.
132. Cho N., Asher S.A. UV resonance Raman studies of DNA-pyrene interactions: optical decoupling Raman spectroscopy selectively examines external site bound pyrene. J. Am. Chem. Soc., 1993,115, No. 14, 6349-6356.
133. Navarro R.R., Ichikawa H., Iimura Y., Tatsumi K. Removal of polycyclic aromatic hydrocarbons from contaminated soil by aqueous DNA solution. Environ. Sei. Technol., 2007, 41, No. 12, 4240^1245.
134. Jeong J.H., Park T.G. Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(D,L-lactic-co-glycolic acid) and hydrophilic oligonucleotides. Bioconjugate Chem., 2001,12, No. 6, 917-923.
135. Banchelli M., Gambinossi F., Durand A., Caminati G., Brown T., Berti D., Baglioni P. Modulation of density and orientation of amphiphilic DNA on phospholipid membranes. II. Vesicles. J. Phys. Chem. B, 2010,114, No. 21, 7348-7358.
136. Secco F., Venturini M., Biver T., Sánchez F., Prado-Gotor R, Grueso E. Solvent effects on the kinetics of the interaction of 1-pyrenecarboxaldehyde with calf thymus DNA. J. Phys. Chem. B, 2010,114, No. 13, 4686^1691.
137. Bair K.W., Tuttle R.L., Knick V.C., Cory M., McKee D.D. (l-Pyrenylmethyl)amino alcohols, a new class of antitumor DNA intercalators. Discovery and initial amine side chain structure-activity studies. J. Med. Chem., 1990, 33, No. 9, 2385-2393.
138. BairKW., Andrews W., Tuttle R.L., Knick V.C., Cory M., McKee D.D. 2[(Arylmethyl)amino]-2-methyl-l,3-propanediol DNA intercalators. An examination of the effects of aromatic ring variation on antitumor activity and DNA binding. J. Med. Chem., 1991, 34, No. 7, 1983-1990.
139. Hartley J.A., Webber J., Wyatt M.D., Bordenick N, Lee M. Novel cytotoxic DNA sequence and minor groove targeted photosensitizers: conjugates of pyrene and netropsin analogues. Bioorg. Med. Chem., 1995, 3, No. 6, 623-629.
140. Banik B.K., Becker F.F. Polycyclic aromatic compounds as anticancer agents: structure-activity relationships of chrysene and pyrene derivatives. Bioorg. Med. Chem., 2001, 9, No. 3, 593-605.
141. Hamasaki K., Ueno A. Aminoglycoside antibiotics, neamine and its derivatives as potent inhibitors for the RNA-protein interactions derived from HIV-1 activators. Bioorg. Med. Chem. Lett., 2001,11, No. 4, 591-594.
142. Honzawa S., Okubo H., Anzai S., Yamaguchi M., Tsumoto K., Kumagai I. Chiral recognition in the binding of helicenediamine to double strand DNA: interactions between low molecular weight helical compounds and a helical polymer. Bioorg. Med. Chem., 2002, 10, No. 10, 3213-3218.
143. Kamal A., Ramesh G., Srinivas O., Ramulu P. Synthesis and antitumour activity of pyrene-linked pyrrolo [2,l-c][ 1,4]benzodiazepine hybrids. Bioorg. Med. Chem. Lett., 2004,14, No. 2, 471-474.
144. Rostron J.P., Ulrich G., Retailleau P., Harriman A., Ziessel R. Engineering of an electronically decoupled difluoroindacene-pyrene dyad possessing high affinity for DNA. New J. Chem., 2005, 29, No. 10, 1241-1244.
145. Rescifina A., Chiacchio U., Corsaro A., De Clercq E., Iannazzo D., Mastino A., Piperno A., Romeo G., Romeo R., Valveri V. Synthesis and biological activity of isoxazolidinyl polycyclic aromatic hydrocarbons: potential DNA intercalators. J. Med. Chem., 2006, 49, No. 2, 709715.
146. Rescifina A., Chiacchio U., Piperno A., Sortino S. Binding of anon-ionic pyrenylisoxazolidine derivative to double-stranded polynucleotides: spectroscopic and molecular modelling studies. New J. Chem., 2006, 30, No. 4, 554-561.
147. Hernandez-Folgado L., Schmuck C., Tomic S., Piantanida I. A novel pyrene-guanidiniocarbonyl-pyrrole cation efficiently differentiates between ds-DNA and ds-RNA by two independent, sensitive spectroscopic methods. Bioorg. Med. Chem. Lett., 2008,18, No. 9, 2977-2981.
148. Yang Y., Ji S., Zhou F., Zhao J. Synthesis of novel bispyrene diamines and their application as ratiometric fluorescent probes for detection of DNA. Biosensors Bioelectronics, 2009, 24, No. 12,3442-3447.
149. Zhang R., Tang D., Lu P., YangX., Liao D., Zhang Y, Zhang M., Yu C., Yam V.W.W. Nucleic acid-ilnduced aggregation and pyrene excimer formation. Org. Lett., 2009, 11, No. 19, 43024305.
150. Hariharan M., Karunakaran S.C., Ramaiah D., Schulz I., Epe B. Photoinduced DNA damage efficiency and cytotoxicity of novel viologen linked pyrene conjugates. Chem. Commun., 2010, 46, No. 12, 2064-2066.
151. Rescifina A., Chiacchio U., Corsaro A., Piperno A., Romeo R. Isoxazolidinyl polycyclic aromatic hydrocarbons as DNA-intercalating antitumor agents. Eur. J. Med. Chem., 2011, 46, No. 1, 129-136.
152. Sheng R., Luo T., Zhu Y., Li H., Cao A. Interactions of new synthesized fluorescent cationic amphiphiles bearing pyrene hydrophobe with plasmid DNA: binding affinities, aggregation and intracellular uptake. Macromol. Biosci., 2010,10, No. 8, 974-982.
153. Hernandez-Folgado L., Baretic D., Piantanida I., Marjanovic M., Kralj M., Rehm T., Schmuck C. Guanidiniocarbonylpyrrole-aryl derivatives: structure tuning for spectrophotometric recognition of specific DNA and RNA sequences and for antiproliferative activity. Chem. Eur. J., 2010,16, No. 10, 3036-3056.
154. Hagihara M., Fukuda M., Hasegawa T., Morii T. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes. J. Am. Chem. Soc., 2006,128, No. 38, 1239212940.
155. Oh K.J., Cash K.J., Plaxco K.W. Excimer-based peptide beacons: a convenient experimental approach for monitoring polypeptide-protein and polypeptide-oligonucleotide interactions. J. Am. Chem. Soc., 2006,128, No. 43,14018-14019.
156. Bando T., Fujimoto J., Minoshima M., Shinohara K, Sasaki S., Kashiwazaki G., Mizumura M., Sugiyama H. Detection of CAG repeat DNA sequences by pyrene-functionalized pyrrole-imidazole polyamides. Bioorg. Med. Chem., 2007,15, No. 22, 6937-6942.
157. Fujimoto J., Bando T., Minoshima M., Uchida S., Iwasaki M., Shinohara K, Sugiyama H. Detection of triplet repeat sequences in the double-stranded DNA using pyrene-functionalized pyrrole-imidazole polyamides with rigid linkers. Bioorg. Med. Chem., 2008, 16, No. 11, 5899-5907.
158. Fujimoto J., Bando T., Minoshima M., Kashiwazaki G., Nishijima S., Shinohara K, Sugiyama H. Perylene-conjugated pyrrole polyamide as a sequence-specific fluorescent probe. Bioorg. Med. Chem., 2008,16, No. 22, 9741-9744.
159. Willis B., Arya D.P. Triple recognition of B-DNA. Bioorg. Med. Chem. Lett., 2009, 19, No. 17, 4974-4979.
160. Bowler F.R., Diaz-Mochon J.J., Swift M.D., Bradley M. DNA analysis by dynamic chemistry. Angew. Chem. Int. Ed., 2010, No. 10, 1809-1812.
161. Takeda A., Akimoto K, Kondo Y., Hamada F. Double stranded DNA discrimination by di-pyrene modified y-cyclodextrin. Bioorg. Med. Chem. Lett., 2010, 20, No. 11, 3240-3243.
162. Jiang Z., Zhang Y, Yu Y., Wang Z., Zhang X, Duan X, Wang S. Study on intercalations between double-stranded DNA and pyrene by single-molecule force spectroscopy: toward the detection of mismatch in DNA. Langmuir Letter, 2010, 26, No. 17, 13773—13777.
163. Liu Z.-R., Rill RL. A^A^-Bis[3,3'-(dimethylamino)propylamine]-3,4,9,10-perylenetetracarboxylic diimide, a dicationic perylene dye for rapid precipitation and quantitation of trace amounts of DNA. Analyt. Biochem., 1996, 236, No. 1, 139-145.
164. Fedoroff O.Yu., Salazar M, Han H, Chemeris V.V., Kerwin S.M., Hurley L.H. NMR-based model of a telomerase-inhibiting compound bound to G-quadruplex DNA. Biochemistry, 1998, 37, No. 36,12367-12374.
165. Han H., Cliff C.L., Hurley L.H. Accelerated assembly of G-quadruplex structures by a small molecule. Biochemistry, 1999, 38, No. 22, 6981-6986.
166. Han H, Bennett R.J., Hurley L.H. Inhibition of unwinding of G-quadruplex structures by Sgsl helicase in the presence of Air,Ar/-Bis[2-(l -piperidino)ethyl]-3,4,9,10-perylenetetracarboxylic diimide, a G-quadruplex-interactive ligand. Biochemistry, 2000, 39, No. 31, 9311-9136.
167. Tuntiwechapikul W., Salazar M. Cleavage of telomeric G-quadruplex DNA with perylene-EDTA-Fe(II). Biochemistry, 2001, 40, No. 45, 13652-13658.
168. Tuntiwechapikul W., Lee J.T., Salazar M. Design and synthesis of the G-quadruplex-specific cleaving reagent perylene-EDTA-Iron(II). J. Am. Chem. Soc., 2001,123, No. 23, 5606-5607.
169. Kerwin S.M., Chen G., KernJ.T., Thomas P. W. Perylene diimide G-quadruplex DNA binding selectivity is mediated by ligand aggregation. Bioorg. Med. Chem. Lett., 2002,12, No. 3, 447450.
170. Rossetti L., Franceschin M., Bianco A., Ortaggi G., Savino M. Perylene diimides with different side chains are selective in inducing different G-quadruplex DNA structures and in inhibiting telomerase. Bioorg. Med. Chem. Lett., 2002,12, No. 18, 2527-2533.
171. Kern J.T., Kerwin S.M. The aggregation and G-quadruplex DNA selectivity of charged 3,4,9,10-perylenetetracarboxylic acid diimides. Bioorg. Med. Chem. Lett., 2002, 12, No. 23, 3395-3398.
172. Franceschin M., Alvino A., Ortaggi G., Bianco A. New hydrosoluble perylene and coronene derivatives. Tetrahedron Lett., 2004, 45, No. 49, 9015-9020.
173. Rossetti L., Franceschin M., Schirripa S., Bianco A., Ortaggi G„ Savino M. Selective interactions of perylene derivatives having different side chains with inter- and intramolecular G-quadruplex DNA structures. A correlation with telomerase inhibition. Bioorg. Med. Chem. Lett., 2005,15, No. 2, 413-420.
174. Tuntiwechapikul W., Taka T., Bethencourt M., Makonkawkeyoon L., Lee T.R. The influence of pH on the G-quadruplex binding selectivity of perylene derivatives. Bioorg. Med. Chem. Lett., 2006,16, No. 15,4120^1126.
175. Mazzitelli C.L., Brodbelt J.S., Kern J.T., Rodriguez M., Kerwin S.M. Evaluation of binding of perylene diimide and benzannulated perylene diimide ligands to DNA by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2006,17, No. 4, 593-604.
176. Sissi C., Lucatello L., Krapcho A.P., Moloney D.J., Boxer M.B., Camarasa M.V., Pezzoni G., Mentac E., Palumbo M. Tri-, tetra- and heptacyclic perylene analogues as new potential antineoplastic agents based on DNA telomerase inhibition. Bioorg. Med. Chem., 2007,15, No. 1, 555-562.
177. Franceschin M., Alvino A., Casagrande V., Mauriello C., Pascucci E., Savino M., Ortaggi G., Bianco A. Specific interactions with intra- and intermolecular G-quadruplex DNA structures by hydrosoluble coronene derivatives: A new class of telomerase inhibitors. Bioorg. Med. Chem., 2007,15, No. 4, 1848-1858.
178. Franceschin M., Pascucci E., Alvino A., D'Ambrosio D., Bianco A., Ortaggi G., Savino M. New highly hydrosoluble and not self-aggregated perylene derivatives with three and four polar side-chains as G-quadruplex telomere targeting agents and telomerase inhibitors. Bioorg. Med. Chem. Lett., 2007,17, No. 9, 2515-2522.
179. Dincalp H., Avcibasi N, Icli S. Spectral properties and G-quadruplex DNA binding selectivities of a series of unsymmetrical perylene diimides. J. Photochem. Photobiol. A, 2007,185, No. 1, 1-12.
180. Avciba§i U., Dingalp H., UnakT., Yildirim Y., Avciba§i N., Duman Y., Igli S. Preliminary tests of the radiopharmaceutical potential of N-(2,6-diisopropylphenyl)-N'-(4-pyridyl)-perylene-3,4,9,10-tetracarboxylic diimide radiolabeled with 131I. J. Radioanalyt. Nucl. Chem., 2007, 273, No. 3, 669-675.
181. Alvino A., Franceschin M., Cefaro C, Borioni S., Ortaggi G., Bianco A. Synthesis and spectroscopic properties of highly water-soluble perylene derivatives. Tetrahedron, 2007, 63, No. 33, 7858-7865.
182. Franceschin M., Lombardo C.M., Pascucci E., D'Ambrosio D., Micheli E., Bianco A., Ortaggi G., Savino M. The number and distances of positive charges of polyamine side chains in a series of perylene diimides significantly influence their ability to induce G-quadruplex structures and inhibit human telomerase. Bioorg. Med. Chem., 2008,16, No. 5, 2292-2304.
183. Pivetta C., Lucatello L., Krapcho A.P., Gatto B., Palumbo M., Sissi C. Perylene side chains modulate G-quadruplex conformation in biologically relevant DNA sequences. Bioorg. Med. Chem., 2008,16, No. 20, 9331-9339.
184. Micheli E., Lombardo C.M., D'Ambrosio D., Franceschin M., Neidle S., Savino M. Selective G-quadruplex ligands: The significant role of side chain charge density in a series of perylene derivatives. Bioorg. Med. Chem. Lett., 2009,19, No. 14, 3903-3908.
185. Wang B., Yu C. Fluorescence turn-on detection of a protein through the reduced aggregation of aperylene probe. Angew. Chem. Int. Ed., 2010, 49, No. 8, 1485-1488.
186. Yamana K., Letsinger R.L. Synthesis and properties of oligonucleotides bearing a pendant pyrene group. Nucl. Acids Symp. Ser., 1985, No. 16, 169-172.
187. Kitamura M., Nimura A., Kunimoto K, Segawa H., Shimidzu T. Synthesis and properties of oligonucleotide derivative with P(V) porphyrin. Nucleic Acids Symp. Ser., 1991,25, 13-14.
188. Kawai K., Yoshida H., Sugimoto A., Fujitsuka M., Majima T. Kinetics of transient end-to-end contact of single-stranded DNAs. J. Am. Chem. Soc., 2005,127, No. 38, 13232-13237.
189. Berlin Y.A., Korshun V.A., Boreskov Yu.G. Multiple non-radioactive labeling of oligonucleotides. Nucleic Acids Symp. Ser., 1991, 25, 85-86.
190. Mann J.S., Shibata Y., Meehan T. Synthesis and properties of an oligodeoxynucleotide modified with a pyrene derivative at the 5'-phosphate. Bioconjugate Chem., 1992, 3, No. 6, 554-558.
191. DapprichJ., Walter N.G., Salingue F., StaerkH. Base-dependent pyrene fluorescence used for in-solution detection of nucleic acids. J. Fluorescence, 1997, 7, No. 1, 87s-89s.
192. Puri N., Zamaratski E., Sund C., Chattopadhyaya J. Synthesis of 5'-polyarene-tethered oligo-DNAs and the thermal stability and spectroscopic properties of their duplexes and triplexes. Tetrahedron, 1997, 53, No. 30, 10409-10432.
193. Kawai K, Takada T, Tojo S., Ichinose N., Majima T. Observation of hole transfer through DNA by monitoring the transient absorption of pyrene radical cation. ,J. Am. Chem. Soc., 2001,123, No. 50, 12688-12689.
194. Kawai K, Takada T., Tojo S., Majima T. Regulation of one-electron oxidation rate of guanine and hole transfer rate in DNA through hydrogen bonding. Tetrahedron Lett., 2002, 43, No. 45, 8083-8085.
195. Kawai K, Miyamoto K, Tojo S., Majima T. Formation of pyrene dimer radical cation in DNA reflecting DNA dynamics in the time range of 1 //s to 1 ms. J. Am. Chem. Soc., 2003,125, No. 4,912-915.
196. Takada T., Kawai K, Tojo S., Majima T. Kinetics of multistep hole transfer in DNA by monitoring the transient absorption of the pyrene radical cation. J. Phys. Chem. B, 2003, 107, No. 50, 14052-14057.
197. Zhu H., Lewis F.D. Pyrene excimer fluorescence as a probe for parallel G-quadruplex formation. Bioconjugate Chem., 2007,18, No. 4, 1213-1217.
198. Fujimoto K, Shimizu H., Inouye M. Unambiguous detection of target DNAs by excimer-monomer switching molecular beacons. J. Org. Chem., 2004, 69, No. 10, 3271-3275.
199. Maeda H., Maeda T., Mizuno K, Fujimoto K, Shimizu II., Inouye M. Alkynylpyrenes as improved pyrene-based biomolecular probes with the advantages of high fluorescence quantum yields and long absorption/emission wavelengths. Chem. Eur. J., 2006, 12, No. 3, 824-831.
200. Fujimoto K, Muto Y., Inouye M. A general and versatile molecular design for host molecules working in water: a duplex-based potassium sensor consisting of three functional regions. Chem. Commun., 2005, No. 38, 4780^1782.
201. Fujimoto K, Yamada S., Inouye M. Synthesis of versatile fluorescent sensors based on click chemistry: detection of unsaturated fatty acids by their pyrene-emission switching. Chem. Commun., 2009, No. 46, 7164-7166.
202. Daublain P., Thazhathveetil A.K, Wang Q., Trifonov A., Fiebig T., Lewis F.D. Dynamics of photochemical electron injection and efficiency of electron transport in DNA. J. Am. Chem. Soc., 2009,131, No. 46, 16790-16797.
203. Siegmund K, Daublain P., Wang Q., Trifonov A., Fiebig T., Lewis F.D. Structure and photoinduced electron transfer in DNA hairpin conjugates possessing a tethered 5'-pyrenecarboxamide. J. Phys. Chem. B, 2009,113, No. 50, 16276-16284.
204. Daublain P., Thazhathveetil A.K., Shafirovich V., WangQ., Trifonov A., Fiebig T., Lewis F.D. Dynamics and efficiency of electron injection and transport in DNA using Pyrenecarboxamide as an electron donor and 5-bromouracil as an electron acceptor. J. Phys. Chem. B, 2010,114, No. 45, 14265-14272.
205. Sekiguchi T., Ebara Y., Moriguchi T., Shinozuka K. Novel sequence-responding fluorescent oligoDNA probe bearing a silylated pyrene molecule. Bioorg. Med. Chem. Lett., 2007,17, No. 24, 6883-6886.
206. Narayanan S., Gall J., Richert C. Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5'- and 3'-terminal residues. Nucleic Acids Res., 2004, 32, No. 9, 2901-2911.
207. Kawai K, Kawabata K, Tojo S., Majima T. Synthesis of ODNs containing 4-methylamino-1,8-naphthalimide as a fluorescence probe in DNA. Bioorg. Med. Chem. Lett., 2002, 12, No. 17, 2363-2366.
208. Kawai K, Kimura T., Kawabata K, Tojo S., Majima T. Excess electron transfer in DNA studied by pulse radiolysis and y-radiolysis of naphthalimide and iodouridine modified ODN. J. Phys. Chem. B, 2003,107, No. 46, 12838-12841.
209. Asseline U., Cheng E. Synthesis and binding properties of perylene-oligo-2'-deoxyribonucleotide conjugates. Tetrahedron Lett., 2001, 42, No. 51, 9005-9010.
210. Aubert Y., Asseline U. Synthesis and hybridization properties of oligonucleotide-perylene conjugates: influence of the conjugation parameters on triplex and duplex stabilities. Org. Biomol. Chem., 2004, 2, No. 23, 3496-3503.
211. Lewis F.D., Zhang Y., Letsinger R.L. Design of a hydrophobic fluorescent probe: an amide-linked bispyrenyl alcohol. J. Org. Chem., 1997, 62, No. 24, 8565-8568.
212. Lewis F.D., Zhang Y., Letsinger R.L. Bispyrenyl excimer fluorescence: a sensitive oligonucleotide probe. J. Am. Chem. Soc., 1997,119, No. 23, 5451-5452.
213. Korshun V.A., Pestov N.B., Birikh K.R., Berlin Y.A. Reagent for introducing pyrene residues in oligonucleotides. Bioconjugate Chem., 1992, 3, No. 6, 559-562.
214. Burmeister J., Azzawi A., von Kiedrowski G. Synthesis of novel phosphoramidite derivatives bearing pyrenyl and dansyl groups. Tetrahedron Lett., 1995, 36, No. 21, 3667-3668.
215. Christensen U.B., Pedersen E.B. Intercalating nucleic acids containing insertions of l-0-(l-pyrenylmethyl)glycerol: stabilisation of dsDNA and discrimination of DNA over RNA. Nucleic Acids Res., 2002, 30, No. 22, 4918^1925.
216. Christensen U.B., Pedersen E.B. Intercalating nucleic acids with pyrene nucleotide analogues as next-nearest neighbors for excimer fluorescence detection of single-point mutations under nonstringent hybridization conditions. Helv. Chim. Acta, 2003, 86, No. 6, 2090-2097.
217. Nielsen C.B., Petersen M., Pedersen E.B., Hansen P.E., Christensen U.B. NMR structure determination of a modified DNA oligonucleotide containing a new intercalating nucleic acid. Bioconjugate Chem., 2004,15, No. 2, 260-269.
218. Filichev V.V., Christensen U.B., Pedersen E.B., Babu B.R., Wengel J. Locked nucleic acids and intercalating nucleic acids in the design of easily denaturing nucleic acids: thermal stability studies. ChemBioChem., 2004, 5, No. 12, 1673-1679.
219. Filichev V.V., Vester B., Hansen L.H., Aal M.T.A., Babu B.R., Wengel J., Pedersen E.B. Enhanced inhibition of transcription start by targeting with 2'-OMe pentaribonucleotides comprising locked nucleic acids and intercalating nucleic acids. ChemBioChem., 2005, 6, No. 7,1181-1184.
220. Pasternak A., Kierzek E., Pasternak K, Fratczak A., Turner D.H., Kierzek R. The thermodynamics of 3'-terminal pyrene and guanosine for the design of isoenergetic T-O-methyl-RNA-LNA chimeric oligonucleotide probes of RNA structure. Biochemistry, 2008, 47, No. 5, 1249-1258.
221. Filichev V.V., Hilmy K.M.H., Christensen U.B., Pedersen E.B. Intercalating nucleic acids: the inversion of the stereocentre in 1 -<9-(pyren-1 -ylmethyl)glycerol from R to S. Thermal stability towards ssDNA, ssRNA and its own type of oligodeoxynucleotides. Tetrahedron Lett., 2004, 45, No. 25,4907^1910.
222. Christensen U.B., Wamberg M., El-Essawy F.A.G., Ismail A.El-H., Nielsen C.B., Filichev V.V., Lessen C.H., Petersen M., Pedersen E.B. Intercalating nucleic acids: the influence of linker length and intercalator type on their duplex stabilities. Nucleosides Nucleotides Nucleic Acids, 2004, 23, No. 1/2, 207-225.
223. Aly Y.L., WambergM., Pedersen E.B. Intercalating nucleic acids with insertion of 5-[(pyren-l-yl)methylidene]hydantoin-substituted butane-1,2-diol. Helv. Chim. Acta, 2005, 88, No. 12, 3137-3144.
224. Wamberg M.C., Walczak K, Andersen L., Hassan A.A., Pedersen E.B. Intercalating nucleic acids containing insertions of naphthalimide. Helv. Chim. Acta, 2006, 89, No. 9, 1826-1840.
225. Filichev V. V., Pedersen E.B. Stable and selective formation of Hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (TINA) prepared via postsynthetic Sonogashira solid-phase coupling reactions. J. Am. Chem. Soc., 2005, 127, No. 42, 1484914858.
226. Cogoi S., Paramasivam M., Filichev V. V., Geci I., Pedersen E.B., Xodo L.E. Identification of a new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G4-decoys with antiproliferative activity in pancreatic cancer cells. J. Med. Chem., 2009, 52, No. 2, 564568.
227. Geci I., Filichev V.V., Pedersen E.B. Synthesis of twisted intercalating nucleic acids possessing acridine derivatives. Thermal stability studies. Bioconjugate Chem., 2006, 17, No. 4, 950-957.
228. Filichev V.V., Gaber H, Olsen T.R., J0rgensen P.T., Lessen C.H., Pedersen E.B. Twisted intercalating nucleic acids - intercalator influence on parallel triplex stabilities. Eur. J. Org. Chem., 2006, No. 17, 3960-3968.
229. Filichev V.V., Astakhova I.V., Malakhov A.D., Korshun V.A., Pedersen E.B. DNA glue: 1-, 2-and 4-ethynylpyrenes in the structure of twisted intercalating nucleic acids (TINAs), DNA duplexes/triplexes and interstrand excimer formation. Nucl. Acids Symp. Ser., 2008, No. 52, 347-348.
230. Filichev V.V., Astakhova I.V., Malakhov A.D., Korshun V.A., Pedersen E.B. 1-, 2-, and 4-Ethynylpyrenes in the structure of twisted intercalating nucleic acids: structure, thermal stability, and fluorescence relationship. Chem. Eur. J., 2008,14, No. 32, 9968-9980.
231. Geci I., Filichev V. V., Pedersen E.B. Stabilization of parallel triplexes by twisted intercalating nucleic acids (TINAs) incorporating 1,2,3-triazole units and prepared by microwave-accelerated click chemistry. Chem. Eur. J., 2007,13, No. 22, 6379-6376.
232. Zhou H., Ma X., Wang J., Zhang L. Pyrene acetylide nucleotides in GNA: probing duplex formation and sensing of copper(II) ions. Org. Biomol. Chem., 2009, 7, No. 11, 2297-2302.
233. Wagner С., Wagenknecht H.-A. Perylene-3,4:9,10-tetracarboxylic acid bisimide dye as an artificial DNA base surrogate. Org Lett., 2006, 8, No. 19, 4191—4194.
234. Wilson T.M., Zeidan T.A., Hariharan M., Lewis F.D., Wasielewski M.R. Electron hopping among cofacially stacked perylenediimides assembled by using DNA hairpins. Angew. Chem. Int. Ed., 2010, 49, No. 13, 2385-2388.
235. Korshun V.A., Prokhorenko I.A., Gontarev S. V., Skorobogatyi M. V., Balakin К. V., Manasova E.V., Malakhov A.D., Berlin Y.A. New pyrene derivatives for fluorescent labeling of oligonucleotides. Nucleosides Nucleotides, 1997,16, No. 7/9,1461-1464.
236. Балакин КВ., Малахов А.Д., Коршун В.А., Берлин Ю.А. Метод синтеза олигонуклеотидов, меченных пиреном. Биоорган, химия, 1998, 24, № 5, 388-390.
237. Balakin K.V., Korshun V.A., Mikhalev I.I., Maleev G.V., Malakhov A.D. Conjugates of oligonucleotides with polyaromatic fluorophores as promising DNA probes. Biosensors Bioelectronics, 1998,13, No. 7/8, 771-778.
238. Korshun V.A., Balakin K.V., Proskurina T.S., Mikhalev I.I., Malakhov A.D., Berlin Yu.A. A Pyrene .seco-pseudonucleoside in constructing interaction-sensitive fluorescent DNA probes. Nucleosides Nucleotides, 1999,18, No. 11/12, 2661-2676.
239. Majumdar A., Khorlin A., Dyatkina N., Lin F.-L.M., Powell J., Liu J., Fei Z., Khripine Y., Watanabe K.A., George J., Glazer P.M., Seidman M. Targeted gene knockout mediated by triple helix forming oligonucleotides. Nature Genetics, 1998, 20, No. 2, 212-214.
240. Malakhov A.D., Skorobogatyi M.V., Prokhorenko I. A., Gontarev S.V., Kozhich D.T., Stetsenko D.A., Stepanova I.A., Shenkarev Z.O., Berlin Yu.A., Korshun V.A. l-(Phenylethynyl)pyrene and 9,10-bis(phenylethynyl)anthracene, useful fluorescent dyes for DNA labeling: excimer formation and energy transfer. Eur. J. Org. Chem., 2004, No. 6, 1298-1307.
241. Малахов А.Д., Прохоренко И.А., Кузницова С.В., Скоробогатый М.В., Коршун В.А., Берлин Ю.А. Синтез нового флуоресцентного псевдонуклеозида на основе 9,10-бисфенилэтинилантрацена и его введение в олигонуклеотиды. Биоорган, химия, 1999, 25, № 12, 933-937.
242. Малахов АД., Коршун В.А., Берлин Ю.А. Синтез и флуоресцентные свойства олигонуклеотидов, содержащих новую флуоресцентную метку - п-( 2-бензоксазолил)толан. Биоорган, химия, 2001, 27, № 6, 462^-65.
243. Yamana K.,-Takei М., Nakano Н. Synthesis of oligonucleotide derivatives containing pyrene labeled glycerol linkers: Enhhanced excimer fluorescence on binding to a complementary DNA sequence. Tetrahedron Lett., 1997, 38, No. 34, 6051-6054.
244. Michel J., Bathany K, Schmitter J.-M., Monti J.-P., Moreau S. New ligand combinations for the efficient stabilization of short nucleic acid hairpins. Tetrahedron, 2002, 58, No. 39, 79757982.
245. MoranN., Bassani D.M., Desvergne J.-P., Keiper S., Lowden P.A.S., Vyle J.S., Tucker J.H.R. Detection of a single DNA base-pair mismatch using an anthracenetagged fluorescent probe. Chem. Commun., 2006, No. 48, 5003-5005.
246. James P.L., Le Strat L., Ellervik U., Bratwall C., Norden В., Brown Т., Fox K.R. Effects of a hairpin polyamide on DNA melting: comparison with distamycin and Hoechst 33258. Biophys. Chem., 2004, 111, No. 3, 205-212.
247. Ben Gaied N., Richardson J.A., Singleton D.G., Zhao Z., French D., Brown T. End-capped HyBeacon probes for the analysis of human genetic polymorphisms related to warfarin metabolism. Org. Biomol. Chem., 2010, 8, No. 12, 2728-2734.
248. Ben Gaied N., Zhao Z., Gerrard S.R., Fox K.R., Brown T. Potent triple helix stabilization by 5',3'-modified triplex-forming oligonucleotides. ChemBioChem, 2009, 10, No. 11, 18391851.
249. Somoza A., Terrazas M, Eritja R, Modified siRNAs for the study of the PAZ domain. Chem. Commun, 2010, 46, No. 24, 4270-4272.
250. Tainaka K, Fujitsuka M., Takada Т., Kawai K, Majima T. Sequence dependence of excess electron transfer in DNA. J. Phys. Chem. B, 2010,114, No. 45, 14657-14663.
251. A vino A., Mazzini S., Ferreira R., Eritja R. Synthesis and structural properties of oligonucleotides covalently linked to acridine and quindoline derivatives through a threoninol linker. Bioorg. Med. Chem., 2010,18, No. 21, 7348-7356.
252. Kashida H, Asanuma H, Komiyama M. Insertion of two pyrene moieties into oligodeoxyribonucleotides for the efficient detection of deletion polymorphisms. Chem. Commun., 2006, No. 26, 2768-2770.
253. Kashida H., Komiyama M., Asanuma H. Exciplex formation between pyrene and N,N-dimethylaniline in DNA for the detection of one-base deletion. Chem. Lett., 2006, 35, No. 8, 934-935.
254. Kashida H, Takatsu Т., Asanuma H. Detection of genetic polymorphisms with high sensitivity by DNA-perylene conjugate. Tetrahedron Lett., 2007, 48, No. 38, 6759-6762.
255. Kashida H, Takatsu Т., Sekiguchi K, Asanuma H. An efficient fluorescence resonance energy transfer (FRET) between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single-base changes. Chem. Eur. J., 2010,16, No. 8, 2479-2486.
256. Liu K, Zhu Z., Kang H., Wu Y., Sefan K, Tan W. DNA-based micelles: synthesis, micellar properties and size-dependent cell permeability. Chem. Eur. J., 2010,16, No. 12, 3791-3797.
257. You M., Zhu Z., Liu H., Gulbakan В., Han D., Wang R., Williams K.R., Tan W. Pyrene-assisted efficient photolysis of disulfide bonds in DNA-based molecular engineering. ACS Appl. Mater. Interfaces, 2010, 2, No. 12, 3601-3605.
258. Kashida H., Takatsu Т., Fujii Т., Sekiguchi K, Liang X, Niwa K, Takase Т., Yoshida Y, Asanuma H. In-stem molecular beacon containing a pseudo base pair of threoninol nucleotides for the removal of background emission. Angew. Chem. Int. Ed., 2009, 48, No. 38, 7044-7047.
259. Dioubankova N.N., Malakhov A.D., Stetsenko D.A., Korshun V.A., Gait M.J. (R)-2,4-dihydroxybutyramide .vecopseudonucleosides: new versatile homochiral synthons for synthesis of modified oligonucleotides. Org. Lett., 2002, 4, No. 26, 4607^1610.
260. Дюбанкова H.H., Малахов А.Д., Стеценко Д.А., Коршун В.А. Детекция точечных мутаций с помощью ДНК-зондов, меченных пиреном. Изв. АН, Сер. хим., 2004, № 2, 443-449.
261. Dioubankova N.N., Malakhov A.D., Stetsenko D.A., Gait M.J., Korshun V.A. Phosphoramidites and solid supports based on /V-substituted 2,4-dihydroxybutyramides: universal reagents for synthesis of modified oligonucleotides. Tetrahedron, 2006, 62, No. 29, 6762-6773.
262. Dioubankova N.N., Stepanova I.A., Ustinov A. V., Malakhov A.D., Korshun V.A. Interstrand excimer fluorescence of meta- and para-\mke& 1-phenyl-ethynylpyrene (1-PEPy) on DNA, in preparation.
263. Yamana K, Iwai Т., Nakano H. Synthsis of oligonucleotide derivatives containing a bis-pyrene-labeled residue in the main chain. Nucl. Acids Symp. Ser., 2000, No. 44, 27—28.
264. Yamana K, Iwai Т., Ohtani Y., Sato S., Nakamura M., Nakano H. Bis-pyrene-labeled oligonucleotides: sequence specificity of excimer and monomer fluorescence changes upon hybridization with DNA. Bioconjugate Chem., 2002,13, No. 6, 1266-1273.
265. Yamana K, Ohtani Y., Nakano H, Saito I Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor. Bioorg. Med. Chem. Lett., 2003,13, No. 20, 3429-3431.
266. Yamana K, Fukunaga Y, Ohtani Y, Sato S., Nakamura M., Kim W.J., Akaike T., Maruyama A. Fluorometric sensing of the salt-induced B-Z DNA transition by combination of two pyrene-labeled nucleobases. Chem. Commun., 2005, No. 19, 2509-2511.
267. Yamana K, Ohshita Y., Fukunaga Y., Nakamura M., Maruyama A. Bis-pyrene labeled molecular beacon: a monomer-excimer switching probe for the detection of DNA base alteration. Bioorg. Med. Chem., 2008,16, No. 1, 78-83.
268. Yoshizumi J., Kumamoto S., Nakamura M., Yamana K. Target-induced strand release (TISR) from aptamer-DNA duplex: A general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst, 2008,133, No. 3, 323-325.
269. Watanabe M., Yoshizumi J., Kumamoto S., Nakamura M., Maruyama A., Yamana K Electrochemical biosensors based on DNA strand exchange. Nucl. Acids Symp. Ser., 2007, No. 51,321-322.
270. Watanabe M., Kumamoto S., Nakamura M., Yamana K. Electronic detection of DNA mutation based on strand exchange reaction. Bioorg. Med. Chem., 2009,17, No. 4, 1494-1497.
271. Filichev V.V., Pedersen E.B. Intercalating nucleic acids (INAs) with insertion of 7V-(pyren-l-ylmethyl)-(3i?,4i?)-4-(hydroxymethyl)pyrrolidin-3-ol. DNA (RNA) duplex and DNA three-way junction stabilities. Org. Biomol. Chem., 2003,1, No. 1, 100-103.
272. Hassan A.A., Jorgensen P.T., Stein P.C., Fattah M.E.A., El Gawad I.I.A., Pedersen E.B. Facile route for the synthesis of the iminosugar nucleoside (3R,4R)-l-(pyren-l-yl)-4-(hydroxymethyl)pyrrolidin-3-ol. Carbohydrate Research, 2004, 339, No. 8, 1565-1568.
273. Hurd C.D., Bonner W.A. The clycosylation by means of the Grignard reagent. J. Am. Chem. Soc., 1945, ¿7, No. 11, 1972-1977.
274. HofferM. a-Thymidin. Chem. Ber., 1960, 93, No. 12, 2777-2781.
275. Schweitzer B.A., Kool E.T. Aromatic nonpolar nucleosides as hydrophobic isosteres of pyrimidine and purine nucleosides. J. Org. Chem., 1994, 59, No. 24, 7238-7242.
276. Chaudhuri N.C., Kool E.T. An efficient method for the synthesis of aromatic C-nucleosides. Tetrahedron Lett., 1995, 36, No. 11, 1795-1798; correction: Tetrahedron Lett., 1995, 36, No. 28, 4910.
277. Ren R.X.-F., Chaudhuri N.C., Paris P.L., Rumney S., IV, Kool E.T. Naphthalene, phenanthrene, and pyrene as DNA base analogues: synthesis, structure, and fluorescence in DNA. J. Am. Chem. Soc., 1996,118, No. 33, 7671-7678.
278. Chaudhuri N.C., Ren R.X.-F., Kool E.T. C-nucleosides derived from simple aromatic hydrocarbons. Synlett, 1997, No. 4, 341-347.
279. Jiang Y.L., Stivers J.T. Efficient epimerization of pyrene and other aromatic C-nucleosides with trifluoroacetic acid in dichloromethane. Tetrahedron Lett., 2003, 44, No. 1, 85-88.
280. Moran S., Ren R.X.-F, Sheils C.J., Rumney S., IV, Kool E.T. Non-hydrogen bonding 'terminator' nucleosides increase the 3'-end homogeneity of enzymatic RNA and DNA synthesis. Nucleic Acids Res., 1996, 24, No. 11,2044-2052.
281. Strassler C., Davis N.E., Kool E.T. Novel nucleoside analogues with fluorophores replacing the DNA base. Helv. Chim. Acta, 1999, 82, No. 8, 1243-1244.
282. Gao J., Strassler C., Tahmassebi D., Kool E.T. Libraries of composite polyfluors built from fluorescent deoxyribosides. J. Am. Chem. Soc., 2002,124, No. 39, 11590-11591.
283. Gao J., Watanabe S., Kool E.T. Modified DNA analogues that sense light exposure with color changes. J. Am. Chem. Soc., 2004,126, No. 40, 12748-12749.
284. Hainke S., Singh I., Hemmings J., Seitz O. Synthesis of C-aryl-nucleosides and O-aryl-glycosides via cuprate glycosylation. J. Org. Chem., 2007, 72, No. 23, 8811-8819.
285. Singh I., Hecker W., Prasad A.K., Parmara V.S., Seitz O. Local disruption of DNA-base stacking by bulky base surrogates. Chem. Commun., 2002, No. 5, 500-501.
286. Wichai I J., Woski S.A. Disiloxane-protected 2-deoxyribonolactone as an efficient precursor to 1,2-dideoxy-1 -/?-aryl-D-ribofuranoses. Org. Lett., 1999, i,No. 8, 1173-1175.
287. Zhang L., Long H., Boldt G.E., Janda K.D., Schatz G.C., Lewis F.D. a - and p -Stilbenosides as base-pair surrogates in DNA hairpins. Org. Biomol. Chem., 2006, 4, No. 2, 314-322.
288. Stoop M., Zahn A., Leumann C.L. A fluorescence-quencher pair for DNA hybridization studies based on hydrophobic base surrogates. Tetrahedron, 2007, 63, No. 17, 3440-3449.
289. Zahn A., Leumann C.J. Synthesis of functionalized biphenyl-C-nucleosides and their incorporation into oligodeoxynucleotides. Bioorg. Med. Chem., 2006,14, No. 18, 6174-6188.
290. Babu B.R., Wengel J. Universal hybridization using LNA (locked nucleic acid) containing a novel pyrene LNA nucleotide monomer. Chem. Commun., 2001, No. 20, 2114-2115.
291. Babu B.R., Prasad A.K., Trikha S., Thorup N., Parmar V.S., Wengel J. Conformationally locked aryl C-nucleosides: synthesis of phosphoramidite monomers and incorporation into single-stranded DNA and LNA (locked nucleic acid). J. Chem. Soc. Perkin Trans 1, 2002, No. 22, 2509-2519.
292. Raunak, Babu B.R., S0rensen M.D., Parmar V.S., Harri N.H., Wengel J. Oligodeoxynucleotides containing a-L-ribo configured LNA-type C-aryl nucleotides. Org. Biomol. Chem., 2004, 2, No. 1, 80-89.
293. Verhagen C., Bryld T., Raunkjcer M., Vogel S., Buchalova K, Wengel J. A conformationally locked aminomethyl C-glycoside and studies on its N-pyren-l-ylcarbonyl derivative inserted into oligonucleotides. Eur. J. Org. Chem., 2006, No. 11, 2538-2548.
294. Iyer R.P., Phillips L.R., Egan W. l-Chloro-2-deoxy-3,5-di-p-toluolyl-D-erythro-pentosyl chloride - a versatile synthetic intermediate. Synth. Commun., 1991, 21, No. 20,2053-2063.
295. Frazer J.D., Horner S.M., Woski S.A. Synthesis of a novel pyrene-containing nucleoside and its incorporation into oligonucleotides. Tetrahedron Lett., 1998, 39, No. 11, 1279-12828.
296. Aubert Y., Asseline U. Synthesis and properties of oligonucleotides involving a perylene unit linked to a 2'-deoxyribose residue. Nucleosides Nucleotides Nucleic Acids, 2003, 22, No. 5/8, 1223-1225.
297. Chiba J., Takeshima S., Mishima K, Maeda H, Nanai Y., Mizuno K, Inouye M. Artificial DNAs based on alkynyl C-nucleosides as a superior Scaffold for homo-and heteroexcimer emissions. Chem. Eur. J., 2007,13, No. 29, 8124-8130.
298. Bobula T., Hocek M., Kotora M. Sonogashira reactions of a- and P-l-ethynyl-2-deoxyribosides: synthesis of acetylene-extended C-nucleosides. Tetrahedron, 2010, 66, No. 2, 530-536.
299. Guckian K.M., Schweitzer B.A., Ren R.X.-F., Sheils C.J., Paris P.L., Tahmassebi D.C., Kool E. T. Experimental measurement of aromatic stacking affinities in the context of duplex DNA. J. Am. Chem. Soc., 1996,118, No. 34, 8182-8183.
300. Matray T.J., KoolE.T. Selective and stable DNA base pairing without hydrogen bonds. J. Am. Chem. Soc., 1998,120, No. 24, 6191-6192.
301. Paris P.L., Langenhan J.M., Kool E.T. Probing DNA sequences in solution with a monomer-excimer fluorescence color change. Nucleic Acids Res., 1998, 26, No. 16, 3789-3793.
302. Matray T.J., Kool E.T. A specific partner for abasic damage in DNA. Nature, 1999, 399, No. 6737, 704-708.
303. Sun L., Wang M., Kool E.T., Taylor J.-S. Pyrene nucleotide as a mechanistic probe: evidence for a transient abasic site-like intermediate in the bypass of dipyrimidine photoproducts by T7 DNA polymerase. Biochemistry, 2000, 39, No. 47, 14603-14610.
304. Guckian K.M., Schweitzer B.A., Ren R.X.-F., Sheils C.J., Tahmassebi D.C., Kool E.T. Factors contributing to aromatic stacking in water: evaluation in the context of DNA. J. Am. Chem. Soc., 2000,122, No. 10, 2213-2222.
305. Dzantiev L., Alekseyev Y.O., Morales J. C., Kool E.T., Romano L.J. Significance ofnucleobase shape complementarity and hydrogen bonding in the formation and stability of the closed polymerase-DNA complex. Biochemistry, 2001, 40, No. 10, 3215-3221.
306. Smirnov S., Matray T.J., Kool E.T., de los Santos C. Integrity of duplex structures without hydrogen bonding: DNA with pyrene paired at abasic sites. Nucleic Acids Res., 2002, 30, No. 24, 5561-5569.
307. Sun L., Zhang K, Zhou L., Hohler P., Kool E.T., Yuan F., Wang Z., Taylor J.S. Yeast pol rj holds a cis-syn thymine dimer loosely in the active site during elongation opposite the 3'-T of the dimer, but tightly opposite the 5'-T. Biochemistry, 2003, 42, No. 31, 9431-9437.
308. Lai J.S., Kool E.T. Selective pairing of polyfluorinated DNA bases. J. Am. Chem. Soc., 2004, 126, No. 10,3040-3041.
309. Cho Y., Kool E.T. Enzymatic synthesis of fluorescent oligomers assembled on a DNA backbone. ChemBioChem., 2006, 7, No. 4, 669-672.
310. Sintim H.O., Kool E.T. Remarkable sensitivity to DNA base shape in the DNA polymerase active site. Angew. Chem. Int. Ed., 2006, 45, No. 12, 1974-1979.
311. Somoza A., Chelliserrykattil J., Kool E.T. The roles of hydrogen bonding and sterics in RNA interference. Angew. Chem. Int. Ed., 2006, 45, No. 30, 4994-4997.
312. Wilson J.N., Gao J., Kool E.T Oligodeoxyfluorosides: strong sequence dependence of fluorescence emission. Tetrahedron, 2007, 63, No. 17, 3427-3433.
313. Wilson J.N., Cho Y., TanS., Cuppoletti A., Kool E.T. Quenching of fluorescent nucleobases by neighboring DNA: the "insulator" concept. ChemBioChem., 2008, 9, No. 2, 279-285.
314. Teo Y.N., Kool E.T. Polyfluorophore excimers and exciplexes as FRET donors in DNA. Bioconjugate Chem., 2009, 20, No. 12, 2371-2380.
315. Teo Y.N., Wilson J.N., Kool E.T. Polyfluorophore labels on DNA: damatic sequence dependence of quenching. Chem. Eur. J., 2009,15, No. 43, 11551-11558.
316. Teo Y.N., Wilson J.N., Kool E.T. Polyfluorophores on a DNA backbone: a multicolor set of labels excited at one wavelength. J. Am. Chem. Soc., 2009,131, No. 11, 3923-3933.
317. Loakes D., Gallego J., Pinheiro V.B., Kool E.T., Holliger P. Evolving a polymerase for hydrophobic base analogues. J. Am. Chem. Soc., 2009,131, No. 41, 14827-14837.
318. Dai N., Teo Y.N., Kool E.T. DNA-polyfluorophore excimers as sensitive reporters for esterases and lipases. Chem. Commun., 2010, 46, No. 8, 1221-1223.
319. Tan S.S., Teo Y.N., Kool E.T. Selective sensor for silver ions built from polyfluorophores on a DNA backbone. Org. Lett., 2010,12, No. 21, 4820^823.
320. Jiang Y.L., Kwon K, Stivers J.T. Turning on uracil-DNA glycosylase using a pyrene nucleotide switch. J. Biol. Chem., 2001, 276, No. 45, 42347-42354.
321. Jiang Y.L., Stivers J.T., Song F. Base-flipping mutations of uracil DNA glycosylase: substrate rescue using a pyrene nucleotide wedge. Biochemistry, 2002, 41, No. 37, 11248-11254.
322. Jiang Y.L., Drohat A.C., Ichikawa Y., Stivers J.T. Probing the limits of electrostatic catalysis by uracil DNA glycosylase using transition state mimicry and mutagenesis. J. Biol. Chem., 2002, 277, No. 18, 15385-15392.
323. Kwon K, Jiang Y.L., Stivers J.T. Rational engineering of a DNA glycosylase specific for an unnatural cytosine:pyrene base pair. Chem. Biol., 2003,10, No. 4, 351-359.
324. Cui G., Simmer ling C. Conformational heterogeneity observed in simulations of a pyrene-substituted DNA. J. Am. Chem. Soc., 2002,124, No. 41, 12154-12164.
325. Fiala K.A., Brown J.A., Ling H., Kshetry A.K., Zhang J., Taylor J.-S., Yang W., Suo Z. Mechanism of template-independent nucleotide incorporation catalyzed by a template-dependent DNA Polymerase. J. Mol. Biol., 2007, 365, No. 3, 590-602.
326. Printz M., Richert C. Pyrenylmethyldeoxyadenosine: a 3'-cap for universal DNA hybridization probes. Chem. Eur. J., 2009,15, No. 14, 3390-3402.
327. DallmannA., Pfaffe M., Mugge C., MahrwaldR., Kovalenko S., Ernsting N.P. Local THz time domain spectroscopy of duplex DNA via fluorescence of an embedded probe. J. Phys. Chem. B, 2009,113, No. 47,15619-15628.
328. Goodman M.F. On the wagon - DNA polymerase joins "H-bonds anonymous". Nature Biotechnol., 1999,17, No. 7, 640-641.
329. Kool E.T., Morales J.C., Guckian KM. Mimicking the structure and function of DNA: insights into DNA stability and replication. Angew. Chem. Int. Ed., 2000, 39, No. 6, 9901009.
330. Kool E.T. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct., 2001, 30, 1-22.
331. Kool E. T. Replacing the nucleobases in DNA with designer molecules. Acc. Chem. Res., 2002, 35, No. 11,936-943.
332. Wilson J.N., Kool E.T. Fluorescent DNA base replacements: reporters and sensors for biological systems. Org. Biomol. Chem., 2006, 4, No. 23, 4265-4274.
333. Krueger A. T., Kool E. T. Redesigning the architecture of the base pair: toward biochemical and biological function of new genetic sets. Chem. Biol., 2009,16, No. 3, 242-248.
334. Lee L, Berdis A.B. Non-natural nucleotides as probes for the mechanism and fidelity of DNA polymerases. Biochim. Biophys. Acta - Proteins and Proteomics, 2010, 1804, No. 5, 10641080.
335. Prokhorenko I.A., Korshun V.A., Petrov A.A., Gontarev S.V., Berlin Y.A. Incorporation of a pyrene nucleoside analogue into synthetic oligodeoxynucleotides using a nucleoside-like synthon. Bioorg. Med. Chem. Lett., 1995, 5, No. 18, 2081-2084.
336. Okamoto A., Ichiba T., Saito I. Pyrene-labeled oligodeoxynucleotide probe for detecting base insertion by excimer fluorescence emission. J. Am. Chem. Soc., 2004, 126, No. 27, 83648365.
337. Ueno Y., Watanabe Y., Shibata A., Yoshikawa K, Takano T., Kohara M., Kitade Y. Synthesis of nuclease-resistant siRNAs possessing universal overhangs. Bioorg. Med. Chem., 2009, 17, No. 5,1974-1981.
338. Ueno Y., Komatsuzaki S., Takasu K, Kawai S., Kitamura Y., Kitade Y. Synthesis and properties of oligonucleotides containing novel fluorescent biaryl units. Eur. J. Org. Chem., 2009, No. 28, 4763^1769.
339. Ogata A., Furukawa C., Sakurai K, Iba H., Kitade Y., Ueno Y. Biaryl modification of the 5'-terminus of one strand of a microRNA duplex induces strand specificity. Bioorg. Med. Chem. Lett., 2010, 20, No. 24, 7299-7302.
340. Yoshikawa K, Ogata A., Matsuda C., Kohara M., Iba H., Kitade Y., Ueno Y. Incorporation of biaryl units into the 5' and 3' ends of sense and antisense strands of siRNA duplexes improves strand selectivity and nuclease resistance. Bioconjugate Chem., 2011, 22, No. 1, 42-49.
341. Skrzypczynski Z, Wayland S. New reagents for the introduction of reactive functional groups into chemically synthesized DNA probes. Bioconjugate Chem., 2003,14, No. 3, 642-652.
342. Letsinger R.L., Wu T. Control of excimer emission and photochemistry of stilbene units by oligonucleotide hybridization. J. Am. Chem. Soc., 1994,116, No. 2, 811-812.
343. Letsinger R.L., Wu T. Use of a stilbenedicarboxamide bridge in stabilizing, monitoring, and photochemically altering folded conformations of oligonucleotides. J. Am. Chem. Soc., 1995, 117, No. 28, 7323-7328.
344. Lewis F.D., Wu T., Burch E.L., Bassani D.M., Yang J.-S., Schneider S., Jager W., Letsinger RL. Hybrid oligonucleotides containing stilbene units. Excimer fluorescence and photodimerization. J. Am. Chem. Soc., 1995,117, No. 34, 8785-8792.
345. Herrlein M.K., Nelson J.S., Letsinger R.L. A covalent lock for self-assembled oligonucleotide conjugates. J. Am. Chem. Soc., 1995,117, No. 40, 10151-10152.
346. Nelson J.S., Giver L., Ellington A.D., Letsinger RL. Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the Rev protein of HIV-1. Biochemistry, 1996, 35, No. 16, 5339-5344.
347. Lewis F.D., Wu T., Zhang Y., Letsinger R.L., Greenfield S.R., Wasielewski M.R. Distance-dependent electron transfer in DNA hairpins. Science, 1997, 277, No. 5326, 673-676.
348. Lewis F.D., Letsinger R.L. Distance-dependent photoinduced electron transfer in synthetic single-strand and hairpin DNA. J. Biol. Inorg. Chem., 1998, 3, No. 2, 215-221.
349. Lewis F.D., Liu X., Miller S.E., Wasielewski M.R. Electronic interactions between ^-stacked DNA base pairs and diphenylacetylene-4,4'-dicarboxamide in hairpin DNA. J. Am. Chem. Soc., 1999,121, No. 41, 9746-9747.
350. Lewis F.D., Liu X, Wu Y, Miller S.E., Wasielewski M.R, Letsinger R.L., Sanishvili R, Joachimiak A., Tereshko V., Egli M. Structure and photoinduced electron transfer in exceptionally stable synthetic DNA hairpins with stilbenediether linkers. J. Am. Chem. Soc., 1999,121, No. 42, 9905-9906.
351. Lewis F.D., Liu X. Phototriggered DNA hairpin formation in a stilbenediether-linked bis(oligonucleotide) conjugate. J. Am. Chem. Soc., 1999,121, No. 50,11928-11929.
352. Lewis F.D., Zhang Y., LiuX., Xu N., Letsinger R.L. Naphthalenedicarboxamides as fluorescent probes of inter- and intramolecular electron transfer in single strand, hairpin, and duplex DNA. J. Phys. Chem. B, 1999,103, No. 13, 2570-2578.
353. Lewis F.D., Wu T., Liu X, Letsinger R.L., Greenfield S.R., Miller S.E., Wasielewski M.R. Dynamics of photoinduced charge separation and charge recombination in synthetic DNA hairpins with stilbenedicarboxamide linkers. J. Am. Chem. Soc., 2000, 122, No. 12, 28892902.
354. Lewis F.D., Liu X, Liu J., Hayes R.T., Wasielewski M.R. Dynamics and equilibria for oxidation of G, GG, and GGG sequences in DNA hairpins. J. Am. Chem. Soc., 2000,122, No. 48,12037-12038.
355. Lewis F.D., Kaigutkar R.S., Wu Y., LiuX., Liu J., Hayes R.T., Miller S.E., Wasielewski M.R. Driving force dependence of electron transfer dynamics in synthetic DNA hairpins. J. Am. Chem. Soc., 2000,122, No. 49,12346-12351.
356. Lewis F.D., Liu X, Liu J., Miller S.E., Hayes R.T., Wasielewski M.R. Direct measurement of hole transport dynamics in DNA. Nature, 2000, 406, No. 6791, 51-53.
357. Lewis F.D., Zuo X., Liu J., Hayes R.T., Wasielewski M.R. Dynamics of inter- and intrastrand hole transport in DNA hairpins. J. Am. Chem. Soc., 2002,124, No. 17, 4568—4569.
358. Lewis F.D., LiuX., Miller S.E., Hayes R.T., Wasielewski M.R. Dynamics of electron injection in DNA hairpins. J. Am. Chem. Soc., 2002,124, No. 38, 11280-11281.
359. Lewis F.D., Wu Y, Liu X. Synthesis, structure, and photochemistry of exceptionally stable synthetic DNA hairpins with stilbene diether linkers. J. Am. Chem. Soc., 2002, 124, No. 41, 12165-12173.
360. Lewis F.D., Liu X., Miller S.E., Hayes R.T., Wasielewski M.R. Formation and decay of localized contact radical ion pairs in DNA hairpins. J. Am. Chem. Soc., 2002, 124, No. 47, 14020-14026.
361. Lewis F.D., WuY., Zhang L. Reversible formation of DNA G-quadruplex hairpin dimers from stilbenediether conjugates. Chem. Commun., 2004, No. 6, 636-637.
362. Lewis F.D., Wu Y., Zhang L., Zuo X, Hayes R.T., Wasielewski M.R. DNA-mediated exciton coupling and electron transfer between donor and acceptor stilbenes separated by a variable number of base pairs. J. Am. Chem. Soc., 2004,126, No. 26, 8206-8215.
363. Lewis F.D., Zhang L., Zuo X. Orientation control of fluorescence resonance energy transfer using DNA as a helical Scaffold. J. Am. Chem. Soc., 2005,127, No. 28, 10002-10003.
364. Lewis F.D., Zhu H., Daublain P., Cohen В., Wasielewski M.R. Hole mobility in DNA a tracts. Angew. Chem. Int. Ed., 2006, 45, No. 47, 7982-7985.
365. Lewis F.D., Zhu H., Daublain P., Fiebig Т., Raytchev M., Wang Q., Shafirovich V. Crossover from superexchange to hopping as the mechanism for photoinduced charge transfer in DNA hairpin conjugates. J. Am. Chem. Soc., 2006,128, No. 3, 791-800.
366. Zhang L., Long H., Schatz G.C., Lewis F.D. Synthesis and properties of nicked dumbbell and dumbbell DNA conjugates having stilbenedicarboxamide linkers. Org. Biomol. Chem., 2007, 5, No. 3, 450-456.
367. Lewis F.D., Zhang L., Kelley R.F., McCamantz D., Wasielewski M.R. A perylenedicarboxamide linker for DNA hairpins. Tetrahedron, 2007, 63, No. 17, 3457-3464.
368. Lewis F.D., Letsinger R.L., Wasielewski M.R. Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Acc. Chem. Res., 2001, 34, No. 2, 159-170.
369. Lewis F.D., Wu Y. Dynamics of superexchange photoinduced electron transfer in duplex DNA. J. Photochem. Photobiol. C: Photochem. Rev., 2001, 2, No. 1, 1-16.
370. Lewis F.D., Wasielewski M.R. Dynamics and equilibrium for single step hole transport processes in duplex DNA. Top. Curr. Chem., 2004, 236, 45-65.
371. Lewis F.D. DNA molecular photonics. Photochem. Photobiol., 2005, 81, No. 1, 65-72.
372. Lewis F.D. DNA photonics. Pure Appl. Chem., 2006, 75, No. 12,2287-2295.
373. Bevers S., O'Dea T.P., McLaughlin L. Perylene- and naphthalene-based linkers for duplex and triplex stabilization. J. Am. Chem. Soc., 1998,120, No. 42,11004-11005.
374. Bevers S., Schutte S., McLaughlin L. Naphthalene- and perylene-based linkers for the stabilization of hairpin triplexes. J. Am. Chem. Soc., 2000,122, No. 25, 5905-5915.
375. Rahe N., Rinn C., Carell T. Development of donor-acceptor modified DNA hairpins for the investigation of charge hopping kinetics in DNA. Chem. Commun., 2003, No. 17, 2120-2121.
376. Zheng Y., Long H, Schatz G.C., Lewis F.D. Duplex and hairpin dimer structures for perylene diimide-oligonucleotide conjugates. Chem. Commun., 2005, No. 38, 4795-4797.
377. Zheng Y., Long H., Schatz G.C., Lewis F.D. A cooperative beads-on-a-string approach to exceptionally stable DNA triplexes. Chem. Commun., 2006, No. 36, 3830-3832.
378. Bouquin N., Malinovskii V.L., Haner R. Highly efficient quenching of excimer fluorescence by perylene diimide in DNA. Chem. Commun., 2008, No. 17, 1974-1976.
379. Hariharah M., Zheng Y., LongH., Zeidan T.A., Schatz G.C., Vura-Weis J., Wasielewski M.R., Zuo X, Tiede D.M., Lewis F.D. Hydrophobic dimerization and thermal dissociation of perylenediimide-linked DNA hairpins. J. Am. Chem. Soc., 2009,131, No. 16, 5920-5929.
380. Hariharah M., Siegmund K., Zheng Y., Long H., Schatz G.C., Lewis F.D. Perylenediimide-linked DNA dumbbells: long-distance electronic interactions and hydrophobic assistance of base-pair melting. J. Phys. Chem. C, 2010,114, No. 48,20466-20471.
381. Wang W., Li L.-S., Helms G., Zhou H.-H, Li A.D.Q. To fold or to assemble? J. Am. Chem. Soc., 2003,125, No. 5, 1120-1121.
382. Wang W., Wan W., Zhou H.-H., Niu S., Li A.D.Q. Alternating DNA and 7i-conjugated sequences. Thermophilic foldable polymers. J. Am. Chem. Soc., 2003, 125, No. 18, 52485249.
383. Langenegger S.M., Häner R. The effect of a non-nucleosidic phenanthrene building block on DNA duplex stability. Helv. Chim. Acta, 2002, 85, No. 10, 3414-3421.
384. Stutz A., Langenegger, Häner R. Phenanthrene-derived DNA hairpin mimics. Helv. Chim. Acta, 2003, 86, No. 9, 3156-3163.
385. Langenegger S.M., Häner R. A Simple, non-nucleosidic base surrogate increases the duplex stability of DNA containing an abasic site. Chem. Biodiv., 2004,1, No. 2, 259-264.
386. Langenegger S.M., Häner R. Excimer formation by interstrand stacked pyrenes. Chem. Commun., 2004, No. 24, 2792-2793.
387. Ackermann D., Häner R. Nonnucleosidic base surrogates: the effect of 1,2-disubstituted phenanthrenes on DNA duplex stability. Helv. Chim. Acta, 2004,87, No. 11, 2790-2804.
388. Langenegger S.M., Häner R. DNA containing phenanthroline- and phenanthrene-derived, non-nucleosidic base surrogates. Tetrahedron Lett., 2004, 45, No. 50, 9273-9276.
389. Langenegger S.M., Häner R. Remarkable stabilization of duplex DNA containing an abasic site by non-nucleosidic phenanthroline and pyrene building blocks. ChemBioChem., 2005, 6, No. 5,848-851.
390. Langenegger S.M., Häner R. A DNA mimic made of non-nucleosidic phenanthrene building blocks. ChemBioChem., 2005, 6, No. 12, 2149-2152.
391. Langenegger S.M., Häner R. Selectivity in DNA interstrand-stacking. Bioorg. Med. Chem. Lett., 2006,16, No. 19, 5062-5065.
392. Malinovskii V.L., Häner R. Synthesis of polysubstituted pyrenes with tuned spectroscopic properties for two-point attachment. Eur. J. Org. Chem., 2006, No. 16, 3550-3553.
393. Malinovskii V.L., Samain F., Häner R. Helical arrangement of interstrand stacked pyrenes in a DNA framework. Angew. Chem. Int. Ed., 2007, 46, No. 24, 4464^467.
394. Trkulja I., Häner R. Triple-helix mediated excimer and exciplex formation. Bioconjugate Chem., 2007,18, No. 2, 289-292.
395. Trkulja I., Biner S.M., Langenegger S.M., Häner R. A molecular probe for the detection of homopurine sequences. ChemBioChem., 2007, 8, No. 1, 25-27.
396. Looser V., Langenegger S.M., Häner R, Hartig J.S. Pyrene modification leads to increased catalytic activity in minimal hammerhead ribozymes. Chem. Commun., 2007, No. 42, 43574359.
397. Trkulja I., Häner R. Monomeric and heterodimeric triple helical DNA mimics. J. Am. Chem. Soc., 2007,129, No. 25, 7982-7989.
398. Malinovskii V.L., Bittermann F., Häner R. Self-organization of polyaromatic compounds within DNA. Nucl. Acids Symp. Ser., 2007, No. 51, 31-32.
399. Trkulja I., Stutz A., Härter R. A phenanthrene modified RNA hairpin. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 8/9, 879-882.
400. Langenegger S.M., Malinovskii V.L., Wenger D., Werder S., Häner R. DNA containing non-nucleoside phenanthrene building blocks with asymmetrical linkers. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 8/9, 901-903.
401. Bianke G., Häner R. Hairpin mimics with phenanthroline- and bipyridine-derived linkers.
Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 8/9, 949-952.
402. SamainF., Malinovskii V.L., Langenegger S.M., Häner R. Spectroscopic properties of pyrene-containing DNA mimics. Bioorg. Med. Chem., 2008,16, No. 1, 27-33.
403. Bouquin N, Malinovskii V.L., Häner R. Anthraquinones as artificial DNA building blocks. Eur. J. Org. Chem., 2008, No. 13,2213-2219.
404. Bittermann H, Siegemund D., Malinovskii V.L., Häner R. Dialkynylpyrenes: strongly fluorescent, environment-sensitive DNA building blocks. J. Am. Chem. Soc., 2008, 130, No. 46,15285-15287.
405. Werder S., Malinovskii V.L., Häner R. Triazolylpyrenes: synthesis, fluorescence properties, and incorporation into DNA. Org. Lett., 2008,10, No. 10, 2011-2014.
406. Uno S., Dohno C., Bittermann H, Malinovskii V.L., Häner R. A light-driven supramolecular optical switch. Angew. Chem. Int. Ed., 2009, 48, No. 40, 7362-7365.
407. Häner R, Samain F., Malinovskii V.L. DNA-assisted self-assembly of pyrene foldamers. Chem. Eur. J., 2009,15, No. 23, 5701-5708.
408. Galievsky V.A., Malinovskii V.L., Stasheuski A.S., Samain F., Zachariasse K.A., Häner R., Chirvony V.S. Photophysical characterization of oligopyrene modules for DNA-based nanosystems. Photochem. Photobiol. Sei., 2009, 8, No. 10, 1448-1454.
409. Häner R, Biner S.M., Langenegger S.M., Meng T., Malinovskii V.L. A highly sensitive, excimer-controlled molecular beacon. Angew. Chem. Int. Ed., 2010, 49, No. 7, 1227-1230.
410. Huang C.-H, Parish A., Samain F., Garo F., Häner R., Morrow J.R. Binding of europium(III) to a non-nucleosidic phenanthroline linker in DNA. Bioconjugate Chem., 2010, 21, No. 3, 476^182.
411. Wenger D., Malinovskii V.L., Häner R. Modulation of chiroptical properties by DNA-guided assembly of fluorenes. Chem. Commun., 2011, 47, No. 11, 3168-3170.
412. Biner S.M., Kummer D., Malinovskii V.L., Häner R. Signal control by self-assembly of fluorophores in a molecular beacon-a model study. Org. Biomol. Chem., 2011, 9, No. 8, 2628-2633.
413. Filichev V.V., Nielsen M.C., Bomholt N., Jessen C.H., Pedersen E.B. High thermal stability of 5'-5'-linked alternate Hoogsteen triplexes at physiological pH. Angew. Chem. Int. Ed., 2006, 45, No. 32, 5311-5315.
414. Nakamura M„ Ueda M., Watanabe S., Kumamoto S., Yamana K. Electrochemical properties of anthraquinone-capped DNA-hairpins immobilized on gold surface. Nucl. Acids Symp. Ser., 2007, No. 51,317-318.
415. Nakamura M., Ueda M., Watanabe S., Kumamoto S., Yamana K. Syntheses of anthraquinone capped hairpin DNAs and electrochemical redox responses from their self-assembled monolayers on gold electrode. Tetrahedron Lett., 2007, 48, No. 35, 6159-6162.
416. Preuß R., Dapprich J., Walter N.G. Probing RNA-protein interactions using pyrene-labeled oligodeoxynucleotides: Qß replicase efficiently binds small RNAs by recognizing pyrimidine residues. J. Mol. Biol., 1997, 273, No. 3, 600-613.
417. AichP., Skinner R.J.S., WettigS.D., Steer R.P., Lee J.S. Long range molecular wire behaviour in metal complex of DNA. J. Biomol. Struct. Dynam., 2002, 20, No. 1, 93-98.
418. Studer S.M., Feinberg J.S., Joseph S. Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome. J. Mol. Biol., 2003, 327, No. 2, 369-381.
419. Taft B.J., Lazareck A.D., Withey G.D., Yin A., Xu J.M., Kelley S.O. Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J. Am. Chem. Soc., 2004, 126, No. 40,12750-12751.
420. Brunner J., Kraemer R. Copper(II)-quenched oligonucleotide probes for fluorescent DNA sensing. J. Am. Chem. Soc., 2004,126, No. 42, 13626-13627.
421. Marti A.A., Li X, Jockusch S., Li Z., Raveendra B., Kalachikov S., Russo J. J., Morozova I., Puthanveettil S.V., Ju J., Turro N.J. Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy. Nucleic Acids Res., 2006, 34, No. 10, 3161-3168.
422. Feinberg J.S., Joseph S. Ribose 2'-hydroxyl groups in the 5' strand of the acceptor arm of P-site tRNA are not essential for EF-G catalyzed translocation. RNA, 2006,12, No. 4, 580-588.
423. Benfield A.P., MacleodM.C., Liu Y., Wu Q., Wensel T.G., Vasques K.M. Targeted generation of DNA strand breaks using pyrene-conjugated triplex-forming oligonucleotides. Biochemistry, 2008, 47, No. 23, 6279-6288.
424. Zheng J., Li J., Gao X., Jin J., Wang K, Tan W., Yang R. Modulating molecular level space proximity: a simple and efficient strategy to design structured DNA probes. Anal. Chem., 2010,82, No. 9,3914-3921.
425. Wang H., Li J., Wang Y., Jin J., Yang R, Wang K, Tan W. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms. Anal. Chem., 2010, 82, No. 18, 7684-7690.
426. Wu Z.-S., Hu P., Zhou H., Shen G., Yu R. Fluorescent oligonucleotide probe based on G-quadruplex scaffold for signal-on ultrasensitive protein assay. Biomaterials, 2010, 31, No. 7, 1918-1924.
427. Huang J., Zhu Z., Bamrungsap S., Zhu G., You M., He X., Wang K, Tan W. Competition-mediated pyrene-switching aptasensor: probing lysozyme in human serum with a monomer-excimer fluorescence switch. Anal. Chem., 2010, 82, No. 24, 10158-10163.
428. Liu F., Choi J.Y., Seo T.S. DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid. Chem. Commun., 2010, 46, No. 16, 2844-2846.
429. Huang J., Wu Y„ Chen Y., Zhu Z., Yang X, Yang C.J., Wang K, Tan W. Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew. Chem. Int. Ed., 2011, 50, No. 2, 401-404.
430. Reese R.S., Fox M.A. Spectral and cyclic voltammetric characterization of self-assembled monolayers on gold of pyrene end-labeled oligonucleotide duplexes. Can. J. Chem., 1999, 77, No. 5/6, 1077-1084.
431. Zahavy E., Fox M.A. Photophysical quenching mediated by guanine groups in pyrenyl-/V-alkylbutanoamide end-labeled oligonucleotides. J. Phys. Chem. B, 1999, 103, No. 43, 93219327.
432. Yang C.J., Jockusch S., Vicens M., Turro N.J., Tan W. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc. Natl. Acad. Sci. USA, 2005, 102, No. 48, 17278-17283.
433. Chen Y, Yang C.J., Wu Y., Conlon P., Kim Y., Lin H., Tan W. Light-switching excimer beacon assays for ribonuclease H kinetic study. ChemBioChem., 2008, 9, No. 3, 355-359.
434. Conlon P., Yang C.J., Wu Y, Chen Y., Martinez K, Kim Y., Stevens N., Marti A.A., Jockusch S., Turro N.J., Tan W. Pyrene excimer signaling molecular beacons for probing nucleic acids. J. Am. Chem. Soc., 2008,130, No. 1, 336-342.
435. Fujimoto K, Muto Y., Inouye M. A DNA duplex-based, tailor-made fluorescent sensor for porphyrin derivatives. Bioconjugate Chem., 2008,19, No. 6, 1132-1134.
436. Nagatoishi S., Nojima T., Juskowiak B., Takenaka S. A pyrene-labeled G-quadruplex oligonucleotide as a fluorescent probe for potassium ion detection in biological. Angew. Chem. Int. Ed., 2005, 44, No. 32, 5067-5070.
437. Hayashida H., Paczesny Y., Juskowiak B., Takenaka S. Interactions of sodium and potassium ions with oligonucleotides carrying human telomeric sequence and pyrene moieties at both termini. Bioorg. Med. Chem., 2008,16, No. 22, 9871-9881.
438. Dembska A., Juskowiak B. The fluorescence properties and lifetime study of G-quadruplexes single- and double-labeled with pyrene. J. Fluorescence, 2010, 20, No. 5, 1029-1035.
439. Dembska A., Juskowiak B. Effect of metal cations on the fluorescence lifetimes of pyrene-labeled G-quadruplex probes. J. Photochem. Photobiol. A, 2010, 212, No. 1, 36-42.
440. Dembska A., Pedzinski T., Takenaka S., Juskowiak B. Emission lifetime study of fluorescence probes based on G-quadruplex oligonucleotides end-labeled with pyrene moieties. Spectroscopy, 2010, 24, No. 3, 325-331.
441. Shi C., Gu H, Ma C. An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon. Anal. Biochem., 2010, 400, No. 1, 99-102.
442. Saito Y., Mizuno E., Bag S.S., Suzukaa I., Saito I. Design of a novel G-quenched molecular beacon: A simple and efficient strategy for DNA sequence analysis. Chem. Commun., 2007, No. 43, 4492^1494.
443. Arslan P., Jyo A., Ihara T. Reversible circularization of an anthracene-modified DNA conjugate through bimolecular triplex formation and its analytical application. Org. Biomol. Chem., 2010, 8, No. 21, 4843^1848.
444. Fulop A., Arian D., Lysenko A., Mokhir A. A simple method for monitoring protein-DNA interactions. Bioorg. Med. Chem. Lett, 2009,19, No. 11, 3104-3107.
445. Ergen E, Weber M., Jacob J., Herrmann A., Mullen K. Twin probes as a novel tool for the detection of single-nucleotide polymorphisms. Chem. Eur. J., 2006,12, No. 14, 3707-3713.
446. Abdalla M.A., Bayer J., Radler J.O., Mullen K. Synthesis and self-assembly of perylenediimide-oligonucleotide conjugates. Angew. Chem. Int. Ed., 2004, 43, No. 30, 39673970.
447. Bayer J., Radler J.O., Blossey R. Chains, dimers, and sandwiches: melting behavior of DNA nanoassemblies. Nano Lett., 2005, 5, No. 3, 497-501.
448. Saha S., Cai J., Eiler D., Hamilton A.D. Programing the formation of DNA and PNA quadruplexes by 7i-7i-stacking interactions. Chem. Commun., 2010, 46, No. 10, 1685-1687.
449. Freeman R., Li Y., Tel-Vered R., Sharon E., Elbaz J., Willner I. Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst, 2009, 134, No. 4, 653-656.
450. Wu C., Yan L., Wang C., Lin H., Wang C., Chen X, Yang C.J. A general excimer signaling approach for aptamer sensors. Biosensors Bioelectronics, 2010, 25, No. 10, 2232-2237.
451. Panigrahi G., Zhao B., Krepinsky J.J., Sadowski P.D. Toward a mechanism-based fluorescent assay for site-specific recombinases and topoisomerases: assay design and syntheses of fluorescent substrates. J. Am. Chem. Soc., 1996,118, No. 48, 12004-12011.
452. Tong G., Lawlor J.M., Tregear G.W., Haralambidis J. Oligonucleotide-polyamide hybrid molecules containing multiple pyrene residues exhibit significant excimer fluorescence. J. Am. Chem. Soc., 1995,117, No. 49, 12151-12158.
453. MacKinnon K.F., Qualley D.F., Woski S.A. Polycyclic aromatic hydrocarbons as universal bases in peptide nucleic acid. Tetrahedron Lett., 2007, 48, No. 45, 8074-8077.
454. Grossmann T.N., Seitz O. Nucleic acid templated reactions: consequences of probe reactivity and readout strategy for amplified signaling and sequence selectivity. Chem. Eur. J., 2009,15, No. 27, 6723-6730.
455. Fidanza J.A., McLaughlin L. W. Use of a thiol tether for the site-specific attachment of reporter groups to DNA. J. Org. Chem., 1992, 57, No. 8, 2340-2346.
456. Ebata K, Masuko M., Ohtani H, Jibu M. Excimer formation by hybridization using two pyrenelabeled oligonucleotide probes. Nucleic Acids Symp. Ser., 1995, No. 34, 187-188.
457. Ebata K, Masuko M„ Ohtani H., Kashiwasake-Jibu M. Nucleic acid hybridization accompanied with excimer formaton prom two pyrene-labeled probes. Photochem. Photobiol., 1995, 62, No. 5, 836-839.
458. Masuko M., Ohtani H., Ebata K, Shimadzu A. Optimization of excimer-forming two-probe nucleic acid hybridization method with pyrene as a fluorophore. Nucleic Acids Res., 1998, 26, No. 23, 5409-5416.
459. Stojanovic M.N., Green E.G., Semova S., Nikic D.B., Landry D. W. Cross-reactive arrays based on three-way junctions. J. Am. Chem. Soc., 2003,125, No. 20, 6085-6089.
460. Takada Т., Tanaka C., Nakamura M., Yamana K. Fluorescent analysis of excess electron transfer through DNA. Bioorg. Med. Chem. Lett., 2010, 20, No. 3, 994-996.
461. Meyer A., Pourceau G., Vasseur J.-J., Morvan F. 5'-Bis-conjugation of oligonucleotides by amidative oxidation and click chemistry. J. Org. Chem., 2010, 75, No. 19, 6689-6692.
462. Добриков М.И., Гайдамаков C.A., Кошкин A.A., Лукьянчук Н.П., Шишкин Г.В., Власов В. В. Направленная химическая модификация ДНК-фрагментов олигонуклеотидным производным перфторарилазида в присутствии олигонуклеотидов, несущих фотосенсибилизирующие пиреновые группы. Доклады АН, 1995, 344, № 1, 122-125.
463. Dobrikov M.I., Gaidamakov S.A., Gainutdinov T.I., Koshkin A.A., Vlassov V.V. Sensitized photomodification of single-stranded DNA by a binary system of oligonucleotide conjugates. Antisense Nucleic Acid Drug Dev., 1997, 7, No. 4, 309-317.
464. Добриков М.И., Гайдамаков C.A., Кошкин A.A., Гуйнутдинов Т.Н., Лукьянчук Н.П., Шишкин Г.В., Власов В.В. Сенсибилизированная фотомодификация ДНК бинарными системами. I. Синтез олигонуклеотидных реагентов, влияние их строения на эффективность модификации мишени. Биоорган, химия, 1997, 23, № 3, 191-199.
465. Добриков М.И., Гайдамаков С.А., Кошкин А.А., Лукьянчук Н.П., Шишкин Г.В., Власов В.В. Сенсибилизированная фотомодификация ДНК бинарными системами. II. Спектральная светочувствительность. Одно- и двухквантовая сенсибилизация. Биоорган, химия, 1997, 23, № 7, 553-560.
466. Добриков М.И., Гайдамаков С.А., Гайнутдинов Т.Н., Тенетова Е.Д., Шишкин Г.В., Власов В. В. Бинарная система олигонуклеотидных производных перилена и п-азидотетрафторбензальгидразона для сенсибилизированной к видимому свету фотомодификации ДНК. Доклады АН, 1998, 358, № 3, 403^107.
467. Добриков М.И., Гайдамаков С.А., Шишкин Г.В., Власов В.В. Сенсибилизированная фотомодификация ДНК бинарными системами. III. Двухквантовая сенсибилизация. Биоорган, химия, 1998, 24, № 11, 831-838.
468. Добриков М.И., Гайдамаков С.А., Гайнутдинов Т.И., Тенетова Е.Д., Шишкин Г.В., Власов В. В. Сенсибилизированная фотомодификация ДНК бинарными системами олигонуклеотидных конъюгатов. IV. Фотоиндуцированный перенос электрона. Биоорган, химия, 1999, 25, № 1, 31-39.
469. Добриков М.И., Гайдамаков С.А., Гайнутдинов Т.И., Иванова Т.М., Власов В.В. Сенсибилизированная фотомодификация ДНК бинарными системами олигонуклеотидных конъюгатов. V. Влияние строения ДНК-мишени. Количественная фотомодификация. Биоорган, химия, 1999, 25, № 2, 137-146.
470. Федорова О. С., Коваль В.В., Карнаухова С.Л., Добриков М.И., Власов В.В., Кнорре Д.Г. Кооперативные взаимодействия при фотосенсибилизированной модификации ДНК бинарными реагентами на основе олигонуклеотидов. Молекул, биология, 2000, 34, No. 6, 956-965.
471. Добриков М.И., Гайнутдинов Т.И., Иванова Т.М., Власов В.В. Сенсибилизированная фотомодификация ДНК бинарными системами олигонуклеотидных конъюгатов. VI. Влияние заместителей в антраценовом остатке сенсибилизатора. Биоорган, химия, 2000, 26, № 8, 617-622.
472. Kostenko Е., Dobrikov М., Pyshnyi D., Petyuk V, Komarova N., Vlassov V, Zenkova M. 5'-Bis-pyrenylated oligonucleotides displaying excimer fluorescence provide sensitive probes of RNA sequence and structure. Nucleic Acids Res., 2001, 29, No. 17, 3611-3620.
473. Kostenko E., Dobrikov M., Komarova N., Pyshnyi D., Vlassov V, Zenkova M. 5'-Bis-pyrenylated oligonucleotides display enhanced excimer fluorescence upon hybridization with DNA and RNA. Nucleosides Nucleotides Nucleic Acids, 2001, 20, No. 10/11, 79-92.
474. Гайнутдинов Т.И., Шестова О.Е., Якубов Л.А., Добриков М.И., Власов В.В. Сенсибилизированная фотомодификация олигонуклеотидсвязывающих белков, представленных на поверхности эукариотических клеток. Известия АН, Сер. хим., 2002, №. 7, 1104-1107.
475. Bichenkova E.V., Savage НЕ., Sardorian A.R., Douglas К.Т. Target-assembled tandem oligonucleotide systems based on exciplexes for detecting DNA mismatches and single nucleotide polymorphisms. Biochem. Biophys. Res. Commun., 2005, 332, No. 4, 956-964.
476. Hasnat A., Bichenkova E., Yu X, Arnold J.R.P., Fisher J., Fedorova O., Andrews J. Fluorescence spectroscopic and 19F NMR studies of human thymidylate synthase with its cognate RNA. J. Biomol. Struct. Dynam., 2007, 25, No. 3, 253-269.
477. Bichenkova E.V., Gbaj A., Walsh L., Savage HE., Rogert C., Sardarian A.R., Etchells L.L., Douglas К. T. Detection of nucleic acids in situ: novel oligonucleotide analogues for target-assembled DNA-mounted exciplexes. Org. Biomol. Chem., 2007, 5, No. 7, 1039-1051.
478. Новопашина Д.С., Тоцкая O.C., Холодарь C.A., Мещанинова М.И., Веньяминова А.Г. Олиго(2'-0-метилрибонуклеотиды) и их производные. III. 5'-Моно- и 5'-биспиренильные производные олиго(2'-0-метилрибонуклеотидов) и их 3'-модифицированных аналогов. Синтез и свойства. Биоорган, химия, 2008, 34, № 5, 671682.
479. Устинов А.В., Коршун В.А. Олигонуклеотиды, содержащие остатки арилацетилена: синтез и постсинтетическая модификация с помощью 1,3-диполярного циклоприсоединения. Изв. АН, Сер. хим., 2006, № 7, 1220-1226.
480. Ustinov А. V, Dubnyakova V. V, Korshun V.A. Perylene diimide-oligonucleotide conjugates constructed by click chemistry. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 6/7, 751-754.
481. Ustinov A. V., Dubnyakova V.V., Korshun V.A. A convenient "click chemistry" approach to perylene diimide-oligonucleotide conjugates. Tetrahedron, 2008, 64, No. 7, 1467-1473.
482. Ono A., Dan A., Matsuda A. Nucleosides and nucleotides. 121. Synthesis of oligonucleotides carrying linker groups at the l'-position of sugar residues. Bioconjugate Chem., 1993, 4, No. 6, 499-508.
483. Yamana K, Gokota T., Ohashi Y., Ozaki H., Kitamura M., Nakano H, Sangen O., Shimidzu T. Oligonucleotides with pyrene fluorophore at the sugar fragment: synthesis and properties in binding to complementary polynucleotide. Nucleic Acids Symp. Ser., 1990, No. 22,103-104.
484. Yamana K,, Ohashi Y., Nunota Y., Kitamura M., Nakano H, Sangen O., Shimidzu T. Synthesis of oligonucleotide derivatives with pyrene group at sugar fragment. Tetrahedron Lett., 1991, 32, No. 44, 6347-6350.
485. Yamana K, Gokota T., Ozaki H., Nakano H, Sangen O., Shimidzu T. Enhanced fluorescence in the binding of oligonucleotides with a pyrene group in the sugar fragment to complementary polynucleotides. Nucleosides Nucleotides, 1992,11, No. 2/4, 383-390.
486. Iwase R., Tsuchida H, Yamaoka T., Yamana K, Murakami A. Study of RNA structure by pyrene-Iabeled oligonucleotides. Nucleic Acids Symp. Ser., 1997, No. 37, 205-206.
487. Yamana K, Iwase R, Furutani S., Tsuchida H., Zako H., Yamaoka T., Murakami A. 2'-Pyrene modified oligonucleotide provides a highly sensitive fluorescent probe of RNA. Nucleic Acids Res., 1999, 27, No. 6, 2387-2392.
488. Yamana K, Zako H, Asazuma K, Iwase R., Nakano H., Murakami A. Fluorescence detection of specific RNA sequences using 2'-pyrene-modified oligoribonucleotides. Angew. Chem. Int. Ed., 2001, 40, No. 6, 1104-1106.
489. Mahara A., Iwase R, Sakamoto T., Yamana K, Yamaoka T., Murakami A. Bispyrene-conjugated 2'-0-methyloligonucleotide as a highly specific RNA-recognition probe. Angew. Chem. Int. Ed., 2002, 41, No. 19, 3648-3650.
490. Mahara A., Iwase R, Sakamoto T., Yamaoka T., Yamana K, Murakami A. Detection of acceptor sites for antisense oligonucleotides on native folded RNA by fluorescence spectroscopy. Bioorg. Med. Chem., 2003, ii,No. 13, 2783-2790.
491. Nakamura M.,Ohtoshi Y., Yamana K. Helical pyrene-array along the outside of duplex RNA. Chem. Commun., 2005, No. 41, 5163-5165.
492. Nakamura M., Fukunaga Y., Sasa K, Ohtoshi Y., Kanaori K, Hayashi H., Nakano H., Yamana K. Pyrene is highly emissive when attached to the RNA duplex but not to the DNA duplex: the structural basis of this difference. Nucleic Acids Res., 2005, 33, No. 18, 58875895.
493. Kamekawa N., Shimomura Y, Nakamura M., Yamana K. Pyrene-modified DNA aptamer as a fluorescent biosensor with high affinity and specificity for ATP sensing. Chem. Lett., 2006, 35, No. 6, 660-661.
494. Nakamura M., Simomura Y., Ohtoshi Y., Yamana K. Structure and excimer fluorescence of helical-pyrene-arrays assembled on duplex RNA. Nucleic Acids Symp. Ser., 2007, No. 51, 275-276.
495. Maie K, Nakamura M., Yamana K. Photocurrent responses from pyrene-modified RNA duplexes on gold surface. Nucleic Acids Symp. Ser., 2007, No. 51, 319-320.
496. Nakamura M., Shimomura Y., Ohtoshi Y, Sasa K, Hayashi H, Nakano H., Yamana K. Pyrene aromatic arrays on RNA duplexes as helical templates. Org. Biomol. Chem., 2007, 5, No. 12, 1945-1951.
497. Sakamoto T., Kobori A., Murakami A. Microarray-based label-free detection of RNA using bispyrene-modified 20-0-methyl oligoribonucleotide as capture and detection probe. Bioorg. Med. Chem. Lett., 2008,18, No. 8, 2590-2593.
498. Nakamura M., Murakami Y., Sasa K, Hayashi H., Yamana K. Pyrene-zipper array assembled via RNA duplex formation. J. Am. Chem. Soc., 2008,130, No. 22, 6904-6905.
499. Maie K, Nakamura M., Takada T., Yamana K. Fluorescence quenching properties of multiple pyrene-modified RNAs. Bioorg. Med. Chem., 2009,17, No. 14, 4996-5000.
500. Fukuda M., Nakamura M., Takada T., Yamana K. Syntheses and fluorescence of RNA conjugates having pyrene-modified adenosine and nitrobenzene-modified uridine base pairs. Tetrahedron Lett., 2Mb, 51, No. 13, 1732-1735.
501. Manoharan M., Tivel K.L., Zhao M., Nafisi K, Netzel T.L. Base-sequence dependence of emission lifetimes for D141018-30-6NA oligomers and duplexes covalently labeled with pyrene: relative electron-transfer quenching efficiencies of A, G, C, and T nucleosides toward pyrene. J. Phys. Chem., 1995, 99, No. 48, 17461-17472.
502. Netzel T.L. The spectroscopy, dynamics, and electronic structure of pyrenyl-dU nucleosides: P'+/dU'~ charge transfer state photophysics. Tetrahedron, 2007, 63, No. 17, 3491-3514.
503. Prokhorenko I.A., Astakhova I.V., Momynaliev K.T., Zatsepin T.S., Korshun V.A. Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection. Meth. Mol. Biol., 2009, 578 (Single Nucleotide Polymorphisms. A.A. Komar (ed.)), 209-222.
504. Higuchi M., Kobori A., Yamayoshi A., Murakami A. Synthesis of antisense oligonucleotides containing 2'-O-psoralenylmethoxyalkyl adenosine for photodynamic regulation of point mutations in RNA. Bioorg. Med. Chem., 2009,17, No. 2, 475-483.
505. Wang G., Bobkov G. V, Mikhailov S.N., Schepers G., Van Aerschot A., Rozenski J., Van der Auweraer M., Herdewijn P., De Feyter S. Detection of RNA hybridization by pyrene-labeled probes. ChemBioChem., 2009,10, No. 7,1175-1185.
506. Karmakar S., Anderson B.A., Rathje R.L., Andersen S., Jensen T.B., Nielsen P., Hrdlicka P.J. High-affinity DNA targeting using readily accessible mimics of N2'-functionalized 2'-amino-a-L-LNA. J. Org. Chem., 2011,10, No. 17, 7119-7131.
507. Singh I., Heaney F. Metal free, "click and click-click" conjugation of ribonucleosides and 2'-OMe oligoribonucleotides on the solid phase. Org. Biomol. Chem., 2010, 8, No. 2, 451-456.
508. Uchiyama N., Ogata T., Oka N., Wada T. Trimethylsilyl trifluoromethanesulfonate-promoted reductive 2'-0-arylmethylation of ribonucleoside derivatives. Nucleosides Nucleotides Nucleic Acids, 2011, 30, No. 6, 446-456.
509. Oeda Y., Iijima Y, Taguchi H., Ohkubo A., Seio K, Sekine M. Microwave-sssisted synthesis of 2'-O-aryluridine derivatives. Org. Lett, 2009,11, No. 24, 5582-5585.
510. Sekine M., Oeda Y., Iijima Y., Taguchi H., Ohkubo A., Seio K. Synthesis and hybridization properties of 2'-0-methylated oligoribonucleotides incorporating 2'-0-naphthyluridines. Org. Biomol. Chem., 2011, 8, No. 1, 210-218.
511. Korshun V.A., Stetsenko D.A., Gait M.J. Novel uridin-2'-yl carbamates: synthesis, incorporation into oligodeoxyribonucleotides, and remarkable fluorescence properties of 2'-pyren-l-ylmethylcarbamate. J. Chem. Soc. Perkin Trans 1, 2002, No. 8, 1092-1104.
512. Dioubankova N.N., Malakhov A.D., Stetsenko D.A., Gait M.J., Volynsky P.E., Efremov R.G., Korshun V.A. Pyrenemethyl ara-uridine-2'-carbamate: a strong interstrand excimer in the major groove of a DNA duplex. ChemBioChem., 2003, 4, No. 9, 841-847.
513. Dioubankova N.N., Malakhov A.D., Shenkarev Z.O., Korshun V.A. Oligonucleotides containing new fluorescent 1-phenylethynylpyrene and 9,10-bis(phenylethynyl)anthracene uridine-2'-carbamates: synthesis and properties. Tetrahedron, 2004, 60, No. 21, 4617^1626.
514. Astakhova I.V., Malakhov A.D., Stepanova I.A., Ustinov A.V., Bondarev S.L., Paramonov A.S., Korshun V.A. 1-Phenylethynylpyrene (1-PEPy) as refined excimer forming alternative to pyrene: case of DNA major groove excimer. Bioconjugate Chem., 2007, 18, No. 6, 19721980.
515. Астахова КВ., Коршун В.A. 2- и 4-Фенилэтинилпирены - новые флуоресцентные метки для ДНК. Биоорган, химия, 2008, 34, № 4, 570-572.
516. Astakhova I.V., Ustinov A.V., Korshun V.A., Wengel J. LNA for optimization of fluorescent oligonucleotide probes: improved spectral properties and target binding. Bioconjugate Chem., 2011, 22, No. 4, 533-539.
517. Mogi M., Uddin G., Ichimura M., Moriguchi Т., Shinozuka К Modified oligoDNA having two consecutive silylated-pyrene moieties in minor groove exhibiting an excimer fluorescent signal upon binding to fully complementary DNA strand. Chem. Lett., 2010, 39, No. 12, 1254-1255.
518. Kalra N., Babu B.R., Parmar V.S., Wengel J. Conformationally controlled high-affinity targeting of RNA or DNA by novel 2'-amino-DNA/LNA mixmers and pyrenyl-functionalized 2'-amino-DNA. Org. Biomol. Chem., 2004, 2, No. 20, 2885-2887.
519. Yamana K, Asazuma K, Nakano H. Synthesis and properties of oligonucleotides containing 2'-pyrenylalkyluridine. Nucleic Acids Symp. Ser., 1999, No. 42, 113-114.
520. Takada Т., Kawai K, Tojo S., Majima T. Hole transfer in DNA: DNA as a scaffold for hole transfer between two organic molecules. Tetrahedron Lett., 2003, 44, No. 19, 3851-3854.
521. Kawai K, Yoshida H., Takada Т., Tojo S., Majima T. Formation of pyrene dimer radical cation at the internal site of oligodeoxynucleotides. J. Phys. Chem. B, 2004, 108, No. 35, 13547-13550.
522. Kalra N, Parlato M.C., Parmar V.S., Wengel J. DNA and LNA oligonucleotides containing N2'-functionalised derivatives of 2'-amino-2'-deoxyuridine. Bioorg. Med. Chem. Lett., 2006, 16, No. 12,3166-3169.
523. Silverman S.K, Deras M.L., Woodson S.A., Scaringe S.A., Cech T.R. Multiple folding pathways for the P4-P6 RNA domain. Biochemistry, 2000, 39, No. 40, 12465-12475.
524. Silverman S.K, Cech T.R. An early transition state for folding of the P4-P6 RNA domain. RNA,2m\, 7, No. 2, 161-166.
525. Blount K.F., Tor Y. Using pyrene-labeled HIV-1 TAR to measure RNA-small molecule binding. Nucleic Acids Res., 2003, 31, No. 19, 5490-5500.
526. Sitaula S., Reed S.M. Porphyrin conjugated to DNA by a 2'-amido-2'-deoxyuridine linkage. Bioorg. Med. Chem. Lett., 2008,18, No. 2, 850-855.
527. Li II. Jiang Z., Wang X., Zheng C. Synthesis of 2'-amino-2'-deoxyuridine modified by 1,8-naphthalimide. Synth. Commun., 2006, 36, No. 14, 1933-1940.
528. Sorensen M.D., Petersen M., Wengel J. Functionalized LNA (locked nucleic acid): high-affinity hybridization of oligonucleotides containing N-acylated and N-alkylated 2'-amino-LNA monomers. Chem. Commun., 2003, No. 17, 2130-2132.
529. P.J. Hrdlicka, BabuB.R, Sorensen M.D., Wengel J. Interstrand communication between 2'-N-(pyren-l-yl)methyl-2A-amino-LNA monomers in nucleic acid duplexes: directional control and signalling of full complementarity. Chem. Commun., 2004, No. 13, 1478-1479.
530. Lindegaard D., Babu B.R., Wengel J. DNA self-assembling systems: branched oligonucleotides as building blocks and monitoring by pyrene excimer band formation. Nucleosides Nucleotides Nucleic Acids, 2005, 24, No. 5/7, 679-681.
531. Umemoto T., Hrdlicka P. J., Babu B.R., Wengel J. Sensitive SNP dual-probe assays based on pyrene-functionalized 2'-amino-LNA: lessons to be learned. ChemBioChem., 2007, 8, No. 18, 2240-2248.
532. Umemoto T., Hrdlicka P. J., Babu B.R., Wengel J. Dual-probe system using pyrenylmethyl-modified amino-LNA for mismatch detection. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 10/12, 1261-1263.
533. Lindegaard D., Madsen A.S., Astakhova I.V., Malakhov A.D., Babu B.R., Korshun V.A., Wengel J. Pyrene-perylene as a FRET pair coupled to the N2'-functionality of 2'-amino-LNA. Bioorg. Med. Chem., 2008,16, No. 1, 94-99.
534. Kumar T.S., Madsen A.S., Ostergaard M.E., Sau S.P., Wengel J., Hrdlicka P.J. Functionalized 2'-amino- a -L-LNA: directed positioning of intercalators for DNA targeting. J. Org. Chem.,
2009, 74, No. 3, 1070-1081.
535. Gupta P., Langkjcer N., Wengel J. Synthesis and biophysical studies of coronene functionalized 2'-amino-LNA: a novel class of fluorescent nucleic acids. Bioconjugate Chem.,
2010, 21, No. 3,513-520.
536. Hrdlicka P.J., Kumar T.S., Wengel J. Targeting of mixed sequence double-stranded DNA using pyrene-functionalized 2'-amino-a-L-LNA. Chem. Commun., 2005, No. 34, 4279-4281.
537. Kumar T.S., Madsen A.S., Wengel J., Hrdlicka P.J. Synthesis and biophysical studies of N2'-functionalized 2'-amino-a-L-LNA. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 10/12, 1403-1405.
538. Kumar T.S., Wengel J., Hrdlicka P.J. Pyrene-functionalized 2'-amino-a-L-LNA as potential diagnostic probes. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 10/12, 1407-1409.
539. Sau S.P., Kumar T.S., Hrdlicka P.J. Invader LNA: efficient targeting of short double stranded DNA. Org. Biomol. Chem., 2010, 8, No. 9, 2028-2036.
540. Hrdlicka P.J., Babu B.R., Sorensen M.D., Harrit N, Wengel J. Multilabeled pyrene-functionalized 2'-amino-LNA probes for nucleic acid detection in homogeneous fluorescence assays. J. Am. Chem. Soc., 2005,127, No. 38, 13293-13299.
541. Hojland T., Kumar S., Babu B.R., Umemoto T., AlbcekN., Sharma P.K, Nielsen P., Wengel J. LNA (locked nucleic acid) and analogs as triplex-forming oligonucleotides. Org. Biomol. Chem., 2007, 5, No. 15, 2375-2379.
542. Astakhova I. V., Korshun V.A., John K, Kjems J., Wengel J. Perylene attached to 2'-amino-LNA: synthesis, incorporation into oligonucleotides, and remarkable fluorescence properties in Vitro and in cell culture. Bioconjugate Chem., 2008,19, No. 10, 1995-2007.
543. Ostergaard M.E., Maity J., Babu B.R., Wengel J., Hrdlicka P.J. Novel insights into the use of Glowing LNA as nucleic acid detection probes-Influence of labeling density and nucleobases. Bioorg. Med. Chem. Lett., 2010, 20, No. 24, 7265-7268.
544. Astakhova I.V., Korshun V.A., Wengel J. Novel long-wave emission fluorochrome based upon perylen-3-ylcarbonyl-functionalized 2'-amino-LNA. Collections Symp. Ser., 2008, 10, 307308.
545. Astakhova I. V., Korshun V.A., Wengel J. (Phenylethynyl)pyrenes attached to 2'-amino-LNA: novel fluorescent dyes with the advantages of long-wave emission, high fluorescence quantum yields and excimer formation. Collections Symp. Ser., 2008,10, 491-495.
546. Astakhova I. V., Korshun V.A., Wengel J. Highly fluorescent conjugated pyrenes in nucleic acid probes: (phenylethynyl)pyrenecarbonyl-functionalized locked nucleic acids. Chem. Eur. ¿,2008,14, No. 35, 11010-110264.
547. Astakhova I. V, Lindegaard D., Korshun V.A., Wengel J. Novel interstrand communication systems within DNA duplexes based on 1-, 2- and 4-(phenylethynyl)pyrenes attached to 2'-amino-LNA: high-affinity hybridization and fluorescence sensing. Chem. Commun., 2010, 46, No. 44, 8362-8364.
548. Kumar T.S., Wengel J., Hrdlicka P.J. 2'-iV-(pyren-l-yl)acetyl-2'-amino-a-L-LNA: synthesis and detection of single nucleotide mismatches in DNA and RNA targets. ChemBioChem.,
2007, 8, No. 10, 1122-1125.
549. Kumar T.S., Madsen A.S., Ostergaard M.E., Wengel J., Hrdlicka P.J. Nucleic acid structural engineering using pyrene-functionalized 2'-amino-a-L-LNA monomers and abasic sites. J. Org. Chem., 2008, 73, No. 18, 7060-7066.
550. Honcharenko D., Zhou C., Chattopadhyaya J. Modulation of pyrene fluorescence in DNA probes depends upon the nature of the conformationally restricted nucleotide. J. Org. Chem.,
2008, 73, No. 7, 2829-2842.
551. Reines S.A., Cantor C.R. New fluorescent hydrazide reagents for the oxidized 3'-terminus of RNA. Nucleic Acids Res., 1974,1, No. 6, 767-786.
552. Koenig P., Reines S.A., Cantor C.R. Pyrene derivatives as fluorescent probes of conformation near the 3' termini of polyribonucleotides. Biopolymers, 1977,16, No. 10, 2231-2242.
553. Masuko M., Ohuchil S., Sode K, Ohtani H., Shimadzu A. A nucleic acid hybridization assay method based on the fluorescence resonance energy transfer from pyrene to perylene labels under homogeneous solution conditions. Nucleic Acids Symp. Ser., 1998, No. 39,111-112.
554. Masuko M., Ohuchi S., Sode K, Ohtani H, Shimadzu A. Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogeneous solution conditions. Nucleic Acids Res., 2000, 28, No. 8, e34.
555. Silverman S.K, Cech T.R. RNA tertiary folding monitored by fluorescence of covalently attached pyrene. Biochemistry, 1999, 38, No. 43,14224-14237.
556. Smalley M.K, Silverman S.K. Fluorescence of covalently attached pyrene as a general RNA folding probe. Nucleic Acids Res., 2006, 34, No. 1, 152-166.
557. Hwang J.-T., Greenberg M.M. Synthesis of modified oligodeoxyribonucleotides on a solidphase support via derivatization of a selectively revealed 2'-amino-2'-deoxyuridine. Org. Lett., 1999,1, No. 12, 2021-2024.
558. Printz M., Richert C. Optimizing the stacking moiety and linker of 2'-acylamido caps of DNA duplexes with 3'-terminal adenine residues. J. Comb. Chem., 2007, 9, No. 2, 306-320.
559. Hwang J.-T., Baltasar F.E., Cole D.L., Sigman D.S., Chen C.-h.B., Greenberg M.M. Transcription inhibition using modified pentanucleotides. Bioorg. Med. Chem., 2003, 11, No. 10, 2321-2328.
560. Manoharan M., Tivel K.L., Andrade L.K, Dan Cook P. 2'-0- and 3'-O- pyrimidine aminotether-containing oligonucleotides: Synthesis and conjugation chemistry. Tetrahedron Lett., 1995, 36, No. 21, 3647-3650.
561. Dan Cook P., Manoharan M. Carbamate-derivatized nucleosides and oligonucleotides. US Pat. 6,322,987, 2001.
562. Solo H., Virta P., Hakala H, Prakash T.P., Kawasaki A.M., Manoharan M., Lonnberg H. Aminooxy functionalized oligonucleotides: preparation, on-support derivatization, and postsynthetic attachment to polymer support. Bioconjugate Chem., 1999,10, No. 5, 815-823.
563. Manoharan M., Lonnberg H., Salo II., Virta P. Aminooxy functionalized oligomers. US Pat. 6,576,752, 2003.
564. Manoharan M., Johnson L.K., Tivel K.L., Springer R.H., Dan Cook P. Introduction of a lipophilic thioether tether in the minor groove of nucleic acids for antisense applications. Bioorg Med. Chem. Lett., 1993, 3, No. 12, 2765-2770.
565. Manoharan M., Tivel K.L., Ross В., Dan Cook P. A 2'-0-thiol tether in the ribose moiety of nucleic acids for conjugation chemistry. Gene, 1994,149, No. 1, 147-156.
566. Kachalova A., Zubin E., Stetsenko D., Gait M., Oretskaya T. Oligonucleotides with 2'-0-carboxymethyl group: synthesis and 2'-conjugation via amide bond formation on solid phase. Org. Biomol. Chem., 2004, 2, No. 19, 2793-2797.
567. Зацепин T.C., Иванова Ю.М., Стеценко Д.А., Гейт М.Дж., Орецкая Т.С. Синтез и свойства олигодезоксирибонуклеотидов, содержащих остатки 2'-0-(2,3-дигидроксипропил)- и 2'-0-(2-оксоэтил)арабиноуридина. Изв. АН, Сер. хим., 2005, №. 1, 233-242.
568. Novopashina D.S., Stetsenko D.A., Totskaya O.S., Repkova M.N., Venyaminova A.G. 2'-Bis-pyrene modified oligonucleotides: sensitive fluorescent probes of nucleic acid structure. Nucleosides Nucleotides Nucleic Acids, 2005, 24, No. 5/7, 729-734.
569. Крашенинина O.A., Новопашина ДС., Венъяминова А.Г. Олиго(2'-<9-метилрибонуклеотиды) со вставками 2'-биспиренилметилфосфодиамидных производных нуклеозидов как перспективные флуоресцентные зонды для детекции РНК. Биоорган, химия, 2011, 37, №. 2, 273-277.
570. Khomyakova Е.А., Zubin Е.М., Smirnov I.P., Pozmogova G.E., Stetsenko D.A., Oretskaya T.S. DNA or RNA oligonucleotide 2'-hydrazides for chemoselective click-type ligation with carbonyl compounds. Nucleosides Nucleotides Nucleic Acids, 2011, 30, No. 7/8, 577-784.
571. Yamana K, Nunota K, Naknno H, Sangen O. A new method for introduction of a pyrene group into a terminal position of an oligonucleotide. Tetrahedron Lett., 1994, 35, No. 16, 2555-2558.
572. Yamana K, Kumamoto S., Nakano H. Homopyrimidine oligonucleotides modified by a pyrenylmethyl group at the terminal position: enhanced fluorescence upon binding to double helical DNA. Chem. Lett., 1997, 26, No. 11, 1173-1174.
573. Van Daele I., BomholtN., Filichev V. V, Van Calenbergh S., Pedersen E.B. Triplex formation by pyrene-labelled probes for nucleic acid detection in fluorescence assays. ChemBioChem., 2008, 9, No. 5,791-801.
574. Bryld Т., Hojland Т., Wengel J. DNA-selective hybridization and dual strand invasion of short double-stranded DNA using pyren-l-ylcarbonyl-functionalized 4'-C-piperazinomethyl-DNA. Chem. Commun., 2004, No. 9, 1064-1065.
575. Skov J., Bryld Т., Lindegaard D., Nielsen K.E., Hojland Т., Wengel J., Petersen M. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA. Nucleic Acids Res., 2011, 39, No. 5, 1953-1965.
576. Dohno C., Saito I. Discrimination of single-nucleotide alterations by G-specific fluorescence quenching. ChemBioChem, 2005, 6, No. 6, 1075-1081.
577. Hotoda H., Koizumi M., Koga R., Kaneko M., Momota K., Ohmine Т., Furukawa H., Agatsuma Т., Nishigaki Т., Sone J., Tsutsumi S., Kosaka Т., Abe K, Kimura S., Shimada K. Biologically active oligodeoxyribonucleotides. 5. 5'-End-substituted d(TGGGAG) possesses anti-human immunodeficiency virus type 1 activity by forming a G-quadruplex structure. J. Med. Chem., 1998, 41, No. 19, 3655-3663.
578. McGall G.H., Nam N.Q., Rava R.P. Photocleavable protecting groups and methods for their use. US Pat. 6,566,515,2№Ъ.
579. Tripathi S., Misra K, Sanghvi Y.S. One-pot synthesis of TBMPS (bis\tert-buty\)-l-pyrenylmethyl-silyl) chloride as a novel silicon-based protecting group for protection of 5'-OH nucleosides and its use as purification handle in oligonucleotide synthesis. Nucleosides Nucleotides Nucleic Acids, 2005, 24, No. 9, 1345-1351.
580. Misra K, Misra K. Di(/er/-butyl)[(pyren-l-yl)methoxy]silyl chloride: synthesis and application in purification of synthetic deoxyribonucleotides. Chem. Lett, 2007, 36, No. 6, 768-769.
581. Bevilacqua P.C., Kierzek R., Johnson K.A., Turner D.H. Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods. Science, 1992, 258, No. 5086, 1355-1358.
582. Kierzek R, Li Y., Turner D.H., Bevilacqua P.C. 5'-Amino pyrene provides a sensitive, nonperturbing fluorescent probe of RNA secondary and tertiary structure formation. J. Am. Chem. Soc., 1993,115, No. 12, 4985^1992.
583. Bevilacqua P.C., Li Y., Turner D.H. Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5' cleavage site into a high free energy binding mode in the Tetrahymena ribozyme. Biochemistry, 1994, 33, No. 37, 1134011348.
584. Li Y., Bevilacqua P.C., Mathews D., Turner D.H. Thermodynamic and activation parameters for binding of a pyrene-labeled substrate by the Tetrahymena ribozyme: docking is not diffusion-controlled and is driven by a favorable entropy change. Biochemistry, 1995, 34, No. 44, 14394-14399.
585. Turner D.H., Li Y., Fountain M., Profenno L., Bevilacqua P.C. Dynamics of a group I ribozyme detected by spectroscopic methods. Nucleic Acids Mol. Biol., 1996,10, 10-19.
586. Gorodetsky A.A., Barton J.К Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite. Langmuir, 2006, 22, No. 18, 7917-7922.
587. Gorodetsky A.A., Dietrich L.E.P., Lee P.E., Demple В., Newman D.K, Barton J.K DNA binding shifts the redox potential of the transcription factor SoxR. Proc. Natl. Acad. Sci. USA, 2008,105, No. 10, 3684-3689.
588. Балакин КВ., Коршун B.A., Прохоренко И.А., Малеев Г.В., Куделина И.А., Гонтарев С.В., Берлин Ю.А. Новый реагент для мечения биомолекул - активированное производное пиренового бихромофора с эксимерной флуоресценцией. Биоорган, химия, 1997, 23, № 1, 33-41.
589. Dombi K.L., Steiner U.E., Richert С. Rapidly measuring reactivities of carboxylic acids to generate equireactive building block mixtures: a spectrometric assay. J. Comb. Chem., 2003, 5, No. 1,45-60.
590. Mori K, Kodama Т., Baba Т., Obika S. Bridged nucleic acid conjugates at 6'-thiol: synthesis, hybridization properties and nuclease resistances. Org. Biomol. Chem., 2011, 9, No. 14, 52725279.
591. Saito I., Ito S., Shinmura Т., Matsuura T. A simple synthesis of fluorescent uridines by photochemical method. Tetrahedron Lett., 1980, 21, No. 29, 2813-2816.
592. Netzel T.L., Zhao M., Nafisi K, Headrick J., Sigman M.S., Eaton B.E. Photophysics of 2'-deoxyuridine (dU) nucleosides covalently substituted with either 1-pyrenyl or 1-pyrenoyl: observation of pyrene-to-nucleoside charge-transfer emission in 5-(l-pyrenyl)-dU. J. Am. Chem. Soc., 1995,117, No. 36, 9119-9128.
593. Amann N, Wagenknecht H.-A. Preparation of pyrenyl-modified nucleosides via Suzuki-Miyaura cross-coupling reactions. Synlett, 2002, No. 5, 687-691.
594. Amann N., Pandurski E., Fiebig T., Wagenknecht H.-A. Electron injection into DNA: synthesis and spectroscopic properties of pyrenyl-modified oligonucleotides. Chem. Eur. J., 2002, 8, No. 21, 4877-4883.
595. Mayer E., Valis L., Huber R, Amann N., Wagenknecht H.-A. Preparation of pyrene-modified purine and pyrimidine nucleosides via Suzuki-Miyaura cross-couplings and characterization of their fluorescent properties. Synthesis, 2003, No. 15, 2335-2340.
596. Valis L., Wagenknecht H.-A. Synthesis and optical properties of the C-8 adduct of benzo[a]pyrene and deoxyguanosine. Synlett, 2005, No. 15, 2281-2284.
597. Okamoto A., Tainaka K, Unzai T., Saito I. Synthesis and fluorescence properties of dimethylaminonaphthalene-deoxyuridine conjugates as polarity-sensitive probes. Tetrahedron, 2007, 63, No. 17, 3465-3470.
598. Cerha I., Pohl R., Hocek M. The first direct C-H arylation of purine nucleosides. Chem. Commun., 2007, No. 45, 4729^1730.
599. Starr T.E., Strohmeier J.A., Baumann C.G., Fairlamb I.J.S. A sequential direct arylation/Suzuki-Miyaura cross-coupling transformation of unprotected 2'-deoxyadenosine affords a novel class of fluorescent analogues. Chem. Commun., 2010, 46, No. 35, 6470-6472.
600. Naus P., Pohl R., VotrubaL, DzubakP., Hajduch M., Ameral R, Birkus G., Wan T., Ray A.S., Machnan R., Cihlar T., Hocek M. 6-(Het)aryl-7-deazapurine ribonucleosides as novel potent cytostatic agents. J. Med. Chem., 2010, 53, No. 1, 460-470.
601. MengX., Moriuchi T., Kawahata M., Yamaguchi K, Hirao T. A G-octamer scaffold via self-assembly of a guanosine-based Au(I) isonitrile complex for Au(I)-Au(I) interaction. Chem. Commun., 2011, 47, No. 16, 4682^684.
602. Pesnot 7'., Kemper J., Schemies J., Pergolizzi G., Uciechowska U., RumpfT., Sippl W., Jung M., Wagner G.K Two-step synthesis of novel, bioactive derivatives of the ubiquitous cofactor nicotinamide adenine dinucleotide (NAD). J. Med. Chem., 2011, 54, No. 10, 3492-3499.
603. MengX., Moriuchi T., TohnaiN., MiyataM., Kawatara M., Yamaguchi K, Hirao T. Synthesis and assembling properties of bioorganometallic cyclometalated Au(III) alkynyls bearing guanosine moieties. Org. Biomol. Chem., 2011, 9, No. 16, 5633-5636.
604. Shih Y.-C., Chien T.-C. Practical synthesis of 6-aryluridines via palladium(II) acetate catalyzed Suzuki-Miyaura cross-coupling reaction. Tetrahedron, 2011, 67, No. 21, 39153923.
605. Netzel T.L., Nafisi K, Headrick J., Eaton B.E. Direct observation of photoinduced electron transfer in pyrene-labeled dU nucleosides and evidence for protonated 2'-deoxyuridine anion, dU(H)', as a primary electron transfer product. J. Phys. Chem., 1995, 99, No. 51, 1794817955.
606. Huber R, Fiebig T., Wagenknecht H.-A. Pyrene as a fluorescent probe for DNA base radicals. Chem. Commun., 2003, No. 15,1878-1879.
607. Raytchev M., Mayer E., Amann N., Wagenknecht H.-A., Fiebig T. Ultrafast proton-coupled electron-transfer dynamics in pyrene-modified pyrimidine nucleosides: model studies towards an understanding of reductive electron transport in DNA. ChemPhysChem, 2004, 5, No. 5, 706-712.
608. Trifonov A., Buchvarov I., Wagenknecht H.-A., T. Fiebig Real-time observation of hydrogen bond-assisted electron transfer to a DNA base. Chem. Phys. Lett., 2005, 409, No. 4/6, 277280.
609. Valis L., Mayer-Enthart E., Wagenknecht H.-A. 8-(Pyren-l-yl)-2'-deoxyguanosine as an optical probe for DNA hybridization and for charge transfer with small peptides. Bioorg. Med. Chem. Lett., 2006, /¿,No. 12, 3184-3187.
610. Wanninger-Weifi С., Wagenknecht H.-A. Synthesis of 5-(2-Pyrenyl)-2'-deoxyuridine as a DNA modification for electron-transfer studies: the critical role of the position of the chromophore attachment. Eur. J. Org. Chem., 2008, No. 1, 64-71.
611. Jacobsen M.F., Ferapontova E.E., Gothelf K.V. Synthesis and electrochemical studies of an anthraquinone-conjugated nucleoside and derived oligonucleotides. Org. Biomol. Chem., 2009, 7, No. 5, 905-908.
612. Kaden P., Mayer-Enthart E., Trifonov A., Fiebig Т., Wagenknecht H.-A. Real-time spectroscopic and chemical probing of reductive electron transfer in DNA. Angew. Chem. Int. Ed., 2005, 44, No. 11, 1636-1639.
613. Mayer-Enthart E., Kaden P., Wagenknecht H.-A. Electron transfer chemistry between DNA and DNA-binding tripeptides. Biochemistry, 2005, 44, No. 35, 11749-11757.
614. Wanninger-Weifi C., Valis L., Wagenknecht H.-A. Pyrene-modified guanosine as fluorescent probe for DNA modulated by charge transfer. Bioorg. Med. Chem., 2008,16, No. 1, 100-106.
615. Wanninger-Weifi C., Di Pasquale F., Ehrenschwender Т., Marx A., Wagenknecht H.-A. Nucleotide insertion and bypass synthesis of pyrene- and BODIPY-modified oligonucleotides by DNA polymerases. Chem. Commun., 2008,16, No. 12, 1443-1445.
616. Mayer-Enthart E., Wagenknecht H.-A. Structure-sensitive and self-assembled helical pyrene array based on DNA architecture. Angew. Chem. Int. Ed., 2006, 45, No. 20, 3372-3375.
617. Mayer-Enthart E., Wagner C., Barbaric J., Wagenknecht H.-A. Helical self-assembled chromophore clusters based on DNA-like architecture. Tetrahedron, 2007, 63, No. 17, 34343439.
618. Omumi A., Beach D.G., Baker M., Gabryelski W, Manderville R.A. Postsynthetic guanine arylation of DNA by Suzuki-Miyaura cross-coupling. J. Am. Chem. Soc., 2011, 133, No. 1, 42-50.
619. Rogan E.G., Cavalieri E.L., Tibbels S.R., Cremonesi P., Warner C.D., Nagel D.L., Tomer КВ., Cerny R.L., Gross M.L. Synthesis and identification of Benzo[a]pyrene-guanine nucleoside adducts formed by electrochemical oxidation by horseradish peroxidase catalyzed reaction of benzo[a]pyrene with DNA. J. Am. Chem. Soc., 1988,110, No. 12, 4023-4029.
620. Cavalieri E.L., Rogan E.G., Li K-M., Todorovic R., Ariese F., Jankowiak R., Grubor N., Small G.J. Identification arid quantification of the depurinating DNA adducts formed in mouse skin treated with dibenzo [a,/] pyrene (DB[a,/]P) or its metabolites and in rat mammary gland treated with DB[a,/]P. Chem. Res. Toxicol., 2005,18, No. 6, 976-983.
621. Enya Т., Kawanishi M., Suzuki H, Matsui S., Hisamatsu Y. An unusual DNA adduct derived from the powerfully mutagenic environmental contaminant 3-nitrobenzanthrone. Chem. Res. Toxicol., 1998,11, No. 2, 1660-1667.
622. Коршун B.A., Манасова E.B., Балакин КВ., Прохоренко НА., Бучащий А.Г., Берлин Ю.А. 5-(1-Пиренилэтинил)-2'-дезоксиуридин, новое флуоресцентное нуклеозидное производное. Биоорган, химия, 1996, 22, № 12, 923-925.
623. Korshun V.A., Manasova E.V., Balakin K.V., Malakhov A.D., Perepelov A.V., Sokolova T.A., Berlin Y.A. New fluorescent nucleoside derivatives - 5-alkynylated 2'-deoxyuridines. Nucleosides Nucleotides, 1998,17, No. 9/11, 1809-1812.
624. Малахова E.B., Малахов А.Д., Кузницова С.В., Варнавский О.П., Кадуцкий А.П., Кожич Д. Т., Коршун В.А., Берлин Ю.А. Реагенты для введения в олигонуклеотиды флуоресцентного 2-фенилбензоксазольного производного дезоксиуридина. Биоорган, химия, 1998, 24, № 9, 688-695.
625. Андронова В.Л., Скоробогатый М.В., Манасова Е.В., Берлин Ю.А., Коршун В.А., Галегов Г.А. Противовирусная активность некоторых 5-арилэтинильных производных 2'-дезоксиуридина. Биоорган, химия, 2003, 29, № 3, 289-294.
626. Pchelintseva A.A., Skorobogatyj M.V., Petrunina A.L., Andronova V.L., Galegov G.A., Astakhova I. V, Ustinov A. V., Malakhov A.D., Korshun V.A. Synthesis and evaluation of anti-HSV activity of new 5-alkynyl-2'-deoxyuridines. Nucleosides Nucleotides Nucleic Acids, 2005, 24, No. 5/7, 923-926.
627. Skorobogatyi M.V., Ustinov A.V., Stepanova I.A., Pchelintseva A.A., Petrunina A.L., Andronova V.L., Galegov G.A., Malakhov A.D., Korshun V.A. 5-Arylethynyl-2'-deoxyuridines, compounds active against HSV-1. Org. Biomol. Chem., 2006, 4, No. 6, 10911096.
628. St. Vincent M.R., Colpitis C.C., Ustinov A. V., Muqadas M., Joyce M.A., Barsby N.L., Epand R.F., Epand R.M., Khramyshev S.A., Valueva O.A., Korshun V.A., Tyrrell D.L.J., Schang L.M. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc. Natl. Acad. Sei. USA, 2010,107, No. 40, 17339-17344 (2010).
629. Okamoto A., Ochia Y., Saito I. Fluorometric sensing of the salt-induced B-Z DNA transition by combination of two pyrene-labeled nucleobases. Chem. Commun., 2005, No. 9, 11281130.
630. Hwang G.T., Seo Y.J., Kim B.H Pyrene-labeled deoxyuridine and deoxyadenosine: fluorescent discriminating phenomena in their oligonucleotides. Tetrahedron Lett., 2005, 46, No. 9, 1475-1477.
631. Xiao Q., Ranasinghe R.T., Tang A.M.P., Brown T. Naphthalenyl- and anthracenyl-ethynyl dT analogues as base discriminating fluorescent nucleosides and intramolecular energy transfer donors in oligonucleotide probes. Tetrahedron, 2007, 63, No. 17, 3483-3490.
632. Saito Y., Suzuki A., Imai K, Nemoto N., Saito I. Synthesis of novel push-pull-type solvatochromic 2'-deoxyguanosine derivatives with longer wavelength emission. Tetrahedron Lett., 2010, 51, No. 19, 2606-2609.
633. Малахов А.Д., Малахова E.B., Кузницова C.B., Гречишникова И.В., Прохоренко НА., Скоробогатый М.В., Коршун В.А., Берлин Ю.А. Синтез и флуоресцентные свойства 5-(1 -пиренилэтинил)-2'-дезоксиуридинсодержащих олигодезоксинуклеотидов. Биоорган, химия, 2000, 26, № 1, 39-50.
634. Hwang G.T., Seo Y.J., Kim S.J., Kim B.H. Fluorescent oligonucleotide incorporating 5-(l-ethynylpyrenyl)-2'-deoxyuridine: sequence-specific fluorescence changes upon duplex formation. Tetrahedron Lett., 2004, 45, No. 18, 3543-3546.
635. Gaballah S.T., Collier G., Netzel T.L. Charge transfer excited-state dynamics in DNA duplexes substituted with an ethynylpyrenyldeoxyuridine electron source and a fluorodeoxyuridine electron trap. J. Phys. Chem. B, 2005,109, No. 24, 12175-12181.
636. Seo Y.J., Kim B.H. Probing the B-to-Z-DNA duplex transition using terminally stacking ethynyl pyrene-modified adenosine and uridine bases. Chem. Commun., 2006, No. 2, 150— 152.
637. Barbaric J., Wagenknecht H.-A. DNA as a supramolecular scaffold for the helical arrangement of a stack of 1-ethynylpyrene chromophores. Org. Biomol. Chem., 2006, 4, No. 11,2088-2090.
638. Seo Y.J., Hwang G.T., Kim B.H. Quencher-free molecular beacon systems with two pyrene units in the stem region. Tetrahedron Lett., 2006, 31, No. 24, 4037-4039.
639. Skorobogatyi M. V, Malakhov A.D., Pchelintseva A.A., Turban A.A., Bondarev S.L., Korshun V.A. Fluorescent 5-alkynyl-2'-deoxyuridines: high emission efficiency of a conjugated perylene nucleoside in a DNA duplex. ChemBioChem, 2006, 7, No. 5, 810-816.
640. Varghese R, Wagenknecht H.-A. White-light-emitting DNA (WED). Chem. Eur. J., 2009,15, No. 37, 9307-9310.
641. Varghese R., Wagenknecht H.-A. Red-white-blue emission switching molecular beacons: ratiometric multicolour DNA hybridization probes. Org. Biomol. Chem., 2010, 8, No. 3, 526528.
642. Rist M., Amann N., Wagenknecht H.-A. Preparation of 1-ethynylpyrene-modified DNA via Sonogashira-type solid-phase couplings and characterization of the fluorescence properties for electron-transfer studies. Eur. J. Org. Chem., 2003, No. 13, 2498-2504.
643. Mayer E., Valis L., Wagner C., Rist M., Amann N., Wagenknecht H.-A. 1-Ethynylpyrene as a tunable and versatile molecular beacon for DNA. ChemBioChem., 2004, 5, No. 6, 865-868.
644. Trifonov A., Raytchev M., Buchvarov I., Rist M., Barbaric J., Wagenknecht H.-A., Fiebig T. Ultrafast energy transfer and structural dynamics in DNA. J. Phys. Chem. B, 2005, 109, No. 41, 19490-19495.
645. Seo Y.J., Bhuniya S., Kim B.H. Reversible sol-gel signaling system with epMB for the study of enzymeand pH-triggered oligonucleotide release from a biotin hydrogel. Chem. Commun., 2007, No. 18, 1804-1806.
646. Seo Y.J., Lee I.J., Yi J.W., Kim B.H. Probing the stable G-quadruplex transition using quencher-free endstacking ethynyl pyrene-adenosine. Chem. Commun., 2007, No. 27, 28172819.
647. Seo Y.J., Rhee IL, Joo T., Kim B.H. Self-duplex formation of an APy-substituted oligodeoxyadenylate and its unique fluorescence. J. Am. Chem. Soc., 2007, 129, No. 16, 5244-5247.
648. Seo Y.J., Lee I.J., Kim B.H. Detection of structure-switching in G-quadruplexes using end-stacking ability. Bioorg. Med. Chem. Lett., 2008,18, No. 14, 3910-3913.
649. Lee I. J., Yi J.W., Kim B.H. Probe for i-motif structure and G-rich strands using end-stacking ability. Chem. Commun., 2009, No. 36, 5383-5385.
650. Yi J.W., Park J., Kim KS., Kim B.H. pH-Responsive self-duplex of PyA-substituted oligodeoxyadenylate in graphene oxide solution as a molecular switch. Org. Biomol. Chem., 2011,9, No. 21, 7434-7438.
651. Hwang G.T., Seo Y.J., Kim B.H. A highly discriminating quencher-free molecular beacon for probing DNA. J. Am. Chem. Soc., 2004,126, No. 21, 6528-6529.
652. Ryu J.H., Seo Y.J., Hwang G.T., Lee J.B., Kim B.H. Triad base pairs containing fluorene unit for quencher-free SNP typing. Tetrahedron, 2007, 63, No. 17, 3538-3547.
653. Jeong H.S., Kang S., Lee J.Y., Kim B.H. Probing specific RNA bulge conformations by modified fluorescent nucleosides. Org. Biomol. Chem., 2009, 7, No. 5, 921-925.
654. Gorodetsky A.A., Green O., Yavin E., Barton J.K. Coupling into the base pair stack is necessary for DNA-mediated electrochemistry. Bioconjugate Chem., 2007, 18, No. 5, 14341441.
655. Tanaka M., Elias B., Barton J.K. DNA-mediated electron transfer in naphthalene-modified oligonucleotides. J. Org. Chem., 2010, 75, No. 8, 2423-2428.
656. Grünewald C., Kwon T., Piton N., Förster U., Wachtveitl J., Engels J. W. RNA as scaffold for pyrene excited complexes. Bioorg. Med. Chem., 2008,16, No. 1, 19-26.
657. Förster U., Lommel K, Sauter D., Grünewald C., Engels J.W., Wachtveitl J. 2-(l-Ethynylpyrene)-adenosine as a folding probe for RNA-pyrene in or out. ChemBioChem, 2010,11, No. 5, 664-672.
658. Förster U., Grünewald C., Engels J. W., Wachtveitl J. Ultrafast dynamics of 1-ethynylpyrene-modified RNA: a photophysical probe of intercalation. J. Phys. Chem. B, 2010, 114, No. 35, 11638-11645.
659. Ngassa F.N., Lindsey E.A., Haines B.E. The first Cu- and amine-free Sonogashira-type cross-coupling in the C-6-alkynylation of protected 2'-deoxyadenosine. Tetrahedron, 2009, 65, No. 21,4085-4091.
660. Ngassa F.N., Gomez J.M., Haines B.E., Ostach M.J., Hector J.W., Hoogenboom L.J., Page C.E. Facile Cu-free Sonogashira cross-coupling of nucleoside C-6 arylsulfonates with terminal alkynes. Tetrahedron, 2010, 66, No. 40, 7919-7926.
661. Коршун В,А., Манасова E.B., Берлин Ю.А. Алкинилированные нуклеозиды и их аналоги. Биоорган, химия, 1997, 23, № 5, 324-387.
662. Kanatani К, Ochi Y., Okamoto A., Saito I. DNA nanomotor using duplex-quadruplex conformational transition. Nucleic Acids Res. Suppl. No. 3, 2003,161-162.
663. Okamoto A., Kanatani K, Saito I. Pyrene-labeled base-discriminating fluorescent DNA probes for homogeneous SNP typing. J. Am. Chem. Soc., 2004,126, No. 15, 4820-4-827.
664. Okamoto A., Ochi Y., Saito I. Modulation of base selectivity for a base-discriminating fluorescent nucleobase by addition of mercury ion. Bioorg. Med. Chem. Lett., 2005, 15, No. 19, 4279^4281.
665. Saito Y., Hanawa K, Motegi K, Omoto K, Okamoto A., Saito I. Synthesis and properties of purine-type base-discriminating fluorescent (BDF) nucleosides: distinction of thymine by fluorescence-labeled deoxyadenosine derivatives. Tetrahedron Lett., 2005, 46, No. 44, 76057608.
666. Tanaka K, Okamoto A. Design of a pyrene-containing fluorescence probe for labeling of RNA poly(A) tracts. Bioorg. Med. Chem., 2008,16, No. 1, 400^04.
667. Kottysch T., Ahlborn C., Brotzel F., Richert C. Stabilizing or destabilizing oligodeoxynucleotide duplexes containing single 2'-deoxyuridine residues with 5-alkynyl substituents. Chem. Eur. J., 2004,10, No. 16, 4017-4028.
668. Baumhof P., Griesang N., Bâchle M., Richert C. Synthesis of oligonucleotides with 3'-terminal 5-(3-acylamidopropargyl)-3'-amino-2',3'-dideoxyuridine residues and their reactivity in single-nucleotide steps of chemical replication. J. Org. Chem., 2006, 71, No. 3, 1060-1067.
669. Okamoto A., Tainaka K, Nishiza K-i., Saito I. Monitoring DNA structures by dual fluorescence of pyrene derivatives. J. Am. Chem. Soc., 2005,127, No. 38, 13128-13129.
670. Bag S.S., Saito Y., Hanawa K, Kodate S., Suzuka I., Saito I. Intelligent fluorescent nucleoside in sensing cytosine base: Importance of hydrophobic nature of perylene fluorophore. Bioorg. Med. Chem. Lett., 2006,16, No. 24, 6338-6341.
671. Saito Y., Hanawa K, Kawasaki N., Bag S.S., Saito I. Acridone-labeled base-discriminating fluorescence (BDF) nucleoside: synthesis and their photophysical properties. Chem. Lett., 2006, 35, No. 10,1182-1183.
672. Saito Y., Motegi K, Bag S.S., Saito I. Anthracene based base-discriminating fluorescent oligonucleotide probes for SNPs typing: Synthesis and photophysical properties. Bioorg. Med. Chem., 2008, itf,No. 1, 107-113.
673. Bag S.S., Kundu R, Matsumoto K, Saito Y, Saito I. Singly and doubly labeled base-discriminating fluorescent oligonucleotide probes containing oxo-pyrene chromophore. Bioorg. Med. Chem. Lett., 2010, 20, No. 11, 3227-3230.
674. Ackerman D., Rashed G., Verma S., Schmidt T.L., Heckel A., Famulok M. Assembly of dsDNA nanocircles into dimeric and oligomeric aggregates. Chem. Commun., 2010, 46, No. 23,4154^1156.
675. Kahl J.D., Greenberg M. Introducing structural diversity in oligonucleotides via photolabile, convertible C5-substituted nucleotides. J. Am. Chem. Soc., 1999,121, No. 4, 597-604.
676. Gutsmiedl K, Fazio D., Carell T. High-density DNA functionalization by a combination of Cu-catalyzed and Cu-free click chemistry. Chem. Eur. J., 2010,16, No. 23, 6877-6883.
677. Seela F., Pujari S.S. Azide-alkyne "click" conjugation of 8-aza-7-deazaadenine-DNA: synthesis, duplex stability, and fluorogenic dye labeling. Bioconjugate Chem., 2010, 21, No. 9, 1629-1641.
678. Seela F., Ingale S.A. "Double click" reaction on 7-deazaguanine DNA: synthesis and excimer fluorescence of nucleosides and oligonucleotides with branched side chains decorated with proximal pyrenes. J. Org. Chem., 2010, 75, No. 2, 284-295.
679. Ingale S.A., Pujari S.S., Sirivolu V.R., Ding P., XiongH., Mei H, Seela F. 7-Deazapurine and 8-aza-7-deazapurine nucleoside and oligonucleotide pyrene "click" conjugates: synthesis, nucleobase controlled fluorescence quenching, and duplex stability. J. Org. Chem., 2012, 77, in press, dx.doi.org/10.1021/jo202103q.
680. Saito Y., Shinohara Y., Bag S.S., Takeuchi Y., Matsumoto K, Saito I. Ends free and self-quenched molecular beacon with pyrene labeled pyrrolocytidine in the middle of the stem. Tetrahedron, 2009, 65, No. 4, 934-939.
681. Margulies D., Hamilton A.D. Protein recognition by an ensemble of fluorescent DNA G-quadruplexes. Angew. Chem. Int. Ed., 2009, 48, No. 10, 1771-1774.
682. Margulies D., Hamilton A.D. Digital analysis of protein properties by an ensemble of DNA quadruplexes. J. Am. Chem. Soc., 2009,131, No. 26, 9142-9143.
683. Kolpashchikov D.M., Rechkunova N.I., Dobrikov M.I., Khodyreva S.N., Lebedeva N.A., Lavrik O.I. Sensitized photomodification of mammalian DNA polymerase ß. A new approach for highly selective affinity labeling of polymerases. FEBS Lett, 1999, 448, No. 1, 141-144.
684. Lavrik O.I., Kolpashchikov D.M., Prasad R., Sobol R.W., Wilson S.H. Binary system for selective photoaffinity labeling of base excision repair DNA polymerases. Nucleic Acids Res., 2002, 30, No. 30, e73.
685. Saito Y., Matsumoto K, Takeuchi Y., Bag S.S., Kodate S., Morii T., Saito I. Fluorescence switching of photochromic vinylpyrene-substituted 2'-deoxyguanosine. Tetrahedron Lett., 2009, 50, No. 13,1403-1406.
686. Saito Y., Koda M., Shinohara Y., Saito I. Synthesis and photophysical properties of 8-arylbutadienyl 2'-deoxyguanosins. Tetrahedron Lett., 2011, 52, No. 4,491-494.
687. Dumas A., Luedtke N. W. Highly fluorescent guanosine mimics for folding and energy transfer studies. Nucleic Acids Res., 2011, 39, No. 15, 6825-6834.
688. Telser J., Cruickshank K.A., Morrison L.E., Netzel T.L. Synthesis and characterization of DNA oligomers and duplexes containing covalently attached molecular labels: comparison of biotin, fluorescein, and pyrene labels by thermodynamic and optical spectroscopic measurements. J. Am. Chem. Soc., 1989, 111, No. 18, 6966-6976.
689. Telser J., Cruickshank K.A., Schanze K.S., Netzel T.L. DNA oligomers and duplexes containing a covalently attached derivative of tris(2,2'-bipyridine)ruthenium(II): synthesis and characterization by thermodynamic and optical spectroscopic measurements. J. Am. Chem. Soc., 1989, 111, No. 18, 7221-7226.
690. Telser J., Cruickshank K.A., Morrison L.E., Netzel T.L., Chan C.K. DNA duplexes covalently labeled at two sites: synthesis and characterization by steady-state and time-resolved optical spectroscopies. J. Am. Chem. Soc., 1989, 111, No. 18, 7226-7232.
691. Gaballah S.T., Vaught J.D., Eaton B.E., Netzel T.L. Charge-transfer excited state dynamics in DNA hairpins substituted with an ethylenylpyrenyl-dU electron source and halo-dU traps. J. Phys. Chem. B, 2005,109, No. 12, 5927-5934.
692. Y. Hagiwara, Hasegawa T., Shoji A., Kuwahara M., Ozaki H., Sawai H. Acridone-tagged DNA as a new probe for DNA detection by fluorescence resonance energy transfer and for mismatch DNA recognition. Bioorg. Med. Chem., 2008,16, No. 14, 7013-7020.
693. Okamoto A., Ochi Y., Saito I. Modulation of base selectivity for a base-discriminating fluorescent nucleobase by addition of mercury ion. Bioorg. Med. Chem. Lett., 2005, 15, No. 19, 4279-4281.
694. Matsumoto K, Shinohara Y., Bag S.S., Takeuchi Y., Morii T., Saito Y., Saito I. Pyrene-labeled deoxyguanosine as a fluorescence sensor to discriminate single and double stranded DNA structures: design of ends free molecular beacons. Bioorg. Med. Chem. Lett., 2009,19, No. 22, 6392-6395.
695. Zhao Y., Knee J.L., Bar anger A.M. Characterization of two adenosine analogs as fluorescence probes in RNA. Bioorg. Chem., 2008, 36, No. 6, 271-277.
696. Mitchell C.D., Netzel T.L. CIS INDO/S SCRF study of electron transfer excited states in a 1-pyrenyl substituted l-methyluracil-5-carboxamide nucleoside model: dielectric continuum solvation effects on electron transfer states. J. Phys. Chem. B, 2000,104, No. 1, 125-136.
697. Kerr C.E., Mitchell C.D., HeadrickJ., Eaton B.E., Netzel T.L. Synthesis and photophysics of a 1-pyrenyl substituted 2'-deoxyuridine-5-carboxamide nucleoside: electron transfer products as CIS INDO/S excited states. J. Phys. Chem. B, 2000,104, No. 7, 1637-1650.
698. Kerr C.E., Mitchell C.D., Ying Y.-M., Eaton B.E., Netzel T.L. Synthesis and photophysics of a 1-pyrenylmethyl-substituted 2'-deoxyuridine-5-carboxamide nucleoside: electron-transfer product lifetimes and energies. J. Phys. Chem. B, 2000,104, No. 9, 2166-2175.
699. KubotaM., Ono A. Stabilization of DNA triplexes by dangling aromatic residues. Tetrahedron Lett., 2004, 45, No. 6, 1187-1190.
700. Kosuge M., Kubota M., Ono A. Multiple-pyrene residues arrayed along DNA backbone exhibit significant excimer fluorescence. Tetrahedron Lett., 2004, 45, No. 20, 3945-3947.
701. Ostergaard M.E., Guenter D.C., Kumar P., Baral B., Deobald L., Paszynski A.L., Sharma P.K, Hrdlicka P.J. Pyrene-functionalized triazole-linked 2'-deoxyuridines - probes for discrimination of single nucleotide polymorphisms (SNPs). Chem. Commun., 2010, 46, No. 27, 4929-4931.
702. Okamoto A., Taiji T., Tainaka K, Saito I. Oligonucleotides containing 7-vinyl-7-deazaguanine as a facile strategy for expanding the functional diversity of DNA. Bioorg. Med. Chem. Lett., 2002,12, No. 15, 1895-1896.
703. Strobel H., Dugue L., Marliere P., Pochet S. A Parallel synthesis scheme for generating libraries of DNA polymerase substrates and inhibitors. ChemBioChem., 2002, 3, No. 12, 1251-1256.
704. Li Z., Nakagawa O., Koga Y., Taniguchi Y, Sasaki S. Synthesis of new derivatives of 8-oxoG-Clamp for better understanding the recognition mode and improvement of selective affinity. Bioorg. Med. Chem., 2010,18, No. 11, 3992-3998.
705. Roget A., Bazin H., Teoule R. Synthesis and use of labelled nucleoside phosphoranidite building blocks bearing a reporter group: biotinyl, dinitrophenyl, pyrenyl and dansyl. Nucleic Acids Res., 1989,17, No. 19, 7643-7651.
706. Yguerabide J., Talavera E., Alvarez J.M., Afkir M. Pyrene-labeled DNA probes for homogeneous detection of complementary DNA sequences: poly(C) model system. Anal. Biochem., 1996, 241, No. 2, 238-241.
707. Talavera E.M., Afkir M., Saito R, Vargas A.M., Alvarez-Pez J.M. Fluorescence-labelled DNA probes to detect complementary sequences in homogeneous media. J. Photochem. Photobiol. B, 2000, 59, No. 1/3, 9-14.
708. Abdel-Rahman A.A.-H., Ali O.M., Pedersen E.B. Insertion of 5-methyl-N4-(l-pyrenylmethyl)cytidine into DNA. Duplex, three-way junction and triplex stabilities. Tetrahedron, 1996, 52, No. 48, 15311-15324.
709. Khattab A.F., Pedersen E.B. Targeting chimeric a,|3-oligonucleotides to the flanks of a stem in DNA. The enhanced effect of an intercalator. Acta Chem. Scand., 1997, 51, No. 12, 1245— 1252.
710. Dyatkina N.. Khorlin A., Khrlin Y., Watanabe K.A. Synthesis of novel pyrene-bearing C-nucleoside and its incorporation into oligonucleotides. Nucleosides Nucleotides, 1999,18, No. 4/5, 621-622.
711. Netzel T. Methods and apparatus for the photo-electrochemical detection of nucleic acid. US Patent 6,555,692, 2003.
712. Nakano S., Uotani Y., Nakashima S., Anno Y., Fujii M., Sugimoto N. Large stabilization of a DNA duplex by the deoxyadenosine derivatives tethering an aromatic hydrocarbon group. J. Am. Chem. Soc., 2003,125, No. 27, 8086-8087.
713. Nakano S., Oka H., Uotani Y., Uenishi K, Fujii M., Sugimoto N. Dynamics and energetics of the base flipping conformation studied with base pair-mimic nucleosides. Biochemistry, 2009, 48, No. 47,11304-11311.
714. Kawai K, Sugimoto A., Yoshida H., Tojo S., Fujitsuka M., Majima T. Synthesis and properties of terthiophene-modified oligodeoxynucleotides. Bioorg. Med. Chem. Lett., 2005, 15, No. 20, 4547-4549.
715. Kawai K, Kimura T., Yoshida H., Sugimoto A., Tojo S., Fujitsuka M., Majima T. Formation of pyrene dimer radical cation at the minor groove of DNA. Bull. Chem. Soc. Jpn., 2006, 79, No. 2,312-316.
716. Seio K, Mizuta M., Tasaki K, Tamaki K, Ohkubo A., Sekine M. Hybridization-dependent fluorescence of oligodeoxynucleotides incorporating new pyrene-modifled adenosine residues. Bioorg. Med. Chem., 2008,16, No. 17, 8287-8293.
111. Martic S., Liu X., Wang S., Wu G. Self-assembly of N -modified guanosine derivatives: formationof discrete G-octamers. Chem. Eur. J., 2008,14, No. 4, 1196-1204.
718. Katritzky A.R., Ozcan S., Todadze E. Labeling of nucleosides with fluorescent 6-chloro-2,3-napthalimide. Bioorg. Med. Chem. Lett., 2010, 20, No. 17, 5326-5328.
719. Slaga T.J., Bracken W.J., Gleason G., Levin W., Yagi H, Jerina D.M., Conney A.H. Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereomeric benzo(a)pyrene 7,8-diol-9,10-epoxides. Cancer Res., 1979, 39, No. 1, 67-71.
720. Lakshman M., Lehr R.E. Synthesis of polycyclic aromatic hydrocarbon 2'-deoxyadenosine analogs. Tetrahedron Lett., 1990, 37, No. 11, 1547-1550.
721. Kim S.J., Harris C.M., Jung K.-Y., Koreeda M., Harris T.M. Non-biomimetic route to deoxyadenosine adducts of carcinogenic polycyclic aromatic hydrocarbons. Tetrahedron Lett., 1991, 32, No. 43, 6073-6076.
722. Steinbrecher T., Wameling C., Oesch F., Seidel A. Activation of the C2 position of purine by the trifluoromethanesulfonate group: synthesis of N2-alkylated deoxyguanosines. Angew. Chem. Int. Ed., 1993, 32, No. 3,404^06.
723. Kim S.J., Jajoo H.K, Kim H.-Y., Zhou L„ Horton P., Harris C.M., Harris T.M. An efficient route to
N6 deoxyadenosine adducts of diol epoxides of carcinogenic polycyclic aromatic hydrocarbons. Bioorg. Med. Chem., 1995, 3, No. 6, 811-822.
724. Kroth H, Yagi H., Seidel A., Jerina D.M. New and highly efficient synthesis of cis- and trans-opened benzo[a]pyrene 7,8-diol 9,10-epoxide adducts at the exocyclic /V2-amino group of deoxyguanosine. J. Org. Chem., 2000, 65, No. 18, 5558-5564.
725. Ramesha A.R., KrothH., Jerina D.M. Solvent-free synthesis of benzo[a]pyrene 7,8-diol 9,10-epoxide adducts at the Apposition of deoxyguanosine. Org. Lett., 2001, 3, No. 4, 531-533.
726. Wolfe A.R., Smith T.J., Meehan T. Benzo[a]pyrene diol epoxide forms covalent adducts with deoxycytidylic acid by alkylation at both exocyclic amino N4 and ring imino N-3 positions. Chem. Res. Toxicol., 2004,17, No. 4, 476-491.
727. El-Bayoumy K, Sharma A.K., Lin J.-M., Krzeminski J., Boyiri T., King L.C., Lambert G., Padgett W., Nesnow S., Amin S. Identification of 5-(deoxyguanosin-Ar2-yl)-l ,2-dihydroxy-l ,2-dihydro-6-aminochrysene as the major DNA lesion in the mammary gland of rats treated with the environmental pollutant 6-nitrochrysene. Chem. Res. Toxicol., 2004, 17, No. 12, 15911599.
728. Yagi H., Jerina D. Fluorinated alcohol nediated displacement of the Cio acetoxy group of benzo[a]pyrene-7,8,9,10-tetrahydrotetraol tetraacetates: a new route to diol epoxide-deoxyguanosine adducts. J. Org. Chem., 2007, 72, No. 26, 9983-9990.
729. Yagi H., Frank H., Seidel A., Jerina D. Revised assignment of absolute configuration of the cis- and /ram'-A^-deoxyadenosine adducts at C14 of (±)-11/?, 12a-dihydroxy- 13 a, 14a-epoxy-1 l,12,13,14-tetrahydrodibenzo[a,/]pyrene by stereoselective synthesis. Chem. Res. Toxicol., 2008, 21, No. 12, 2379-2392.
730. Yun B.H., Dedon P.C., Geacintov N.E., Shafirovich V. One-electron oxidation of a pyrenyl photosensitizer covalently attached to DNA and competition between its further oxidation and DNA hole injection. Photochem. Photobiol., 2010, 86, No. 3, 563-570.
731. Lee H, Hinz M., Stezowski J.J., Harvey R.G. Syntheses of polycyclic aromatic hydrocarbon-nucleoslde and oligonucleotide adducts specifically alkylated on the amino functions of deoxyguanosine and deoxyadenosine. Tetrahedron Lett., 1990, 31, No. 47, 6773-6776.
732. Lee H., Luna E., Hinz M., Stezowski J.J., Kiselyov A.S., Harvey R.G. Synthesis of oligonucleotide adducts of the bay region diol epoxide metabolites of carcinogenic polycyclic aromatic hydrocarbons. J. Org. Chem., 1995, 60, No. 17, 5604-5613.
733. Krzeminski J., Ni J., Zhuang P., Luneva N., Amin S., Geacintov N.E. Total synthesis, mass spectrometric sequencing, and stabilities of oligonucleotide duplexes with single trans-anti-BDPE-A^-dA lesions in the N-ras codon 61 and other sequence contexts. Polycyclic Aromatic Compounds, 1999,17, No. 1/4,1-10.
734. Lakshman M.K., Sayer J.M., Jerina D.M. Chemical synthesis of a bay-region polycyclic aromatic hydrocarbon tetrahydroepoxide-deoxyadenosine adduct and its site-specific incorporation into a DNA oligomer. J. Am. Chem. Soc., 1991,113, No. 17, 6589-6594.
735. Lakshman M.K, Sayer J.M., Jerina D.M. Synthesis and site-specific incorporation of a bay-region cis ring-opened tetrahydro epoxide-deoxyadenosine adduct into a DNA oligomer. J. Org. Chem., 1992, 57, No. 12, 3438-3443.
736. Lakshman M.K, Sayer J.M., Yagi H., Jerina D.M. Synthesis and duplex-forming properties of a nonanucleotide containing an A^-deoxyadenosine adduct of a bay-region diol epoxide. J. Org. Chem., 1992, 57, No. 17, 4585-4590.
737. Steinbrecher T., Becker A., Stezowski J.J., Oesch F., Seidel A. Synthesis of oligodeoxynucleotides containing diastereomeric dihydrodiol epoxide-N6-deoxyadenosine adducts of polycyclic aromatic hydrocarbons. Tetrahedron Lett., 1993, 34, No. 11, 1773— 1774.
738. Chaturvedi S., Laksbman M.K. Site-specific modification of the human N-ras proto-oncogene with each diol epoxide metabolite of benzo[a]pyrene and thermal denaturation studies of the adducted duplexes. Carcinogenesis, 1996, 7, No. 12, 2747-2752.
739. Pilcher A.S., Yagi H., Jerina D.M. A novel synthetic method for cis-opened benzo[a]pyrene 7,8-diol 9,10-epoxide adducts at the exocyclic A^-amino group of deoxyadenosine. J. Am. Chem. Soc., 1998,120, No. 14, 3520-3521.
740. Kroth H., Yagi H., Sayer J.M., Kumar S., Jerina D.M. 06-Allyl protected deoxyguanosine adducts of polycyclic aromatic hydrocarbons as building blocks for the synthesis of oligonucleotides. Chem. Res. Toxicol., 2001,14, No. 6, 708-719.
741. Yagi TL, Ramesha A.R., Kalena G., Sayer J.M., Kumar S., Jerina D.M. Novel stereoselective control over eis vs trans opening of benzo[c]phenanthrene 3,4-diol 1,2-epoxides by the exocyclic Ar2-amino group of deoxyguanosine in the presence of hexafluoropropan-2-ol. J. Org. Chem., 2002, 67, No. 19, 6678-6689.
742. Bonala R.R., Torres M.C., Attaluri S., Lden C.R., Johnson F. Incorporation of N -deoxyguanosine metabolic adducts of 2-aminonaphthalene and 2-aminofluorene into oligomeric DNA. Chem. Res. Toxicol., 2005,18, No. 3, 457-465.
743. Lyer P.C., Yagi H, Sayer J.M., Jerina D.M. 3'-7/-Phosphonate synthesis of chiral benzoföjpyrene diol epoxide adducts at N2 of deoxyguanosine in oligonucleotides. Chem. Res. Toxicol., 2007, 20, No. 2, 311-315.
744. Yagi H., Frank Ii., Seidel A., Jerina D.M. Synthesis and absolute configuration of eis- and trans-opened cyclopentafet/Jpyrene 3,4-oxide A^-deoxyguanosine adducts: conversion to phosphoramidites for oligonucleotide synthesis. Chem. Res. Toxicol., 2007, 20, No. 4, 650661.
745. Yagi H., Jerina D.M. Fluorinated alcohol mediated control over eis vs trans opening of benzo[a]pyrene-7,8-diol 9,10-epoxides at C-10 by the exocyclic amino groups
of 06-allyl
protected deoxyguanosine and of deoxyadenosine. J. Org. Chem., 2007, 72, No. 16, 60376045.
746. Colis L.C., Chakraborti D., Hilario P., McCarty C., Basu A.K. Synthesis of oligonucleotides containing 2'-deoxyguanosine adducts of nitropyrenes. Nucleosides Nucleotides Nucleic Acids, 2009, 28, No. 2, 67-77.
747. Kokontis J.M., Tsung S.S., Vaughan-Johnson J., Lee H., Harvey R.G., Weiss S.B. Mutation in Escherichia coli and mammalian cells induced by closely spaced 1-methylpyrene-deoxyadenosine adducts in opposite DNA strands. Carcinogenesis, 1993,14, No. 4, 645-651.
748. Jerina D.M., Sayer J.M., Yeh H.J.C., Liu X, Yagi H, Schürfer E., Gorenstein D. NMR conformational analysis of DNA duplexes containing diol epoxide adducts of polycyclic aromatic hydrocarbons. Polycyclic Aromatic Compounds, 1996,10, No. 1/4, 145-152.
749. Lavrukhin O. V., Lloyd R.S. Mutagenic replication in a human cell extract of DNAs containing site-specific and stereospecific benzo(a)pyrene-7,8-diol-9,10-epoxide DNA adducts placed on the leading and lagging strands. Cancer Res., 1998, 58, No. 5, 887-891.
750. Harvey R.G., Zhang F.-J., Dipple A., Weiss M.A. Synthesis of adducts of PAH diol epoxide metabolites in p53 tumor supressor gene. Polycyclic Aromatic Compounds, 2000, 21, No. 1/4, 11-23.
751. Wang Y., Schnetz-BoutaudN.C., Kroth H„ Yagi H, Sayer J.M., Kumar S., Jerina D.M., Stone M.P. 3'-Intercalation of a A^-dG 1 R-tram-anti-benzo[cjphenanthrene DNA adduct in an iterated (CG)3 repeat. Chem. Res. Toxicol., 2008, 21, No. 7, 1348-1358.
752. Elmquist C.E., Stover J.S., Wang Z, Rizzo C.J. Site-specific synthesis and properties of oligonucleotides containing C8-deoxyguanosine adducts of the dietary mutagen IQ. J. Am. Chem. Soc., 2004,126, No. 36,11189-11201.
753. Bonala R„ Torres M.C., lden C.R., Johnson F. Synthesis of the PhIP adduct of 2'-deoxyguanosine and its incorporation into oligomeric DNA. Chem. Res. Toxicol., 2006, 19, No. 6, 734-738.
754. Takamura-Enya T., Ishikawa S., Mochizuki M, Wakabayashi K. Chemical synthesis of 2'-deoxyguanosine-C8 adducts with heterocyclic amines: an application to synthesis of oligonucleotides site-specifically adducted with 2-amino-l-methyl-6-phenylimidazo[4,5-%yridine. Chem. Res. Toxicol., 2006,19, No. 6, 770-778.
755. Stover J.S., Rizzo C.J. Synthesis of oligonucleotides containing the A^-deoxyguanosine adduct of the dietary carcinogen 2-amino-3-methylimidazo[4,5:/]quinoline. Chem. Res. Toxicol., 2007, 20, No. 12, 1972-1979.
756. Stover J.S., Chowdhury G., Zang H., Guengerich F.P., Rizzo C.J. Translesion synthesis past the C8- and ./V2-deoxyguanosine adducts of the dietary mutagen 2-amino-3-methylimidazo[4,5-/]quinoline in the Narl recognition sequence by prokaryotic DNA polymerases. Chem. Res. Toxicol., 2006,19, No. 11, 1506-1517.
757. Wang F., DeMuro N.E., Elmquist C.E., Stover J.S., Rizzo C.J., Stone M.P. Base-displaced intercalated structure of the food mutagen 2-amino-3-methylimidazo[4,5-/]quinoline in the recognition sequence of the Narl restriction enzyme, a hotspot for -2 bp deletions. J. Am. Chem. Soc., 2006,128, No. 31, 10085-10095.
758. Elmquist C.E., Wang F., Stover J. S., Stone M.P., Rizzo C.J. Conformational differences of the C8-deoxyguanosine adduct of 2-amino-3-methylimidazo[4,5-/]quinoline (IQ) within the Narl recognition sequence. Chem. Res. Toxicol., 2007, 20, No. 3, 445-454.
759. Harris C.M., Zhou L., Strand E.A., Harris T.M. New strategy for the synthesis of oligodeoxynucleotides bearing adducts at exocyclic amino sites of purine nucleosides. J. Am. Chem. Soc., 1991,113, No. 11, 4328-4329.
760. Kim S.J., Stone M.P., Harris C.M., Harris T.M. A Postoligomerization synthesis of oligodeoxynucleotides containing polycyclic aromatic hydrocarbon adducts at the N6 position of deoxyadenosine. J. Am. Chem. Soc., 1992,114, No. 13, 5480-5481.
761. DeCorte B.L., Tsarouhtsis D., Kuchimanchi S., Cooper M.D., Horton P., Harris C.M., Harris T.M. Improved strategies for postoligomerization synthesis of oligodeoxynucleotides bearing structurally defined adducts at the N2 position of deoxyguanosine. Chem. Res. Toxicol., 1996, 9, No. 3, 630-637.
762. Cooper M.D., Hodge R.P., Tamura P.J., Wilkinson A.S., Harris C.M., Harris T.M. Synthesis of oligonucleotides containing bulky adducts at guanine N2 via the phosphoramidite of O2-triflate-06-NPE 2'-deoxyxanthosine. Tetrahedron Lett., 2000, 41, No. 19, 3555-3558.
763. Zang H, Harris T.M., Guengerich P. Kinetics of nucleotide incorporation opposite polycyclic aromatic hydrocarbon-DNA adducts by processive bacteriophage T7 DNA polymerase. Chem. Res. Toxicol., 2005,18, No. 2, 389-400.
764. ZangH., Chowdhury G., Angel K.C., Harris T.M., Guengerich P. Translesion synthesis across polycyclic aromatic hydrocarbon diol epoxide adducts of deoxyadenosine by Sulfolobus solfataricus DNA polymerase Dpo4. Chem. Res. Toxicol., 2006,19, No. 2, 859-867.
765. Cosman M., Ibanez V., Geacintov N.E., Harvey R.G. Preparation and isolation of adducts in high yield derived from the binding of two benzo[a]pyrene-7,8-dihydroxy-9,10-oxide stereoisomers to the oligonucleotide d(ATATGTATA). Carcinogenesis, 1990, 11, No. 9, 1667-1672.
766. Geacintov N.E., Cosman M., Mao B., Alfano A., Ibanez V., Harvey R.G. Spectroscopic characteristics and site I/site II classification of cis and trans benzo[a]pyrene diolepoxide enantiomer-guanosine adducts in oligonucleotides and polynucleotides. Carcinogenesis, 1991,12, No. 11,2099-2108.
767. Eriksson M., Kim S.K, Sen S., Craslund A., Jernstrom B., Norden B. Location of excimer-forming adducts of (+)-anti-benzo[alpyrene diol epoxide in DNA. J. Am. Chem. Soc., 1993, 115, No. 5, 1639-1644.
768. Ponten I., Kim S.K., Graslund A., Norden B., Jernstrom B. Spectroscopic studies of the trans adducts derived from (+)- and (-)-anri-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide and the oligonucleotide 5'-d(CCTATAGATATCC). Carcinogenesis, 1994,15, No. 10, 2207-2213.
769. Jelinsky S.A., Liu T., Geacintov N.E., Loechler E.L. The major, N -Gua adduct of the (+)-anti-benzo[a]pyrene diol epoxide is capable of inducing G—>A and G—>C, in addition to G—>T, mutations. Biochemistry, 1995, 34, No. 41,13545-13553.
770. Mao B., Xu J., Li B., Margulis L.A., Smirnov S., Ya N.-Q., Courtney S.H., Geacintov N.E. Synthesis and characterization of covalent adducts derived from the binding of benzo[a]pyrene diol epoxide to a -GGG- sequence in a deoxyoligonucleotide. Carcinogenesis, 1995,16, No. 2, 357-365.
771. Hsu T.M., Liu T.M., Amin S., Geacintov N.E., Santella R.M. Determination of stereospecificity of benzo[a]pyrene diolepoxide-DNA antisera with site-specifically modified oligonucleotides. Carcinogenesis, 1995,16, No. 9, 2263-2265.
772. Mao B., Li B„ Liu T.-M., Xu J., Dourandin A., Amin S., Geacintov N.E. Laser pulse-induced photochemical strand cleavage of site-specifically arid covalently modified (+)-anti-benzo[a]pyrene diol epoxide-oligonucleotide adducts. Chem. Res. Toxicol., 1995, 8, No. 3, 396^102.
773. Windsor S., Tinker M.H., Osborne M.R., Seidel A. Studies of the binding of diolepoxide metabolites of polycyclic aromatic hydrocarbons to DNA using electrofluorescence polarization spectroscopy. Carcinogenesis, 1996,17, No. 3, 605-608.
11 A. Persson A.E., Ponten I., Cotgreave I., Jernstrom B. Inhibitory effects on the DNA binding of AP-1 transcription factor to an AP-1 binding site modified by benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxide diastereomers. Carcinogenesis, 1996,17, No. 9, 1963-1969.
775. Ponten I., Seidel A., Graslund A., Jernstrom B. Synthesis and characterization of adducts derived from the ^«-diastereomer of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxide and the 5'-d(CCTATAGATATCC) oligonucleotide. Chem. Res. Toxicol., 1996, 9, No. 1, 188-196.
776. Marky L.A., Rentzeperis D., Luneva N.P., Cosman M., Geacintov N.E., Kupke D.W. Differential hydration thermodynamics of stereoisomeric DNA~benzo[a]pyrene adducts derived from diol epoxide enantiomers with different tumorigenic potentials. J. Am. Chem. Soc., 1996,118, No. 16, 3804-3810.
111. Shukla R., Liu T., Geacintov N.E., Loechler E.L. The major,
JV2-dG adduct of the (+) -anti-
B[a]PDE shows a dramatically different mutagenic specificity (predominantly, G—>A) in a 5-CGT-3' sequence context. Biochemistry, 1997, 36, No. 33, 10256-10261.
778. Shukla R., Jelinsky S.A., Liu T., Geacintov N.E., Loechler E.L. How stereochemistry affects mutagenesis by A^-deoxyguanosine adducts of 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene: configuration of the adduct bond is more important than those of the hydroxyl groups. Biochemistry, 1997, 36, No. 43, 13263-13269.
779. Funk M., Ponten I., Seidel A., Jernstrom B. Critical parameters for adduct formation of the carcinogen (+)-anri-benzo[a]pyrene-7,8-dihydrodiol 9,10-epoxide with oligonucleotides. Bioconjugate Chem., 1997, 8, No. 3, 310-317.
780. Shukla R., Geacintov N.E., Loechler E.L. The major,
A^-dG adduct of the (+) induces G—>A mutations in a 5-AGA-3' sequence context. Carcinogenesis, 1999, 20, No. 2, 261-268.
781. Lin C.H., Huang X., Kolbanovskii A., Hingerty B.E., Amin S., Broyde S., Geacintov N.E., Pate I D.J. Molecular topology of polycyclic aromatic carcinogens determines DNA adduct conformation: a link to tumorigenic activity. J. Mol. Biol., 2001, 306, No. 5, 1059-1080.
782. Perlow R.A., Kolbanovskii A., Hingerty B.E., Geacintov N E., Broyde S., Scicchitano D.A. DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J. Mol. Biol., 2002, 327, No. 1,29-47.
783. Wolfe A.R., Smith T.J., Meehan T. Benzo[a]pyrene diol epoxide forms covalent adducts with deoxycytidylic acid by alkylation at both exocyclic amino N4 and ring imino N-3 positions. Chem. Res. Toxicol., 2004,17, No. 4, 476^91.
784. Dreij K, Seidel A., Jernstrom B. Differential removal of DNA adducts derived from anti-diol epoxides of dibenzo[a,/]pyrene and benzo[a]pyrene in human cells. Chem. Res. Toxicol., 2005,18, No. 4, 655-664.
785. Zhang N., Lin C., Huang X, Kolbanovskiy A., Hingerty B.E., Amin S., Broyde S., Geacintov N.E., Patel D.J. Methylation of cytosine at C5 in a CpG sequence context causes a conformational switch of a benzo[a]pyrene diol epoxide-A^-guanine adduct in DNA from a minor groove alignment to intercalation with base displacement. J. Mol. Biol., 2005, 346, No. 4, 951-965.
786. Yang T., Huang Y., Cho B.P. Synthesis and characterization of enantiomeric anti-2-fluorobenzo[a]pyrene-7,8-dihydrodiol-9,10-epoxides and their 2'-deoxyguanosine and oligodeoxynucleotide adducts. Chem. Res. Toxicol., 2006,19, No. 2, 242-254.
787. Wang B., SayerJ.M., Yagi H., Frank H, Seidel A., Jerina D.M. Facile interstrand migration of the hydrocarbon moiety of a dibenzo[a,/]pyrene 11,12-diol 13,14-epoxide adduct at N2 of deoxyguanosine in a duplex oligonucleotide. J. Am. Chem. Soc., 2006, 128, No. 31, 1007910084.
788. Yun B.H., Lee Y.A., Kim S.K., Kuzmin V., Kolbanovskii A., Dedon P.C., Geacintov N.E., Shafirovich V. Photosensitized oxidative DNA damage: from hole injection to chemical product formation and strand cleavage. J. Am. Chem. Soc., 2007,129, No. 30, 9321-9332.
789. Wang C., Feng F., Wang Z., Li T., Le X.C., Wang H. Synthesis and characterization of DNA fluorescent probes containing a single site-specific stereoisomer of anft'-benzo[a]pyrene diol epoxide-jV2-dG. Chem. Res. Toxicol., 2009, 22, No. 4, 676-682.
790. Kropachev K, Kolbanovskii M., Cai Y., Rodriguez F., Kolbanovskii A., Liu Y., Zhang L., Amin S., Patel D., Broyde S., Geacintov N.E. The sequence dependence of human nucleotide excision repair efficiencies of benzo[a]pyrene-derived DNA lesions: insights into the structural factors that favor dual incisions. J. Mol. Biol., 2009, 386, No. 5, 1193-1203.
791. Cai Y., Kropachev K, Xu R, Tang Y., Kolbanovskii M., Kolbanovskii A., Amin S., Patel D.J., Broyde S., Geacintov N.E. The sequence dependence of human nucleotide excision repair efficiencies of benzo[a]pyrene-derived DNA lesions: insights into the structural factors that favor dual incisions. J. Mol. Biol., 2010, 399, No. 3, 397-409.
792. Marques M.M., Beland F.A. Synthesis, characterization, and solution properties of ras sequences modified by arylamine carcinogens at the first base of Codon 61. Chem. Res. Toxicol., 1990, 3, No. 6, 559-565.
793. Shibutani S., Gentles R, Johnson F., Groilman A. P. Isolation and characterization of oligonucleotides containing dG-Ar2-AAF and oxidation products off dG-C8-AF. Carcinogenesis, 1991,12, No. 5, 813-818.
794. O'Handley S.F., Sanford D.G., Xu R., Lester C.C., Hingerty B.E., Broyde S., Krugh T.R. Structural characterization of an A-acetyl-2-aminofluorene (AAF) modified DNA oligomer by NMR, energy minimization, and molecular dynamics. Biochemistry, 1993, 32, No. 10, 24812497.
795. Vyas R.R., Nolan S.J., Basu A.K. Synthesis and characterization of oligodeoxynucleotides containing A,r-(deoxyguanosin-8-yl)-1 -aminopyrene. Tetrahedron Lett., 1993, 34, No. 14, 2247-2250.
796. Cho B.P., Beland F.A., Marques MM NMR structural studies of a 15-mer DNA duplex from a ras protooncogene modified with the carcinogen 2-aminofluorene: conformational heterogeneity. Biochemistry, 1994, 33, No. 6, 1373-1384.
797. Vyas R.R., Basu A.K. DNA polymerase action on an oligonucleotide containing a sitespecifically located iV-deoxyguanosin-8-yl)-l-aminopyrene. Carcinogenesis, 1995, 16, No. 4,811-816.
798. Mao B., Vyas R.R., Hingerty B.E., Broyde S., Basu A.K, Patel D.J. Solution conformation of the Af-(deoxyguanosin-8-yl)-l -aminopyrene ([AP]dG) adduct opposite dC in a DNA duplex. Biochemistry, 1996, 35, No. 39, 12659-12670.
799. Nolan S.J., Vyas R.R., Hingerty B.E., Ellis S„ Broyde S., Shapiro R., Basu A.K. Solution properties and computational analysis of an oligodeoxynucleotide containing iV-(deoxyguanosin-8-yl)-laminopyrene. Carcinogenesis, 1996, 7, No. 1, 133-144.
800. Zhou L., Rajabzadeh M., Traflcante D.D., Cho B.P. Conformational heterogeneity of arylamine-modified DNA: 19F NMR evidence. J. Am. Chem. Soc., 1997, 119, No. 23, 53845389.
801. Luo C., Krishnasamy R, Basu A.K, Zou Y. Recognition and incision of site-specifically modified C8 guanine adducts formed by 2-aminofluorene, ALacetyl-2-aminofluorene and 1-nitropyrene by UvrABC nuclease. Nucleic Acids Res., 2000, 28, No. 19, 3719-3724.
802. Purohit V., Basu A.K. Synthesis and characterization of oligodeoxynucleotides containing the major DNA adducts formed by 1,6- and 1,8-dinitropyrene. Org. Lett., 2000, 2, No. 13, 18711874.
803. Meneni S.R., DMello R., Norigian G., Baker G., Gao L., Chiarelli M.P., Cho B.P. Sequence effects of aminofluorene-modified DNA duplexes: thermodynamic and circular dichroism properties. Nucleic Acids Res., 2006, 34, No. 2, 755-763.
804. Meneni S.R., Shell S.M., Zou Y., Cho B.P. Conformation-specific recognition of carcinogen-DNA adduct in Escherichia coli nucleotide excision repair. Chem. Res. Toxicol., 2007, 20, No. 1, 6-10.
805. Watt D.L., Utzat C.D., Hilario P., Basu A.K. Mutagenicity of the 1-nitropyrene-DNA adduct AHdeoxyguanosin-8-yl)-1 -aminopyrene in mammalian cells. Chem. Res. Toxicol, 2007, 20, No. 11, 1658-1664.
806. Liang F., Cho B.P. Probing the thermodynamics of aminofluorene-induced translesion DNA synthesis by differential scanning calorimetry. J. Am. Chem. Soc., 2007,129, No. 40, 1210812109.
807. Colis L.C., Chakraborti D., Hilario P., McCarty C., Basu A.K. Synthesis of oligonucleotides containing 2'-deoxyguanosine adducts of nitropyrenes. Nucleosides Nucleotides Nucleic Acids, 2009, 28, No. 2, 67-77.
808. Krzeminski J., Kropachev K, Kolbanovskii M, Reeves D., Kolbanovskii A., Yun B.-H, Geacintov N.E., Amin S., El-Bayoumy K. Inefficient nucleotide excision repair in human cell extracts of the AL(deoxyguanosin-8-yl)-6-aminochrysene and 5-(deoxyguanosin-Ai2-yl)-6-aminochrysene adducts derived from 6-nitrochrysene. Chem. Res. Toxicol., 2011, 24, No. 1, 65-72.
809. Liang F., Cho B.P. Conformational and thermodynamic impact of bulky aminofluorene adduction on simulated translesion DNA synthesis. Chem. Res. Toxicol., 2011, 24, No. 4, 597-605.
810. Reardon D.B., Bigger C.A.H., Dipple A. DNA polymerase action on bulky deoxyguanosine and deoxyadenosine adducts. Carcinogenesis, 1990,11, No. 1, 165-168.
811. Ren J., Chaires J.B. Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry, 1999, 38, No. 49, 16067-16075.
812. Becker H.-C., Nor den B. DNA binding thermodynamics and sequence specificity of chiral piperazinecarbonyloxyalkyl derivatives of anthracene and pyrene. J. Am. Chem. Soc., 2000, 122, No. 35, 8344-8349.
813. Kumar C. V., Punzalan E.H.A., Tan W.B. Adenine-thymine base pair recognition by an anthryl probe from the DNA minor groove. Tetrahedron, 2000, 56, No. 36, 7027-7040.
814. Petrov A.I., Khalil D.N., Kazaryan R.L., Savintsev I.V., Sukhorukov B.I. Structural and thermodynamic features of complexes formed by DNA and synthetic polynucleotides with dodecylamine and dodecyltrimethylammonium bromide. Bioelectrochemistry, 2002, 58, No. 1, 75-85.
815. Xue L., Charles I., Arya D.P. Pyrene-neomycin conjugate: dual recognition of a DNA triple helix. Chem. Commun., 2002, No. 1, 70-71.
816. Kawai K, Yokoohji A., Tojo S., Majima T. Effects of base pairing on the one-electron reduction rate of cytosine. Chem. Commun., 2003, No. 22, 2840-2841.
817. Xin H., Woolley A.T. DNA-templated nanotube localization. J. Am. Chem. Soc., 2003, 125, No. 29, 8710-8711.
818. Kawai T., Ikegami M., Kawai K, Majima T., Nishimura Y., Arai T. Recognition of substituted cytosine derivatives by the base pairing with guanine connected to pyrene. Chem. Phys. Lett., 2005, 407, No. 1/3, 58-62.
819. Wang C., Wettig S.D., Foldvari M., Verrall R.E. Synthesis, characterization, and use of asymmetric pyrenyl-gemini surfactants as emissive components in DNA-lipoplex systems. Langmuir, 2007, 23, No. 17, 8995-9001.
820. Wettig S.D., Deubry R., Akbar J., Kaur T., Wang H., Sheinin T., Joseph J. W., Slavcev R.A. Thermodynamic investigation of the binding of dissymmetric pyrenyl-gemini surfactants to DNA. Phys. Chem. Chem. Phys., 2010,12, No. 18, 4821^1826.
822. Xu Z., Spring D.R., Yoon J. Fluorescent sensing and discrimination of ATP and ADP based on a unique sandwich assembly of pyrene-adenine-pyrene. Chem. Asian J., 2011, 62, No. 8, 2114-2122.
823. Dervan P.B. Preparation and use of bifunctional molecules having DNA sequence binding specificity. US Pat. 6,555,692, 2003.
824. Tumiatti V., Milelli A., Minarini A., Micco M., Campani A.G., Roncuzzi L., Baiocchi D., Marinello J., Capranico G., Zini M., Stefanelli C., Melchiorre C. Design, synthesis, and biological evaluation of substituted naphthalene imides and diimides as anticancer agent. J. Med. Chem., 2009, 52, No. 23,7873-7877.
825. Wang B., Jiao H., Li W., Liao D., Wang F., Yu C. Superquencher formation via nucleic acid induced noncovalent perylene probe self-assembly. Chem. Commun., 2011, 47, No. 37, 10269-10271.
826. Casagrande V., Salvati E., Alvino A., Bianco A., Ciammaichella A., DAngelo C., Ginnari-Satriani L., Serrilli A.M., Iachettini S., Leonetti C., Neidle S., Ortaggi G., Porru M., Rizzo A., Franceschin M., Biroccio A. (N-cyclic bay-substituted perylene G-quadruplex ligands have selective antiproliferative effects on cancer cells and induce telomere damage. J. Med. Chem., 2011, 54, No. 5, 1140-1156.
827. Dogan Z., Paulini R, Stutz J.A.R., Narayanan S., Richert C. 5'-Tethered stilbene derivatives as fidelity- and affinity-enhancing modulators of DNA duplex stability. J. Am. Chem. Soc., 2004,126, No. 15, 4762—4763.
828. Christensen U.B. EasyBeacons™ for the detection of methylation status of single CpG duplets. Methods in Molecular Biology. Molecular beacons: signalling nucleic acid probes, methods and protocols. (Ed. Marx A., Seitz O.) 2008, 429, 137-160.
829. Zaghloul E.M., Madsen A.S., Moreno P.M.D., Oprea 1.1., El-Andaloussi S., Bestas B., Gupta P., Pedersen E.B., Lundin K.E., Wengel J., Smith C.I.E. Optimizing anti-gene oligonucleotide 'Zorro-LNA' for improved strand invasion into duplex DNA. Nucleic Acids Res., 2011, 39, No. 3, 1142-1154.
830. Pedersen E.B., Nielsen J.T., Nielsen C., Filichev V.V. Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids. Nucleic Acids Res., 2011, 39, No. 6, 2470-2481.
831. Hayashi E., Takada T., Nakamura M., Yamana K. Electronic aptamer-based biosensor for multiprotein analytes on a single paltform. Chem. Lett., 2010, 39, No. 5, 454—455.
832. Koo C.-K., Wang S., Gaur R.L., Samain F., Banaei N., Kool E.T. Fluorescent DNA chemosensors: identification of bacterial species by their volatile metabolites. Chem. Commun., 2011, 47,11435-11437.
833. Kool E.T. Nucleoside analogs with polycyclic aromatic groups attached, methods of synthesis and uses therefor. US Pat. 6,218,108, 2001.
834. Kool E.T. Fluorescent nucleoside analogs and combinatorial fluorophore arrays comprising same. US Pat. 6,479,650, 2002.
835. Ding H., Greenberg M.M. DNA Damage and interstrand cross-link formation upon irradiation of aryl iodide C-nucleotide analogues. J. Org. Chem., 2010, 75, No. 3, 535-544.
836. MoranN., Bassani D.M., Desvergne J.-P., Keiper S., Lowden P.A.S., Vyle J.S., Tucker J.H.R. Detection of a single DNA base-pair mismatch using an anthracenetagged fluorescent probe. Chem. Commun., 2006, No. 48, 5003-5005.
837. Yamane A. MagiProbe: a novel fluorescence quenching-based oligonucleotide probe carrying a fuorophore and an intercalator. Nucleic Acids Res., 2002, 30, No. 19, e97.
838. Moriguchi T., Azam A.T.M.Z., Shinozuka K. Stabilizing effect of propionic acid derivative of anthraquinone-polyamine conjugate incorporated into a-|3 chimeric oligonucleotides on the alternate-stranded triple helix. Bioconjugate Chem., 2011, 22, No. 6, 1039-1045.
839. Daublain P., Siegmund K, Hariharan M., Vura-Weis J., Wasielewski M.R, Lewis F.D., Shafirovich V., Wang Q., Raytchev M., Fiebig T. Photoinduced charge separation in pyrenedicarboxamide-linked DNA hairpins. Photochem. Photobiol. Sci., 2008, 7, No. 12, 1501-1508.
840. Ng P.-S., Laing B.M., Balasundarum G., Pingle M., Friedman A., Bergstrom D.E. Synthesis and evaluation of new spacers for use as dsDNA end-caps. Bioconjugate Chem., 2010, 21, No. 8,1545-1553.
841. Franceschin M., Borbone N., Oliviero G., Casagrande V., Scuotto M., Coppola T., BorioniS., Mayol L., Ortaggi G., Bianco A., Amato J., Varra M. Synthesis of a dibromoperylene phosphoramidite building block and its incorporation at the 5' end of a G-quadruplex forming oligonucleotide: spectroscopic properties and structural studies of the resulting dibromoperylene conjugate. Bioconjugate Chem., 2011, 22, No. 7, 1309-1319.
842. Wang W., Li A.D.Q. Design and synthesis of efficient fluorescent dyes for incorporation into DNA backbone and biomolecule detection. Bioconjugate Chem., 2007,18, No. 4, 1036-1052.
843. Smith N.M., Labrunie G., Corry В., Tran P.L.T., Norret M., Djavaheri-Mergny M., Raston C.L., Mergny J.-L. Unraveling the relationship between structure and stabilization of triarylpyridines as G-quadruplex binding ligands. Org. Biomol. Chem., 2011, 9, No. 17, 61546162.
844. Ни Y., Li F., Bai X., Li D., Hua S., Wanga К, Niu L. Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem. Commun., 2011, 47, 1743-1745.
845. Rippe K., Fritsch V., Westhojl E., Jovin T.M. Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. The EMBO Journal, 1992,11, No. 10, 3777-3786.
846. Fritzsche H., Akhebat A., Taillandier E., Rippe K., Jovin T.M. Structure and drug interactions of parallel-stranded DNA studied by infrared spectroscopy and fluorescence. Nucleic Acids Res., 1993, 21, No. 22, 5085-5091.
847. Ike da H, Fuji К, Tanaka К Preparation, characterization and DNA photocleavage of diazapyrene-tethered oligothymidylates. Bioorg. Med. Chem. Lett., 1996, 6, No. 1, 101-104.
848. Fôrtsch I., Fritzsche H, Birch-Hirschfeld E., Evertsz E., Klement R., Jovin T.M., Zimmer C. Parallel-stranded duplex DNA containing dA dU base pairs. Biopolymers, 1996, 38, No. 2, 209-220.
849. McMinn D.L., Matray T.J., Greenberg M.M. Efficient solution phase synthesis of oligonucleotide conjugates using protected biopolymers containing 3'-terminal alkyl amines. J. Org. Chem., 1997, 62, No. 21, 7074-7075.
850. KahlJ.D., McMinn D.L., Greenberg M.M. High-yielding method for on-column derivatization of protected oligodeoxynucleotides and its application to the convergent synthesis of 5',3'-bis-conjugates. J. Org. Chem., 1998, 63, No. 15, 4870-4871.
851. Morrison L.E. Homogeneous detection of specific DNA sequences by fluorescence quenching and energy transfer. J. Fluorescence, 1999, 9, No. 3, 187-196.
852. Seela F., He Y., Wei C. Parallel-stranded oligonucleotide duplexes containing 5-methylisocytosine-guanine and isoguanine-cytosine base pairs. Tetrahedron, 1999, 55, No. 31,9481-9500.
853. Slama-Schwok A., Zakrzewska K, Léger G., Leroux Y., Takahashi M., Kâs E., Debey P. Structural changes induced by binding of the high-mobility group I protein to a mouse satellite DNA sequence. Biophys. J., 2000, 78, No. 5, 2543-2559.
854. Karim A.S., Weltman J.K. Formation of protein conjugates of phosphorothioate nucleoside diphosphate beta-S. Nucleic Acids Res., 1993, 21, No. 22, 5281-5282.
855. Karim A.S., Johansson C.S., Weltman J.K. Maleimide-mediated protein conjugates of a nucleoside triphosphate gamma-S and an internucleotide phosphorothioate diester. Nucleic Acids Res., 1995, 23, No. 11, 2037-2040.
856. Kumar A., Advani S., Dawar H, Talwar G.P. A simple method for introducing a thiol group at the 5'-end of synthetic oligonucleotides. Nucleic Acids Res., 1991,19, No. 16, 4561.
857. Сериков P.H., Петюк B.A., Власов В.В., Зенкова М.А. Гибридизация антисмысловых олигонуклеотидов с дрожжевой TPHKPhe факторы, определяющие эффективность взаимодействия. Изв. АН, Сер. хим., 2002, № 7, 1067-1076.
858. Gbaj A., Bichenkova E.V., Walsh L., Savage HE., Sardarian .A., Etchells L.L., Gulati A., Hawisa S., Douglas K.T. New concepts of fluorescent probes for specific detection of DNA sequences: bis-modified oligonucleotides in excimer and exciplex detection. Lyb. J. Med., 2009, No. 4, 152-159.
859. Stetsenko D.A., Malakhov A.D., Gait M.J. A new solid support for synthesis of oligonucleotide 3'-carbazates - useful intermediates for chemoselective ligation. In "Innovation and perspectives in solid phase synthesis and combinatorial libraries" (Ed. Epton R.), 2004, 297-300.
860. Singh I., Heaney F. Solid phase strain promoted "click" modification of DNA via [3+2]-nitrile oxide-cyclooctyne cycloadditions. Chem. Commun., 2011, 47, 2706-2708.
861. Grünefeld P., Richert C. Synthesis of a l'-aminomethylthymidine and oligodeoxyribonucleotides with 1 '-acylamidomethylthymidine residues. J. Org. Chem., 2004,
No. 22, 7543-7551.
862. Sau S.P., Hrdlicka P.J. C2'-Pyrene-functionalized triazole-linked DNA: universal DNA/RNA hybridization probes. J. Org. Chem., 2012, 77, in press, dx.doi.org/10.1021/jo201845z.
863. Davy E. Ueber Kohlenstoffkalium und einen neuen Doppelt-Kohlenwasserstoff. Ann. Pharm., 1837, 23, No. 2, 144-146.
864. Grieß P. On a new series of bodies in which nitrogen is substituted for hydrogen. Phil. Trans. R. Soc. Lond., 1864,154, 667-731.
865. Michael A. Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester. J. Prakt. Chem., 1893, 48, No. 1, 94-95.
866. Huisgen R. 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed., 1963, 2, No. 10, 565-598.
867. Huisgen R. Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed., 1963,2, No. 11,633-645.
868. Torme C.W., Christensen C., Meldal M. Peptidotriazoles on solid phase: [l,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67, No. 9, 3057-3064.
869. Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "Ligation" of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41, No. 14, 2596-2599.
870. Himo F., Lovell T., Hilgraf R., Rostovtsev V.V., Noodleman L., Sharpless K.B., Fokin V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005,127, No. 1, 210-216.
871. Rodionov V.O., Fokin V.V, Finn M.G. Mechanism of the ligand-free Cu-catalyzed azide-alkyne cycloaddition reaction. Angew. Chem. Int. Ed., 2005, 44, No. 15, 2210-2215.
872. Wang Q., Chan T.R, Hilgraf R, Fokin V.V, Sharpless KB., Finn M.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc., 2003, 125, No. 11, 3192-3193.
873. Chan T.R, Hilgraf R, Sharpless KB., Fokin V.V. Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett., 2004, 6, No. 17, 2853-2855.
874. Lewis W.G., Magallon F.G., Fokin V.V, Finn M.G. Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J. Am. Chem. Soc., 2004, 126, No. 30,9152-9153.
875. Gupta S.S., Kuzelka J., Singh P., Lewis W.G., Manchester M., Finn M.G. Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus Scaffold. Bioconjugate Chem., 2005,16, No. 6, 1572-1579.
876. Rodionov V.O., Presolski S.I., Gardinier S., Lim Y.-H., Finn M.G. Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. J. Am. Chem. Soc., 2007, 129, No. 42, 12696-12704.
877. Rodionov V.O., Presolski S.I., Diaz D.D., Fokin V.V., Finn M.G. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J. Am. Chem. Soc., 2007, 129, No. 42,12705-12712.
878. Baron A., Blériot Y, Sollogoub M., Vauzeilles B. Phenylenediamine catalysis of "click glycosylations" in water: practical and direct access to unprotected neoglycoconjugates. Org. Biomol. Chem., 2008, 6, No. 11,1898-1901.
879. Bergbreiter D.E., Hamilton P.N., Koshti N.M. Self-separating homogeneous copper (I) catalysts. J. Am. Chem. Soc., 2007,129, No. 35, 10666-10667.
880. Candelon N., Lastécoueres D., Diallo A.K., Aranzaes J.R., Astruc D., Vincent J.-M. A highly active and reusable copper(I)-tren catalyst for the "click" 1,3-dipolar cycloaddition of azides and alkynes. Chem. Commun., 2008, No. 6, 741-743.
881. Акимова Г.С., Чистоклетов ВН., Петров А.А. Галоидирование циклического ацеталя дихлоркетона. Ж. орган, химии, 1965, i, № 11, 2077-2078.
882. Акимова Г.С., Чистоклетов В.Н., Петров А.А. 1,3-Биполярное присоединение к неполярным соединениям. XVII. Реакции азидов с комплексами Иоцича, полученными из фенил- и алкенилацетиленов. Ж. Орган, химии, 1967, 3, № 6, 968-974.
883. Акимова Г.С., Чистоклетов В.Н., Петров А.А. 1,3-Биполярное присоединение к неполярным соединениям. XVIII. Реакции алифатических и ароматических азидов с комплексами Иоцича, полученными из ацетилена, диацетилена и их гомологов. Ж. орган, химии, 1967, 3, № 12, 2241-2247.
884. Акимова Г.С., Чистоклетов В.Н, Петров А.А. 1,3-Биполярное присоединение к неполярным соединениям. XIX. Реакции органических азидов с литийацетилененидами. Ж. орган, химии, 1968, 4, № 3, 389-394.
885. Krasiñski A., Fokin V.V., Sharpless К.В. Direct Synthesis of l,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. Org. Lett., 2004, 6, No. 8, 1237-1240.
886. Zhang L„ Chen X, Xue P., Sun H.H.Y., Williams I.D., Sharpless K.B., Fokin V.V., Jia G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127, No. 46, 15998-15999.
887. Rasmussen L.K., Boren B.C., Fokin V.V. Ruthenium-catalyzed cycloaddition of aryl Azides and alkynes. Org. Lett., 2007, 9, No. 26, 5337-5339.
888. Boren B.C., Narayan S., Rasmussen L.K., Zhang L., Zhao H, Lin Z., Jia G., Fokin V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. J. Am. Chem. Soc., 2008,130, No. 28, 8923-8930.
889. Kolb H.C., Sharpless K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8, No. 24,1128-1137.
890. Wang Q., Chittaboina S., Barnhill H.N. Advances in 1,3-dipolar cycloaddition reaction of azides and alkynes - a prototype of "Click" chemistry. Lett. Org. Chem., 2005, 2, No. 4, 293301.
891. Hawker C.J., Wooley K.L. The convergence of synthetic organic and polymer chemistries. Science, 2005, 309, No. 5738, 1200-1205.
892. Binder W.H., Kluger C. Azide/alkyne-"click" reactions: applications in material science and organic synthesis. Curr. Org. Chem., 2006,10, No. 14, 1791-1815.
893. Bock V.D., Hiemstra H, van Maarseveen J.H. Cu'-catalyzed alkyne-azide "click" cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem., 2006, No. 1, 1-68.
894. Santoyo-González F., Hernández-Mateo F. Azide-alkyne 1,3-dipolar cycloadditions: a valuable tool in carbohydrate chemistry. Top. Heterocycl. Chem., 2007, 7, 133-177.
895. Wu P., Fokin V.V. Catalytic azide-alkyne cycloaddition: reactivity and applications. Aldrichimica Acta, 2007, 40, No. 1, 7-17.
896. Jean-François L. 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew. Chem. Int. Ed., 2007, 46, No. 7, 1018-1025.
897. Wolfbeis. O.S. The click reaction in the luminescent probing of metal ions, and its implications on biolabeling techniques. Angew. Chem. Int. Ed., 2007, 46, No. 17, 2980-2982.
898. Fokin V. V. Click imaging of biochemical processes in living systems. ACS Chem. Biol., 2007, 2, No. 12, 775-778.
899. Evans R.A. The rise of azide-alkyne 1,3-dipolar 'click' cycloaddition and its application to polymer science and surface modification. Aust. J. Chem., 2007, 60, No. 6, 384-395.
900. Nandivada H., Jiang X, Lahann J. Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater., 2007,19, No. 17, 2197-2208.
901. Aprahamian I., Miljanic O.S., Dichtel W.R., Isoda K., Yasuda T., Kato T., Stoddart J.F. Clicked interlocked molecules. Bull. Chem. Soc. Jpn., 2007, 80, No. 10, 1856-1869.
902. Dondoni A. Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction. Chem. Asian J., 2007, 2, No. 6, 700-708.
903. Moses J.E., Moorhouse A.D. The growing applications of click chemistry. Chem. Soc. Rev., 2007, 36, No. 8, 1249-1262.
904. Fournier D., Hoogenboom R, Schubert U. S. Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem. Soc. Rev., 2007, 36, No. 8, 1369-1380.
905. Angelí Y.L., Burgess K. Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem. Soc. Rev., 2007, 36, No. 10, 1674-1689.
906. Binder W.H., Sachsenhofer R. 'Click' chemistry in polymer and materials science. Macromol. Rapid Commun., 2007, 28, No. 1,15-54.
907. Dedola S., Nepogodieva S.A., Field RA. Recent applications of the Cu'-catalysed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Org. Biomol. Chem., 2007, 5, No. 7, 1006-1017.
908. Gil M. V., Arévalo M.J., López O. Click chemistry - what's in a name? Triazole synthesis and beyond. Synthesis, 2007, No. 11, 1589-1620.
909. Dirks A.J., Cornelissen J.J.L.M., van Delft F.L., van Herst J.C.M., Nolte R.J.M., Rowan A.E., Rutjes F.P.J.T. From (bio)molecules to biohybrid materials with the click chemistry approach. QSAR Comb. Set, 2007, 26, No. 11/12, 1200-1210.
910. Lutz J.-F., Zarafshani Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne "click" chemistry. Adv. Drug Deliv. Rev., 2008, 60, No. 9, 958-970.
911. Meldal M., Tornoe C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108, No. 8, 2952-3015.
912. Meldal M. Polymer "Clicking" by CuAAC reactions. Macromol. Rapid Commun., 2008, 29, No. 12/13,1016-1051.
913. Johnson J.A., Finn M.G., Koberstein J.T., Turro N.J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition "click" chemistry. Macromol. Rapid Commun., 2008, 29, No. 12/13, 10521072.
914. Droumaguet B.L., Velonia K. Click chemistry: a powerful tool to create polymer-based macromolecular chimeras. Macromol. Rapid Commun., 2008, 29, No. 12/13, 1073-1089.
915. Binder W.H., Sachsenhofer R. 'Click' chemistry in polymer and material science: an update. Macromol. Rapid Commun., 2008, 29, No. 12/13, 952-981.
916. Tron G.C., Pirali T., Billington R.Ä., Canonico P.L., Sorba G., Genazzani A.A. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev., 2008, 28, No. 2, 278-308.
917. Lutz J.-F., Börner KG. Modern trends in polymer bioconjugates design. Prog. Polym. Sei.,
2008, 33, No. 1, 1-39.
918. Hein C.D., Liu X.-M., Wang D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res., 2008, 25, No. 10, 2216-2230.
919. Brüse S., Friedrich A., Gartner M., Schröder T. Synthesis of heterocycles via cycloadditions I. Top. Heterocycl. Chem., 2008,12,45-115.
920. Chow H.-F., Lau K.-N., Ke Z, Liang Y., Lo C.-M. Conformational and supramolecular properties of main chain and cyclic click oligotriazoles and polytriazoles. Chem. Commun., 2010, 46, No. 20, 3437-3453.
921. Kalesh K.A., Shi H, Ge J., Yao S.Q. The use of click chemistry in the emerging field of catalomics. Org. Biomol. Chem., 2010, 8, No. 8, 1749-1762.
922. Sletten E.M., Bertozzi C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed., 2009. 48, No. 38, 6974-6998.
923. Best M.D. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry, 2009, 48, No. 28, 6571-6584.
924. van DijkM., Rijkers D.TS., Liskamp R.MJ., van Nostrum C.F., Hennink W.E. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjugate Chem., 2009, 20, No. 11, 2001-2016.
925. Iha R.K., Wooley K.L., Nyström A.M., Burke D.J., Kade M.J., Hawker C.J. Applications of orthogonal "click" chemistries in the synthesis of functional soft materials. Chem. Rev., 2009, 109, No. 11,5620-5686.
926. Click Chemistry for Biotechnology and Material Science. Lahann J., Ed. Chichester: Wiley,
2009.
927. Schilling C., Jung N., Brüse S. Cycloaddition reactions with azides: an overview. In: Organic Azides: Syntheses and Applications. S. Bräse, K. Banert, Eds. Chichester: Wiley, 2010, 269284.
928. Torme C. W., Meldal M. Dipolar cycloaddition reactions in peptide chemistry. In: Organic Azides: Syntheses and Applications. S. Bräse, K. Banert, Eds. Chichester: Wiley, 2010, 285310.
929. Hermanson G. T. Bioconjugate Techniques. 2nd Ed. San Diego: Academic Press, 2008.
930. Grämlich P.M.E., Wirges C.T., Manetto A., Carell T. Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. Angew. Chem. Int. Ed., 2008, 47, No. 44, 8350-8358.
931. Amblard F., Cho JH., Schinazi R.F. Cu(I)-Catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev., 2009,109, No. 9, 4207-4220.
932. El-Sagheer A.H., Brown T. Click chemistry with DNA. Chem. Soc. Rev., 2010, 39, No. 4, 1388-1405.
933. Seo T.S., Li Z., Ruparel H., Ju J. Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J. Org. Chem., 2003, 68, No. 2, 609-612.
934. Li Z., Seo T.S., Ju J. 1,3-Dipolar cycloaddition of azides with electron-deficient alkynes under mild condition in water. Tetrahedron Lett., 2004, 45, No. 15, 3143-3146.
935. Meier C., Huynh-Dinha T. 0-alkyl-5'-,5'-dinucleoside-phosphates as combined prodrugs of antiviral and antibiotic compounds. Bioorg. Med. Chem. Lett., 1991,1, No. 10, 527-530.
936. Jawalekar A.M., Meeuwenoord N., Cremers J.(S.)G.O., Overkleef H.S., van der Marel G.A., Rutjes F.P.J.T., van Delft .F.L. Conjugation of nucleosides and oligonucleotides by [3+2] cycloaddition. J. Org. Chem., 2008, 73, No. 1, 287-290.
937. Polushin N.N., Smirnov I.P., Verentchikov A.N., Coull J.M. Synthesis of oligonucleotides containing 2'-azido- and 2'-amino-2'-deoxyuridine using phosphotriester chemistry. Tetrahedron Lett., 1996, 37, No. 19, 3227-3230.
938. El-Sagheer A., Brown T. Synthesis and polymerase chain reaction amplification of DNA strands containing an unnatural triazole linkage. J. Am. Chem. Soc., 2009, 131, No. 11, 39583964.
939. Efimov V.A., Molchanova N.S., Chakhmakhcheva O.G. Approach to the synthesis of natural and modified oligonucleotides by the phosphotriester method using O-nucleophilic intramolecular catalysis. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 8-9, 10871093.
940. Ефимов B.A., Аралов A.B., Федюнин С.В., Клыков В.Н., Чахмахчева О.Г. Азидометильная защитная группа в синтезе олигорибонуклеотидов фосфотриэфирным методом. Биоорган, химия, 2009, 35, № 2, 270-273.
941. Esipov D.S., Esipova O.V., Korobko KG. Synthesis of 3'-azido-3'-deoxythimidine-terminated oligonucleotide. Nucleosides Nucleotides, 1998,17, No. 9/11, 1697-1704.
942. Otvos L., Bajor Z., Kraicsovits F., Sagi G., Tegyey S. Synthesis and enzymatic characterization of Pi-thio-P2-oxo trideoxynucleoside diphosphates having AZT, FdU, or dT at the 3'-position. Nucleosides Nucleotides Nucleic Acids, 2002,21, No. 1, 79-92.
943. Kiviniemi A., Virta P., Lonnberg H. Utilization of intrachain 4'-C-azidomethylthymidine for preparation of oligodeoxyribonucleotide conjugates by click chemistry in solution and on a solid support. Bioconjugate Chem., 2008,19, No. 8, 1726-1734.
944. Pourceau G., Meyer A., Vasseur J.-J., Morvan F. Azide solid support for 3'-conjugation of oligonucleotides and their circularization by click chemistry. J. Org. Chem., 2009, 74, No. 17, 6837-3842.
945. Jentzsch E., Mokhir A. A fluorogenic, nucleic acid directed "click" reaction. Inorg. Chem., 2009, 48, No. 20, 9593-9595.
946. Brown S.D., Graham D. Conjugation of an oligonucleotide to Tat, a cell-penetrating peptide, via click chemistry. Tetrahedron Lett., 2010, 51, No. 38, 5032-5034.
947. Lundberg E.P., El-Sagheer A.HKocalka., P., Wilhelmsson L.M., Brown Т., Norden B. A new fixation strategy for addressable nano-network building blocks. Chem. Commun., 2010, 46, No. 21,3714-3716.
948. Shchepinov M.S., Stetsenko DA. A facile route to 3'-modified oligonucleotides. Bioorg. Med. Chem. Lett., 1991, 7, No. 9, 1181-1184.
949. Miller G.P.; Kool E.T. Versatile 5'-functionalization of oligonucleotides on solid support: amines, azides, thiols, and thioethers via phosphorus chemistry. J. Org. Chem., 2004, 69, No. 7, 2404-2410.
950. Miller G.P.; Kool E.T. A simple method for electrophilic functionalization of DNA. Org. Lett., 2002, 4, No. 21, 3599-3601.
951. Xu Y.; Kool E.T. A novel 5'-iodonucleoside allows efficient nonenzymatic ligation of single-stranded and duplex DNAs. Tetrahedron Lett., 1997, 38, No. 32, 5595-5598.
952. Alvira M., Eritja R. Synthesis of oligonucleotides carrying 5'-5' linkages using copper-catalyzed cycloaddition reactions. Chem. Biodiv., 2007, 4, No. 12, 2798-2809.
953. Lietard J., Meyer A., Vasseur J.-J., Morvan F. An efficient reagent for 5'-azido oligonucleotide synthesis. Tetrahedron Lett., 2007, 48, No. 50, 8795-8798.
954. Lietard J., Meyer A., Vasseur J.-J., Morvan F. New strategies for cyclization and bicyclization of oligonucleotides by click chemistry assisted by microwaves. J. Org. Chem., 2008, 73, No. 1,191-200.
955. Nakane M., Ichikawa S., Matsuda A. Triazole-linked dumbbell oligodeoxynucleotides with NF-kB binding ability as potential decoy molecules. J. Org. Chem., 2008, 73, No. 5, 1842— 1851.
956. Pourceau G., Meyer A., Vasseur J.-J., Morvan F. Synthesis of mannose and galactose oligonucleotide conjugates by Bi-click chemistry. J. Org. Chem., 2009, 74, No. 3,1218-1222.
957. Wu X, Pitsch S. Functionalization of the sugar moiety of oligoribonucleotides on solid support. Bioconjugate Chem., 1999,10, No. 6, 921-924.
958. Wu X, Pitsch S. Synthesis of 5'-C- and 2'-0-(bromoalkyl)-substituted ribonucleoside phosphoramidites for the post-synthetic functionalization of oligonucleotides on solid support. Helv. Chim. Acta, 2000, 83, No. 6, 1127-1144.
959. Grajkowski A., CieslakJ., Kauffman J.S., DuffR.J., Norris S., Freedberg D.I., Beaucage S.L. Thermolytic release of covalently linked DNA oligonucleotides and their conjugates from controlled-pore glass at near neutral pH. Bioconjugate Chem., 2008,19, No. 8, 1696-1706.
960. Zhang J., Pourceau G., Meyer A., Vidal S., Praly J.-P., Souteyrand E., Vasseur J.-J., Morvan F., Chevolot Y. DNA-directed immobilisation of glycomimetics for glycoarrays application: Comparison with covalent immobilisation, and development of an on-chip IC50 measurement assay. Biosensors Bioelectronics, 2008, 24, No. 8, 2515-2521.
961. Kanan M. W., Rozenman M.M., Sakurai K, Snyder T.M., Liu D.R. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature, 2004, 431, No. 7008, 545-549.
962. Kumar R., El-Sagheer A., Tumpane J., Lincoln P., Wilhelmsson L.M., Brown T. Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. J. Am. Chem. Soc., 2007,129, No. 21, 6859-6864.
963. El-Sagheer A., Brown T. Curr. Synthesis of alkyne- and azide- modified oligonucleotides and their cyclization by the CuAAC (click) reaction. Prot. Nucl. Acid Chem., 2008, 4.33.14.33.21.
964. El-Sagheer A.H., Kumar R., Findlow S., Werner J.M., Lane A.N., Brown T. A very stable cyclic DNA miniduplex with just two base pairs. ChemBioChem., 2008, 9, No. 1, 50-52.
965. Nor dell P., Westerlund F., Reymar A., El-Sagheer A., Brown T., Nor den B., Lincoln P. DNA polymorphism as an origin of adenine-thymine tract length-dependent threading intercalation rate. J. Am. Chem. Soc., 2008,130, No. 44, 14651-14658.
966. Kocalka P., El-Sagheer A., Brown T. Rapid and efficient DNA strand cross-linking by click chemistry. ChemBioChem.., 2008, 9, No. 8, 1280-1285.
967. Wang C.-Y., Seo T.S., Li Z., Ruparel H., Ju J. Site-specific fluorescent labeling of DNA using Staudinger ligation. Bioconjugate Chem., 2003,14, No. 3, 697-701.
968. Seo T.S., Bai X, Ruparel H., Li Z., Turro N.J., Ju J. Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. Proc. Natl. Acad. Sci. USA, 2004,101, No. 15, 5488-5493.
969. Seo T.S., Bai X., Kim D.H., Meng Q., Shi S., Ruparel II, Li Z., Turro N.J., Ju J. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc. Natl. Acad. Sci. USA, 2005,102, No. 17, 5926-5931.
970. Humenik M., Huang Y., Wang Y., Sprinzl M. C-terminal incorporation of bio-orthogonal azide groups into a protein and preparation of protein-oligodeoxynucleotide conjugates by Cu1-catalyzed cycloaddition. ChemBioChem, 2007, 8, No. 10, 1103-1106.
971. Chen L., Rengifo H.R., Grigoras C., LiX., Li Z., JuJ., Koberstein J.T. Spin-on end-functional diblock copolymers for quantitative DNA immobilization. Biomacromolecules, 2008, 9, No.
9, 2345-2352.
972. Xu Y., Suzuki Y., Komiyama M. Click chemistry for the identification of G-quadruplex structures: discovery of a DNA-RNA G-quadruplex. Angew. Chem. Int. Ed., 2009, 48, No. 18, 3281-3284.
973. Chao J., Huang W.-Y., Wang J., Xiao S.-J., Tang Y.-C., LiuJ.-N. Click-chemistry-conjugated oligo-angiomax in the two-dimensional DNA lattice and its interaction with thrombin. Biomacromolecules, 2009,10, No. 4, 877-883.
974. Gartner Z.J., Grubina R, Calderone C.T., Liu D.R. Two enabling architectures for DNA-templated organic synthesis. Angew. Chem. Int. Ed., 2003, 42, No. 12, 1370-1375.
975. Gibson K.J., Benkovic S.E. Synthesis and application of derivatizable oligonucleotides. Nucleic Acids Res., 1987, 15, No. 16, 6455-6467.
976. Podkowinski J., Gornicki P. Neighbourhood of the central fold of the tRNA molecule bound to the E.coli ribosome—affinity labeling studies with modified tRNAs carrying photoreactive probes attached to the dihydrouridine loop. Nucleic Acids Res., 1991,19, No. 4, 801-808.
977. Muralikrishna P., Cooperman B. A photolabile oligodeoxyribonucleotide probe of the peptidyltransferase center: identification of neighboring ribosomal components. Biochemistry, 1991, 30, No. 22, 5421-5428.
978. Capson T.L., Benkovic S.E., Nossal N.G. Protein-DNA cross-linking demonstrates stepwise ATP-dependent assembly of T4 DNA polymerase and its accessory proteins on the primer-template. Cell, 1991, 65, No. 2, 249-258.
979. Добриков М.И., Зарытова В.Ф., Комарова Н.И., Левина А.С., Лохов С.А., Приходъко Т.А., Шишкин Г.В., Табатадзе Д.Р., Заалишвили М.М. Эффективная комплементарно адресованная фотомодификация нуклеиновых кислот производными олигонуклеотидов, содержащих ароматическую азидогруппу. Биоорган, химия, 1992,18, № 4, 540-549.
980. Mitchell P., Stade К, Oswald М., Brimacombe R. Site-directed cross-linking studies on the E.coli tRNA ribosome complex: determination of sites labelled with an aromatic azide attached to the variable loop or aminoacyl group of tRNA. Nucleic Acids Res., 1993, 21, No. 4, 887-896.
981. Levina A.S., Tabatadse D.R, Khalimskaya L.M., Prichodko T.A., Shishkin G.V., Alexandrova L.A., Zarytova V.P. Oligonucleotide derivatives bearing reactive and stabilizing groups attached to C5 of deoxyuridine. Bioconjugate Chem., 1993, 4, No. 5, 319-325.
982. Ohl B.-K, Pacel NR. Interaction of the З'-end of tRNA with ribonuclease P RNA. Nucleic Acids Res., 1994, 22, No. 22, 4087^1094.
983. Muralikrishna P., Cooperman B.S. A photolabile oligodeoxyribonucleotide probe of the decoding site in the small subunit of the Escherichia coli ribosome: identification of neighboring ribosomal components. Biochemistry, 1994, 33, No. 6, 1392-1398.
984. Mullen M.A., Wang H., Wilcox K, Herman T. Characterization of a Max: DNA complex by cross-linking to photoactive oligonucleotides. DNA Cell Biol., 1994,13, No. 5, 521-530.
985. Казанцев A.B., Максакова Г.А., Федорова О.С. Кинетика фотомодификации ДНК производными 1-[3-(и-азидотетрафторбензоил)аминопропил]-5'-фосфамидов дезокси-рибоолигонуклеотидов в составе модельных дуплексов. Биоорган, химия, 1995, 21, №
10, 767-773.
986. Годовикова Т.С., Березовский М.В., Кнорре Д.Г. Фотоаффинная модификация аминокислотных производных олигонуклеотидов в комплементарном комплексе. Биоорган, химия, 1995, 21, № 11, 858-867.
987. Capson T.L., Benkovic S.J., Nossal N.G. Photochemical cross-linking of DNA replication proteins at primer terminus. Meth. Enzymol., 1995, 262, 449^156.
988. Babaylova E., Graifer D., Malygin A., Stahl J., Shatsky I., Karpova G. Positioning of subdomain Illd and apical loop of domain II of the hepatitis С IRES on the human 40S ribosome. Nucleic Acids Res., 2009, 37, No. 4, 1141-1151.
989. LevinaA.S., Tabatadze D.R., Dobrikov M.I., Shishkin G.V., Khalimskaya L.M., Zarytova V.P. Site-specific photomodification of single-stranded DNA targets by arylazide and perfluoroarylazide derivatives of oligonucleotides. Antisense Nucleic Acids Drug Dev., 1996, 6, No. 2, 119-126.
990. LevinaA.S., Tabatadze D.R., Dobrikov M.I., Shishkin G.V., Zarytova V.P. Sequence-specific photomodification of single-stranded and doule-stranded DNA fragments by oligonucleotide perfluoroarylazide derivative. Antisense Nucleic Acids Drug Dev., 1996, 6, No. 2, 127-132.
991. Svinarchuk F., Mastyugin V, Gorn V., Dobrikov M., Doronin S. Determination of the molecular mass of the transcription factor interacting with FBS2 in c-fos promoter. Nucleic Acids Res., 1993, 21, No. 10, 2535-2536.
992. Doronin S. V, Dobrikov M.I., Lavrik O.I. Photoaffinity labeling of DNA polymerase a DNA primase complex based on the catalytic competence of a dNTP reactive analog. FEBS Lett., 1992, 313, No. 1,31-33.
993. Towbin H., Elson D. A photoaffinity labelling study of the messenger RNA-binding region of Escherichia coli ribosomes. Nucleic Acids Res., 1978, 5, No. 9, 3389-3407.
994. Duca M., Guianvarc'h D., Oussedik K, Halby L., Garbesi A., Dauzonne D., Monneret C., Osheroff N., Giovannangeli C., Arimondo P.B. Molecular basis of the targeting of topoisomerase II-mediated DNA cleavage by VP 16 derivatives conjugated to triplex-forming oligonucleotides. Nucleic Acids Res., 2006, 34, No. 6, 1900-1911.
995. Liu J., Fan Q.R., Sodeoka M., Lane W.S., Verdine G.L. DNA binding by an amino acid residue in the C-terminal half of the Rel homology region. Chem. Biol., 1994,1, No. 1, 47-55.
996. Weisbrod S.H., Marx A. Novel strategies for the site-specific covalent labelling of nucleic acids. Chem. Commun., 2008, No. 44, 5675-5685.
997. Weisbrod S.H., Baccaro A., Marx A. DNA Conjugation by Staudinger Ligation. Nucleic Acids Symp. Ser., 2008, 52, 383-384.
998. Baccaro A., Weisbrod S.H., Marx A. DNA conjugation by the Staudinger ligation: new thymidine analogues. Synthesis, 2007, No. 13, 1949-1954.
999. Gierlich J., Gutsmiedl K, Gramlich P.M.E., Schmidt A., Burley G.A., Carell T. Synthesis of highly modified DNA by a combination of PCR with alkyne-bearing triphosphates and click chemistry. Chem. Eur. J., 2007,13, No. 34, 9486-9494.
1000. Prober J.M., Trainor G.L., Dam R.J., Hobbs F. W., Robertson C. W., Zagursky R.J., Cocuzza A.J., Jensen M.A., Baumeister К A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science, 2007, 238, No. 4825, 336-341.
1001. Confalone P.N. The use of heterocyclic chemistry in the synthesis of natural and unnatural products. J. Heterocycl. Chem., 1990, 27, No. 1, 31^46.
1002. Heidenreich O., Kruhoffer M., Grosse F., Eckstein F. Inhibition of human immunodeficiency virus 1 reverse transcriptase by 3'-azidothymidine triphosphate. Eur. J. Biochem., 1990,192, No. 3, 621-625.
1003. Comstock L.R., Raj ski S.R. Conversion of DNA methyltransferases into azidonueleosidyl transferases via synthetic cofactors. Nucleic Acids Res., 2005, 33, No. 5, 1644-1652.
1004. Comstock L.R., Raj ski S.R. Methyltransferase-directed DNA strand scission. J. Am. Chem. Soc., 2005,127, No. 41, 14136-14137.
1005. Evans R.K., Johnson J.D., Haley B.E. 5-Azido-2'-deoxyuridine 5'-triphosphate: a photoaffinity-labeling reagent and tool for the enzymatic synthesis of photoactive DNA. Proc. Natl. Acad. Sei. USA, 2005, 83, No. 15, 5382-5386.
1006. Evans R.K., Haley B.E. Synthesis and biological properties of 5-azido-2'-deoxyuridine 5'-triphosphate, a photoactive nucleotide suitable for making light-sensitive DNA. Biochemistry, 1987, 26, No. 1, 269-276.
1007. Lee D.K., Evans R.K., Blanco J., Gottesfeld J., Johnson J.D. Contacts between 5 S DNA and Xenopus TFIIIA identified using 5-azido-2'-deoxyuridine-substituted DNA. J. Biol. Chem., 1991, 266, No. 25, 16478-16484.
1008. Woody A.-Y. M., Evans R.K., Woody W.W. Characterization of a photoaffinity analog of UTP, 5-azido-UTP for analysis of the substrate binding site on E-coli RNA polymerase. Biochem. Biophys. Res. Comm., 1988,150, No. 3, 917-924.
1009. Meffert R., Dose K. UV-induced cross-linking of proteins to plasmid pBR322 containing 8-azidoadenine 2'-deoxyribonucleotides. FEBSLett., 1988, 239, No 2, 190-194.
1010. Meffert R., Rathgeber G., Schäfer H.-J., Dose K. UV-induced cross-linking of Tet repressor to DNA containing tet operator sequences and 8-azidoadenines. Nucleic Acids Res., 1990, 18, No. 22, 6633-6636.
1011. Ettner N., Haak U., Niederweis M., Hillen W. Synthesis of 8-bromo- and 8-azido- 2'-deoxyadenosine- 5'-0-(l-thiotriphosphate). Nucleosides Nucleotides, 1993, 12, No. 7, 757771.
1012. Hanna M.M., Dissinger S., Williams B.D., Colston J.E. Synthesis and characterization of 5-[(4-azidophenacyl)thio]uridine 5'-triphosphate, a cleavable photo-cross-linking nucleotide analog. Biochemistry, 1989, 28, No. 14, 5814-5820.
1013. Dissinger S., Hanna M.M. RNA-protein interactions in a Nus a-containing Escherichia coli transcription complex paused at an RNA hairpin. J. Mol. Biol., 1991, 219, No. 1, 11-25.
1014. Hanna M.M., Zhang Y., Reidling J.C., Thomas M.J., Jou J. Synthesis and characterization of a new photocrosslinking CTP analog and its use in photoaffinity labeling E. coli and T7 RNA polymerases. Nucleic Acids Res., 1993, 21, No. 9, 2073-2079.
1015. Bartholomew B., Kassavetis G.A., Braun B.R., Geiduschek E.P. The subunit structure of Saccharomyces cerevisiae transcription factor IIIC probed with a novel photocrosslinking reagent. EMBO Journal, 1990, 9, No. 7, 2197-2205.
1016. Bartholomew B., Tinker R.L., Kassavetis G.A., Geiduschek E.P. Photochemical cross-linking assay for DNA tracking by replication proteins. Meth Enzymol., 1995, 262, 476^194.
1017. WlassoffW.A., Dobrikov M.I., Safronov I.V., Dudko R.Y., Bogachev VS., Kandaurova V.V., Shishkin G.V., Dymshits G.M., Lavrik O.I. Synthesis and characterization of (d)NTP derivatives substituted with residues of different photoreagents. Bioconjugate Chem., 1995, 6, No. 4, 352-360.
1018. Lavrik O.I., Nasheuer H.-P., Weisshart K, Wold M.S., Prasad R, Beard W.A., Wilson S.H., Favre A. Subunits of human replication protein A are crosslinked by photoreactive primers synthesized by DNA polymerases. Nucleic Acids Res., 1998, 26, No. 2, 602-607.
1019. Колпащиков Д.М., Александрова Л.А., Закирова Н.Ф., Ходырева С.Н., Лаврик О.И. Фотореакционноспособный аналог 2',3'-дндезоксиуридин-5'-трифосфата: получение и использование для фотоаффинной модификации фактора репликации А человека. Биоорган, химия, 2000, 26, № 2, 151-155.
1020. Kolpashchikov D.M., Ivanova Т.М., Boghachev V.S., Nasheuer Н.-Р., Weisshart К, Favre A., Pestryakov P.E., Lavrik O.I. Synthesis of base-substituted dUTP analogues carrying a photoreactive group and their application to study human replication protein A. Bioconjugate Chem., 2000,11, No. 4, 445-451.
1021. Сафронов КВ., Щербик H.B., Ходырева C.H., Власов В.А., Добриков М.И., Шишкин Г.В., Лаврик О.И. Новые фотоактивные ^-замещенные аналоги dCTP: получение, фотохимические и субстратные свойства при синтезе ДНК, катализируемом обратной транскриптазой ВИЧ-1. Биоорган, химия, 1997, 23, № 7, 576-585.
1022. Lavrik O.I., Prasad R., Sobol R.W., Horton J.К., Ackerman E.J., Wilson S.H. Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADP-Ribose) polymerase-1 in DNA repair. J. Biol. Chem., 2001, 276, No. 27, 25541-25548.
1023. Драчкова И.А., Петрусева И.О., Сафронов КВ., Захаренко А.Л., Шишкин Г.В., Лаврик О.И, Ходырева С.Н. Реагенты для модификации белково-нуклеиновых комплексов. II. Сайт-специфическая фотомодификация комплексов ДНК-полимеразы Р праймерами, элонгированными экзо-ТУ-замещенными арилазидными производными dCTP. Биоорган, химия, 2001, 27, № 3, 197-204.
1024. Сафронов ИВ., Драчкова И.А., Петрусева И.О., Ходырева С.Н,. Добриков М.И., Иванова Т.М., Шишкин Г.В., Лаврик О.И. Реагенты для модификации белково-нуклеиновых комплексов. III. Сайт-специфическая фотомодификация элонгирующего комплекса ДНК-полимеразы р арилазидными производными праймеров, сенсибилизированная флуоресцентными у-амидами АТР. Биоорган, химия, 2001, 27, № 5, 372-382.
1025. Дежуров С.В., Грин И.Р., Сафронов И.В., Шишкин Г.В., Лаврик О.И., Ходырева С.Н. Высокоэффективная модификация ДНК-полимеразы бета в условиях прямой и сенсибилизированной активации фотоактивных ДНК. Модификация белков клеточного экстракта. Изв. АН, Сер. хим., 2005, 54, № 5,1273-1283.
1026. Dezhurov S.V., Khodyreva S.N., Plekhanova E.S., Lavrik O.I. A new highly efficient photoreactive analogue of dCTP. Synthesis, characterization, and application in photoaffinity modification of DNA binding proteins. Bioconjugate Chem., 2005, 16, No. 1, 215-222.
1027. Дырхеева H.C., Ходырева C.H., Лаврик О.И. Количественный анализ 3-5'-экзонуклеазной реакции апуриновой/апиримидиновой эндонуклеазы 1 человека с ДНК, содержащими в одноцепочечном разрыве природные dYMP или их модифицированные аналоги. Биоорган, химия, 2008, 34, № 2, 210-219.
1028. Belousova Е.А., Crespan Е., Lebedeva N.A., Rechkunova N.J., Hiibscher U., Maga G., Lavrik O.I Photoreactive DNA probes as a tool for studying the translesion synthesis system in Mammalian cell extracts. Med. Chem., 2008, 4, No. 2,155-162.
1029. Хлиманков Д.Ю., Петрусева И.О., Речкунова Н.И, Белоусова Е.А., Колпащиков Д.М., Ходырева С.Н, Лаврик О. И. Получение фотореакционноспособных олигонуклеотидных дуплексов и их применение для фотоаффинной модификации ДНК-связывающих белков. Биоорган, химия, 2001, 27, № 3, 205-209.
1030
1031
1032
1033
1034.
1035,
1036,
1037,
1038,
1039.
1040,
1041,
1042,
1043.
1044,
Дежуров С.В., Ходырева С.Н., Речкунова Н.И., Колпащиков Д.М., Лаврик О.И. Сравнительное изучение эффективности модификации ДНК-полимераз и ДНК-матрицы различными фотоактивными группами на 3'-конце ДНК-праймера. Биоорган, химия, 2003, 29, № 1, 75-82.
Демешкина Н.А., Лалетина Е.С., Мещанинова М.И., Репкова М.Н., Венъяминова А.Г., Грайфер Д.М., Карпова Г.Г. Окружение кодонов мРНК в Р- и Е-участках рибосом человека по данным фотосшивок с производными pUUUGUU. Молекул, биология, 2003, 37, № 1, 147-155.
Лебедева Н.А., Речкунова Н.И., Дежуров С.В., Дегтярев С.Х., Лаврик О.И. Фотоактивные аналоги dTTP как субстраты термостабильной ДНК-полимеразы из Thermus thermophilus В35. Биоорган, химия, 2004, 30, № 4, 369-374.
Khodyreva S.N., Lavrik O.I. Photoaffinity labeling technique for studying DNA replication and DNA repair. Curr. Med. Chem., 2005,12, No. 6, 641-655.
Canete S.J.P., Yang W., Lai R. Folding-based electrochemical DNA sensor fabricated by "click" chemistry. Chem. Commun., 2009, No. 32, 4835-4837.
Duckworth B.P., Chen Y., WollackJ.W., Sham Y., Mueller J.D., Taton T.A., Distefano M.D. A universal method for the preparation of covalent protein-DNA conjugates for use in creating protein nanostructures. Angew. Chem. Int. Ed., 2007, 46, No. 46, 8819-8822.
Singh I., Vyle J.S., Heaney F. Fast, copper-free click chemistry: a convenient solid-phase approach to oligonucleotide conjugation. Chem. Commun., 2009, No 22, 3276-3278.
Morvan F., Meyer A., Pourceau G., Vidal S., Chevolot Y., Souteyrand E., Vasseur J.-J. Click chemistry and oligonucleotides: how a simple reaction can do so much. Nucleic Acids Symp. Ser., 2008, 52, 47—48.
Rozkiewicz D.I., Gierlich J., Burley G.A., Gutsmiedl K, Carell Т., Ravoo B.J., Reinhoudt D.N. Transfer printing of DNA by "click" chemistry. ChemBioChem., 2007, 8, No. 16, 1997-2002.
Gramlich P.M.E., Warncke S.. Gierlich J., Carell T. Click-click-click: single to triple modification of DNA. Angew. Chem. Int. Ed., 2008, 47, No. 18, 3442-3444.
Berndl S., Herzig N., Kele P., Lachmann D., Li X, Wolfbeis O.S., Wagenknecht H.-A. Comparison of a nucleosidic vs non-nucleosidic postsynthetic "click" modification of DNA with base-labile fluorescent probes. Bioconjugate Chem., 2009, 20, No. 3, 558-564.
Pourceau G., Meyer A., Vasseur J. J., Morvan F. Combinatorial and automated synthesis of phosphodiester galactosyl cluster on solid support by click chemistry assisted by microwaves. J. Org. Chem., 2008, 73, No. 15, 6014-6017.
Morvan F., Meyer A., JochumA., Sabin C., Chevolot Y., Imberty A., Praly J.-P., Vasseur J.-J., Souteyrand E., Vidal S. Fucosylated pentaerythrityl phosphodiester oligomers (PePOs): automated synthesis of DNA-based glycoclusters and binding to Pseudomonas aeruginosa Lectin (PA-IIL). Bioconjugate Chem., 2007,18, No. 5,1637-1643.
Nakahara M., Kuboyama Т., Izawa A., Hari Y., Imanishi Т., Obika S. Synthesis and base-pairing properties of C-nucleotides having 1-substituted lf/-l,2,3-triazoles. Bioorg. Med. Chem. Lett., 2009,19, No. 12, 3316-3319.
MoniL., Pourceau G., Zhang J., Meyer A., Vidal S., Souteyrand E., Dondoni A., Morvan F., Chevolot Y., Vasseur J.-J., Marra A. Design of triazole-tethered glycoclusters exhibiting three different spatial arrangements and comparative study of their affinities towards PA-IL and RCA 120 by using a DNA-based glycoarray. ChemBioChem., 2009, 10, No. 8, 13691378.
1045,
1046
1047
1048
1049
1050,
1051,
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
Kvach M. V, Prokhorenko I.A., Ustinov A. V., Gontarev S. V, Korshun V.A., Shmanai V. V. Reagents for the selective immobilization of oligonucleotides on solid supports. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 6/7, 809-813.
Géci I., Filichev V.V., Pedersen E.B. Synthesis of twisted intercalating nucleic acids possessing acridine derivatives. Thermal stability studies. Bioconjugate Chem., 2006, 77, No. 4, 950-957.
Géci I., Filichev V.V., Pedersen E.B. Stabilization of parallel triplexes by twisted intercalating nucleic acids (TINAs) incorporating 1,2,3-triazole units and prepared by microwave-accelerated click chemistry. Chem. Eur. J., 2007,13, No 22, 6379-6386.
Fujimoto K, Yamada S., Inouye M. Synthesis of versatile fluorescent sensors based on Click chemistry: detection of unsaturated fatty acids by their pyrene-emission switching. Chem. Commun., 2009, No. 46, 7164-7166.
Pourceau G., Meyer A., Chevolot Y., Souteyrand E., Vasseur J.-J., Morvan F. Oligonucleotide carbohydrate-centered galactosyl cluster conjugates synthesized by click and phosphoramidite chemistries. Bioconjugate Chem., 2010, 21, No. 8,1520-1529.
Cañete S.J.P., Lai R.Y. Fabrication of an electrochemical DNA sensor array via potentialassisted "click" chemistry. Chem. Commun., 2010, No. 22, 3941-3943.
Meyer A., Spinelli N., Dumy P., Vasseur J.-J., Morvan F., Defrancq E. Oligonucleotide sequential bis-conjugation via click-oxime and click-Huisgen procedures. J. Org. Chem., 2010, 75, No. 11,3927-3930.
Meyer A., Pourceau G., Vasseur J.-J., Morvan F. 5'-Bis-conjugation of oligonucleotides by amidative oxidation and click chemistry. J. Org. Chem., 2010, 75, No. 19, 6689-6692.
Xu X, Daniel W.L., Wei W., Mirkin C.A. Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small, 2010, 6, No. 5, 623-626.
Mercier F., Paris J., Kaisin G., Thonon D., Flagothier J., Teller N., Lemaire C., Luxen A. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging. Bioconjugate Chem., 2011, 22, No. 1, 108-114.
Paredes E., Das S.R. Click chemistry for rapid labeling and ligation of RNA. ChemBioChem, 2011, 72, No. 1,125-131.
Grotli M., Douglas M., Beijer B., García R.G., Eritja R., Sproat B. Protection of the guanine residue during synthesis of 2'-0-alkylguanosine derivatives. J. Chem. Soc. Perkin Trans 1, 1997, No. 18,2779-2788.
Gretli M., Douglas M., Eritja R., Sproat B. 2'-0-Propargyl oligoribonucleotides: synthesis and hybridization. Tetrahedron, 1998, 54, No. 22, 5899-5914.
Korshun V.A., Stetsenko D.A., Gait M.J. Uridine 2'-carbamates: facile tools for oligonucleotide 2'-functionalization. Current Prot. Nucleic Acids Chem., 2003, 4.21.
Buff R., Hunziker J. 2'-Deoxy-2'(S)-ethinyl oligonucleotides: a modification which selectively stabilizes oligoadenylate pairing to DNA complements. Bioorg. Med. Chem. Lett., 1998, 8, No. 5, 521-524.
Buff R., Hunziker J. Z-DNA formation by 2'-C-ethynyl-modified oligonucleotides. Synlett, 1999, 905-908.
Buff R., Hunziker J. 2'-Deoxy-2' (5)-ethynyl oligonucleotides: synthesis and pairing properties. Nucleosides Nucleotides, 1999,18, No. 6/7,1387-1388.
Buff R., Hunziker J. 2'-Ethynyl-DNA: synthesis and pairing properties. Helv. Chim. Acta, 2002, 85, No. 1, 224-254.
1063
1064
1065
1066
1067
1068
1069
1070,
1071,
1072,
1073.
1074,
1075,
1076.
1077.
Nadler A., Diederichsen U. Guanosine analog with respect to Z-DNA stabilization: nucleotide with combined C8-bromo and C2'-ethynyl. Eur. J. Org. Chem., 2008, No. 9, 1544-1549.
Hrdlicka P.J., Kumar T.S., Wengel J. Synthesis and thermal denaturation studies of conformationally restricted 3'-C-ethynyl-3'-0,4'-C-methyleneribonucleotides. Eur. J. Org. Chem., 2005, No. 24, 5184-5188.
Gogoi K, Mane M. V., Kunte S.S., Kumar V.A. A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water. Nucleic Acids Res., 2007, 35, No 21, el39.
Kiviniemi A., Virta P., Lonnberg H. Solid-supported synthesis and click conjugation of 4'-C-alkyne fimctionalized oligodeoxyribonucleotides. Bioconjugate Chem., 2010, 21, No. 10, 1890-1901.
Ehrenschwender T., Varga B.R., Kele P., Wagenknecht H.-A. New far-red and near-infrared fluorescent probes with large stokes shifts for dual covalent labeling of DNA. Chem. Asian J., 2010, 5, No. 8, 1761-1764.
Yamada T., Peng C.G., Matsuda S., Addepalli H., Jayaprakash K.N., Alam Md.R., Mills K, Maier M.A., Charisse K, Sekine M., Manoharan M., Rajeev KG. Versatile site-specific conjugation of small molecules to siRNA using click chemistry. J. Org. Chem., 2011, 76, No. 5, 1198-1211.
Graham D., Parkinson J.A., Brown T. DNA duplexes stabilized by modified monomer residues: synthesis and stability. J. Chem. Soc. Perkin Trans 1,1998, No. 8, 1131-1138.
Gierlich J., Burley G.A., Gramlich P.M.E., Hammond D.M., Carell T. Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Org. Lett., 2006, 8, No 17, 3639-3642.
Gorodetsky A.A., Green O., Yavin E., Barton J.K Coupling into the base pair stack is necessary for DNA-mediated electrochemistry. Bioconjugate Chem., 2007,18, No. 5, 14341441.
Seela F., Sirivolu V.R. DNA containing side chains with terminal triple bonds: base-pair stability and functionalization of alkynylated pyrimidines and 7-deazapurines. Chem. Biodiv., 2006, 3, No. 5, 509-514.
Seela F., Sirivolu V.R. Nucleosides and oligonucleotides with diynyl side chains: the Huisgen-Sharpless cycloaddition "click reaction" performed on DNA and their constituents. Nucleosides Nucleotides Nucleic Acids, 2007, 26, No. 6/7, 597-601.
Seela F., Sirivolu V.R. Nucleosides and oligonucleotides with diynyl side chains: base pairing and functionalization of 2'-deoxyuridine derivatives by the copper(I)-catalyzed alkyne-azide 'click* cycloaddition. Helv. Chim. Acta, 2007, 90, No. 3, 535-552.
Seela F., Sirivolu V.R, Chittepu P. Modification of DNA with octadiynyl side chains: synthesis, base pairing, and formation of fluorescent coumarin dye conjugates of four nucleobases by the alkyne-azide "click" reaction. Bioconjugate Chem., 2007, 19, No. 1, 211-224.
Hammond D.M., Manetto A., Gierlich J., Azov V.A., Gramlich P.M.E., Burley G.A., Maul M., Carell T. DNA photography: an ultrasensitive DNA-detection method based on photographic techniques. Angew. Chem. Int. Ed., 2007, 46, No. 22, 4184-4187.
Seela F., Ming X. Oligonucleotides containing 7-deaza-2'-deoxyinosine as universal nucleoside: synthesis of 7-halogenated and 7-alkynylated derivatives, ambiguous base pairing, and dye functionalization by the alkyne-azide "click* reaction. Helv. Chim. Acta, 2008, Pi, No. 7, 1181-1200.
1078
1079
1080
1081
1082
1083,
1084,
1085,
1086,
1087,
1088,
1089,
1090.
1091,
1092,
Ming X, Leonard P., Heindl D., Seela F. Azide-alkyne "click" reaction performed on oligonucleotides with the universal nucleoside 7-octadiynyl-7-deaza-2'-deoxyinosine. Nucleic Acids Symp. Ser., 2008, 52, 471-472.
Seela F., Xiong H., Leonard P., Budow S. 8-Aza-7-deazaguanine nucleosides and oligonucleotides with octadiynyl side chains: synthesis, functionalization by the azide-alkyne 'click' reaction and nucleobase specific fluorescence quenching of coumarin dye conjugates. Org. Biomol. Chem., 2009, 7, No. 7, 1374-1387.
Ami T., Fujimoto K. Click chemistry as an efficient method for preparing a sensitive DNA probe for photochemical ligation. ChemBioChem., 2008, 9, No. 13, 2071-2074.
Sirivolu V.R., Chittepu P., Seela F. DNA with branched internal side chains: synthesis of 5-tripropargylamine-dU and conjugation by an azide-alkyne double click reaction. ChemBioChem., 2008, 9, No. 14, 2305-2316.
Freier S.M., Altmann K.-H. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res., 1997, 25, No 22, 4429-4443.
Seela F., Sirivolu V.R. Pyrrolo-dC oligonucleotides bearing alkynyl side chains with terminal triple bonds: synthesis, base pairing and fluorescent dye conjugates prepared by the azide-alkyne "click" reaction. Org. Biomol. Chem., 2008, 6, No. 9, 1674-1687.
Woo J., Meyer R.B., Gamper H.B. G/C-modified oligodeoxynucleotides with selective complementarity: synthesis and hybridization properties. Nucleic Acids Res., 1996, 24, No 13,2470-2475.
Seela F., Pujari S.S. Azide-alkyne "click" conjugation of 8-aza-7-deazaadenine-DNA: synthesis, duplex stability, and fluorogenic dye labeling. Bioconjugate Chem., 2010, 21, No. 9, 1629-1641.
Andersen N.K., Chandak N., Brulikova L., Kumar P., Jensen M.D., Jensen F., Sharma P.K, Nielsen P. Efficient RNA-targeting by the introduction of aromatic stacking in the duplex major groove via 5-(l-phenyl-l,2,3-triazol-4-yl)-2'-deoxyuridines. Bioorg. Med. Chem., 2010,18, No. 13, 4702—4710.
Ding P., Wunnicke D., Steinhoff H.-J., Seela F. Site-directed spin-labeling of DNA by the azide-alkyne 'click' reaction: nanometer distance measurements on 7-deaza-2'-deoxyadenosine and 2'-deoxyuridine nitroxide conjugates spatially separated or linked to a 'dA-dT' base pair. Chem. Eur. J., 2010,16, No. 48, 14385-14396.
Pujari S.S., Xiong H., Seela F. Cross-linked DNA generated by "bis-click" reactions with bis-functional azides: site independent ligation of oligonucleotides via nucleobase alkynyl chains. J. Org. Chem., 2010, 75, No. 24, 8693-8696.
Seela F., Xiong H., Budow S. Synthesis and 'double click' density functionalization of 8-aza-7-deazaguanine DNA bearing branched side chains with terminal triple bonds. Tetrahedron, 2010, 66, No. 22, 3930-3943.
Meyer A., Bouillon C., Vidal S., Vasseura J.-J., Morvan F. A versatile reagent for the synthesis of 5'-phosphorylated, 5'-thiophosphorylated or 5'-phosphoramidate-conjugated oligonucleotides. Tetrahedron Lett., 2006, 47, No. 50, 8867-8871.
Bouillon C., Meyer A., Vidal S., Jochum A., Chevolot Y., Cloarec J.-P., Praly J.-P., Vasseur J.J., Morvan F. Microwave assisted "click" chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. J. Org. Chem., 2006, 71, No. 12, 47004702.
Chevolot Y., Bouillon C., Vidal S., Morvan F., Meyer A., Cloarec J.-P., Jochum A., Praly ./.P., Vasseur J.-J., Souteyrand E. DNA-based carbohydrate biochips: a platform for surface glyco-engineering. Angew. Chem. Int. Ed., 2007, 46, No. 14, 2398-2402.
1093,
1094
1095
1096,
1097,
1098,
1099,
1100,
1101,
1102,
1103,
1104,
1105,
1106.
1107,
1108.
Devaraj N.K., Miller G.P., Ebina W., Kakaradov В., Collman J.P., Kool E.T., Chidsey C.E.D. Chemoselective covalent coupling of oligonucleotide probes to self-assembled monolayers. J. Am. Chem. Soc., 2005,127, No. 24, 8600-8601.
Filichev V.V., Pedersen E.B. Stable and selective formation of Hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (TINA) prepared via postsynthetic Sonogashira solid-phase coupling reactions. J. Am. Chem. Soc., 2005, 127, No. 42, 1484914858.
Ju J., Kim D.H., Bi L., Meng Q., Bai X, Li Z., Li X., Marma M.S., Shi S., Wu J., Edwards J.R., Romu A., Turro N.J. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc. Natl. Acad. Sci. USA, 2006,103, No. 52, 19635-19640.
PermanJ., Sharma R.A., BobekM. Synthesis of 1 -(2-deoxy-[3-D-erythro-pentofuranosyl)-5-ethylnyl-l,2,3,4,-tetrahydropyrimidine-2,4-dione (5-ethynyl-2'-deoxyuridine). Tetrahedron Lett., 1976,17, No. 28, 2427-2430.
Biala E., Jones A.S., Walker R.T. Synthesis and properties of poly(5-ethynyluridylic acid). Tetrahedron, 1980, 36, No. 1, 155-158.
Otvos L., Szecsi J., Sagi J., Kovacz T. Substrate specificity of DNA polymerases. II. S-(l-Alkynyl)-dUTPs as substrates of the Klenow DNA polymerase enzyme. Nucleic Acids Symp. Ser., 1987,18, 125-129.
Kovacz Т., Otvos L. Simple synthesis of 5-vinyl- and 5-ethynyl-2'-deoxyuridine-5'-triphosphates. Tetrahedron Lett., 1988, 29, No. 36, 4525-4528.
Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part I: Historical perspectives, histochemical methods and cell kinetics. Histochem. J., 1995, 27, No. 5, 339-369.
Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part III. Proliferation in normal, injured and diseased tissue, growth factors, differentiation, DNA replication sites andm situ hybridization. Histochem. J., 1996, 28, No. 8, 531-575.
Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Res. Rev., 2007, 53, No. 1, 198-214.
Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part II: Oncology, chemotherapy and carcinogenesis. Histochem. J., 1995, 27, No. 12, 923-964.
Salic A., Mitchison T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA, 2008,105, No. 7, 2415-2420.
Buck S.B., Bradford J., Gee K.R., Agnew B.J., Clarke S. Т., Salic A. Detection of S-phase cell cycle progression using 5-ethynyl-2'-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2'-deoxyuridine antibodies. BioTechniques, 2008, 44, No. 7, 927-929.
Cappella P., Gasparri F., Pulici M„ Moll J. Cell proliferation method: click chemistry based on BrdU coupling for multiplex antibody staining. Current Prot. Cytometry, 2008, 7.34.1-7.34.13.
Cappella P., Gasparri F., Pulici M., Moll J. A novel method based on click chemistry, which overcomes limitations of cell cycle analysis by classical determination of BrdU incorporation, allowing multiplex antibody staining. Cytometry Part A, 2008, 73A, No. 7, 626-636.
Burley G.A., Gierlich J., Mofid M.R., Nir H, Tal S., Eichen Y, Carell T. J. Directed DNA metallization. J. Am. Chem. Soc., 2006,128, No. 5, 1398-1399.
1109,
1110
1111,
1112
1113,
1114,
1115
1116,
1117,
1118,
1119,
1120,
1121.
1122,
1123,
1124,
Chehrehasa F., Meedeniya A.C.B., Dwyer P., Abrahamsen G., Mackay-Sim A. EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J. Neurosci. Meth, 2009,177, No. 1, 122-130.
Klein R.M., Aplin A.E. Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions. Cancer Res., 2009, 69, No. 6, 22242233.
Scheef E.A., Sorenson C.M., Sheibani N. Attenuation of proliferation and migration of retinal pericytes in the absence of thrombospondin-1. Am. J. Physiol. Cell Physiol., 2009, 296, No. 4, C724-C734.
Szafran A.T., Szwarc M., Marcelli M„ Mancini M.A. Androgen receptor functional analyses by high throughput imaging: determination of ligand, cell cycle, and mutation-specific effects. PLoS One, 2008, 3, No. 11, e3605.
Bonaguidi M.A., Peng C.-Y., McGuire T., Falciglia G., Gobeske K.T., Czeisler C., Kessler J.A. Noggin expands neural stem cells in the adult hippocampus. J. Neurosci., 2008, 28, No. 37,9194-9204.
Hitomi M., Yang K, Stacey A. W., Stacey D. W. Phosphorylation of cyclin D1 regulated by ATM or ATR controls cell cycle progression. Mol. Cell. Biol., 2008, 28, No. 17, 54785493.
Jensen U.B., YanX., Triel C., Woo S.-H., Christensen R., Owens D.M. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci., 2008,121, No. 5, 609-617.
Huang Q., Sheibani N. High glucose promotes retinal endothelial cell migration through activation of Src, PI3K/Aktl/eNOS, and ERKs. Am. J. Physiol. Cell Physiol., 2008, 295, No. 6, C1647-C1657.
Walters K.-A., Syder A. J., Lederer S.L., Diamond D.L., Paeper B., Rice C.M., Katze M. G. Genomic analysis reveals a potential role for cell cycle perturbation in HCV-mediated apoptosis of cultured hepatocytes. PLoS Pathogens, 2009, 5, No. 1, el000269.
Oberst M.D., Beberman S.J., Zhao L., Yin J.J., Ward Y., Kelly K. TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation. BMC Cancer, 2008, 8, 189.
Diermeier-Daucher S., Clarke S.T., Hill D., Vollmann-Zwerenz A., Bradford J.A., Brockhoff G. Cell type specific applicability of 5-ethynyl-2'-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry Part A, 2009, 75A, No. 6, 535-546.
Warren M., Puskarczyk K, Chapman S.C. Chick embryo proliferation studies using EdU labeling. Dev. Dynam., 2009, 238, No. 4, 944-949.
Limsirichaikul S., Niimi A., Fawcett H., Lehmann A., Yamashita S., Ogi T. A rapid nonradioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucleic Acids Res., 2009, 37, No. 4, e31.
Jao C.Y., Salic A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. USA, 2008,105, No. 41, 15779-15784.
Gramlich P.M.E., Wirges C.T., Gierlich J., Carell T. Synthesis of modified DNA by PCR with alkyne-bearing purines followed by a click reaction. Org. Lett., 2008, 10, No 2, 249251.
Fischler M., Sologubenko A., Mayer J., Clever G., Burley G., Gierlich J., Carell T., Simon U. Chain-like assembly of gold nanoparticles on artificial DNA templates via 'click chemistry'. Chem. Commun., 2008, No. 2, 169-171.
1125
1126
1127
1128
1129
1130,
1131,
1132,
1133,
1134.
1135.
1136.
1137,
1138.
1139,
1140.
1141.
1142.
Wirges C.T., Gramlich P.M.E., Gutsmiedl K, GierlichJ., Burley G.A., CarellT. Pronounced effect of DNA hybridization on click reaction efficiency. QSAR Comb. Sci., 2007, 26, No. 11/12, 1159-1164.
Fischler M., Simon U., Nir H., Eichen Y, Burley G.A., Gierlich J., Gramlich P.M.E., Carell T. Formation of bimetallic Ag-Au nanowires by metallization of artificial DNA duplexes. Small, 2007, 3, No. 6, 1049-1055.
Lin N., Yan J., Huang Z., Altier C., Li M, Carrasco N., Suyemoto M., Johnston L., Wang S., Wang Q., Fang H, Caton-Williams J., Wang B. Design and synthesis of boronic-acid-labeled thymidine triphosphate for incorporation into DNA. Nucleic Acids Res., 2007, 35, No. 4, 1222-1229.
Weller R.L., Rajski S.R. DNA methyltransferase-moderated click chemistry. Org. Lett., 2005, 7, No. 11,2141-2144.
Punna S., Kuzelka J., Wang Q., Finn M.G. Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. Angew. Chem. Int. Ed., 2005, 44, No. 15, 2215-2220.
Burrows C.J., Muller J.G. Oxidative nucleobase modifications leading to strand scission. Chem. Rev., 1998, 98, No. 3,1109-1151.
Zatsepin T.S., Oretskaya T.S. Synthesis and applications of oligonucleotide-carbohydrate conjugates. Chem. Biodiv., 2004, i,No. 10,1401-1417.
Lazrek H.B., Engels J. W, Pfleiderer W. Synthesis of novel branched nucleoside dimers containing a 1,2,3-triazolyl linkage. Nucleosides Nucleotides, 1998, 17, No. 9/11, 18511856.
O'Mahony G., Ehrman E., Gr0tli M. Synthesis of adenosine-based fluorosides containing a novel heterocyclic ring system. Tetrahedron Lett., 2005, 46, No. 39, 6745-6748.
Jin P.-Y., Jin P., Ruan Y.-A., Ju Y., Zhao Y.-F. Synthesis of some novel 1,2,3-triazole-fused oligonucleoside and oligosaccharide analogues. Synlett, 2007, No. 19, 3003-3006.
Malkoch M., Schleicher K, Drockenmuller E., Hawker C.J., Russell T.P., Wu P., Fokin V. V. Structurally diverse dendritic libraries: a highly efficient functionalization approach using click chemistry. Macromolecules, 2005, 38, No. 9, 3663-3678.
Nuzzi A., Massi A., Dondoni A. Model studies toward the synthesis of thymidine oligonucleotides with triazole internucleosidic linkages via iterative Cu(I)-promoted azide-alkyne ligation chemistry. QSAR Comb. Sci., 2007, 26, No. 11/12, 1191-1199.
Fujino T., Marine G., Nakamura E., Isobe H. Synthesis of an artificial oligonucleotide an efficient cycloaddition reaction. Nucleic Acids Symp. Ser., 2007, 51, 267-268.
Isobe H, Fujino T., Yamazaki N., Guillot-Nieckowski M., Nakamura E. Triazole-linked analogue of deoxyribonucleic acid (TLDNA): design, synthesis, and double-strand formation with natural DNA. Org. Lett., 2008,10, No 17, 3729-3732.
Fujino T., Yamazaki N., Isobe H. Convergent synthesis of oligomers of triazole-linked DNA analogue (TLDNA) in solution phase. Tetrahedron Lett., 2009, 50, No. 28, 4101—4103.
Lucas R., Neto V., Bouazza A.H., Zerrouki R, Granet R, Krausz P., Champavier Y. Microwave-assisted synthesis of a triazole-linked 3-5' dithymidine using click chemistry. Tetrahedron Lett., 2008, 49, No. 6,1004-1007.
Lucas R., Zerrouki R, Granet R., Krausz P., Champavier Y. A rapid efficient microwave-assisted synthesis of a 3',5'-pentathymidine by copper(I)-catalyzed [3+2] cycloaddition. Tetrahedron, 2008, 64, No. 23, 5467-5471.
Blomquist A.T., Liu L.H. Many-membered carbon rings. VII. Cyclooctyne. J. Am. Chem. Soc., 1953, 75, No. 9, 2153-2154.
1143
1144
1145.
1146
1147,
1148
1149,
1150,
1151,
1152.
1153.
1154,
1155,
1156.
1157,
1158.
1159.
1160.
Wittig G., Krebs A. Zur Existenz niedergliedriger Cycloalkine, I. Chem. Ber., 1961, 94, No. 12, 3260-3275.
Agard N.J., Prescher J.A., Bertozzi C.R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc., 2004,126, No. 46, 15046-15047.
Agard N.J., Baskin J.M., Prescher J.A., Lo A., Bertozzi C.R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol, 2006,1, No. 10, 644-648.
Baskin J.M., Prescher J.A., Laughlin S.T., Agard N.J., Chang P.V., Miller I.A., Lo A., Codelli J.A., Bertozzi C.R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007,104, No. 43, 16793-16797.
Codelli J.A., Baskin J.M., Agard N.J., Bertozzi C.R. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J. Am. Chem. Soc., 2008,130, No. 34, 1148611493.
Neef A.B., Schultz C. Selective fluorescence labeling of lipids in living cells. Angew. Chem. Int. Ed., 2009, 48, No. 8, 1498-1500.
Sletten E.M., Bertozzi C.R. A hydrophilic azacyclooctyne for Cu-free click chemistry. Org. Lett., 2008,10, No 14, 3097-3099.
Ning X, Guo J., Wolfert M.A., Boons G.-J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew. Chem. Int. Ed., 2008, 47, No. 12, 2253-2255.
Fernández-Suárez M., Baruah H., Martínez-Hernández L., Xie K.T., Baskin J.M., Bertozzi C.R., Ting A. Y. Nature Biotechnol. 2007. V. 25. P. 1483-1487.
Laughlin S.T., Bertozzi C.R. Imaging the glycome. Proc. Natl. Acad. Sci. USA, 2009, 106, No. 1, 12-17.
Laughlin S.T., Baskin J.M., Amacher S.L., Bertozzi C.R. In vivo imaging of membrane-associated glycans in developing Zebrafish. Science, 2008, 320, No. 5876, 664-667.
Gartner Z.J., Bertozzi C.R. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc. Natl. Acad. Sci. USA, 2009,106, No. 12, 4606-4610.
van Delft P., Meeuwenoord N.J., Hoogendoorn S., Dinkelaar J., Overkleeft H.S., van der Marel G.A., Filippov D. V. Synthesis of oligoribonucleic acid conjugates using a cyclooctyne phosphoramidite. Org. Lett., 2010,12, No. 23, 5486-5489.
Jayaprakash K.N., Peng C.G., Butler D., Varghese J.P., Maier M.A., Rajeev K.G., Manoharan M. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates. Org. Lett., 2010,12, No. 23, 54105413.
Nelson P.S., Kent M., Muthini S. Oligonucleotide labeling methods 3. Direct labeling of oligonucleotides employing a novel, non-nucleosidic, 2-aminobutyl-l,3-propanediol backbone. Nucl. Acids Res., 1992, 20, No. 23, 6253-6259.
Reynolds M.A., Beck T.A., Hogrefe R.I., McCaffrey A., Arnold L.M., Jr., Vaghefi M.M. A non-nucleotide-based linking method for the preparation of psoralen-derivatized methylphosphonate oligonucleotides. Bioconjugate Chem., 1992, 3, No. 5, 366-374.
Fino JR., Mattingly P.G., Ray KA. A convenient method for the preparation of hapten phosphoramidites. Bioconjugate Chem., 1996, 7, No. 2, 274-280.
De Vos M.J., Van Elsen A., Bollen A. New non nucleosidic phosphoramidites for the solid phase multi-labeling of oligonucleotides: comb- and multifork-like structures. Nucleosides Nucleotides, 1994,13, No. 10, 2245-2265.
1161.
1162
1163
1164,
1165,
1166,
1167,
1168,
1169.
1170,
1171.
1172.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
1180.
1181.
1182.
Behrens C., Petersen K.H., Egholm M., Nielsen J., Buchardt O., Dahl O. A new aehiral reagent for the incorporation of multiple amino groups into oligonucleotides. Bioorg. Med. Chem. Lett., 1995, 5, No. 16, 1785-1790.
Moroeho A.M., Karamyshev V.N., Polushin N.N. Methoxyoxalamido chemistry in the synthesis of novel amino linker and spacer phosphoramidites: a robust means for stability, structural versatility, and optimal tether length. Bioconjugate Chem., 2004, 15, No. 3, 569575.
Katajisto J., Virta P., Lonnberg H. Solid-phase synthesis of multiantennary oligonucleotide glycoconjugates utilizing on-support oximation. Bioconjugate Chem., 2004, 15, No. 3, 890896.
www. glenresearch. com www.biosearchtech.com www.berryassoc.com www.trilinkbiotech. com www.linktech.co.uk www.fidelitysystems.com www.invitrogen.com www.www5.gelifesciences.com www.www.jenabioscience.com www.www.piercenet.com www.www.azcobiotech.com www.www.atto-tec.com/
Parker E.D., Cogdell T.J., Humphreys J.S., Skinner C.G., Shive W. N-Pantoyl-(substituted-phenyl)alkylamines, inhibitory analogs of pantothenic acid. J. Med. Chem., 1963, 6, No. 1, 73-76.
Staatz I., Roth H.J. Synthese und Aggregationsverhalten chiraler Phospholipide mit Pantoinsaure-C-Geriist. Lie bigs Ann. Chem., 1989, No. 1, 59-67.
Wiinsch B., Diekmann H., Hofner G. Homochirale 2,4-disubstituierte 1,3-Dioxane aus (S)-(-)-Apfelsaure: Stereoselektive Synthese und Untersuchung der NMDA-Rezeptoraffinitat aller vier Stereoisomerer. Liebigs Ann. Chem., 1993, No. 12, 1273-1278.
Lei P., Ogawa Y., Flippen-Anderson J.L., Kovac P. Synthesis and crystal structure of methyl 4,6-dideoxy-4-(3-deoxy-L-g/_ycero-tetronamido)-2-0-methyl-a-D-mannopyranoside, , the methyl a-glycoside of the terminal unit, and presumed antigenic determinant, of the O-specific polysaccharide of Vibrio cholerae 0:1, serotype Ogawa. Carbohydrate Res., 1995, 275, No. 1,117-129.
Ogawa Y., Lei P., Kovac P. Synthesis of the 2-deoxy analogue of the methyl a-glycoside of the monosaccharide repeating unit of the O-polysaccharide of Vibrio cholerae 0:1. Carbohydrate Res., 1995, 277, No. 2, 327-331.
Szabo A., Kiinzle N., Mallat T., Baiker A. Enantioselective hydrogenation of pyrrolidine-2,3,5-triones over the Pt-cinchonidine system. Tetrahedron Asymmetry, 1999, 10, No. 1, 61-76.
Vogel K.W., Stark L.M., Mishra P.K, Yang W., Drueckhammer D.G. Investigating the role of the geminal dimethyl groups of coenzyme A: synthesis and studies of a didemethyl analogue. Bioorg. Med. Chem., 2000, 8, No. 10, 2451-2460.
1183
1184.
1185.
1186
1187,
1188
1189
1190,
1191,
1192,
1193,
1194,
1195,
1196.
1197.
1198.
1199
1200,
A Ives A.M., Holland D. Edge M.D. A chemical method of labeling oligodeoxyribonucleotides with biotin: a single step procedure using a solid phase methodology. Tetrahedron Lett., 1989, 30, No. 23, 3089-3092.
Cocuzza A.J. A phosphoramidite reagent for automated solid phase synthesis of 5'-biotinylated oligonucleotides. Tetrahedron Lett., 1989, 30, No. 46, 6287-6290.
Pon R.T. A long chain biotin phosphoramidite reagent for the automated synthesis of 5'-biotinylated oligonucleotides. Tetrahedron Lett., 1991, 32, No. 14, 1715-1718.
Kumar P., Bhatia D., Garg B.S., Gupta K.C. An improved method for synthesis of biotin phosphoramidites for solid phasebiotinylation of oligonucleotides. Bioorg. Med. Chem. Lett., 1994, 4, No. 14, 1761-1766.
Neuner P. New non nucleosidic phosphoramidite reagent for solid phase synthesis of biotinylated oligonucleotides. Bioorg. Med. Chem. Lett., 1996, 6, No. 2, 147-152.
Korshun V.A., Pestov N.B., Nozhevnikova E. V., Prokhorenko I.A., Gontarev S. V., Berlin Y.A. Reagents for multiple non-radioactive labelling of oligonucleotides. Synth. Commun., 1996, 26, No. 13,2531-2547.
Olejnik J., Krzymanska-Olejnik E., Rothschild K.J. Photocleavable biotin phosphoramidite for 5'-end-labelling, affinity purification and phosphorylation of synthetic oligonucleotides. Nucl. Acids Res., 1996, 24, No. 2, 361-366.
Su S.-H, Iyer R.S., Aggarwal S.K., Kalra KL. Novel non-nucleosidic phosphoramidites for oligonucleotide modification and labeling. Bioorg. Med. Chem. Lett., 1997, 7, No. 13, 1639-1644.
Zhao Z, Ackroyd J. A biotin phosphoramidite reagent for theautomated synthesis of 50-biotinylated oligonucleotides. Nucleosides Nucleotides, 1999,18, No. 6/7, 1231-1234.
Morocho A.M., Karamyshev V.N., Shcherbinina O.V., Malykh A.G., Polushin N.N. Novel biotin phosphoramidites with super-long tethering arms. Nucleosides Nucleotides Nucl. Acids, 2003, 22, No. 5/8, 1439-1441.
Fang S., Bergstrom D.E. Reversible biotinylation phosphoramidite for 5'-end-labeling, phosphorylation and affinity purification of synthetic oligonucleotides. Bioconjugate Chem., 2003,14, No. 1, 80-85.
Fang S., Bergstrom D.E. Fluoridecleavable biotinylation phosphoramidite for 5'-end-labeling, affinity purification of synthetic oligonucleotides. Nucl. Acids Res., 2003, 31, No. 2, 708-715.
Morocho A.M., Karamyshev V.N., Shcherbinina O.V., Polushin N.N. Biotin-labeled oligonucleotides with extraordinarily long tethering arms. Meth. Mol. Biol., 2005, 288, 225240.
Schneider F. Histidine in enzyme active centers. Angew. Chem. Int. Ed. Engl., 1978,17, No. 8, 583-592.
Perreault D.M., Anslyn E.V. Unifying the current data on the mechanism of cleavage-transesterification of RNA. Angew. Chem. Int. Ed. Engl,. 1997, 36, No. 5, 432-450.
Oivanen M., Kuusela S., Lonnberg H. Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by Bronsted acids and bases. Chem. Rev., 1998, 98, No. 3, 961-990.
TrawickB.N., Daniher A.T., Bashkin J.K. Inorganic mimics of ribonucleases and ribozymes: from random cleavage to sequence-specific chemistry to catalytic antisense drugs. Chem. Rev., 1998, 98, No. 3, 939-960.
Niittymaki T., Lonnberg H. Artificial ribonucleases. Org. Biomol. Chem., 2006, 4, No. 1, 15-25.
1201
1202
1203
1204
1205
1206
1207,
1208,
1209,
1210,
1211.
1212.
1213,
1214.
1215.
1216.
Zenkova M.A., Beloglazova N.G. Site-specific artificial ribonucleases: conjugates of oligonucleotides with catalytic groups. In: M.A. Zenkova, Ed. Artificial ribonucleases. Nucleic Acids and Molecular Biology (Springer), 2004,13,189-222.
глава из [58]: Schlosser К, McManus S.A., Li Y Deoxyribozymes: catalytically active DNA molecules. In: S. Klussmann, Ed. The aptamer handbook. Wiley-VCH, 2006, 228261.
Белоглазова Н.Г., Полушин H.H., Силъников В.H., Зенкова М.А., Власов В.В. Сайт-специфическое расщепление дрожжевой тРНКРЬс производными олигонуклеотидов, несущими бисимидазольные конструкции. Доклады АН, 1999, 369, № 6, 827-830.
ВеЪап M., Miller P.S. Preparation of an imidazole-conjugated oligonucleotide. Bioconjugate Chem., 2000,11, No. 4, 599-603.
Beloglazova N.G., Silnikov V.N., Zenkova M. A., Vlassov V.V. Cleavage of yeast tRNAPhe with complementary oligonucleotide conjugated to a small ribonuclease mimic. FEBS Lett., 2000, 481, No. 3, 277-280.
Гарипова И.Ю., Силъников В.H. Сайт-специфичные синтетические рибонуклеазы на основе конъюгатов олигонуклеотидов с металлонезависимыми органическими катализаторами гидролиза фосфодиэфирных связей. Изв. АН, Сер. хим., 2002, № 7, 1025-1030.
Рerr in D.M., Gar es tier T., Hélène С. Bridging the gap between proteins and nucleic acids: a metal-independent RNAseA mimic with two protein-like functionalities. J. Am. Chem. Soc., 2001,123, No. 8, 1556-1563.
Verbeure В., Lacey C.J., Froeyen M., Rozenski J., Herdewijn P. Synthesis and cleavage experiments of oligonucleotide conjugates with a diimidazole-derived catalytic center. Bioconjugate Chem., 2002,13, No. 2, 333-350.
Lermer L., Roupioz Y., Ting R, Perrin D.M. Toward an RNaseA mimic: a DNAzyme with imidazoles and cationic amines. J. Am. Chem. Soc., 2002,124, No. 34, 9960-9961.
May J.P., Ting R, Lermer L., Thomas J.M., Roupioz Y., Perrin D.M. Covalent Schiff base catalysis and turnover by a DNAzyme: a M2+-independent AP-endonuclease mimic J. Am. Chem. Soc., 2004,126, No. 13, 4145^1156.
Sidorov A. V., Grasby J.A., Williams D.M. Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucl. Acids Res., 2004, 32, No. 4, 1591-1601.
Beloglazova N.G., Fabani M.M., Zenkova M.A., Bichenkova E.V., Polushin N. N., Silnikov V.V., Douglas K.T., Vlassov V.V. Sequence-specific artificial ribonucleases. I. Bis-imidazole-containing oligonucleotide conjugates prepared using precursor-based strategy. Nucl. Acids Res., 2004, 32, No. 13, 3887-3897.
Araki L., Harusawa S., Yamaguchi M., Yonezawa S., Taniguchi N., Lilley D.M.J., Zhao Z., Kurihara T. Synthesis of novel C4-linked imidazole ribonucleoside phosphoramidites for probing general acid and base catalysis in ribozyme. Tetrahedron, 2005, 61, No. 50, 1197611985.
Wilson T.J., Ouellet J., Zhao Z., Harusawa S., Araki L., Kurihara T., Lilley D.M.J. Nucleobase catalysis in the hairpin ribozyme. RNA, 2006,12, No. 6, 980-987.
Catry M.A., Madder A. Synthesis of functionalised nucleosides for incorporation into nucleic acid-based serine protease mimics. Molecules, 2007,12, No. 1, 114-129.
Araki L., Morita K, Yamaguchi M., Zhao Z, Wilson T.J., Lilley D.M.J., Harusawa S. Synthesis of novel C4-linked C2-imidazole ribonucleoside phosphoramidite and its application to probing the catalytic mechanism of a ribozyme. J. Org. Chem., 2009, 74, No. 6, 2350-2356.
1217,
1218,
1219,
1220,
1221,
1222.
1223.
1224.
1225.
1226.
1227.
1228.
1229.
1230.
1231.
1232.
1233.
1234.
Smith T.H., LaTour J.V., Bochkariov D., Chaga G., Nelson P.S. Bifunctional phosphoramidite reagents for the introduction of histidyl and dihistidyl residues into oligonucleotides. Bioconjugate Chem., 1999,10, No. 4, 647-652.
Stetsenho D.A., Williams D., Gait M.J. Synthesis of peptide-oligonucleotide conjugates: application to basic peptides. Nucl. Acids Res. Suppl., 2001,1, 153-154.
Matthews H.R., Rapoport H. Differentiation of 1,4- and 1,5-disubstituted imidazoles. J. Am. Chem. Soc., 1973, 95, No. 7, 2297-2303.
Zaramella S., Heinonen P., Yeheskiely E., Stromberg R. Facile determination of the protecting group location of ^"-protected histidine derivatives by ]H-15N heteronuclear correlationNMR. J. Org. Chem., 2003, <55, No. 19,7521-7523.
Lane C.S. Mass spectrometry-based proteomics in the life sciences. Cell. Mol. Life Sci., 2005, 62, No. 7/8, 848-869.
Domon B., Aebersold R. Mass spectrometry arid protein analysis. Science, 2006, 312, No. 5771,212-217.
Cravatt B.F., Simon G.M., Yates III J.R. The biological impact of mass-spectrometry-based proteomics. Nature, 2007, 450, No. 7172, 991-1000.
Hofstadler S.A., Sannes-Lowery K.A., Hannis J.C. Analysis of nucleic acids by FTICR MS. Mass Spectrom. Rev., 2005, 24, No. 2, 265-285.
Sauer S. Typing of single nucleotide polymorphisms by MALDI mass spectrometry: Principles and diagnostic applications. Clin. Chim. Acta, 2006, 363, No. 1/2, 95-105.
Tost J., Gut I.G. DNA analysis by mass spectrometry-past, present and future. J. Mass Spectrom., 2006, 41, No. 8, 981-995.
HaffL.A., Belden A.C., Hall L.R., Ross P.L., Smirnov I.P. SNP genotyping by MALDI-TOF mass spectrometry. In: J. N. Housby (Ed.) Mass Spectrometry and Genomic Analysis, 2001, Kluwer Academic, NY, 16-32.
Griffin T.J., Smith L.M. Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry. In: J. N. Housby (Ed.) Mass Spectrometry and Genomic Analysis, 2001, Kluwer Academic, NY, 1-15.
Storm N, Darnhofer-Patel B., van den Boom D., Rodi C.P. MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol. Biol., 2003, 212, 241-262.
Wenzel T., Elssner T., Fahr K., Bimmler J., Richte, S., Thomas I., Kostrzewa M. Genosnip: SNP genotyping by MALDI-TOF MS using photocleavable oligonucleotides. Nucleosides Nucleotides Nucl. Acids, 2003, 22, No. 5/8, 1579-1581.
Sauer S., Lechner D., Berlin K., Lehrach H, Escary J.-L., Fox N., Gut L.G. A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucl. Acids Res., 2000, 28, No. 5,el3.
Sauer S., Lechner D., Berlin K., Plancon C., Heuermann A., Lehrach H, Gut I.G. Full flexibility genotyping of single nucleotide polymorphisms by the GOOD assay. Nucl. Acids Res., 2000, 28, No. 23,el00.
Sauer S., Lechner D., Gut L.G. The GOOD assay. In: J. N. Housby (Ed.) Mass Spectrometry and Genomic Analysis, 2001, Kluwer Academic, NY, 50-65.
Kokoris M., Dix K., Moynihan K., Mathis J., Erwin B., Grass P., Hines B., Duesterhoeft A. High-throughput SNP genotyping with the Masscode system. Mol. Diagn., 2000, 5, No. 4, 329-340.
1235
1236
1237
1238
1239,
1240
1241,
1242,
1243,
1244.
1245.
1246.
1247.
1248,
1249,
1250,
1251.
1252.
1253.
Hammond N., Koumi P., Langley G. J., Lowe A., Brown T. Rapid mass spectrometric identification of human genomic polymorphisms using multiplexed photocleavable mass-tagged probes and solid phase capture. Org. Biomol. Chem., 2007, 5, No. 12, 1878-1885.
Marnellos G. High-throughput SNP analysis for genetic association studies. Curr. Opin. DrugDiscov. Dev., 2003, 6, No. 3, 317-321.
Shi MM Technologies for individual genotyping: detection of genetic polymorphisms in drug targets and disease genes. Am. J. Pharmacogenomics, 2002,2, No. 3, 197-205.
Shchepinov M.S., Chalk R., Southern E.M. Trityl mass-tags for encoding in combinatorial oligonucleotide synthesis. Tetrahedron, 2000, 56, No. 17, 2713-2724.
Toth G., Kover K.E. Simple, safe, large scale synthesis of 5-arylmethyl-2,2-dimethyl-l,3-dioxane-4,6-diones and 3-arylpropanoic acids. Synth. Commun., 1995, 25, No. 19, 30673074.
Corey E.J., Raju N. A new general synthetic route to bridged carboxylic ortho esters. Tetrahedron Lett., 1983, 25, No. 24, 5571-5574.
Filippi J.-J., FernandezX., Lizzani-Cuvelier L., Loieseau A.-M. Convenient enantioselective synthesis of new 1,4-sulfanylalcohols from y-lactones. Tetrahedron Lett., 2002, 43, No. 35, 6267-6270.
Shchepinov M.S., Udalova I.A., Bridgman A.J., Southern E.M. Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. Nucl. Acids Res., 1997, 25, No. 22, 44474454.
Deck L.M., Daub G.H. Synthesis of 10-(chloromethyl)benzo[a]pyrene. J. Org. Chem.,
1983, 48, No. 20, 3577-3580.
Manning J.M., Meister A. Conversion of proline to collagen hydroxyproline. Biochemistry, 1966, 6, No. 4,1154-1165.
Oikawa Y., Sugano K., Yonemitsu O. Meldrum's acid in organic synthesis. 2. A general and versatile synthesis of p-keto esters. J. Org. Chem., 1978, 43, No. 10, 2087-2088.
Soai K, Oyamada H. A chemoselective one-step reduction of P-ketoesters to 1,3-diols. Synthesis, 1984, No. 7, 605-607.
Varma R.S., Saini R.K., Prakash O. A hypervalent iodine oxidation of phenolic Schiffs bases: synthesis of 2-arylbenzoxazoles. Tetrahedron Lett., 1997, 38, No. 15, 2621-2622.
So Y.-H., Zaleski J.M., Murlick C., Ellaboudy A. Synthesis and photophysical properties of some benzoxazole and benzothiazole compounds. Macromolecules, 1996, 29, No. 8, 2783-2795.
Nakasuji K., Akiyama S., Nakagawa M. Linear conjugated systems bearing aromatic terminal groups. VII. Syntheses and electronicspectra of 1,1'- and 2,2'-dipyrenylpolyynes. Bull. Chem. Soc. Japan, 1972, 45, No. 3, 875-882.
Gan L.-S.L., Acebo A.L., Alworth W.L. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity in liver microsomes. Biochemistry,
1984, 23, No. 17,3827-3836.
Crisp G.T., Jiang Y.-L. A convenient route to condensed-ring aromatic acetylenes. Synth. Commun., 1998, 28, No. 14, 2571-2576.
Bodendorf K., Kloss P. Acetylen-Derivate durch Fragmentierung. Angew. Chem., 1963, 75, No. 2, 139.
Bodendorf K., Mayer R. Uber die Darstellung und Fragmentierung von p-Chlor-acroleinen. Chem. Ber., 1965, 98, No. 11, 3554-3560.
1254
1255
1256
1257,
1258,
1259,
1260,
1261,
1262.
1263.
1264.
1265.
1266.
1267.
1268.
1269.
1270.
1271.
1272.
Lotzbeyer J., Bodendorf K. Darstellung von Aryl-buten-inen und Phenyl-hexadien-in. Chem. Ber., 1967,100, No. 8, 2620-2624.
Royles B.J.L., Smith D.M. The 'inverse electron-demand' Diels-Alder reaction in polymer synthesis. Part 1. A convenient synthetic route to diethynyl aromatic compounds. J. Chem. Soc., Perkin Trans. 1, 1994, No. 4, 355-358.
Bachmann W.E., Carmack M. Methyl derivatives of 3,4-benzpyrene. The Willgerodt reaction on some 3-acylpyrenes. J. Am. Chem. Soc., 1941, 63, No. 9, 2494-2499.
Gordon A. J., Ford R.A. The chemist's companion. A handbook of practical data, techniques, and references. New York: Wiley-Interscience, 1972. 269.
Swager T.M., Gil C.J., Wrighton M.S. Fluorescence studies of poly(p-phenyleneethynylene)s: The effect of anthracene substitution. J. Phys. Chem., 1995, 99, No. 14, 4886-4893.
Bunker C.E., Sun Y.-P. Evidence for enhanced bimolecular reactions in supercritical CO2 at near-critical densities from a time-resolved study of fluorescence quenching of 9,10-bis(phenylethynyl)anthracene by carbon tetrabromide. J. Am. Chem. Soc., 1995, 117, No. 44, 10865-10870.
Armitage B.A. Cyanine dye-DNA interactions: intercalation, groove binding, and aggregation. Top. Curr. Chem., 2005, 253, 55-76.
Hohng S., Joo C., Ha T. Single-molecule three-color FRET. Biophys. J., 2004, 87, No. 2, 1328-1337.
Brush C.K., Anderson E.D. Indocarbocyanine-linked phosphoramidites. US Pat. 5,556,959, 1996.
Little G.M., Raghavachari R., Narayanan N., Osterman H.L. Fluorescent cyanine dyes. US Pat. 6,027,709, 2000.
Waggoner A.S. Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence. US Pat. 6,225,050, 2001.
Narayanan N. Cyanine dye compounds and labeling methods. US Pat. 6,593,148, 2003.
Caputo G., Delia Ciana L. Process and method for the preparation of asymmetric monofunctionalized indocyanine labeling reagents and obtained compounds. US Pat. 6,740,755, 2004.
Lakowicz J.R., Ed. DNA Technology. Topics in Fluorescence Spectroscopy, 7, 2003, Kluwer Academic/Plenum Publishers, New York.
Braslavsky I., Hebert B., Kartalov E„ Quake S.R. Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. USA, 2003,100, No. 7, 3960-3964.
Lewis E.K., Haaland W.C., Nguyen F., Heller D.A., Allen M.J., MacGregor R.R., Berger C.S., Willingham B., Burns L.A., Scott G.B.I., Kittrell C., Johnson B.R., Curl R.F., Metzker M.L. Color-blind fluorescence detection for four-color DNA sequencing. Proc. Natl. Acad. Sci. USA, 2005,102, No. 12, 5346-5351.
Griesang N., Giefiler K., Lommel T., Richert C. Four-color, enzyme-free interrogation of DNA sequences with chemically activated, 3'-fluorophore-labeled nucleotides. Angew. Chem. Int. Ed., 2006, 45, No. 37, 6144-6148.
Weiss S. Fluorescence spectroscopy of single biomolecules. Science, 1999, 283, No. 5408, 1676-1683.
Ueda M., Sako Y., Tanaka T., Devreotes P., Yanagida T. Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science, 2001, 294, No. 5543, 864-867.
1273
1274
1275
1276
1277
1278
1279.
1280,
1281,
1282,
1283,
1284,
1285,
1286.
1287,
1288.
1289,
Sako Y., Yanagida T. Single-molecule visualization in cell biology. Nature Rev. Mol. Cell. Biol., 2003, 4 (Suppl), SS1-SS5.
Sako Y. Imaging single molecules in living cells for systems biology. Mol. Systems Biology, 2006, 56 (doi:10.1038/msb4100100).
Gerion D., Chen F., Kannan B., Fu A., Parack W.J., Chen D.J., Majumdar A., Alivisatos A. P. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem., 2003, 75, No. 18, 4766-4772.
Hessner M.J., Singh V.K., Wang X., Khan S., Tschannen M.R., Zahrt T.C. Utilization of a labeled tracking oligonucleotide for visualization and quality control of spotted 70-mer arrays. BMC Genomics, 2004, 5, 12.
Staal Y.C.M., van Herwijnen M.H.M., van Schooten F.J., van Delft J.H.M. Application of four dyes in gene expression analyses by microarrays. BMC Genomics, 2005, 6, 101.
Wolter P.K, Collins P. J., Lucas A.B., De Witte A., Shannon K. W. The agilent in situ-synthesized microarray platform. Meth. Enzymol., 2006, 410, 28-57.
Fan J.-B., Gunderson KL., Bibikova M., Yeakley J.M., Chen J., Wichkam Garcia E., Lebruska L.L., Laurent M., Shen R, Barker D. Illumina universal bead arrays. Meth. Enzymol., 2006, 410, 57-73.
Hager J. Making and using spotted DNA microarrays in an academic core laboratory. Meth. Enzymol., 2006, 410, 135-168.
Chan T.-F., Ha C., Phong A., Cai D., Wan E., Leung L., Kwok P.-Y., Xiao M. A simple DNA stretching method for fluorescence imaging of single DNA molecules. Nucleic Acids Res., 2006, 34, No. 18, el 13.
Consoladi C., Severgnini M., Castiglioni B., Bordoni R., Frosini A., Battaglia C., Bernardi L.R, De Bellis G. A structured chitosan-based platform for biomolecule attachment to solid surfaces: application to DNA microarray preparation. Bioconjugate Chem., 2006, 17, No. 2, 371-377.
Sabanayagam C.R., Lakowicz J.R. Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles. Nucleic Acids Res., 2007, 35, No. 2, el3.
Jaluria P., Konstantopoulos K, Betenbaugh M., Shiloach J. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb. Cell Factories, 2007, 6, 4.
TongA.K, Li Z., Dick D., Jones G.S., Russo J. J., Ju J. Combinatorial fluorescence energy transfer tags for multiplex biological assays. Nature Biotechnol., 2001,19, No. 8, 756-759.
Johansson M.K., Fidder H, Dick D., Cook R.M. Intramolecular dimers: a new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. J. Am. Chem. Soc., 2002, 124, No. 24, 6950-6956.
Yurov Y.B., Soloviev I. V., Vorsanova S.G., Marcais B., Roizes G., Lewis R. High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: Rapid chromosome identification by directly fluorescently labeled alphoid DNA probes. Hum. Genet., 1996, 97, No. 3, 390-398.
Schröck E., du Manoir S., Feldman T., Schoell B., Wienberg J., Ferguson-Smith M.A., Ning Y., Ledbetter D.H., Bar-Am I., Soenksen D., Garini Y., Ried T. Multicolor spectral karyotyping of human chromosomes. Science, 1996, 273, No. 5274, 494^497.
Tanke HJ., Wiegant J., van Gijlswijk R.P., Bezrookove V., Pattenier H., Heetebrij R.H., Talman E.G., Raap A.K., Vrolijk J. New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur. J. Hum. Genet., 1999, 7, No. 1,2-11.
1290. ZhuangX., Bartley L.E., Babcock H.P., Russell R., Ha T., Herschlag D„ Chu S. A single-molecule study of RNA catalysis and folding. Science, 2000, 288, No. 5473, 2048-2051.
1291. Zhuang X., Kim H, Pereira M.J.B., Babcock H.P., Walter N.G., Chu S. Correlating structural dynamics and function in single ribozyme molecules. Science, 2002, 296, No. 5572, 1473-1477.
1292. Bokinsky G., Rueda D., Misra V.K, Rhodes M.M., Gordus A., Babcock H.P., Walter N.G., Zhuang X. Single-molecule transition-state analysis of RNA folding. Proc. Natl. Acad. Sci. USA, 2003,100, No. 16, 9302-9307.
1293. Tan E., Wilson T.J., Nahas M.K., Clegg R.M., Lilley D.M.J., Ha T. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc. Natl. Acad. Sci. USA, 2003,100, No. 16, 9308-9313.
1294. Murphy M.C., Rasnik I., Cheng W., Lohman T.M., Ha T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J., 2004, 86, No. 4, 2530-2537.
1295. Churchman L.S., Okten Z., Rock R.S., Dawson J.F., Spudich J.A. Single molecule highresolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci. USA, 2005,102, No. 5, 14191423.
1296. McKinney S.A., Freeman A.D.J., Lilley D.M.J., Ha T. Observing spontaneous branch migration of Holliday junctions one step at a time. Proc. Natl. Acad. Sci. USA, 2005, 102, No. 16, 5715-5720.
1297. Gruber M., Wetzl B., Oswald B., Enderlein J., Wolfbeis O.S. A new fluorescence resonance energy transfer pair and its application to oligonucleotide labeling and fluorescence resonance energy transfer hybridization studies. J. Fluorescence, 2005,15, No. 3, 207-214.
1298. Liu J., Lu Y. FRET study of a trifluorophore-labeled DNAzyme. J. Am. Chem. Soc., 2002, 124, No. 51, 15208-15216.
1299. Haustein E., Jahnz M., Schwille P. Triple FRET: A tool for studying long-range molecular interactions. Chem. Phys. Chem., 2003, 4, No. 7, 745-748.
1300. Clamme J.-P., Deniz A.A. Three-color single-molecule fluorescence resonance energy transfer. Chem. Phys. Chem., 2005, 6, No. 1, 74-77.
1301. Tinnefeld P., Heilemann M., Sauer M. Design of molecular photonic wires based on multistep electronic excitation transfer. Chem. Phys. Chem., 2005, No. 2, 217-222.
1302. Drechsler G., Smagin S. Zur Darstellung von Trimelliteinen und 5'-Carboxyfluoresceinen. J. Prakt. Chem., 1965, 28, No. 5/6, 315-324.
1303. Haralambidis J., Angus K., Pownall S., Duncan L., Chai M., Tregear G. W. The preparation of polyamide-oligonucleotide probes containing multiple non-radioactive labels. Nucleic Acids Res., 1990,18, No. 3, 501-505.
1304. Oberg C.T., Carlsson S., Fillion E., Leffler H, Nilsson U.J. Efficient and expedient two-step pyranose-retaining fluorescein conjugation of complex reducing oligosaccharides: galectin oligosaccharide specificity studies in a fluorescence polarization assay. Bioconjugate Chem., 2003,14, No. 6, 1289-1297.
1305. Rossi F.M., Kao J.P.Y. Practical method for the multigram separation of the 5- and 6-isomers of carboxyfluorescein. Bioconjugate Chem., 1997, 8, No. 4, 495—497.
1306. Sun W.-C., Gee K.R., Klaubert D.H., HauglandR.P. Synthesis of fluorinated fluoresceins. J. Org. Chem., 1997, 62, No. 19, 6469-6475.
1307
1308
1309
1310
1311.
1312,
1313.
1314,
1315,
1316,
1317.
1318.
1319.
1320.
1321.
1322.
1323.
Lyttle M.H., Carter T.G., CookR.M. Improved synthetic procedures for 4,7,2',7'-tetrachloro-and 4',5'-dichloro-2',7'-dimethoxy-5(and 6)-carboxyfluoresceins. Org. Proc. Res. Dev., 2001, 5, No. 1,45-49.
Jiao G.-S., Han J.W., Burgess K. Syntheses of regioisomerically pure 5- or 6-halogenated fluoresceins. J. Org. Chem., 2003, 68, No. 21, 8264-8267.
Ueno Y., Jiao G.-S., Burgess K. Preparation of 5- and 6-carboxyfluorescein. Synthesis, 2004, No. 15, 2591-2593.
Woodroofe C.C., Lim M.H., Bu W., LippardS.J. Synthesis of isomerically pure carboxylate-and sulfonate-substituted xanthene fluorophores. Tetrahedron, 2005, 61, No. 12, 30973105.
Adamczyk M., Fishpaugh J.R., Heuser K.J. Preparation of succinimidyl and pentafluorophenyl active esters of 5- and 6- carboxyfluorescein. Bioconjugate Chem., 1997, 8, No. 2, 253-255.
Adamczyk M., Chan C.M., Fino JR., Mattingly P.G. Synthesis of 5- and 6-hydroxymethylfluorescein phosphoramidites. J. Org. Chem., 2000, 65, No. 2, 596-601.
Mattingly P.G. Preparation of 5- and 6-(aminomethyl)fluorescein. Bioconjugate Chem., 1992,3, No. 5,430-431.
Khanna P.L., Ullman E.F. 4',5'-Dimethoxy-6-carboxyfluorescein: a novel dipole-dipole coupled fluorescence energy transfer acceptor useful for fluorescence immunoassays. Anal. Biochem., 1980,108, No. 1, 156-161.
Edmundson A.B., Ely K.R., Herron J.N. A search for site-filling ligands in the Meg Bence-Jones dimer: crystal binding studies of fluorescent compounds. Mol. Immunol., 1984, 21, No. 7, 561-576.
Edman L., Mets U., Rigler R. Conformational transitions monitored for single molecules in solution. Proc. Natl. Acad. Sci. U.S.A, 1996, 93, No. 13, 6710-6715.
Vamosi G., Gohlke C., Clegg R.M. Fluorescence characteristics of 5-carboxytetramethylrhodamine linked covalently to the 5' end of oligonucleotides: multiple conformers of single-stranded and double-stranded dye-DNA complexes. Biophys. J., 1996, 71, No.2, 972-994.
Eggeling C., Fries J.R, Brand L., Gunther R, Seidel C.A.M. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc. Natl. Acad. Sci. U.S.A, 1998, 95, No. 4, 1556-1561.
Wang L., Gaigalas A.K., Blasic J., Holden M.J. Spectroscopic characterization of fluorescein- and tetramethylrhodamine-labeled oligonucleotides and their complexes with a DNA template. Spectrochim. Acta A: Mol. Biomol. Spectroscopy, 2004, 60, No. 12, 27412750.
Moreira B.G., You Y., Behlke M.A., Owczarzy R. Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochem. Biophys. Res. Commun., 2005, 327, No. 2, 473-484.
Stern J.C., Schildbach J.F. DNA Recognition by F factor TraI36: highly sequence-specific binding of single-stranded DNA. Biochemistry, 2001, 40, No. 38, 11586-11595.
Harley M.J., Toptygin D., Troxler T., Schildbach J.F. R150A mutant of F Tral relaxase domain: reduced affinity and specificity for single-stranded DNA and altered fluorescence anisotropy of a bound labeled oligonucleotide. Biochemistry, 2002, 41, No. 20, 6460-6468.
Harley M.J., Schildbach J.F. Swapping single-stranded DNA sequence specificities of relaxases from conjugative plasmids F and R100. Proc. Natl. Acad. Sci. U.S.A, 2003, 100, No. 20,11243-11248.
1324
1325
1326
1327
1328
1329
1330.
1331
1332,
1333,
1334,
1335,
1336,
1337.
1338,
1339.
1340.
Larkin C., Datta S., Harley M.J., Anderson B.J., Ebie A., Hargreaves V., Schildbach J.F. Inter- and intramolecular determinants of the specificity of single-stranded DNA binding and cleavage by the F factor relaxase. Structure, 2005,13, No. 10,1533-1544.
Unruh J.R., Gokulrangan G., Lushington G.H., Johnson C.K., Wilson G.S. Orientational dynamics and dye-DNA interactions in a dye-labeled DNA aptamer. Biophys. J., 2005, 88, No. 5, 3455-3465.
Anderson B.J., Larkin C., Guja K, Schildbach J.F. Using fluorophore-labeled oligonucleotides to measure affinities of protein-DNA interactions. Meth. Enzymol., 2008, 450, 253-272.
Kelemen B.R., Klink T.A., Behlke M.A., Eubanks S.R., Leland P.A., Raines R.T. Hypersensitive substrate for ribonucleases. Nucleic Acids Res., 1999, 27, No. 18, 36963701.
Soh N., Makihara K, Sakoda E., Imato T. A ratiometric fluorescent probe for imaging hydroxyl radicals in living cells. Chem. Commun., 2004, No. 5, 496-497.
Dragan A.I., Liu Y., Makeyeva E.N., Privalov P.L. DNA-binding domain of GCN4 induces bending of both the ATF/CREB and AP-1 binding sites of DNA. Nucleic Acids Res., 2004, 32, No. 17,5192-5197.
Dragan A.I., Privalov P.L. Use of fluorescence resonance energy transfer (FRET) in studying protein-induced DNA bending. Meth. Enzymol., 2008, 450, 185-199.
Dietrich A., Buschmann V., Mutter C., Sauer M. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Rev. Mol. Biotechnol., 2002, 82, No. 3, 211231.
Wu Z.-S., Jiang J. -H, Fu L., Shen G.-L., Yu R.-Q. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Biochem., 2006, 353, No. 1, 22-29.
Dolghih E., Roitberg A.E., Krause J.L. Fluorescence resonance energy transfer in dye-labeled DNA. J. Photochem. Photobiol. A: Chemistry, 2007,190, No. 2/3, 321-327.
Clegg R.M., Murchie A.I.H., Zechel A., Lilley D.M.J. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U.S.A, 1993, 90, No. 7, 2994-2998.
Vamosi G., Clegg R.M. The helix-coil transition of DNA duplexes and hairpins observed by multiple fluorescence parameters. Biochemistry, 1998, 37, No. 40,14300-14316.
Mergny J.-L. Fluorescence energy transfer as a probe for tetraplex formation: the i-motif. Biochemistry, 1999, 38, No. 5, 1573-1581.
Horsey I., Furey W.S., Harrison J.G., Osborne M.A., Balasubramanian S. Double fluorescence resonance energy transfer to explore multicomponent binding interactions: a case study of DNA mismatches. Chem. Commun., 2000, No. 12, 1043-1044.
Marras S.A.E., Kramer F.R., Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res., 2002, 30, No. 21, el22.
Chen L., Lee S., Lee M., Lim C., Choo J., Park J.Y., Lee S., Joo S.-W., Lee K-H., Choi Y.-W. DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes. Biosensensors Bioelectronics, 2008, 23, No. 12,1878-1882.
Shchepinov M.S., Korshun V.A. Design of multidye systems for FRET-based applications. Nucleosides Nucleotides Nucleic Acids, 2001, 20, No. 4/7, 369-374.
1341
1342
1343
1344
1345
1346.
1347,
1348.
1349,
1350,
1351,
1352.
1353.
1354.
1355.
1356.
Tong A.K., Jockusch $., Li Z, Zhu H.-R., Akins D.L., Turro N.J., Ju J. Triple fluorescence energy transfer in covalently trichromophore-labeled DNA. J. Am. Chem. Soc., 2001, 123, No. 51, 12923-12924.
Haustein E., Jahnz M., Schwille P. Triple FRET: a tool for studying long-range molecular interactions. Chem. Phys. Chem., 2003, 4, No. 7, 745-748.
Marti A. A., Li X., Jockusch S., Stevens N., Li Z., Raveendra B., Kalachikov S., Morozova I., Russo J.J., Akins D.L., Ju J., Turro N.J. Design and characterization of two-dye and three-dye binary fluorescent probes for mRNA detection. Tetrahedron, 2007, 63, No. 17, 35913600.
Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R, Heiner C., Kent S.B.H., Hood L.E. Fluorescence detection in automated DNA sequence analysis. Nature, 1986, 321, No. 6071, 674-678.
Lee L.G., Connell C.L., Woo S.L., Cheng R.D., McArdle B.F., Fuller C.W., Halloran N.D., Wilson R.K DNA sequencing with dye-labeled terminators and T7 DNA polymerase: effect of dyes and dNTPs on incorporation of dye-terminators and probability analysis of termination fragments. Nucleic Acids Res., 1992, 20, No. 10, 2471-2483.
Ju J., Ruan C., Fuller C.W., Glazer A.N., Mathies R.A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Natl. Acad. Sci. U.S.A, 1995, 92, No. 10, 4347-4351.
Lee L.G., Spurgeon S.L., Heiner C.R, Benson S.C., Rosenblum B.B., Menchen S.M., Graham R.J., Constantinescu A., Upadhya KG., Cassel J.M. New energy transfer dyes for DNA sequencing. Nucleic Acids Res., 1997, 25, No. 14, 2816-2822.
Rosenblum B.B., Lee L.G., Spurgeon S.L., Khan S.H., Menchen S.M., Heiner C.R, Chen S.M. New dye-lebeled terminators for improved DNA sequencing patterns. Nucleic Acids Res., 1997, 25, No. 22, 4500-4504.
Nampalli S., Khot M., Kumar S. Fluorescence resonance energy transfer terminators for DNA sequencing. Tetrahedron Lett., 2000, 41, No. 46, 8867-8871.
Gibson N.J. The use of real-time PCR methods in DNA sequence variation analysis. Clin. Chim. Acta, 2006, 363, No. 1/2, 32-47.
Nasarabadi S., Milanovich F., Richards J., Belgrader P. Simultaneous detection of TaqMan® probes containing Fam and Tamra reporter fluorophores. BioTechniques, 1999, 27, No. 6, 1116-1118.
De Baar M.P., Timmermans E.C., Bakker M., de Rooij E., van Gemen B., Goudsmit J. One-tube real-time isothermal amplification assay to identify and distinguish human immunodeficiency virus type 1 subtypes A, B, and C and circulating recombinant forms AE and AG. J. Clin. Microbiol., 2001, 39, No. 5,1895-1902.
Ameziane N., Seguin C., Borgel D., Fumeron F., Moatti D., Alhenc-Gelas M., Grandchamp B., Aiach M, Emmerich J., de Prost D. The -33T—>C polymorphism in intron 7 of the TFPI gene influences the risk of venous thromboembolism, independently of the factor V Leiden and prothrombin mutations. Thromb. Haemost., 2002, 88, No. 2, 195-199.
Lee L.G., Connell C.R, Bloch W. Allelic discrimination by nick-translation PCR with fluorgenic probes. Nucleic Acids Res., 1993, 21, No. 16,3761-3766.
Daum L.T., Ye K, Chambers J.P., Santiago J., Hickman JR., Barnes W.J., Kruzelock R.P., Atchley D.H. Comparison of TaqMan™ and Epoch Dark Quenchers™ during real-time reverse transcription PCR. Mol. Cell. Probes, 2004,18, No. 3, 207-209.
Corrie J.E.T., Craik J.S. Synthesis and characterisation of pure isomers of iodoacetamidotetramethylrhodamine. J. Chem. Soc. Perkin Trans. I, 1994, No. 20, 29672973.
1357,
1358,
1359,
1360,
1361,
1362.
1363.
1364.
1365.
1366.
1367.
1368.
1369.
1370.
1371.
1372.
1373.
1374.
Munasinghe V.R.N., Corrie J.E.T. Optimised synthesis of 6-iodoacetamidotetramethylrhodamine. ARKLVOC, 2006, No. 2, 143-149.
Kelley S.O., Barton J.K. Electron transfer between bases in double helical DNA. Science, 1999, 283, No. 5400, 375-381.
Torimura M., Kurata S., Yamada K, Yokomaku T., Kamagata Y, Kanagawa T., Kurane R. Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal. Sei., 2001,17, No. 1, 155-160.
Heller M.J., Jablonski E.J. Fluorescent stokes shift probes for polynucleotide hybridization assays. EPpat. 229,943,1987.
Mergny J.-L., Boutorine A.S., Garestier T., Belloc F., Rougee M., Bulychev N.V., Koshkin A.A., Bourson J., Lebedev A.V., Valeur B., Thuong N.T., Hélène C. Fluorescence energy transfer as a probe for nucleic acid structures and sequences. Nucleic Acids Res., 1994, 22, No. 6, 920-928.
Whaley W.M., Meadow M., Robinson C.N. Nitrogen isologs of benzo[a]pyrene. J. Org. Chem., 1954,19, No. 6, 973-977.
Bograchov E. New compounds. co-Nitro-3-vinyl-pyrene. J. Am. Chem. Soc., 1944, 66, No. 9, 1612.
Mourad M.S., Varma R.S., Kabalka G. W. Reduction of a,ß-unsaturated nitro compounds with boron hydrides: a new route to N-substituted hydroxylamines. J. Org. Chem., 1985, 50, No. 1, 133-135.
Kabalka G. W., Guindi L.H.M., Varma R.S. Selected reductions of conjugated nitroalkenes. Tetrahedron, 1990, 46, No. 22, 7443-7457.
Kitamura M., NimuraA., YamanaK, ShimidzuT. Oligonucleotides with bis-pyrene adduct in the backbone: syntheses and properties of intramolecular excimer forming probe. Nucleic Acids Res. Symp. Ser., 1991, 25, 67-68.
Nakasuji K., Akiyama S., Nakagawa M. Linear conjugated systems bearing aromatic terminal groups. VII. Syntheses and electronic spectra of 1,1'- and 2,2'-dipyrenylpoly-ynes. Bull. Chem. Soc. Japan, 1972, 45, No. 3, 875-882.
Hopkins N.E., Foroozesh M.K, Alworth W.L. Suicide inhibitors of cytochrome P450 1A1 and P450 2B1. Biochem. Pharmacol., 1992, 44, No. 4, 787-796.
Foroozesh M., Primrose G., Guo Z, Bell L.C., Alworth W.L., Guengerich F.P. Aryl acetylenes as mechanism-based inhibitors of cytochrome P450-dependent monooxygenase enzymes. Chem. Res. Toxicol., 1997,10, No. 1, 91-102.
Inouye M., Hyodo Y, Nakazumi H. Nucleobase recognition by artificial receptors possessing a ferrocene skeleton as a novel modular unit for hydrogen bonding and stacking interactions. J. Org. Chem., 1999, 64, No. 8, 2704-2710.
Vollmann H., Becker H., Corell M., Streeck H. Beiträge zur Kenntnis des Pyrens und seiner Derivate. JustusLiebigs Ann. Chem., 1937, 531, No. 8, 1-159.
Harvey R.G., Konieczny M., Pataki J. Synthesis of the isomeric mono- and bisoxiranylpyrenes. J. Org. Chem., 1983, 48, No. 17, 2930-2932.
Bukowska M., Harvey R.G. Synthesis of 2-hydroxybenzo[a]pyrene, a tumorigenic phenol derivative of benzo[a]pyrene. Polycyclic Aromatic Compounds, 1992, 2, No. 4, 223-228.
Musa A., Sridharan B., Lee H., Mattern D.L. 7-Amino-2-pyrenecarboxylic acid. J. Org. Chem., 1996, 61, No. 16, 5481-5484.
1375.
1376,
1377,
1378,
1379,
1380,
1381,
1382,
1383
1384,
1385,
1386,
1387
1388
1389
1390
1391
1392,
1393
Connor D.M., Allen S.D., Collard D.M., Liotta C.L., Schiraldi D.A. Efficient synthesis of 4,5,9,10-tetrahydropyrene: a useful synthetic intermediate for the synthesis of 2,7-disubstituted pyrenes. J. Org. Chem., 1999, 64, No. 18, 6888-6890.
Герасименко Ю.Е., Шевчук КН. Химия пирена. VIII. 4-Ацетилпирены и ЗН-бенз[с,с/]пирен-3-он. Ж. орган, химии, 1968, 4, № 12, 2198-2203.
Sangaiah R, Gold A. Synthesis of cyclopenta[cd]pyrene and its benzannelated derivative naphtho[l,2,3-mno]acephenanthrylene. J. Org. Chem., 1988, 53, No. 11, 2620-2622.
Fu P.P., Lee H.M., Harvey R.G. Regioselective catalytic hydrogenation of polycyclic aromatic hydrocarbons under mild conditions. J. Org. Chem., 1980, 45, No. 14, 2797-2803.
Klassen S.E., Daub G.H., Van der Jagt D.L. Carbon-13 labeled benzo[a]pyrenes and derivatives. 4. Labeling the 7-10 positions. J. Org. Chem., 1983, 48, No. 23, 4361-4366.
Walker D., Hiebert J.D. 2,3-Dichloro-5,6-dicyanobenzoquinone and its reactions. Chem. Rev., 1967, 67, No. 2, 153-195.
Петроченко E.B., Гореленко А.Ю., Алексеев H.H. Синтез и свойства новой флуоресцентной метки - TV-гидроксисукцинимидного 9-
диэтиламинобенз[а]феноксазин-5-он-3-оксиуксусной кислоты. Доклады АН БССР, 1991, 35, №6, 918-922.
Fu P.P., Harvey R.G. Dehydrogenation of polycyclic hydroaromatic compounds. Chem. Rev., 1978, 78, No. 4, 317-361.
Langhals H. Cyclic carboxylic imide structures as structure elements of high stability. Novel development in perylene dye chemistry. Heterocycles, 1995, 40, No. 1, 477-500.
Wurthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun., 2004, No. 14, 1564-1579.
Fujimoto S., Nakayama K., Yokoyama M. Charge injection controlled organic transistor. Mol. Cryst. Liq. Cryst., 2003, 405, 187-194.
Singh T.B., Sariciftci N.S. Progress in plastic electronics devices. Annu. Rev. Mater. Res., 2006, 36, 199-230.
Unni K.N.N., Pandey A.K., Alem S., Nunzi J.-M. Ambipolar organic field-effect transistor fabricated by co-evaporation of pentacene and ArjV'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide. Chem. Phys. Lett., 2006, 421, No. 4/6, 554-557.
Hosoi Y., Tsunami D., Ishii H., Furukawa Y. Air-stable n-channel organic field-effect transistors based on iV,iV'-bis(4-trifluoromethylbenzyl)perylene-3,4,9,10-tetracarboxylic diimide. Chem. Phys. Lett., 2007, 436, No. 1/3, 139-143.
Tao N.J. Electron transport in molecular junctions. Nature Nanotechnol., 2006, 1, No. 3, 173-181.
Xu В., Xiao X., Yang X., Zang L., Tao N.N. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc., 2005,127, No. 8, 2386-2387.
Su W., Jiang J., Lu W., Luo Y. First-principles study of electrochemical gate-controlled conductance in molecular junctions. Nano Lett., 2006, 6, No. 9, 2091-2094.
Rothemund P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440, No. 7082, 297-302.
Andersen E.S., Dong M., Nielsen M.M., Jahn K., Subramani R, Mamdouh W., Golas M.M., Sander В., Stark H., Oliveira C.L.P., Pedersen J.S., Birkedal V, Besenbacher F., Gothelf К. V., Kjems J. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 2009, 459, No. 7243, 73-76.
1394
1395
1397
1398,
1399
1400
1401,
1402
1403,
1404,
1405
1406
1407,
1408,
1409,
1410
1411,
Douglas S.M., Dietzl H„ Liedl T„ Högberg B., Graf F., Shih W.M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 2009, 459, No. 7245, 414-418.
Shchepinov M.S., Udalova I.A., Bridgman A. J., Southern E.M. Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. Nucl. Acids Res., 1997, 25, No. 22, 44474454.
Shi J., Bergstrom D.E. Assembly of novel DNA cycles with rigid tetrahedral linkers. Angew. Chem. Int. Ed., 1997, 36, No. 1/2, 111-113.
Scheffler M., Dorenbeck A., Jordan S., Wüstefeld M., von Kiedrowski G. Self-assembly of trisoligonucleotidyls: the case for nano-acetylene and nano-cyclobutadiene. Angew. Chem. Int. Ed, 1999, 38, No. 22, 3311-3315
Grimau M.G., Iacopino D., Aviñó A., de la Torre B.G., Ongaro A., Fitzmaurice D., Wessels J., Eritja R. Synthesis of branched oligonucleotides as templates for the assembly of nanomaterials. Helv. Chim. Acta, 2003, 86, No. 8, 2814-2826.
Dolinnaya N., Gryaznov S., Ahle D., Chang C.-A., Shabarova Z.A., Urdea M.S., Horn T. Construction of branched DNA (bDNA) molecules by chemical ligation. Bioorg. Med. Chem. Lett., 1994, 4, No. 8, 1011-1018.
von Büren M., Petersen G.V., Rasmussen K, Brandenburg G., Wengel J. Branched oligonucleotides: automated synthesis and triple helical hybridization. Tetrahedron, 1995, 51, No. 31,8491-8506.
Tumpane J., Sandin P., Kumar R., Powers V.E.C., Lundberg E.P., Gale N., Baglioni P., Lehn J.-M., Albinsson B., Lincoln P., Wilhelmsson L.M., Brown T., Nordén B. Addressable high-information-density DNA nanostructures. Chem. Phys. Lett., 2007, 440, No. 1/3, 125129.
Lundberg E., Tumpane J., Kumar R., Sandin P., Gale N, Nandhakumar I.S., Albinsson B., Lincoln P., Wilhelmsson L.M., Brown T., Nordén B. Addressable molecular node assembly -high information density DNA nanostructures. Nucleic Acids Symp. Ser., 2008, 52, No. 1, 683-684.
Tumpane J., Lundberg E.P., Wilhelmsson L.M., Brown T., Nordén B. Addressable molecular node assembly - functional DNA nanostructures. Nucleic Acids Symp. Ser., 2008, 52, No. 1, 97-98.
Eckardt L.H., Naumann K., Pankau W.M., Rein M., Schweitzer M., Windhab N., von Kiedrowski G. Chemical copying of connectivity. Nature, 2002, 420, No. 6913, 286.
Mitra D., Di Cesare N., Sleiman H.F. Self-assembly of cyclic metal-DNA nanostructures using ruthenium tris(bipyridine)-branched oligonucleotides. Angew. Chem. Int. Ed., 2004, 43, No. 43, 5804-5808.
Gothelf K.V., Thomsen A., Nielsen M., Ció E., Brown R.S. Modular DNA-programmed assembly of linear and branched conjugated nanostructures. J. Am. Chem. Soc., 2004, 126, No. 4,1044-1046.
Yang H., Sleiman H.F. Templated synthesis of highly stable, electroactive, and dynamic metal-DNA branched junctions. Angew. Chem. Int. Ed., 2008, 47, No. 13, 2443-2446.
Earnshaw D.J., Gait M.J. Hairpin ribozyme cleavage catalyzed by aminoglycoside antibiotics and the polyamine spermine in the absence of metal ions. Nucleic Acids Res., 1998, 2d, No. 24,5551-5561.
Lilley D.M.J. Structure, folding and catalysis of the small nucleolytic ribozymes. Curr. Opin. Struct. Biol., 1999, 9, No. 3, 330-338.
Rupert P.B., Ferré-D 'Amaré A.R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis Nature, 2001, 410, No. 6830, 780-786.
1442,
1443,
1444,
1445
1446,
1447,
1448,
1449,
1450,
1451,
1452,
1453,
1454
1455,
1456,
1457
1458
1459
Wachter A., Jablonski J.-A., Ramachandran K.L. A simple and efficient procedure for the synthesis of 5'-aminoalkyl oligodeoxynucleotides. Nucleic Acids Res., 1986, 14, No. 20, 7985-7994.
Sproat B.S., Brown D.M. A new linkage for solid phase synthesis of oligodeoxyribonucleotides. Nucleic Acids Res., 1985,13, No. 8, 2979-2987.
Seio K., Wada T., Sakamoto K., Yokoyama S., Sekine M. Chemical synthesis and properties of conformationally fixed diuridine monophosphates as building blocks of the RNA turn motif. J. Org. Chem., 1998, 55, No. 5, 1429-1443.
Dubey I., Pratviel G., Meunier B. Synthesis and DNA cleavage of 2'-(9-amino-linked metalloporphyrin-oligonucleotide conjugates. J. Chem. Soc., Perkin Trans 1, 2000, No. 18, 3088-3095.
Cook P.D., Manoharan M. Carbamate-derivatized nucleosides and oligonucleosides. US Pat. 6,111,085, 2000.
Cook P.D., Manoharan M. Carbamate-derivatized nucleosides and oligonucleosides. US Pat. 6,166,188,2000.
Prhavc M., Lesnik E.A., Mohan V., Manoharan M. 2'-0-Carbamate-containing oligonucleotides: synthesis and properties, Tetrahedron Lett., 2001, 42, No. 50, 8777-8780.
Markiewicz W.T. Tetraisopropyldisiloxane-l,3-diyl, a group for simultaneous protection of 3'- and 5'-hydroxy functions of nucleosides. J. Chem. Res. (S), 1979, No.l, 24-25.
Beijer B., Grotli M., Douglas M.E., Sproat B.S. Simplified and cost effective syntheses of fully protected phosphoramidite monomers suitable for the assembly of oligo(2'-0-allylribonucleotides). Nucleosides Nucleotides, 1994,13, No. 9, 1905-1927.
Jameson D.M., Eccleston J.F. Fluorescent nucleotide analogs: synthesis and applications. Meth. Enzymol., 1997, 278, 363-390.
Oiwa K., Eccleston J.F., Anson M., Kikumoto M., Davis C.T., Reid G.P., Ferenczi M.A., Corrie J.E.T., Yamada A., Nakayama H., Trentham D.R. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives. Biophys. J., 2000, 78, No. 6,3048-3071.
Smith M., Rammler D.H., Goldberg I.H., Khorana H.G. Studies on polynucleotides. XIV. Specific synthesis of the C3—»Cs- interribonucleotide linkage. Syntheses of uridylyl-(3'—>5')-uridine and uridylyl-(3'^5')-adenosine. J. Am. Chem. Soc., 1962, 84, No. 3, 430-440.
Rannard S. P., Davis N.P. The selective reaction of primary amines with carbonyl imidazole containing compounds: selective amide and carbamate synthesis, Org Lett., 2000, 2, No. 14, 2117-2120.
Stetsenko D.A., Gait M.J. Efficient conjugation of peptides to oligonucleotides by "native ligation". J. Org. Chem., 2000, 65, No. 16, 4900^1908.
Geacintov N.E., Prusik T., Khosrofian J.M. Properties of benzopyrene-DNA complexes investigated by fluorescence and triplet flash photolysis techniques. J. Am. Chem. Soc., 98, No. 21, 6444-6452.
Guy Rio M. Spectries d'absorption de quelques corps insaturés appurtenant à le série du bis(phényléthyl)-9.10-anthracène. Comptes Rendus, 1952, 235, 1308-1310.
Friedel R. A., Orchin M. Ultraviolet spectra of aromatic compounds. New York. Wiley, 1951.
G. D. Fasman. Handbook of biochemystry and molecular biology. 3rd éd., CRC Press, 1975.
1460,
1461,
1462,
1463,
1464,
1465,
1466
1467
1468,
1469,
1470,
1471,
1472,
1473,
1474,
1475,
1476
Grawford A.G., Dwyer A.D., LiuZ., Steffen A., BeebyA., Pälsson L.-O., TozerD.J., Marder T.B. Experimental and theoretical studies of the photophysical properties of 2- and 2,7-functionalized pyrene derivatives. J. Am. Chem. Soc., 2011,133, No. 34, 13349-13362.
Gaballah S.T., Hussein Y.H.A., Anderson N., Lian Т. Т., Netzel T.L. Comparision of Py'+/dU'" charge-transfer state dynamics in 5-(l-pyrenyl)-2'-deoxyuridine nucleoside conjugates with amido-, ethylenyl-, and ethynyl linkers. J. Phys. Chem. A., 2005, 109, No. 48,10832-10845.
Wagner C., Rist M., Mayer-Enthart E., Wagenknecht H.-A. 1-Ethynylpyrene-modified guanine and cytosine as optical labels for DNA hybridization. Org. Biomol. Chem., 2005, 3, No. 48, 2062-2063.
Babu B.R., Hrdlichka P. J., McKenzie С. J., Wengel J. Optimized DNA targeting using N,N-bis(2-pyridylmethyl)-ß-alanyl 2'-amino-LNA. Chem. Commun. 2005, No. 13, 1705-1706.
MasseyM., Algar W.R., Krull U.J. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates. Anal. Chim. Acta 2006, 568, No. 1/2, 181-189.
Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Anal. Chem. 1999, 71, No. 22, 5054-5059.
Frutos A.G., Pal S., Quesada M., Lahiri J. Method for detection of single-base mismatches using molecular beacons. J. Am. Chem. Soc. 2002,124, No. 11, 2396-2397.
Shaner N.C., Campbell R.E., Steinbach P.A., Giepmans B.N.G., Palmer A.E., Tsien R.Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 2004, 22, No. 12, 1567-1572.
Benniston A.C., Harriman A., Howell S.L., Sams C.A., Zhi Y.-G. Intramolecular excimer formation and delayed fluorescence in sterically constrained pyrene dimers. Chem. Eur. J. 2007,13, No. 16, 4665—1-674.
Grimshaw J., Trocha-Grimshaw J. Characterization of 1,6- and 1,8-dibromopyrenes. J. Chem. Soc. Perkin Trans. 1,1972, No. 7,1622-1623.
Ogino К, Iwashima S., Inokuchi H, Harada Y. Photoelectric emission and electrical conductivity of the cesium complex with pyrene derivatives. Bull. Chem. Soc. Jpn. 1965, 38, No. 3, 473-477.
Часть промоторной области, кодирующей ген гомолога NG-диметиларгининдиметиламино-гидролазы (GenBank (http://www.ncbi.nlm.nih.gov), AFI29756, локус DJ01G24 (в составе МНС III, хромосома 6, часть 6р21).
Damha M.J., Giannaris P.A., Zabarylo S. V. An improved procedure for derivatization of controlled-pore glass beads for solid-phase oligonucleotide synthesis. Nucl. Acids Res., 1990,18, No. 13,3813-3821.
Thor ens en L.H., Jiao G.-S., Haaland W.C., Metzker M.L., Burgess K. Rigid, conjugated, fluoresceinated thymidine triphosphates: syntheses and polymerase mediated incorporation into DNA analogues. Chem. Eur. J., 2003, 9, No. 19, 4603^1610.
Okamoto A., Saito Y., Saito I. Design of base-discriminating fluorescent nucleosides. J. Photochem. Photobiol. C: Photochem. Rev., 2005, 6, No. 2/3, 108-122.
Marras S.A.E., Kramer F.R., Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res., 2002, 30, No. 21, el22.
Nazarenko I., Pires R., Lowe В., Obaidy M., Rashtchian A. Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res., 2002, 30, No. 9, 2089-2095.
1477. Koelle D.M., Corey L. Herpes Simplex: insights on pathogenesis and possible vaccines. Amu. Rev. Med., 2008, 59, 381-395.
1478. Perrone P., Luoni G.M., Kelleher M.R., Daverio F., Angell A., Mulready S., Congiatu C., Rajyaguru S., Martin J.A., Leveque V., Le Pogam S., Najera I., Klumpp K, Smith D.B., McGuigan C. Application of the phosphoramidate ProTide approach to 4'-azidouridine confers sub-micromolar potency versus hepatitis С virus on an inactive nucleoside. J. Med. Chem., 2007, 50, No. 8, 1840-1849.
1479. Robins M.J., Nowak I.,. Rajwanshi V.K, Miranda K, Cannon J.F., Peterson M.A., Andrei G., Snoeck R, De Clercq E., Balzarini J. Synthesis and antiviral evaluation of 6-(alkyl-heteroaryl)furo[2,3-d]pyrimidin-2(3H)-one nucleosides and analogues with ethynyl, ethenyl, and ethyl spacers at C6 of the furopyrimidine core. J. Med. Chem., 2007, 50, No. 16, 38973905.
1480. Perrone P., Daveiro F., Valente R, Rajyaguru S., Martin J.A., Leveque V., Le Pogam S., Najera I., Klumpp K, Smith D.B., McGuigan C. First example of phosphoramidate approach applied to a 4'-substituted purine nucleoside (4'-azidoadenosine): conversion of an inactive nucleoside to a submicromolar compound versus hepatitis С virus. J. Med. Chem., 2007, 50, No. 22, 5463-5470.
1481. Migliore M.D., Zonta N., McGuigan C., Henson G., Andrei G., Snoeck R, Balzarini J. Synthesis and antiviral activity of the carbocyclic analogue of the highly potent and selective anti-VZV bicyclo furano pyrimidines. J. Med. Chem., 2007, 50, No. 26, 64856492.
1482. Yedavalli V.S.R.K., Zhang N., Cai H, Zhang P., Starost M.F., Hosmane R.S., Jeang K.-T. Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. J. Med. Chem., 2008, 51, No. 16, 5043-5051.
1483. Haraguchi K, Shimada H, Tanaka H., Hamasaki Т., Baba M., Gullen E.A., Dutschman G.E., Cheng Y.-C. Synthesis and anti-HIV activity of 4'-substituted 4'-thiothymidines: a new entry based on nucleophilic substitution of the 4'-acetoxy group. J. Med. Chem., 2008, 51, No. 6, 1885-1893.
1484. Butora G., Olsen D.B., Carroll S.S., McMasters D.R., Schmitt C., Leone J.F., Stahlhut M., Burlein C., MacCoss M. Synthesis and HCV inhibitory properties of 9-deazaand 7,9-dideaza-7-oxa-2'-C-methyladenosine. Bioorg. Med. Chem., 2007,15, No. 15, 5219-5229.
1485. Mackman R.,L., Zhang L., Prasad V., Boojamra C.G., Douglas J., Grant D., Hui H., Kim C.U., Laflamme G., Parrish J., Stoycheva A.D., Swaminathan S., Wang K.Y., Cihlar T. Synthesis, anti-HIV activity, and resistance profile of thymidine phosphonomethoxy nucleosides and their bis-isopropyloxymethylcarbonyl (bisPOC) prodrugs. Bioorg. Med. Chem., 2007,15, No. 16, 5519-5528.
1486. Narayanasamy J., Pullagurla M.R., Sharon A., Wang J., Schinazi R.F., ChuC.K. Synthesis and anti-HIV activity of (-)-p-D-(2i?,4i?) 1,3-dioxolane 2,6-diamino purine (DAPD) (Amdoxovir) and (-)-(3-D-(2/?,4i?) 1,3-dioxolane guanosine (DXG) prodrugs. Antivir. Res., 2007, 75, No. 3,198-209.
1487. Koh Y.-H., Shim J.H., Girardet J.-L., Hong Z. Design and evaluation of a potential mutagen for hepatitis С virus. Bioorg. Med. Chem. Lett., 2007,17, No. 18, 5261-5264.
1488. Ikejiri M., Ohshima Т., Kato К, Toyama M.., Murata Т., Shimotohno К, Maruyama T. 5'-0-Masked 2'-deoxyadenosine analogues as lead compounds for hepatitis С virus (HCV) therapeutic agents. Bioorg. Med. Chem., 2007,15, No. 22, 6882-6892.
1489. Manta S., Agelis G., Botic Т., Cencic A., Komiotis D. Unsaturated fluoro-ketopyranosyl nucleosides: Synthesis and biological evaluation of 3-fluoro-4-keto-B-D-glucopyranosyl derivatives of //-benzoyl cytosine and A^-benzoyl adenine. Eur. J. Med. Chem., 2008, 43, No. 2, 420^128.
1490. Mackman R.L., Lin K.-Y., Boojamra C.G., Hui H., Douglas J., Grant D., Petrakovsky 0., Prasad V., Ray A.S., Cihlar T. Synthesis and anti-HIV activity of 2'-fluorine modified nucleoside phosphonates: Analogs of GS-9148. Bioorg. Med. Chem. Lett., 2008, 18, No. 3, 1116-1119.
1491. Zhu R., Wang M., Xia Y., Qu F., Neyts J., Peng L. Arylethynyltriazole acyclonucleosides inhibit hepatitis C virus replication. Bioorg. Med. Chem. Lett., 2008,18, No. 11, 3321-3327.
1492. Gerland B., Désiré J., Balzarini J., Décout J.-L. Anti-retroviral and cytostatic activity of 2',3'-dideoxyribonucleoside 3'-disulfides. Bioorg. Med. Chem., 2008, 16, No. 14, 68246831.
1493. Ikejiri M., Ohshima T., Fukushima A., Shimotohno K, Maruyama T. Synthesis and evaluation of 5'-modified 2'-deoxyadenosine analogues as anti-hepatitis C virus agents. Bioorg. Med. Chem. Lett., 2008,18, No. 16, 4638^1641.
1494. Smith D.B., Kalayanov G., Sund C., Winqvist A., Pinho P., Maltseva T., Morisson V., Leveque V., Rajyaguru S., Le Pogam S., Najera 1.1, Benkestock K, Zhou X.-X, Maag H., Cammaek N., Martin J.A., Swallow S., Johansson N.G., Klumpp K, Smith M. The design, synthesis, and antiviral activity of 4'-azidocytidine analogues against hepatitis C virus replication: the discovery of 4'-azidoarabinocytidine. J. Med. Chem., 2009, 52, No. 1,219223.
1495. Wan J., Xia Y., Liu Y, Wang M., Rocchi P., Yao J., Qu F., Neyts J., Iovanna J.L., Peng L. Discovery of novel arylethynyltriazole ribonucleosides with selective and effective antiviral and antiproliferative activity. J. Med. Chem., 2009, 52, No. 4, 1144-1155.
1496. Smith D.B., Kalayanov G., Sund C., Winqvist A., Maltseva T., Leveque V.J.-P, Rajyaguru S„ Le Pogam S., Najera I.l, Benkestock K, Zhou X.-X., Kaiser A.C., Maag IL, Cammaek N., Martin J.A., Swallow S., Johansson N.G., Klumpp K, Smith M. The design, synthesis, and antiviral activity of monofluoro and difluoro analogues of 4'-azidocytidine against hepatitis C virus replication: the discovery of 4'-azido-2'-deoxy-2'-fluorocytidine and 4'-azido-2'-dideoxy-2',2'-difluorocytidine. J. Med. Chem., 2009, 52, No. 9, 2971-2978.
1496. Zhou S., Draeh J.C., Prichard M.N., Zemlieka J. (Z)- and (E)-2-(l,2-dihydroxyethyl)methylenecyclopropane analogues of 2'-deoxyadenosine and 2'-deoxyguanosine. Synthesis of all stereoisomers, absolute configuration, and antiviral activity. J. Med. Chem., 2009, 52, No. 10, 3397-3407.
1497. Piperno A., Giofrè S.V., Lannazzo D., Romeo R., Romeo G., Chiacchio U., Rescifina A., Piotrowska D.G. Synthesis of C-4'truncated phosphonated carbocyclic 2'-oxa-3'-azanucleosides as antiviral agents. J. Org. Chem., 2010, 75, No. 9, 2798-2805.
1498. Srivastav N.C., Shakya N., Mak M., Agrawal B., Turrell D.L., Kumar R. Antiviral activity of various l-(2'-deoxy-P-D-lyxofuranosyl), l-(2'-fluoro-(3-D-xylofuranosyl), l-(3'-fluoro-P-D-arabinofuranosyl), and 2'-fluoro-2',3'-didehydro-2',3'-dideoxyribose pyrimidine nucleoside analogues against duck hepatitis B virus (DHBV) and human hepatitis B virus (HBV) replication. J. Med. Chem., 2010, 53, No. 19, 7156-7166.
1499. Topalis D., Pradère U., Roy V., Caillat C„ Azzouri A., BroggiJ., SnoeckR., Andrei G., Lin J., Eriksson S., Alexandre J.A., El-Amri C., Deville-Bonn D., Meyer P., Balzarini J., Agrofoglio L.A. Novel antiviral C5-substituted pyrimidine acyclic nucleoside phosphonates selected as human thymidylate kinase substrates. J. Med. Chem., 2011, 54, No. 1, 222-232.
1500. Ruiz J., Beadle J.R., Butter R.M., SchreiwerJ., Prichard M.N., Keith K.A., Lewis K.C., Hostetler K. Y Synthesis, metabolic stability and antiviral evaluation of various alkoxyalkyl esters of cidofovir and 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine. Bioorg. Med. Chem., 2011, L9, No. 9, 2950-2958.
1501
1502
1503
1504
1505
1506.
1507,
1508,
1509,
1510,
1511,
1512.
1512.
1513.
Zakharova V.M., Serpi M., Krylov I.S., Peterson L.W., Breitenbach J.M., Borysko K.Z., Drach J.C., Collins M., Hilfinger J.M., Kashemirov B.A., McKenna C.E. Tyrosine-based 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine and -adenine ((S)-HPMPC and (S)-HPMPA) prodrugs: synthesis, stability, antiviral activity, and in vivo transport studies. J. Med. Chem., 2011, 54, No. 16, 5680-5693.
Romanowska J., Sobkowski M., Szymahska-Michalak A., Kozodziej K., Dabrowska A., Lipniacki A., Piasek A., Pietrusiewiez Z.M., Figlerowiez M., Guranowski A., Boryski J., Stawinski J., Kraszewski A. Aryl H-phosphonates 17: (N-aryl)phosphoramidates of pyrimidine nucleoside analogues and their synthesis, selected properties, and anti-HIV activity. J. Med. Chem., 2011, 54, No. 19, 6482-6491.
MeGuigan C., Madela K., Aljarah M., Bourdin C., Arriea M., Barrett E., Jones S., Kolykhalov A., Bleiman В., Bryant K.D., Ganguly В., Gorovits E., Henson G., Hunley D., Hutchins J., Muhammad J., Obikhod A., Patti J., Walters C.R., Wang J., Vernaehio J., Ramamurty C. V.S., Battina S.K., Chamberlain S. Phosphorodiamidates as a promising new phosphate prodrug motif for antiviral drug discovery: application to anti-HCV agents. J. Med. Chem., 2011, 54, No. 24, 8632-8645.
MeGuigan C., Yarnold C.J., Jones G., Velazquez S., Barueki H., Braneale A., Andrei G., Snoeck R, De Clereq E., Balzarini J. Potent and selective inhibition of varicella-zoster virus (VZV) by nucleoside analogues with an unusual bicyclic base. J. Med. Chem., 1999, 42, No. 22, 4479^1484.
MeGuigan C., Barueki H., Carangio A., Blewett S., Andrei G., Snoeck R, De Clereq E., Balzarini J., Erichsen J. T. Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain. J. Med. Chem., 2000, 43, No. 26, 4993-4997.
MeGuigan C., Pathirana R. N., Snoeck R, Andrei G., De Clereq E., Balzarini J. Discovery of a new family of inhibitors of human cytomegalovirus (HCMV) based upon lipophilic alkyl furano pyrimidine dideoxy nucleosides: action via a novel non-nucleosidic mechanism. J. Med. Chem., 2004, 47, No. 7, 1847-1851.
De Clereq E. Highlights in the discovery of antiviral drugs: a personal retrospective. J. Med. Chem., 2010, 53, No. 4, 1438-1450.
Ray A.S., Hostetler K.Y. Application of kinase bypass strategies to nucleoside antivirals. Antivir. Res., 2007, 75, No. 3, 198-209.
De Winter H., Herdewijn P. Understanding the binding of 5-substituted 2'-deoxyuridine substrates to thymidine kinase of herpes simplex virus type-1. J. Med. Chem., 1996, 39, No. 24, 4727-4737.
St. Vincent M.R., Colpitis C.C., Ustinov A. V, Muqadas M., Joyce M.A., Barsby N.L., Epand R.F., Epand R.M., Khramyshev S.A., Valueva O.A., Korshun V.A., Tyrrell D.L.J., Schang L.M. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc. Natl. Acad. Sci. USA, 2010,107, No. 40, 17339-17344 (2010).
Davidson D., Bernhard S.A. The structure of Meldrum's supposed /i-lactonic acid. J. Am. Chem. Soc., 1948, 70, No. 10, 3426-3428.
ТЦепинов M.C., Есипов Д.С., Коробко В.Г., Добрынин В.Н. Специфично отщепляемые синтетические олигодезоксирибонуклеотиды для обратимой иммобилизации ДНК. Биоорган, химия, 1994, 20, № 8/9, 955-966.
Caruthers М.Н., Bar one A.D., Beaucage S.L., Dodds D.R., Fisher E.F., McBride L.J., Matteucci M., Stabinsky Z., Tang J.-Y. Chemial synthesis of deoxyoligonucleotides by the phosphoramidite method. Meth. Enzymol., 1987,154, 287-313.
Nielsen J., Dahl O. Improved synthesis of (Pri2N)2POCH2CH2CN. Nucl. Acids Res., 1987, 15, No. 8, 3626.
1514,
1515
1516
1517,
1518
1519.
1520.
1521.
1522.
1523.
1524,
1525.
1526.
1527.
1528.
1529.
1530.
1531.
1532.
1533.
Bannwarth W., Trzeciak А. A simple and effective chemical phosphorylation procedure for biomolecules. Helv. Chim. Acta, 1987, 70, No. 1, 175-186.
Sinha N.D., Biernat J., Köster H. ß-Cyanoethyl N,N-dialkylamino/ N-morpholinomonochloro phosphoamidites, new phosphitylating agents facilitating ease of deprotection and work-up of synthesized oligonucleotides. Tetrahedron Lett., 1983, 24, No. 52,5843-5846.
Smith L.M., Kaiser R.J., Sanders J.Z., Hood L.E. The synthesis and use of fluorescent oligonucleotides in DNA sequence analysis. Meth. Enzymol., 1987,155, 260-301.
So Y.-H., Zaleski J.M., Murlick C., Ellaboudy A. Synthesis and photophysical properties of some benzoxazole and benzothiazole compounds. Macromolecules, 1996, 29, No. 8, 27832795.
Yokoyama M., Yoshida S., Imamoto T. Organic reactions using trimethylsilyl polyphosphate (PPSE): a convenient synthesis of nitriles from carboxamides. Synthesis, 1982, No. 7, 591592.
Rieche A., Gross H., Höft E. Synthesen aromatischer Aldehyde mit Dichlormethyl-alkyläthern. Chem. Ber., 1960, 93, No. 1, 88-94.
Carboni В., Benalil A., Faultier M. Aliphatic amino azides as key building blocks for efficient polyamine syntheses. J. Org. Chem., 1993, 58, No. 14, 3736-3741.
Schwabacher A.W., Lane J.W., Schiesher M.W., Leigh K.M., Johnson C.W. Desymmetrization reactions: efficient preparation of unsymmetrically substituted linker molecules. J. Org. Chem., 1998, 63, No. 5, 1727-1729.
Sarobe M., Zwikker J.W., Snoeijer J.D., Wiersum U.E., Jenneskens L.W. Preparative flash vacuum thermolysis. A short synthesis of cyclopenta[c,<i]pyrene. J. Chem. Soc., Chem. Commun., 1994, No. 1, 89-90.
Bilow N., Landis A.L., Austin W.B., Woolley D.D. Arylacetylenes as high char forming matrix resins. SAMPEJ., 1982. 18, No. 3, 19-24.
Пискунов A.B., Мороз A.A., Шварцберг М.С. Синтез 9,10-диацетиленилантраценов. Изв. АН СССР, Сер. хим. 1990, 39, No. 6, 1441-1443.
Reimlinger Н. Transformation of aromatic ketones into ethynyl-derivatives. Chem. Industry, 1969, No. 37,1306-1307.
Marcus E., Fitzpatrick J. Notes-some dimethylaminomethyl derivatives of polycyclic aromatic hydrocarbons. J. Org. Chem., 1995, 24, No. 7, 1031-1032.
Goldschmiedt G. Ueber die Structur des Pyrens. Justus Liebigs Ann. Chem., 1907, 351, No. 1/3,218-232.
Graebe C. Ueber Pyren. Justus Liebigs Ann. Chem., 1871,158, No. 3, 285-299.
Langstein E. Beiträge zur Kenntnis der Struktur des Pyrens. Monatsh. Chem. 1910, 31, No. 10,861-870.
Cook J.W., Hewett C.L., Hieger I. The isolation of a cancer-producing hydrocarbon from coal tar. Parts I, II, and III. J. Chem. Soc., 1933, 395-405.
Zieger H. E. Alkylperylenes. The isomeric ethylperylenes. J. Org. Chem. 1966, 31, No. 9, 2977-2981.
Buu-Hoi N. P., Long C.T. Hydrocarbures polycycliques aromatiques. II. La formylation du perylene et du 3-methylperylene. Ree. Trav. Chim. Pay-Bas, 1956, 75, No. 10, 1121-1126.
KarrerP. Substituted phenyl derivatives. US Pat. 4,172,146,1979.
1534. Buzby G.C., Jr., Edgren R.A., Fisher J.A., Hughes G.A., Jones R.C., Ledig K., Pattison T. W., Rees R., Smith H, Smith L.L., Teller D.M., Wendt G.R. Oxoestrapolyene ketals as antilipemic agents. J. Med. Chem., 1964, 7, No. 6, 755-758.
1535. Sweet F. Boron estrogens: synthesis, biochemical and biological testing of estrone and estradiol-17(3 3-carboranylmethyl esters. Steroids, 1981, 37, No. 2, 223-238.
1536. Sengupta S., Sadhukhan S.K., Singh R.S. A palladium catalyzed synthesis of wheel and axle hydrocarbons: strategic use of tetraphenylmethane stoppers. Ind. J. Chem., B, 2002, 41, No. 3, 642-644.
1537. Iglesias B., Alvarez R., de Lera, A.R. A general synthesis of alkylpyridines. Tetrahedron, 2001, 57, No. 15,3125-3130.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.