Миогенная и нейрональная дифференцировка клеток личинок мидии Mytilus trossulus in vivo и in vitro тема диссертации и автореферата по ВАК РФ 03.00.30, кандидат биологических наук Дячук, Вячеслав Алексеевич

  • Дячук, Вячеслав Алексеевич
  • кандидат биологических науккандидат биологических наук
  • 2008, Владивосток
  • Специальность ВАК РФ03.00.30
  • Количество страниц 109
Дячук, Вячеслав Алексеевич. Миогенная и нейрональная дифференцировка клеток личинок мидии Mytilus trossulus in vivo и in vitro: дис. кандидат биологических наук: 03.00.30 - Биология развития, эмбриология. Владивосток. 2008. 109 с.

Оглавление диссертации кандидат биологических наук Дячук, Вячеслав Алексеевич

ОГЛАВЛЕНИЕ.

СПИСОК СОКРАЩЕНИЙ.

ВВЕДЕНИЕ.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. Жизненный цикл и миогенез D. melanogaster.

1.2. Жизненный цикл и миогенез С. elegans.

1.3. Жизненный цикл и миогенез двустворчатых моллюсков.

1.4. Анатомия мышц взрослых двустворчатых моллюсков.

1.5. Маркеры мышечной дифференцировки.

1.6. Анатомия мышц личинок моллюсков.

1.7. Нейрогенез личинок моллюсков.

1.8. Роль белков, участвующих в сборке толстых филаментов.

1.9. Роль эластичных белков в сборке саркомеров.

1.10. Роль белков тонких филаментов в сборке саркомеров.

1.11. Миофибриллогенез позвоночных животных.

1.12. Миогенная и нейрональная дифференцировка клеток беспозвоночных in vitro.

ГЛАВА 3. МАТЕРИАЛ И МЕТОДЫ.

3.1. Животные.

3.2. Получение актомиозиновых (AM) экстрактов мидии.

3.2.1. Выделение актомиозиновых экстрактов из яйцеклеток и личинок мидии и приготовление проб для электрофореза.

3.2.2. Выделение актомиозиновых экстрактов из переднего аддуктора взрослых животных и приготовление проб для электрофореза.

3.3. Электрофорез в 8% полиакриламидном геле в присутствии додецилсульфата натрия (ДСН).

3.3.1. Приготовление геля.

3.3.2. Условия разделения и окрашивания гелей.

3.4. Количественный анализ белков, разделенных электрофорезом.

3.5. Получение поликлональных антител кролика к белкам толстых нитей гладких мышц мидии.

3.6. Иммуноблотгинг.

3.7. Процедура получения первичной культуры клеток мидии.

3.7. /. Фракционирование клеток личинок мидии в градиенте Перколла.

3.8. Антитела.

3.9. Иммунохимия.

3.10. Сканирующая конфокальная лазерная микроскопия и обработка изображений.

3.12. Определение пролиферативной активности клеток in vitro.

3.12.1. Детекция БДУ в культуре клеток мидии.

3.12.2. Выявление активности щелочной фосфатазы в культуре клеток мидии 44 4.1. Выделение тотальной РНК и ее очистка.

4.1. ОТ-ПЦР.

4.2. Статистическая обработка полученных данных.

ГЛАВА 4. РЕЗУЛЬТАТЫ.

4.1. МИОГЕНЕЗ IN VIVO.

4.1.1. Экспрессия мышечных белков мидии М. trossulus.

4.1.1.1. Изменение состава мышечных белков в онтогенезе мидии.

4.1.1.2. Количественная оценка соотношения основных белков мышц личинок и взрослых моллюсков.

4.1.2. Анализ экспрессии твитчина на разных стадиях развития мидии.

4.1.3. Детекция парамиозина в раннем эмбриогенезе мидии.

4.1.4. Морфологический анализ развивающейся мышечной системы.

4.1.5. Локализация мышечных и нейрональных элементов на ранних стадиях развития мидии.

4.2. МИОГЕНЕЗ IN VITRO.

4.2.1. Первичная культура клеток личинок мидии М. trossulus.

4.2.2. Пролиферация клеток на разных субстратах.

4.2.3. Выявление активности щелочной фосфатазы.

4.2.4. Миофибриллогенез in vitro.

4.2.5. Миогенная и нейрональная дифференцировка в первичной культуре клеток мидии.

ГЛАВА 4. ОБСУЖДЕНИЕ.

4.1. МИОГЕНЕЗ IN VIVO.

4.1.1. Анализ белкового состава мышц личинок мидии.

4.1.2. Миогенная и нейрональная дифференцировка личинок мидии М. trossulus

4.2. МИОГЕНЕЗ IN VITRO.

4.2.1. Поведение клеток в культуре.

4.2.2. Миофибриллогенез.

4.2.3. Миогенная и нейрональная дифференцировка клеток в культуре мидии

Рекомендованный список диссертаций по специальности «Биология развития, эмбриология», 03.00.30 шифр ВАК

Введение диссертации (часть автореферата) на тему «Миогенная и нейрональная дифференцировка клеток личинок мидии Mytilus trossulus in vivo и in vitro»

Актуальность проблемы

Выяснение механизмов, контролирующих дифференциацию мышечной и нервной системы, является одной из важнейших проблем современной биологии развития. Большинство исследований миогенеза и нейрогенеза было проведено на позвоночных животных. Однако прогресс, достигнутый в последнее время в изучении развития мышечной и нервной систем в некоторых группах беспозвоночных животных, позволит выяснить общие закономерности развития двух систем.

Исследования последнего десятилетия в основном были направлены на выяснение механизмов специализации предшественников мышечных и нервных клеток всего лишь двух модельных объектов: дрозофилы Drosophila melanogaster и нематоды Caenorhabditis elegans. Расширение круга модельных объектов необходимо для понимания как общих, эволюционно консервативных основ миогенеза, так и его особенностей у представителей разных таксонов многоклеточных животных. Особый интерес в этом плане представляют двустворчатые моллюски.

У двустворчатых моллюсков обнаружены поперечно-полосатые, косо-исчерченные и гладкие мышцы. Гладкие мышцы моллюсков - это одна из общепринятых модельных систем для изучения регуляции мышечного сокращения и, в частности, механизма запирательного тонуса, регулируемого нейромедиаторами (Twarog, 1976). Сердцевину толстых нитей таких мышц образует белок парамиозин (Riiegg, 1961), на поверхности которого расположены миозин (Szent-Gyorgyi et al., 1971), миород (Shelud'ko et al., 1999) и твитчин (Vibert et al., 1993). Предполагают, что фосфорилирование твитчина регулирует запирательный тонус гладких мышц двустворчатых моллюсков (Siegman et al., 1998), а в основе этого явления лежит образование твитчиновых сшивок между толстыми и тонкими нитями (Shelud'ko et al., 2004; 2007). Свойства мышц взрослых моллюсков интенсивно изучаются уже более 40 лет. Однако данные о времени начала дифференцировки, образования зрелых мышечных волок и последующего формирования мышечной системы в онтогенезе моллюска Mytilus trossulus отсутствуют.

Двустворчатые моллюски имеют бифазный жизненный цикл, в котором взрослому животному предшествует стадии свободно плавающих личинок. Очевидное эволюционное преимущество такого цикла - повышенная выживаемость и лучшее расселение потомков. Развитие некоторых двустворчатых моллюсков изучено на уровне электронной микроскопии (Ваупе, 1976; Cragg, 1985; Малахов, Медведева, 1985; Cragg, Crisp, 1991; Флячинская, Кулаковский, 1991), но детальное изучение мышц личинок двустворчатых моллюсков с применением современных методов биохимии и иммунологического маркирования ранее не предпринимались, а данных о взаимодействии мышечной и нервной систем, особенно на ранних этапах развития, отсутствуют. Использование первичной культуры клеток личинок мидии Mytilus trossulus и современных адекватных маркеров дифференцировки могут помочь заполнить «белые пятна» в исследовании основных этапов развития мышечной и нервной систем моллюсков.

Цель и задачи работы

Целью работы было изучение закономерностей дифференцировки мышечных клеток, формирования мышечной системы и её взаимосвязи с нервной системой в раннем онтогенезе мидии Mytilus trossulus.

В рамках поставленной цели предстояло решить следующие задачи:

• выяснить последовательность появления мышечных белков в развитии мидии;

• определить стадию начала экспрессии гена твитчина в развитии мидии;

• провести детальный морфологический анализ развивающейся мышечной системы личинок мидии;

• установить время появления первых нервных клеток, взаиморасположение мышечных и нейрональных структур в раннем онтогенезе мидии;

• Выяснить, возможно ли воспроизведение миогенной и нейрональной программ дифференцировки в первичной культуре клеток полученной из личинок мидии премиогенных стадий развития.

Научная новизна и теоретическое значение работы

Впервые установлено, что парамиозин белок толстых нитей мидии присутствует в кортексе неоплодотворенных яйцеклеток мидии М. trossulus. Другие белки толстых нитей, твитчин и миозин, экспрессируются одновременно в первых мышечных клетках личинок мидии и задолго до начала формирования мышечной системы личинки мидии велигера. Мышцы взрослого моллюска закладываются на стадии раннего велигера и развиваются параллельно с мускулатурой личинки. Показано, что поперечно-полосатые миофибриллы появляются на ранних стадиях развития личинок. Обнаружена кардинальная перестройка мышечной системы личинки во время метаморфоза, в результате которой развивается полноценная гладкая мускулатура взрослых моллюсков, способная к состоянию запирательного тонуса. Показано, что первые нервные клетки появляются раньше мышечных клеток личинок двустворчатых моллюсков. Миогенная и нейрональная программы, запускаемые в раннем онтогенезе моллюсков, могут быть реализованы в культуре клеток, полученных из личинок премиогенных стадий развития. Миогенная программа, воспроизведенная in vitro, сходна с таковой in vivo и в обоих случаях протекает без формирования многоядерных миотуб в отличие от миогенеза позвоночных животных.

Научно-практическое значение работы

Полученные маркеры дифференцировки мышечных клеток и тестированные в экспериментах маркеры нейрогенеза могут быть использованы для анализа нейро- и миоанатомии личинок и взрослых беспозвоночных животных и могут представлять интерес для специалистов, изучающих процессы дифференцировки клеток как in vivo, так и in vitro. Разработанные условия долговременного культивирования позволят проводить различные молекулярно-биологические манипуляции, для изучения механизмов индукции и ингибирования дифференцировки клеток. Методические разработки и часть результатов работы включены в программу лекций и практических занятий спецкурса «Теоретические и практические основы культивирования клеток морских беспозвоночных животных» для студентов Отделения биохимии и биотехнологии АЭМББТ ДВГУ.

Апробация работы и публикации

Результаты работы были доложены на ежегодных конференциях Института биологии моря им. А.В. Жирмунского ДВО РАН (г. Владивосток, 2003; 2006; 2008); на Ежегодной региональной школе-конференции по актуальным проблемам химии и биологии (г. Владивосток, 2004); на 8-ой Всероссийской школе-конференции молодых ученых «Биология - наука XXI века» (г. Пущино, 2004); на Всероссийском симпозиуме «Биология клетки в культуре» (г. Санкт-Петербург,

2006); на Международном симпозиуме «Клеточные, молекулярные и эволюционные аспекты морфогенеза» (г. Москва, 2007); на семинаре Лаборатории структуры и функции хромосом Биологического НИИ СПбГУ (г. Санкт-Петербург,

2007) и на Международном симпозиуме «Biological Motility: Achievements and Perspectives» (г. Пущино, 2008). По теме диссертации опубликовано 10 работ, из них 3 статьи в рецензируемых журналах из списка ВАК.

Финансовая поддержка работы

Работа выполнена при финансовой поддержке грантов ДВО РАН (гранты № 06-II-CO-06-025, № НТ-08-016-04), РФФИ (гранты № 03-04-49568, № 06-04-96039) и гранта «Лучший аспирант РАН-2008» Фонда содействия отечественной науке.

Структура и объем работы

Диссертация состоит из введения, четырех глав, заключения, выводов и списка литературы. Работа изложена на 111 страницах, иллюстрирована 24 рисунками и 1 таблицей. Список литературы содержит 196 наименований, из них 185 на английском языке.

Похожие диссертационные работы по специальности «Биология развития, эмбриология», 03.00.30 шифр ВАК

Заключение диссертации по теме «Биология развития, эмбриология», Дячук, Вячеслав Алексеевич

ВЫВОДЫ

1. Впервые установлено, что парамиозин, белок толстых нитей мышц мидии, присутствует в кортексе неоплодотворенных яйцеклеток. Другие белки толстых нитей, твитчин, миозин и миород, экспрессируются задолго до начала формирования мышечной системы личинки мидии велигера.

2. Экспрессия гена, кодирующего твитчин, начинается со стадии бластулы.

3. Первые мышечные клетки появляются на стадии ранней трохофоры и формируют кольцо, состоящее из поперечно-полосатых мышечных клеток. Кольцо трансформируется на стадии велигера в отдельные поперечнополосатые ретракторы, которые резорбируются в процессе метаморфоза личинки. При этом гладкие мышцы взрослого моллюска закладываются до метаморфоза на стадии раннего велигера и развиваются параллельно с мускулатурой личинки.

4. Нейрональные клетки появляются на стадии ранней трохофоры до появления первых мышечных клеток. Показано, что сенсорные клетки апикального органа расположены в центре и на периферии поперечнополосатого мышечного кольца поздней трохофоры. Морфологических контактов между нейронами и миофибриллами на ранних стадиях развития мидии не обнаружено.

5. Миогенная и нейрональная программы дифференцировки могут быть воспроизведены в культуре клеток. Миогенная программа, воспроизведенная in vitro, сходна с таковой in vivo и в обоих случаях протекает без формирования многоядерных миотуб в отличие от миогенеза позвоночных животных. Обнаружена самоорганизация диссоциированных клеток мидии в культуре с образованием нейромышечных колоний. Синаптических контактов при кокультивирования миоцитов и нейронов не обнаружено.

БЛАГОДАРНОСТИ

Автор выражает глубокую признательность научному руководителю д.б.н. Нэлии Адольфовне Одинцовой и заведующему лаборатории биофизики клетки ИБМ им. А.В. Жирмунского Николаю Семеновичу Шелудько. Я также искренне благодарен моим коллегам из лаборатории сравнительной физиологии ИБР им. Н.К. Кольцова РАН д.б.н. Л.П. Незлину, д.б.н. Е.Е. Воронежской, сотруднику NHLBI/NIH (США) к.б.н. С. Плотникову за ценные замечания и комментарии в обсуэ/сдении работы, заведующей лаборатории структуры и функции хромосом д.б.н. Е.Р. Гагинской за предоставленную возможность работы в ЦКП "ХРОМАС" СПбГУ и сотрудников лаборатории А. Юргениса и А. Радаева. Отдельная благодарность сотрудникам вивария ТИБОХа и лично Г.Ф. Павленко за возможность работы по получению антител, главному специалисту группы электронной микроскопии ИБМ им. ЖирмуДВО РАН Д.В. Фомину за помощь в напылении стекол и научному сотруднику ИБМ ДВО РАН Н.К. Колотухиной за помощь в сборе личинок мидии из планктона. Я также искренне благодарю моих коллег из лаборатории и биофизики клетки и лаборатории генетики ДВО РАН: Яковлева КВ., Кипрюшину Ю.О., Матусовского О.С, Матусовскую Г.Г. и Семину А.В. за помощь в работе, ценные советы и теплую рабочую атмосферу.

ЗАКЛЮЧЕНИЕ

В данной работе представлены результаты исследования анатомии мышц в процессе развития двустворчатого моллюска М. trossulus. Сделан акцент на развитие мышечной и нервной системы личинок мидии ранних стадий развития мидии. Описаны пространственные и временные паттерны экспрессии и организации мышечных белков в строго-упорядоченные структуры, саркомеры. Впервые установлено, что парамиозин белок толстых нитей мидии присутствует в кортексе неоплодотвореиных яйцеклеток мидии М. trossulus. Мышечные белки экспрессируются одновременно в первых мышечных клетках личинок мидии и задолго до начала сборки мышечной системы личинки мидии велигера. Показано, что исчерченные миофибриллы появляются на ранних стадиях развития личинок. Обнаружена резорбция поперечно-полосатой части мышечной системы личинки после метаморфоза, в результате которой развивается полноценная гладкая мускулатура взрослых моллюсков, способная к состоянию запирательного тонуса. Показано, что мышечные клетки и нейроны личинок появляются на ранних стадиях развития мидии, однако нейроны дифференцируются немного раньше, чем миоциты. Обнаружено, что серотонин-иммунореактивные клетки расположены в центре поперечно-полосатого мышечного кольца, а РМИРамидные клетки на его периферии. Впервые разработаны условия миогенной и нейрональной дифференцировки клеток личинок мидии в культуре. С помощью специфических маркеров прослежены основные стадии морфогенеза нейронов и миоцитов. Миогенная программа, воспроизведенная in vitro, сходна с таковой in vivo и в обоих случаях протекает без формирования многоядерных миотуб в отличие от миогенеза позвоночных животных.

Список литературы диссертационного исследования кандидат биологических наук Дячук, Вячеслав Алексеевич, 2008 год

1. Егоров A.M., Осипов А.П., Дзантиев Б.Б., Гаврилова Е.М. Теория и практика иммуноферментного анализаМ: Высшая школа, 1991. 288 с.

2. Жуков Е.К., Итина Н.А., Магазаник Л.Г., Мандельштам Ю.Г., Наследов Г.А., Свидерский В.Л.,Скоробовичук Н.Ф., Ушаков В.Б. Развитие сократительной функции мышц двигательного аппрата. Л.-.Наука. 1974. 170 с.

3. Керкис А.Ю., Исаева В.В. Влияние прикрепления к твердому субстрату на структурную организацию скелетно-мышечных симпластов //Цитология. 1988. Т.ЗО, №1. С. 44-48.

4. Малахов В.В., Медведева Л. А. Эмбриональное и раннее личиночное развитие двустворчатого моллюска Mytilus edulis (Mytilida, Mytilidae) // Зоол. Журнал. 1985. Т. LXIV, вып. 12. С. 1808-1814.

5. Мотавкин П.А., Хотимченко Ю.С., Деридович И.И. Регуляция размножения и биотехнология получения половых клеток у двустворчатых моллюсков. М.: Наука. 1985.216 с.

6. Одинцова Н.А., Дячук В.А., Карпенко А.А. Развитие мышечного аппарата и сократительной активности мидии Mytilus trossulus (Mollusca: Bivalvia). Онтогенез. 2007. Т. 38, №. 3. С. 235-240.

7. Одинцова Н.А. Основы культивирования клеток морских беспозвоночных. Владивосток: Дальнаука. 2001. 162 с.

8. Озернюк Н.Д. Регуляция миогенеза // Известия АН. Серия Биологическая. 1998. №3. С. 330-343.

9. Озернюк Н.Д. Сравнительные особенности миогенеза у беспозвоночных, низших и высших позвоночных животных // Онтогенез 2004. Т. 35, № 6. С. 441450.

10. Сахаров Д.А., Каботянский Е.А. Интеграция поведения крылоногого моллюска дофамином и серотонином // Журн. общей биологии. 1986. Т. 47. С. 234245.

11. Флячинская Л.П., Кулаковский Э.Л. Личиночное развитие двустворчатого моллюска Mytilus edulus (Mytilida, Mytilidae) // Зоол. Журнал. 1991. Т. 70, вып. 11. С. 23-29.

12. Ambros V.R. Control of developmental timing in Caenorhabditis elegans II Current Opinion in Genetics and Development 2000. Vol. 10. P. 428-433.

13. Ayme-Southgate A., Boubaix C., Riebe Т., Southgate R. Assembly of the giant protein projectin during myofibrillogenesis in Drosophila indirect flight muscles // BMC Cell Biology. 2004. Vol.5 P. 1-11.

14. Barber B.J., Blake N.J. Intra-organ biochemical transformations associated with oogenesis in the bay scallop, Argopecten irradians concentricus (Say), as indicated by 14C incorporation //Biol. Bull. 1985. Vol. 168, № 1. P. 39-49.

15. Bate M. The embryonic development of larval muscles in Drosophila // Development 1990. Vol. 110, № 3. P. 791-804.

16. Bate M., Arias A.M. The Development of Drosophila melanogaster И Drosophila / Ed. Bate M., Cold Spring Harbor Laboratory Press, 1993. P. 200-290.

17. Bayne B.L. The biology of mussel larvae // Marine mussels: their ecology and physiology / Ed.: Bayne B.L. Cambridge University Press, Cambridge. 1976. P. 81-120.

18. Beach R.L., Jeffery W.R. Multiple actin genes encoding the same muscle isoform are expressed during ascidian development // Dev. Biol. 1992. Vol. 151. P. 55-66.

19. Bechem M., Pieper F., Pott L. Guinea pig arterial cardioballs // Basic Res. Cardiol. 1985. Vol. 80, suppl. 1. P. 19-22.

20. Beinbrech G., Ashton F.T., Pepe F.A. The invertebrate myosin filament: subfilament arrangement of the solid filaments of insect flight muscles // Biophys J. 1992. Vol. 61, № 6. P. 1495-512.

21. Bejsovec A., Anderson P. Functions of the myosin ATP and actin binding sites are required for C. elegans thick filament assembly // Cell. 1990. Vol. 60, № 1. P. 133-40.

22. Benian G.M., Kiff J.E., Neckelmann N., Moerman D.G., Waterston R.H. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans II Nature 1989. Vol. 342. P. 45-50.

23. Berker K. A., HartN.H. Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis // J. Cell Sci. 1999. Vol. 112. P. 97-110.

24. Bhadriraju K., Hansen L.K. Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness II Exp.Cell Res. 2002. Vol. 278. P. 92-100.

25. Bird A.F., Bird J. The structure of nematodes // Nematode / Ed.: Bird A.F. S. Diego, CA, Academic Press, 1991. P. 102-180.

26. Braubach O.R., Dickinson A.J.G., Evans C.C.E., Croll R.P. Neural control of the velum in larvae of the gastropod, Ilyanassa obsolete II J. Exp. Biol. 2006. Vol. 209. P. 4676-4689.

27. Broadie K.S., Bate M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster II J. Neurosci. 1993. Vol. 13. P. 144-166.

28. Broadie K.S., Bate M. Development of larval muscle properties in the embryonic myotubes of Drosophila melanogaster // J. Neurosci. 1993a. Vol. 13. P. 167-180.

29. Broadie K.S., Bate M. Muscle development is independent of innervation during Drosophila embryogenesis // Development 1993b. Vol. 119. P. 533-543.

30. Broadie K.S., Bate M. Innervation directs receptor synthesis and localization in Drosophila embryo synaptogenesis // Nature 1993c. Vol. 361. P. 350-353.

31. Broadie K.S., Bate M. Activity-dependent development of the neuromuscular synapse during Drosophila embryogenesis // Neuron 1993d. Vol. 11. P. 607-619.

32. Brown S.J, Riddle D.L. Gene interactions affecting muscle organization in Caenorhabditis elegans II Genetics. 1985, Vol. 110, № 3. P. 421-440.

33. Bucher E.A., Seydoux G.C. Gastrulation in the nematode Caenorhabditis elegans // Seminars in Developmental Biology 1994. Vol. 5. P. 121-130.

34. Bullard В., Linke W.A., Leonard K. Varieties of elastic protein in invertebrate muscles // J. Muscle Res. Cell Motil. 2002. Vol. 23. P. 435-447.

35. Buznikov G.A., Lambert PI.W., Lauder J.M. Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis // Cell Tissue Res. 2001 Vol. 305, №2. P. 177-86.

36. Campagnola P.J., Loew L.M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. //Nat. Biotechnol. 2003. Vol. 21. P. 1356-1360.

37. Chen S.N., Wen C.M. Establishment of the cell lines derived from oyster, Crassostrea gigas Thunberg and hard clam, Meretrix lusoria Roding 11 Methods in Cell Science. 1999. Vol. 21. P. 183-192.

38. Chiba S., Awazu S., Itoh M., Chin-Bow S.T., Satoh N., Satou Y., Hastings K.E.M. A genome wide survey of developmentally relevant genes in Ciona intestinalis. IX. Genes for muscle structural proteins // Dev. Genes Evol. 2003. Vol. 213. P. 291-302.

39. Christensen M., Estevez A., Yin X., Fox R., Morrison R., McDonnel M., Gleason C., Miller III D.M., Strange K. A primary culture system for functional analysis of C. elegans neurons and muscle cells // Neurons 2002. Vol. 33. P. 503-514.

40. Cohen C. Matching molecules in the catch mechanism // Proc. Natl. Acad.Sci. USA-Biol. Sci. 1982. Vol. 79. P. 3176-3178.

41. Cooley L., Verheyen E., Ayers K. chickadee encodes a profiling required for intercellular cytoplasm transport during Drosophila oogenesis // Cell. 1992. Vol. 69. P. 173-184.

42. Costa M.L., Escaleira R.C., Manasfi M., Souza L.F., Mermelstein C.S. Cytoskeletal and cellular adhesion proteins in zebrafish (Danio rerio) myogenesis // Bras. J. Med. Biol. Res. 2003. Vol. 36, № 8. P. 1117-1120.

43. Cragg S.M. The adductor and retractor muscles of the veliger of Pecten maximus (L) (Bivalvia) // J. Molluscan Stud. 1985. Vol. 51. P. 276-283.

44. Cragg S. M., Crisp D.J. The biology of scallop larvae // Biology, Ecology and Aquaculture of Scallops / Ed.: Shumway S.E. Elsevier, Amsterdam. 1991. P. 75-132.

45. Cripps R.M., Suggs J., Bernstein S. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head // EMBO J. 1999. Vol. 18, № 7. P. 1793-1804.

46. Croll R.P. Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails // Microsc Res Tech. 2000 Vol. 49, № 6. P. 570-8.

47. Croll R.P., Voronezhskaya E.E. Early FMRFamide-like immunoreactive cells in gastropod neurogenesis // Acta Biol. Hung. 1995.Vol. 46. P.295-303.

48. Crossley„ A.C. The morphology and development of the Drosophila muscular system //. The Genetics and Biology of Drosophila /Ed.: Ashburner M., Wright T.R.F. 1978. Vol. 2b, P. 499-560.

49. Cumin R. Normantafel zur Organogenese von Limnaea stagnalis (Gastropoda, Pulmonata) mit besonderer Berucksichti gung der Mittekdarmdruse // Rev. Suisse Zool. 1972. Vol. 79. P. 709-774.

50. Davidson В., Swalla B.J. A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response // Development. 2002. Vol. 129. P. 4739-4751.

51. Dickinson A.J.G., Nason J., Croll R.P. Histochemical localization of FMRFamide, serotonin and catecholamine in embryonic Crepidula fornicata (Prosobranchia: Gastropoda) // Zoomorphology. 1999. Vol. 119. P. 49-62.

52. Dickinson A.J.G., Croll R.P., Voronezhskaya E.E. Development of embryonic cells containing serotonin, catecholamines and FMRFamide-related peptides in Aplysia californica I I Biol. Bull. 2000. Vol. 199. P.305-315.

53. Dlugosz A.A., Antin P.B., Nachmias V.T., Holtzer II. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes // J. Cell Biol. 1984. Vol. 99. P. 2268-2278.

54. Donoghue M.J., Sanes J.R. All muscles are not created equal // Trends Genet. 1994. Vol. 10. P. 396-401.

55. Du A., Sanger J.M, Linask K.K., Sanger J.W. Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm // Dev. Biol. 2003a. Vol. 57. P. 382-394.

56. Du A., Sanger J.M., Sanger J.W. Cardiac myofibrillogenesis follows similar pathways in ovo, in explants, and in tissue culture 11 Mol. Biol. Cell. 2003b. Vol. 14. P. 423a.

57. Ehler E., Rothen B.M., Haemmerle S.P., Komiyama M., Perriard J.C. Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments // J. Cell Sci. 1999. Vol. 112. P. 1529-1539

58. Elekes K. Electron microscopic autoradiography of serotonin uptake in the ganglia of Anodonta cygnea L. II Acta Biol. Acad. Sci. Hung. 1976. Vol. 27. P. 183-190.

59. Elekes К. Autoradiographic localization of monoamine uptake in the central nervous system of the marine mollusc (Mactra stultorum L., Pelecypoda) //Neurosci. 1978. Vol. 3. P. 49-58.

60. Elliott A. The arrangement of myosin on the surface of paramyosin filaments in the white adductor muscle of Crassostrea angulata II Proc. R. Soc. Lond. 1974. Vol. 186B.P. 53-66.

61. Engler A., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity stem cell lineage specification // Cell. 2006. Vol. 126. P.677-689.

62. Epstein H.F., Casey D.L., Ortiz I. Myosin and paramyosin of Caenorhabditis elegans embryos assemble into nascent structures distinct from thick filaments and multifilament assemblages // J. Cell Biol. 1993. Vol.122. P. 845-858.

63. Epstein H.F., Waterston R.H., Brenner S. A mutant affecting the heavy chain of myosin in Caenorhabditis elegans И J. Mol. Biol. 1974. Vol. 90. P. 291-300.

64. Fallon J.R., Nachmias V.T. Localization of cytoplasmic and skeletal myosins in developing muscle cells by double-label immunofluorescence // J. Cell Biol. 1980. Vol. 87. P. 237-247.

65. Ferrari M.B., Ribbeck K., Hagler D.J., Spitzer N.C. A calcium cascade essential for myosin thick filament assembly in Xenopus myocytes // J. Cell Biol. 1998. Vol 141. P. 1349-1356.

66. Fernandes J., Bate M., Vijayraghavan K. Development of the indirect flight muscles of Drosophila // Development 1991. Vol. 113, № 1. P. 67-77.

67. Florey E. Acetylcholine as sensory transmitter in Crustacea // J. Сотр. Physiol. 1973. Vol. 83. P. 1-16

68. Furst A., Mahowald A. Cell Division Cycle of Cultured Neural Precursor Cells from Drosophila//Dev.Biol. 1985. Vol. 112. P. 467-476.

69. Furst D.O., Osborn M., Weber K. Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly //J. Cell Biol., 1989. Vol. 109. P. 517-527.

70. Giribet G., Wheeler W. On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data // Invert Biol. 2002. Vol. 121. P. 271-324.

71. Goddart J.H.R. Ametamorphic direct development in Dendrodoris behrensi (Nudibranchia: Dendrodorididae), with a review of developmental mode in the family // PCAS. 2005. Vol. 56, № 19. P. 201-211.

72. Grimaldi A., Tettamanti G., Guidali M.L., Brivio M.F., Valvassori R., Eguilor M. A hedgehog-like signal is involved in slow muscle differentation in Sepia officinalis (Mollusca) // ISJ. 2007. Vol 4. P. 1-9.

73. Grimmelikhuijzen C.J.P., Dockray G.J., Schot L.P.C. FMRFamid-like immunoreactivity in the neuron system of hydra // Histochemistry. 1982. Vol. 73. P. 499508.

74. Haba G.De L., Kamali H.M., Tiede D.M. Myogenesis of avian striated muscle in vitro: Role of collagen in myofiber formation // Proc. Nat. Acad. Sci. USA 1975. Vol. 72, № 7. P. 2729-2732.

75. Hadfield M.G., Carpizo-Ituarte E.J., Carmen K.D., Nedved B.T. Metamorphic Competence, a Major Adaptive Convergence in Marine Invertebrate Larvae // Amer. Zool. 2001. Vol. 41. P. 1123-1131.

76. Hakeda S., Endo S., Saigo K. Requirements of kettin, a giant muscle protein highly conserved in overall structure in evolution, for normal muscle function, viability, and flight activity of Drosophila // J. Cell Biol. 2000. Vol. 148. P. 101-114.

77. Hall Z.W., Sanes, J.R. Synaptic structure and development: The neuromuscular junction //Neuron 1993. Vol. 10. P. 99-122.

78. Haszprunar G., Wanninger A. Molluscan muscle systems in development and evolution // J. Zool. Syst. Evol. Res. 2000. Vol. 38. P. 157-163.

79. Hauschka S., Konigsberg I.R. The influence of collagen on the development of muscle clones // Proc. Nat. Acad.Sci. US. 1966. Vol. 55. P. 119-126.

80. Hessling R., Westheide W. Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis И J. Morphol. 2002. Vol. 252, № 2. P. 100-13.

81. Hill C., Weber K. Monoclonal antibodies distinguish titins from heart and skeletal muscle//J. Cell Biol. 1986. Vol. 102. P. 1099-1108.

82. Holland L.Z. Muscle development in amphioxus: morphology, biochemistry, and molecular biology // Isr. J. Zool. 1996. Vol. 42. P. 235-246.

83. Holtzer H., Hijikata Т., Lin Z.X., Zhang Z.Q., Holtzer S., Protasi F., Franzini-Armstrong C., Sweeney H.L. Independent assembly of 1.6 micron long bipolar MHC filaments and I-Z-I bodies // Cell Struc. Funct. 1997. Vol. 22. P. 83-93.

84. Hresko M.C., Williams B.D., Waterston R.H. Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans II J. Cell Biol. 1994 Vol. 124, №4. P. 491-506.

85. Holtzer H., Weintraub H., Mayne R., Mochan B. The cell cycle, cell lineages, and cell differentiation // Curr. Top Dev. Biol. 1972. Vol. 7. P. 229-256.

86. Hooper S., Thuma J.B. Invertebrate muscle: muscle specific genes and proteins // Physiol. Rev. 2005. Vol. 85. P. 1001-1060.

87. Kagawa H., Gengyo K., McLachlan A.D., Brenner S., Karn J. Paramyosin gene (unc-15) of Caenorhabditis elegans: molecular cloning, nucleotide sequence and models for thick filament structure // J. Mol. Biol. 1989. Vol. 207. P. 311-333.

88. Kagawa H., Takuwa К., Sakube Y. Mutations and expressions of the tropomyosin gene and the troponin С gene of Caenorhabditis elegans II Cell Struct. Funct. 1997. Vol. 22. P. 213-218.

89. Khaitlina S.Y. Functional specificity of actin isoforms. In International Review of Cytology a Survey of Cell Biol. Academic Press Inc, San Diego. 2001. Vol. 202, pp. 3598

90. M.H, DiLullo C., Schultheiss Т., Holtzer S., Murray J.M., Choi J., Fischman D.A., Holtzer H. The vinculin/sarcomericalpha-actinin/alpha-actin nexus in cultured cardiac myocytes // J. Cell Biol. 1992. Vol. 117. P. 1007-1022.

91. Maekawa S., Toriyama M., Sakai H. Tropomyosin in the sea urchin egg cortex // Eur. J. Biochem. 1989. Vol. 178. P. 657-662.

92. Malanga C. J., Poll K.A. Effects of serotonin (5-HT) and dopamine (DA) on particle transport by frontal gill cilia of three species of bivalve molluscs // Fed. Proc. 1979. Vol. 34, №3. P. 801.

93. Margulis B.A., Bobrova I.F., Mashanski V.F., Pinaev G.P. Major myofibrillar protein content and the structure of mollusc adductor contractile apparatus // Comp Biochem. Physiol. A. 1979. Vol. 64. P. 291-298.

94. Masaki Т., Yoshizaki C. Differentiation of myosin in chick embryos // J. Biochem. 1974. Vol. 76, №1. P. 123-131.

95. Moerman D., Fire A. Muscle: structure, function, and development // C. Elegans II. Cold Harbor Lab. Press, 1997. P. 50-79.

96. Myers C.D., Goh P.Y., Allen T.S., Bucher E.A., Bogaert T. Developmental genetic analysis of troponin T mutations in striated and nonstriated muscle cells of Caenorhabditis elegans //J. Cell Biol. 1996. Vol. 132. P. 1061-1077.

97. Myers P.R., Sweeney C. The determination of the catecholamines and their metabolites in the pedal ganglion of Quadrula pustulosa (Mollusca, Pelecypoda) // Com. and Gen. Pharmacol. 1972. Vol. 3. P. 277-282.

98. Naganuma Т., Degnan B.M., Horikoshi K., Morse D.E. Myogenesis in primary cell cultures from larvae of the abalone, Haliotis rufescens II Mol. Marine Biol. Biotechnol. 1994. Vol. 3. P. 131-140.

99. Nezlin L.P., Voronezhskaya E.E. Novel, posterior sensory organ in the trochophore larvae of Phyllodoce maculata (Polychaeta) // Proc. R. Soc .Lond. B. 2003. Vol.270. P. 159-162.

100. Odintsova N.A., Ermak A.V., Tsal L.G. Substrate selection for long-term cultivation of marine invertebrate cells // Сотр. Bioch. Physiol. 1994. Vol. 107A. P. 613-619.

101. Odintsova N.A., Khomenko A. V. Primary cell culture from embryos of the Japanese scallop Mizuchopectenyessoensis (Bivalvia) // Cytotechnol. 1991. Vol. 6, № 1. P. 49-54.

102. Odintsova N.A., Plotnikov S.V., Karpenko A. A. Isolation and partial characterization of myogenic cells from larvae in vitro // Tissue & Cell. 2000. V. 32, № 5. P. 417-424.

103. Odintsova N., Dyachuk V, Kiselev K, Shelud'ko N. Expression of thick filament proteins during ontogenesis of the mussel Mytilus trossulus (Mollusca: Bivalvia). Comp.Biochem. Biophys. B. 2006, V. 144/2: 238-244.

104. Olson E.N. The MyoD family, a paradigm for development? // Genes Devel. 1990. Vol.4. P. 1454.

105. Page L.R. Larval shell muscle in the abalone Haliotis kamtschatkana II Biol.Bull. 1997. Vol. 193. P. 30-47.

106. Page L.R., Parries S.C. Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin // J. Сотр. Neurol. 2000. Vol. 418.P. 383-401.

107. Painter S.D. FMRFamide inhibition of a molluscan heart is accompanied by increases in cyclic AMP // Neuropeptides. 1982. Vol. 3. P. 19-27.

108. Painter S.D., Greenberg M.J. A survey of the responses of Bivalve hearts to the molluscan neuropeptide FMRF-amide and 5-hydroxytryptamine // Biol. Bull. 1982. Vol. 162, №3. P. 311-332.

109. Pasacreta T.C., Byers T.J., Dubreuil R., Kiehart D. P., Branton D. Drosophila spectrin: the membrane skeleton during embryogenesis. // J. Cell Biol. 1989. Vol.108. P. 1697-1709.

110. Plesch B. An ultrastructural study of the musculature of the pond snail Lymnaea stagnalis (L.) // Cell Tissue Res. 1977. Vol. 180. P. 317-340.

111. Plotnikov S.V., Karpenko A.A., Odintsova N.A. Comparative characteristic of Mytilus muscle cells developed in vitro and in vivo I I J. Exp. Zool. 2003. Vol. 298 A. P. 77-85.

112. Polyak E., Standiford D.M., Yakopson V., Emerson C.P., Franzini-Armstrong C. Contribution of myosin rod protein to the structural organization of adult and embryonic muscles in Drosophila // J. Mol. Biol. 2003. Vol. 331. P. 1077-1091.

113. Poulson D.F. Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster И Biology of Drosophila /Ed.: Demerec M. Wiley, New York, 1950. P. 168—274.

114. Price D.A., Greenberg M.J. Purification and characterization of a cardioexcitatory neuropeptide from the central ganglia of a bivalve mollusc // Prep. Biochem. 1977. Vol. 7. P. 261-281.

115. Priess J. R., Hw H.D. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in the elongation of the embryo // Dev. Biol. 1986. Vol. 117. P. 156-173.

116. Puri E.C., Caravatti M., Perriard J.C., Turner D.C., Eppenberger H.M. Anchorage-independent muscle cell differentiation//Proc.Nat. Acad.Sci. US. 1980. Vol. 77. P. 5297-5301.

117. Raven C. P., Morphogenesis: the analysis of molluscan Development, second ed. Pergamon, Oxford, 1966.

118. Rhee D., Sanger J.M., Sanger J.W. The premyofibril: evidence for its role in myofibrillogenesis //Cell Motil. Cytoskeleton. 1994. Vol. 28, № 1. P. 1-24.

119. Riddle D.L., Brenner S. Indirect suppression in Caenorhabditis elegans II

120. Genetics. 1978. Vol. 89(2). P. 299-314.

121. Robertson C.W. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes // J. Morph. 1936. Vol. 59. P. 351-399.

122. Roy S., Wolff C., Ingham P.W. The u-boot mutation identifies a Hedaehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo // Gene and Dev. 2001. Vol. 15. P. 1563-1576.

123. Ruegg J. C. Smooth muscle tone // Physiol. Rev. 1971. Vol. 51. P. 201-248. Sakharov D.A. The multiplicity of neurotransmitters: the functional significance // Zh Evol Biokhim Fiziol. 1990. Vol. 26, № 5. P. 733-741.

124. Salvaterra P.M., Bournias-Vardiabasis N., Nair Т., Hou G., Lieu C. In vitro neuronal differentiation of Drosophila embryo cells // J. Neuroscience 1987. Vol. 7, № 1. P. 10-22

125. Sanger J.W., Kang S., Siebrands C.C., Freeman N., Du A., Wang J., Stout A.L., Sanger J.M. How to build a myofibril // J. Muscle Res. Cell Motil. 2005. Vol. 26. P.343-354

126. Satou Y. Gene expression profiles in tadpole larvae of Ciona intestinalis II Dev. Biol. 2002. Vol. 242. P. 188-203.

127. Schneider J. A. Bivalve systematics in the 20th century // J. Paleontol. 2001. Vol. 75. P. 1119-1127.

128. Schultz J.R., Tansey Т., Gremke L., Storti R.V. A muscle specific intron enhancer required for rescue of indirect flight muscle and jump muscle function regulates Drosophila tropomyosin I gene expression // Mol. Cell Biol. 1991. Vol. 11. P. 1901— 1911.

129. Seecof R.L., Unanue R.L. Differentiation of embryonic Drosophila cells in vitro // Exp. Cell Res. 1968. Vol. 50. P. 654-660.

130. Shelud'ko N.S., Preminger N.K. Myosin-actin weight ratio phasic and tonic parts of scallop adductor // Сотр. Biochem. Physiol. 1989. Vol. 93A. P. 327-330.

131. Shelud'ko N.S., Matusovskaya G.G., Permyakova T.V., Matusovsky O.S. Twitchin, a thick-filament protein from molluscan catch muscle, interacts with F-actin in a phosphorylation-dependent way // Arc. Biochem. Biophys. 2004. Vol. 423. P. 269-277.

132. Shelud'ko N.S., Tuturova K. Ph., Permyakova T.V., Plotnikov S. V., Orlova A.A. A novel thick filament protein in smooth muscles of bivallvia mollusks // Com. Biochem. Physiol. 1999. Vol. 122. P. 277-285.

133. Shott R.J., Lee J. J., Britten R.J., Davidson E.H. Differential expression of the actin gene family of Strongylocentrotus purpuratus // Dev. Biol. 1984. Vol. 101. P. 295-306.

134. Sohn R.L., Vikstrom K.L., Strauss M., Cohen C., Szent-Gyorgia A.G. A 29 residue region of the sarcomeric myosin rod is necessary for filament formation // J. Mol. Biol. 1997. Vol. 266. P.317-330.

135. Standiford D.M., Davis M.B., Miedema K., Franzini-Armstrong C., Emerson C.P. Myosin rod protein: a novel thick filament component of Drosophila muscle // J. Mol. Biol. 1997. Vol. 265. P. 40-55.

136. Sulston J.E., Schierenberg E., White J.G., Thomson J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans // Dev. Biol. 1983. Vol. 100. P. 64-119.

137. Szent-Gyorgyi A.G., Cohen C., Kendrick-Jones J. Paramyosin and the filaments of molluscan "catch" muscles. II. Native filaments: isolation and characterization // J. Mol. Biol. 1971. Vol. 56, № 2. P. 239-258.

138. Thompson J.T., Kier W.M. Ontogeny of mantle musculature and implications for jet locomotion in oval squid Sepioteuthis lessoniana // J. Ex.p Biol. 2006. Vol. 209, № 3. P. 433-43.

139. Tomlinson C.R, Beach R.L., Jeffery W.R. Differential expression of a muscle actin gene in muscle cell lineages of ascidian embryos // Development. 1987. Vol. 101. P. 751-765.

140. Towbin H., Gordon J., Staehelin T. Electroforetic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications // Proc. Natl. Acad. Sci. USA. 1979. Vol. 76. P. 4350-4354.

141. Treager R.T., Squire J.M. Myosin content and filament structure in smooth and striated muscle // J. Mol. Biol. 1973. Vol. 77. P. 279-290.

142. Tskhovrebova L., Trinick J. Role of titin in muscle regulation // Biophys. J. 2002. Vol. 82. P. 400a.

143. Twarog B.M., Muneoka Y. Calcium and the control of contraction and relaxation in a molluscan catch muscle // Cold Spring Harbor symposium on quantitative biology 1976. Vol. 37. P. 489-504.

144. Vibert P., Edelstein S. M.5 Castellani L., Elliott B. W. Mini-Titins in striated and smooth molluscan muscles structure, location and immunological cross-reactivity // J. Muscle Res. Cell Motil. 1993. Vol. 14. P. 598-607.

145. Vinos J., Maroto M., Garesse R., Marco R., Cervera M. Drosophila melanogaster paramyosin: developmental pattern, mapping and properties deduced from its completecoding sequence // Mol. Gen. Genet. 1992. Vol. 231, № 3. P. 385-94.

146. Voronezhskaya E.E., Nezlin L.P., Odintsova N.A., Plummer J.T., Croll R.P. Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia) // Zoomorphology. 2008. Vol. 127. P. 97-110.

147. Voronezhskaya E.E, Tyurin S.A, Nezlin L.P. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora) // J. Сотр. Neurol. 2002. Vol. 444. P. 25-38.

148. Walthall W.W., Li L., Plunkett J.A., Hsu C.Y. Changing synaptic specifications in the nervous system of Caenorhabditis elegans Differentiation of the DD motoneurons. //Journal ofNeurobiology 1993. Vol. 24. P.1589-1599.

149. Wanninger A. Micromorphology and gene expression in muscle and shell development of the mollusca // Dissertation zur Erlangung des doktorgrades der Fakultat fur Biologie der Ludwig-Maximilians-Universitat Munchen, Munchen, Marz, 2001. P. 1176.

150. Wanninger A., Haszprunar G. Chiton myogenesis: Perspectives for the development and evolution of larval and adult muscle systems in molluscs // J. Morphol. 2002a. Vol. 251. P. 103-113.

151. Wanninger A., Haszprunar G. Muscle development in Antalis entalis (Mollusca, Scaphopoda) and its significance for scaphopod relationships // J. Morphol. 2002b. Vol. 254. P.53-64.

152. Wanninger A., Haszprunar G. The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda) // Zoomorphology. 2003. Vol. 122. P. 77-85.

153. Wanninger A., Koop D., Bromham L., Noonan E., Degnan B.M. Nervous and muscle system development in Phascolion strombus (Sipuncula) // Dev. Genes Evol. 2005. Vol. 215. P. 509-518.

154. Wanninger A., Ruthensteiner В., Lobenwein S., Salvenmoser W., Dictus W.J., Haszprunar G. Development of the musculature in the limpet Patella (Mollusca, Patellogastropoda) // Dev. Genes Evol. 1999. Vol. 209, № 4. P. 226-238.

155. Warn R., Gutzeit H., Smith L., Warn A. F-actin rings are associated with the ring canals of Drosophila egg chambers // Exp. Cell Res. 1985. Vol. 157. P. 355-363.

156. Watabe S., Iwasaki K., Funabara D., Flirayama Y., Nakaya M., Kikuchi Y. Complete amino acid sequence of Mytilus anterior byssus retractor paramyosin and its putative phosphorylation site // J Exp Zool. 2000. Vol. 286. P. 24-35.

157. Waterston R.H. The minor myosin heavy chain, MHC A, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly // EMBO J. 1989. Vol. 8. P. 3429-3436.

158. Waterston R.H., Thomson J.N., Brenner S. Mutants with altered muscle structure of Caenorhabditis elegans II Dev. Biol. 1980. Vol. 77. P. 271-302.

159. Winkleman L. Comparative studies of paramyosins // Сотр. Biochem. Physiol. B. 1976. Vol. 55. P. 391-397.

160. White J. Muscle development // The nematode C. elegans / Ed.: Wood W.B. Cold Spring Harbor Laboratory Press, New York, 1988. P. 81-122.

161. Wollesen Т., Wanninger A., Klussmann-Kolb A. Neurogenesis of cephalic sensory organs of Aplysia californica II Cell Tissue Res. 2007. Vol. 330. P. 361-379.

162. Wood W.B. C. elegans development // The nematode C. elegans / Ed.: Wood W.B. Cold Spring Harbor Laboratory Press, New York. 1988. P. 215-241.

163. Yamada A, Yoshio M, Kojima H, and Oiwa K. An in vitro assay reveals essential protein components for the "catch" state of invertebrate smooth muscle // Proc Natl Acad Sci USA 2001.Vol. 98. P. 6635-6640.

164. Yamada A., Yoshio M., Oiwa K., Nyitray L. Catchin, a novel protein in molluscan catch muscles, is produced by alternative splicing from the myosin heavy chain gene. J Mol Biol. 2000. Vol. 295. P. 169-178.

165. Yang Z. Phylogenetic analysis using parsimony and likelihood methods // J. Molec. Evol. 1996. Vol. 42. P. 294-307.

166. Young P. E., Pesacreta Т. C., Kiehart D. P. Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis // Development 1991. Vol. 111. P. 1-14.

167. Zhang Y., Featherstone D., Davi/W^Rushton E., Broadie K. Drosophila D-titin is required for myoblast fusion and skeletal muscle striation // J. Cell Sci. 2000. Vol. 113. P. 3103-3115.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.