Методы оконтуривания и сегментации в задачах автоматизированного обнаружения аномальных объектов на видеоизображениях тема диссертации и автореферата по ВАК РФ 05.12.04, кандидат технических наук Пасечник, Антон Сергеевич

  • Пасечник, Антон Сергеевич
  • кандидат технических науккандидат технических наук
  • 2010, Владимир
  • Специальность ВАК РФ05.12.04
  • Количество страниц 228
Пасечник, Антон Сергеевич. Методы оконтуривания и сегментации в задачах автоматизированного обнаружения аномальных объектов на видеоизображениях: дис. кандидат технических наук: 05.12.04 - Радиотехника, в том числе системы и устройства телевидения. Владимир. 2010. 228 с.

Оглавление диссертации кандидат технических наук Пасечник, Антон Сергеевич

Введение.

Глава 1. Получение изображений в задачах медицинской диагностики и алгоритмы оконтуривания на видеоизображениях. Обзор современных методов.

1.1. Методы получения медицинских изображений.

1.2. Математические методы и алгоритмы обнаружения аномальных объектов на видеоизображениях.

1.2.1. Обнаружение разрывов яркости на изображении.

1.2.2. Обнаружение точек (как простейший случай).

1.2.3. Обнаружение линий (в частных задачах).

1.2.4. Обнаружение перепадов.

1.2.5. Алгоритмы оконтуривания объектов на видеоизображениях.

1.2.5.1. Метод оконтуривания Кэнни.

1.2.5.2. Метод оконтуривания Prewitt.

1.2.5.3. Метод оконтуривания Roberts Cross.

1.2.5.4. Метод оконтуривания Sobel.

1.2.5.5. Метод оконтуривания LoG.

Глава 2. Критериидля оценки*качества оконтуривания объектов на медицинских видеоизображениях.

2.1. Оценка влияния шумов при оконтуривании изображений.

2.2. Критерии количественной оценки качества работы алгоритмов оконтуривания.

2.2.1. Относительное количество ошибочно определенных пикселей в контуре.

2.2.2. Среднеквадратическое значение ошибки определения контура.

2.2.3. Оценка количества потерянных пикселей контура.

2.2.4. Аддитивный критерий для оценки качества оконтуривания.

Глава 3. Моделирование работы алгоритмов оконтуривания аномальных объектов на медицинских видеоизображениях.

3.1. Разработка тестового медицинского видеоизображения.

3.2. Моделирование работы алгоритмов оконтуривания.

3.2.1. Калибровка порога чувствительности алгоритма оконтуривания.

3.2.2. Моделирование оконтуривания в условиях отсутствия искажающих факторов.

3.2.3. Моделирование оконтуривания в условиях шумового воздействия на видеоизображение.

3.2.4. Моделирование оконтуривания в условиях расфокуссированного видеоизображения

Глава 4. Методы связывания контуров объектов на медицинских видеоизображениях.

4.1. Локальная обработка.

4.2. Глобальный анализ изображения с использованием преобразования Хо.

4.3. Комбинированный метод связывания контуров с учетом специфики медицинских изображений.

4.3.1. Сегментирование объектов с неявновыраженной морфологией на медицинских изображениях.

4.3.1.1. Пространственные методы улучшения изображений и визуального восприятия неявно выраженных объектов1.

4.3.1.2. Комбинированный метод связывания контуров объектов с неявновыраженной морфологией.

4.3.2. Локализация объектов на видеоизображениях.

4.3.3. Методы автоматизации при использовании алгоритмов оконтуривания и сегментации аномальных объектов на видеоизображениях.

4.4. Оценка работы метода сегментирования объектов на изображениях.

4.4.1. Экспертная оценка качества работы алгоритма сегментирования.

4.4.2. Количественная оценка качества работы алгоритма сегментации.

4.5. Структурная организация программно — аппаратного комплекса автоматизированной оперативной-диагностики патологий.1S

Рекомендованный список диссертаций по специальности «Радиотехника, в том числе системы и устройства телевидения», 05.12.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Методы оконтуривания и сегментации в задачах автоматизированного обнаружения аномальных объектов на видеоизображениях»

Актуальность темы диссертации. С развитием глобализации, захлестнувшей огромное количество сфер жизнедеятельности современного человека, компьютерные технологии приобретают все большее и большее значение. Сегодня уже трудно себе представить работу любой организации без применения новых информационных технологий, без интеграции компьютеров в локальные и глобальные сети, а также без применения автоматизированных интеллектуальных систем, использующихся в конвейерном производстве продукции и контроле ее качества, в системах обеспечения безопасности, начиная от автомобильных парковок и вплоть до обеспечения государственной безопасности. К стратегическим областям, где широко востребованы инновационные разработки, относится также и медицина. Это и специальные приборы, и новые методы диагностированиями лечения заболеваний. Развитие в этой области является» одним из направлений национального проекта «Здоровье», поддерживаемого правительством Российской Федерации (протокол президиума Совета при Президенте Российской Федерации по реализации приоритетных национальных проектов № 2 от 21 декабря». 2005 г.). Одним из направлений проекта является усиление профилактической направленности здравоохранения. В свою очередь, это подчеркивает необходимость создания современных диагностических комплексов с высокой пропускной способностью для целей массовой диспансеризации и выявления различных патологий на самых ранних стадиях. Оперативное и достоверное диагностирование невозможно без применения компьютерных методов анализа и алгоритмов обработки первичной медицинской информации, таких как снимки УЗИ, рентгенограммы, различного рода эндоскопические снимки. В ряде случаев снимки, полученные при первичной диагностике, нуждаются в обязательной компьютерной обработке, поскольку установление точного диагноза визуальными методами слишком затруднено.

Автоматизированное выявление аномальных объектов на видеоизображениях является сложной задачей, состоящей из нескольких этапов: первичное получение снимков, фильтрация, оконтуривание, сегментация, распознавание, классификация. Каждый из этапов сам по себе является сложной многоуровневой задачей, имеющей свою специфику и особенности. На сегодняшний день науке известно значительное количество математических методов, реализующих собой тот или иной алгоритм обработки изображения. Большой научный вклад в их развитие внесли: Дэвид А. Форсайт, Дж. Понс, У. Прэтт. Следует также отметить заслуги отечественных ученых в развитии методов обработки изображений и теории распознавания образов: В.М. Глушкова, B.C. Михалевича, B.C. Пугачева, Н.П. Бусленко, Ю.И. Журавлева, Я.З. Цыпкина, А.Г. Ивахненко, М.А. Айзермана, Э:М. Бравермана, М.М. Бонгарда, В.Н. Вапника, Г.П. Тартаковского, В.Г. Репина, JI.A. Растригина, A.JI. Горелика, Ю.А. Брюханова.

Однако существующая на сегодняшний день, литература по данной теме, зачастую имеет либо ' математическую направленность, либо, напротив, страдает отсутствием четких математических описаний и предназначена для программистов и разработчиков.

Еще одним аргументом, подчеркивающим своевременность развития данной тематики, является наличие во. многих медицинских учреждениях нашей страны оборудования, которое не поддерживает современных стандартов сбора, передачи и хранения медицинской информации. Развитие аппаратно-программного оснащения подобного оборудования позволяет ускорить процесс получения диагностической- информации, а также интегрировать такие комплексы с более мощными и высокоточными центрами, используя сети передачи данных.

Целью диссертационной работы является разработка методики обработки медицинских видеоизображений по оконтуриванию и сегментации аномальных объектов на них, что служит основой для создания автоматизированного) программно-аппаратного комплекса предварительного диагностир ования патологий.

Для достижения указанной цели в диссертации сформулированы и решены следующие задачи:

• Разработка теоретически и практически обоснованной критериальной базы для проведения количественных оценок качества работы алгоритмов по поиску и выделению контуров аномальных объектов на видеоизображениях;

• Анализ существующих методов поиска контуров объектов на видеоизображениях для выбора наиболее эффективного в условиях конкретной диагностической задачи.

• Разработка устойчивой к воздействиям искажающих факторов методики сегментации аномальных объектов на медицинских видеоизображениях, подстраиваемой к конкретной ситуации.

• Разработка структурной организации программно — аппаратного комплекса автоматизированной диагностики патологий1.

Методы исследования.

В работе использованы мётоды теории вероятности и математической статистики, теории биотехнических' и экспертных систем, методы системного анализа, теории информации, имитационного и компьютерного моделирования с использованием новых информационных технологий получения знаний об объекте диагностики.

Научная новизна заключается в том что:

1. Разработана! методика проведения количественной оценки качества работы алгоритмов по выделению контуров аномальных объектов на видеоизображениях;

2. Создано тестовое изображение, позволяющее проводить оценку различных методов сегментирования и оконтуривания, на медицинских изображениях, учитывая возможное влияние искажающих факторов;

3. Предложена методика количественной оценки качества сегментирования объектов на медицинских видеоизображениях;

4. Разработана методика автоматизированного оконтуривания и сегментации аномальных объектов на видеоизображениях.

Результаты работы, имеющие практическую ценность:

1. На основании проведенной количественной оценки выбран наилучший метод оконтуривания аномальных объектов для решения конкретных задач в области обработки медицинских изображений;

2. При помощи компьютерного моделирования определены структура и параметры алгоритмов оконтуривания и сегментирования, обеспечивающие наилучшие результаты определения контура объекта по предложенным количественным критериям оценки. Погрешность определения контура при этом не превышает 2 пикселей;

3. Разработано прикладное ПО для реализации методики автоматизированного оконтуривания, сегментации, локализации,- а также измерения геометрических размеров аномальных объектов« на медицинских видеоизображениях, что при внедрении в процесс диагностирования сокращает время его проведения более чем на 40%;

4. Предложена*, методика формирования управляющих параметров комбинированного метода» сегментирования' для! выявления аксиологических объектов»различного типажна видеоизображениях, что служит базой для создания библиотеки управляющих параметров программно — аппаратного комплекса для автоматизированной диагностики патологий.

На защиту выносится:

1. Методика количественной оценки качества работы алгоритмов по выделению контуров искомых объектов на видеоизображениях. Сравнительный анализ эффективности различных методов оконтуривания аномальных объектов на медицинских изображениях;

2. Алгоритм сегментирования медицинского изображения;

3. Критериальная база для количественной оценки качества сегментирования объектов на медицинских видеоизображениях.

Реализация и внедрение.

Теоретические и практические результаты работы внедрены в ООО «Лазерно-Плазменные технологии», г. Ковров, Владимирской обл. в рамках выполнения НИОКР «Разработка высокоэффективного метода оконтуривания и сегментирования аномальных поверхностей на видеоизображениях», финансируемого Фондом содействия развитию малых форм предприятий в НТС, г. Москва. Материалы диссертации внедрены и активно используются в работе лечебно — диагностического центра Международного института биологических систем в г. Владимир при работе с томографическими изображениями. Кроме этого; материалы диссертационной работы внедрены в учебный-процесс Владимирского государственного университета. Апробация работы.

Материалы диссертационной работьь обсуждались на VI, VII, VII, X МНТК «Физика и радиоэлектроника-в медицине и экологии», Владимир, 2004, 2006; 2008, 2010, I всероссийской НТК «Акустооптические и радиолокационные методы измерений; и обработки информации» ARMIMP, Москва, 2007г, VII МНТК «Перспективные технологии в средствах передачи информации», Владимир,- 2007г, III конференции аспирантов и молодых ученых с международным участием, Ковров, 2008, Всероссийской НТК «Исследование, проектирование, испытания, и эксплуатация приборных устройств военной техники», Москва, 2008г., IV межотраслевой конференции с международным участием аспирантов* и молодых ученых «Вооружение, Технология, Безопасность, Управление», Ковров, 2009г. Публикации по теме работы

По тематике исследования опубликовано 22 работы, из них 5 статей в журналах, рекомендованных ВАК РФ, 4 статьи в межвузовских сборниках, 12 материалов докладов на научных конференциях, в т.ч. международных. Издано одно учебное пособие (в соавторстве). Объем и структура работы

Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы из 142 наименований и 22 работ автора, приложений. Общий объем диссертации 224стр., включая 205стр. основного текста, 18стр. приложений, 149 рисунков, 14 таблиц. В приложении также имеются копии актов внедрения.

Похожие диссертационные работы по специальности «Радиотехника, в том числе системы и устройства телевидения», 05.12.04 шифр ВАК

Заключение диссертации по теме «Радиотехника, в том числе системы и устройства телевидения», Пасечник, Антон Сергеевич

Заключение

На основании исследований, выполненных в диссертационной работе, получены следующие основные результаты и выводы:

1. На основании проведенного анализа существующих алгоритмов оконтуривания объектов на видеоизображениях показано, что не все из них одинаково^ пригодны для выполнения высокоточных операций по обработке медицинских видеоизображений. В связи с этим отмечается необходимость проведения количественных оценок для выбора оптимального метода оконтуривания;

2. Формирование рекомендаций по использованию определенного алгоритма оконтуривания аномальных объектов на медицинских видеоизображениях является узкой прикладной задачей, и в настоящее время отсутствуют четкие методики количественных оценок качества проведения процедуры оконтуривания. В связи с этим в работе был предложен ряд критериев, с использованием которых проводится количественная оценка качества обработки видеоизображений алгоритмами выделения контуров;

3. Для проведения моделирования процессов обработки медицинского видеоизображения, разработано тестовое медицинское изображение, с помещенным на нем объектом - неоднородностью, и обладающем статистическими свойствами, присущими реальному медицинскому снимку. Положение и форма границы, помещенного на тестовое изображение объекта известны, поэтому проведение количественных оценок качества оконтуривания возможно с самой высокой точностью;

4. На основании проведенной количественной оценки выбран наилучший метод оконтуривания аномальных объектов для решения конкретных задач в области обработки медицинских изображений;

5. При помощи компьютерного моделирования определены структура и параметры алгоритмов оконтуривания и сегментирования, обеспечивающие наилучшие результаты определения контура объекта по предложенным* количественным критериям оценки. Погрешность определения контура при этом не превышает 2 пикселей;

6. Предложена высоко устойчивая методика сегментации аномальных объектов на медицинских видеоизображениях, подстраиваемая к условиям конкретной ситуации (сегментация наблюдается в широком динамическом диапазоне изменения порога чувствительности ±50%). В» качестве алгоритма сегментации предложен комбинированный метод связывания контуров, использующий^ результат, полученный в ходе оконтуривания медицинского видеоизображения;

7. Разработан критерий для проведения количественных оценок- качества обработки^ видеоизображения алгоритмами сегментирования. Предложенный метод оценки качества может быть использован* как элемент в цепи обратной связи при корректировке результата сегментирования. Следует отметить, что комбинированный метод связывания контуров основан на пороговой обработке видеоизображения, а система оценки качества сегментирования 1 использует свойства гистограммы видеоизображения; что при совместном использовании повышает точность конечного результата;

8. В работе предложена методика локализации исследуемых объектов на видеоизображениях путем обработки.результата сегментирования;

9. Разработана структурная организация программно — аппаратного комплекса автоматизированной оперативной, диагностики патологий. Отмечено, что применение методик автоматизированного оконтуривания, сегментации, локализации, а также измерения геометрических размеров аномальных объектов на медицинских видеоизображениях в процесс диагностирования сокращает время его проведения более чем на 40%;

Список литературы диссертационного исследования кандидат технических наук Пасечник, Антон Сергеевич, 2010 год

1. Bartsch D. U., Freeman W. R., "Axial Intensity Distribution Analysis of the Human Retina with a Confocal Scanning Laser Tomograph", Exp Eye Res., vol. 58, pp; 161-173, 1994;

2. Canny J., "A Computational approach to edge detection",, IEEE Transactions on= pattern analysis and machine intelligence, volt 8, No. 6, pp. 679-698,1986.

3. Correa P. Cronic gastritis as a cancer precursos // Scand. J. Gastroenterol. 1984: Vol. 19 - Suppl. 104. - P. 131 - 136;

4. Cree M. J., Olson J. A., McHardy К. C., Sharp P. F., Forrester J; V., "The preprocessing of retinal images for Ше detections of fluorescein leakage", Phys. Med. Biol , vol.» 44, pp. 293 308, 1999.

5. FuK. S., Mui J. K. —Pattern Recognition; 1981vv; 13; №1; pp: 3—16;

6. Foglein J. — Pattern Recognition Letters; 1983, v. 1, № 5—6, p. 429—434.

7. Fischer В., Buhmann J. Data Resampling for Path Based Clustering.

8. Fraunhofer Institut fuer Integrierte Schaltungen: Jahresbericht 2002.

9. Fraunhofer Institut fiier lntegrierte Schaltungen: Jahresbericht 2000.

10. Facsimile Codingi Shemes and Coding Control Functions fort Grup4 Facsimil* Apparatuse Recommendation; The international Telegraph and Telephone Consutative Committetee (CCITT), Geneva, Switzerland, 1985.

11. Gliman M.J. Pelvic endoscopy // Progr. Gynecol; -1989.- № 6. -P. 81-109;

12. Gliman M.J; Pelvic endoscopy //Progr.Gynecol;-1989.-6;-PI81-109:

13. Goldbaum M. H:, Katz N. P., Chaudhuri S., Nelson M;, Kube P., "Digital image processing for ocular fundus images", Ophthalmology Clinics of North America, vol. 3, 1990.

14. Gotoh Т., Torin Т., Yamamoto E. — In: Proc. of 7th Intern. Conference: on Pattern Recognition, 1984, pp. 1098— 1100.

15. Gottlieb D., Shu C.-W., Solomonoff A., Vandeven H. On the Gibbs phenomenon I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math., v. 43, 1992, pp. 81-92.

16. Hakulinen Т., Наката M. The effect of screening on the incidence and montarlity of cervical cancer in Finland // Nowotwory. -1985. -Vol. 35. -P. 285-289.

17. Hardcastle J.D., Chir M., Pye G. Screening for colorectal cancer. A critical review // WLD J. Surg. -1989,- Vol. 13, № 1'. P. 38-44.

18. Holbert E. Gastric carcinoma in patients younger than age 36 years

19. Cancer. -1987.- Vol. 60.- № 6. P. 1395-1399.i

20. Hofinann Т., Puzicha J., Buhmann J: Unsupervised segmentation of textured images by pairwise data clustering. Proc. of IEEE Int. Conference on Image Processing, Lausanne, 1996. Vol. 3, pp. 137-140.

21. Haralick R. M. — In: Proc. SPIE, 1982, v. 336, pp. 91—99.

22. Hashimoto M, Sklansky J. — In: Proc: Intern. Conf. on Computer Vision and' Pattern Recognition, 1983, pp. 318—325.

23. Haralick R. M. —IEEE Trans, 1984, v. PAMl-6,№ 1, p. 58—68.

24. Hartley R. — Computer Vision, Graphics and Image Processing, 1985, v. 30, № l,p. 70—83.

25. Hofinann T, Buhmann J. Multidimensional Scaling and Data Clustering.

26. Hofinann T, Buhmann J. Active Data Clustering. NIPS, 1997.

27. Kittler J. — Image and Vision Computing, 1983, v. 1, № 1, p. 37—42.

28. Levialdi S. — In: Digital Image Processing Ed. by J. C. Simon* R. M. Haralick. — D. Reidel Publishing Company, 1981, pp. 105—148:

29. Lee J. S. —Computer Vision, Graphics and Image Processing, 1983, v. 24, № 2, pp. 255—269i

30. Lunscher W. H. H. J. —IEEE Trans* 1983, v. PAMI-5, № 6, pp. 678—680. 43; Lunscher W. H. H. J, Beddoes M. P.— IEEE Trans, 1986, v. PAMI-8; №2, pp.164—188.

31. Lunscher W. H. H. J, Beddoes M. P.—, IEEE Trans, 1986, v. SMC-16, № 2 pp.304—312.

32. Lynch T.D. Data Compression; Technigues and Applications. Belmont: Lifetime Learning Publications; 1-985. -478 p.46: Luse M.Di; BMP File Format // Dr. Dobb's Journal, v.9, № 2Щ 1994; -pp.18-22.

33. Marr D., Hildreth E. — In: Proc. Royal Soc. London, 1980, B-207, pp. 187— 217.

34. Marcellin M.W., Gbrmish?MiJi, Bilgin;A., Boliek MiPi An;Overview, of JPEG-2000: Proc. of IEEE Data Compression Conference, pp. 523-541, 2000.

35. Montgomery B; LZW Compression Used to Encod/Decod a GIF File. -New York: Manuscript Inc., 1988; 240 p.

36. Modestino J. W, Fries R. W.—Computer Graphics and Image Processing, 1977, v. 6, №5, pp. 409—433.

37. Morgenthaler D. G. — Computer Graphics and Image Processing, 1981,

38. Michelson G., Groh M. J., "Screening models for glaucoma", Curr. Opin. Ophthalmol., vol. 12, pp. 105 111, 2001.

39. Nathan T. An atlas of normal and abnormal mammograms —Oxford: Oxford Univ. Press, 1982. 118 p.

40. Nelson, Mark R., The Data Compression Book, M&T Book, Redwood City, 1991.

41. Pavlldls T. Algorithms for Graphics and Image Processing. — N. Y.: Springer, 1982.

42. Peli E., Peli Т., "Restoration of retinal images obtained through cataracts", IEEE Transactions on Medical Imaging, vol. 8, pp. 401-406, 1989.

43. Puzicha J, Held M, Ketterer J, Buhmann J, Fellner D. On Spatial Quantization of Color Images. Technical Report IAI-TR-98-1, University of Bonn, 1998.

44. Puzicha J, Hofmann Т., Buhmann J. Histogram Clustering for Unsupervised Image Segmentation.

45. Puzicha J, Hofmann T, Buhmann J. Histogram Clustering for Unsupervised Image Segmentation and Image Retrieval. 1999.

46. Pratt W.K. Generalized Wiener Filter Computation Techniques. IEEE Trans. Computers. 1972. - V.C-21, N 7. - P. 636-641.

47. Pratt W.K. Digital Image Processing.- New York: J. Wiley, 1978. 750 p.

48. Rzempoluch J., Beercharz A., Wolf A. Laparoscopy in clinical practice // Gynecol. Pol. -1993. № 64. - P. 179-85.

49. Rosenfeld А., Как S. — Digital Picture Processing. — N. Y.: Academic Press, 1982.

50. Robinson G. S. — Computer Graphics and" Image Processing, 1977, v. 6, № 5, pp. 492—501.

51. Rosenfeld A.—IEEE Trans, 1981, v. PAMI-3, № 1, p. 101—103.

52. Roth V, Lange T, Braun M, Buhmann J. A Resampling Approach to Cluster Validation.

53. Rzempoluch J., Beercharz A., Wolf A. Et al. // Laparoscopy in clinical practice. Indication// Gynecol. Pol.-1993Apr.-64(4).-P.179-85.

54. R. M. Haralick, L. G. Shapiro, "Image Segmentation Techniques," Computer Vision, Graphics, and Image Processing, Vol 29, No 1, 1985.

55. Shiftman S., Shortliffe E.H. Biomedikal imaging the evolution of medical informatics. // Computing medical imaging and graphics. 1996. Vol. 20, N. 4, P.189-192.

56. TIFF Revision 6.0, Final. - Aldus Corporation Developer's Desk, 1992. -368 P

57. TIFF Developer's Manual. Greeley: Hewlett-Packard Company, 1988 - 246 P.

58. Wojcik Z. M. — Pattern Recognition, 1985; v. 18, № 5, pp. 299—326.

59. Will S., Hermes S., Buhmann J., Puzicha J. On learning texture edge detectors. Proc. ICIP, 2000, pp. 877-880.

60. Wang D. C., Vangnucci A. H., Li С. C. — Computer Graphics and Image Processing, 1981, v. 15, №2, pp. 167—181.

61. Williams R. Adaptive Data Compression, Kluwer Boston, MA, 1990,pp.30-44.

62. Welch T. A. Technique for High-Performance Data Compression // Computer, v.17, №6, 1984. pp. 368-376.

63. Wallace G.K. "The JPEG still picture compression standard" // Communication-of ACM. Volume 34. Number 4 April 1991.

64. Zvika M., Dagan I., Buhmann J., Shamir E. Coupled Clustering: A Method for Detecting Structural Correspedence. Journal of Machine Learning Research 3 (2002), pp. 747-780.

65. J.Ziv and A.Lempel. A universal algorithm for sequential data compression. IEEE Transactions on Information Theory. Vol. IT-23, N.3, May 1977.

66. Астраханцев Ф.А., Кондратьев B.B., Рассохин Б.Н., . Чикирдин Э.Г. Автоматизированное рабочее место врача-рентгенолога // Вестник рентгенологии. 1993.- №1,- С. 54-56.

67. Абду И. Э., Прэтт У. К. — ТИИЭР, 1979, т. 67, № 5, с. 59—70.

68. Антонова Н. А. Методы сжатия данных в вычислительных системах. — СПб.: БХВ, 1994.-326 с.

69. А.А. Волков, А.Г. Зирин, С.С. Садыков, С.И. Семенов. Новые возможности эндоскопии с применением компьютерной визуализации диагностических изображений // Сб. статей «Системы, методы обработки и анализа данных». Ташкент. - 1997. - С. 36.

70. А.Г. Зирин, А.Е. Бабкин, С.И. Семенов; JI.T. Сушкова, А.В. Костров. Автоматизированное рабочее место врача рентгенолога. // Тез. докл. IV Международной конференции «Математика. Компьютер. Образование.», Пущино, 29 января - 3 февраля 1997 г. С. 17Г.

71. А.Г. Зирин, С.И. Семенов. Новые возможности эндоскопии с применением компьютерной, техники. // Сб. научных трудов «Актуальные вопросы онкологии».- Архангельск. 1997. - С. 72

72. А.Г. Зирин, С.И. Семенов, А.А. Волков, С.С. Садыков, А.Е. Бабкин. Новые возможности эндоскопии с применением компьютерной визуализации диагностических изображений. // В кн. "Системы, методы обработка и анализа данных". Ташкент. 1997. - С. 16.

73. А.Г. Зирин, А.Е. Бабкин, С.И. Семенов Компьютерная диагностическая система в практике онкологического диспансера // Российский онкологический журнал. 1996. - № 3. - С. 47.

74. Бакут П. А., Колмогоров Г. С, Ворновицкии И. Э. — Зарубежная радиоэлектроника, 1987, № 10, с. 6.

75. Беликова. Т.П. PACS: системы'архивирования и передачи медицинских изображений // Компьютерные технологии в медицине. -1997.- №3'.- G. 27-32.

76. Блинов Н:Н., Власов П.П., Гуревич A.M. и др. Технические средства рентгенодиагностики и др. М.: Медицина, 1981,- 376 с.

77. Блинов Н.Н. Микропроцессорная техника и ЭВМ в медицинской интроскопии М.: Знание, 1986.- 64 с.

78. Блинов Н., Жуков Е.М., Козловский Э.Б., Мазуров. А.И. Телевизионные методы обработки рентгеновских и гамма-изображений. М.: Энергоатоиздат, 1982.-200 с.

79. Боде Г., Шеннон К. Упрощенное изложение линейной минимально-квадратичной теории сглаживания и предсказания//Теория информации и ее применение. М.: Физматиз, 1959. - С.113-137.

80. Бьемон Ж., Лагендейк P.JI., Марсеро P.M. Итерационные методы улучшения изображений // ТИИЭР. 1990. - Т.78, № 5. - С. 58-84.

81. Бертеро М., Поджо Т. А., Торре В. Некорректные задачи в-предварительной обработке визуальной информации // ТИИЭР. 1988. - Т.76, № 8. - С. 17-40.

82. Бейтс Р., Мак-Донелл М. Восстановление и реконструкция изображений.-М.: Мир, 1989. 333 с.

83. Денисов JI.E., Ушакова Т.И., Володин В.Д. Возможности обработки материалов канцер-регистра на персональном компьютере (на примере рака желудка). -М.: Медицина, 1995.- 96 с.

84. Денисов JI.E., Виноградова Н.Н., Ушакова Т.И. Автоматизированная система данных (канцер-регистр) по онкологии на базе персональной ЭВМ //

85. Актуальные вопросы онкологии; Масъалахои мухими саратоншиноси. -Душанбе, 1992.-С. 146-148.

86. Денисов Д. А., Ыизовкин В. А. —Зарубежная радиоэлектроника, 1985, № 10, с. 5—30.

87. Клименков A; JI., Патютко Ю.И., Губина Г.И. Опухоли желудка // М. «Медицина». 1988. - С. 78 - 79.

88. Коновалов В.К., Кагаловский Г.М., Сметанин А.Г. и др. Опыт использования? устройства- цифровой записи рентгенотелевизионных изображений БРИЗ-2 в бронхопульмонологии // Вестник рентгенологии и радиологии.-1995.- № 2.- С. 52-59.

89. Королюк И.П;, Володин В.М. Медицинское изображение: эффективный выбор в: клинической практике // Вестник рентгенологии. -1990.-№5 -С. 13.

90. Королюк И.П. Компьютерная1 система по оптимальному выбору методов лучевой диагностики // Вестник рентгенологии. -1992.- №1.- с. 14-15.

91. Кадач А.В. Свойства кодов Хаффмана и эффективные методы декодирования префиксных кодов. Новосибирск: Изд-во РАН, 1997. - 348 с.

92. Кучеренко К. И., Очин Е. Ф. — Зарубежная радиоэлектроника, 1986, № 6, с.50—61.

93. Максимов И.А., Савинкин Ю.Н., Лебедев А.В. Гастроскопия в морфологической верификации рака желудка//Сов. мед.-1988.-№11.-С. 78-81.

94. Мюррей Д., Ван Райпер У. Энциклопедия^ форматов графических файлов: пер. с англ. — Киев: Издательская группа BHV, 1997. 672 с.

95. Мастрюков Д: Сжатие по Хаффмену// "Монитор", NN 7-8, 1993.

96. Никитин О.Р., Агеев А.В. Обработка изображений для последующей сегментации. Проектирование и технология электронных средств №4, 2003. с. 55-59:

97. Никитин О.Р., Пасечник А.С. Сжатие и архивирование медицинских изображений / О.Р. Никитин, А.С. Пасечник // Современные наукоемкие технологии. 2005.- №8. - С. 29-30:

98. Никитин О.Р., Пасечник А.С. Критерии оценки качества работы алгоритмов оконтуривания в специфике медицинских изображений / О.Р.

99. Никитин, А.С. Пасечник // Акустооптические и радиолокационные методы измерений и обработки информации: Материалы I всероссийской научно — технической конференции: 2007. — Часть 1. — С. 106-107.

100. Никитин О.Р., Пасечник А.С. Методы оценки эффективности оконтуривания и сегментирования изображений / О.Р. Никитин, А.С. Пасечник // Радиотехника. 2009.- №11(146). - С. 18-20.

101. Никитин О.Р., Пасечник, А.С. Оценка качества* работы алгоритмов, сегментации видеоизображений' / О.Р: Никитин, А.С. Пасечник // Известия института инженерной физики. 2010г.- №2. (принято к публикации).

102. Никитин^ О.Р.', Пасечник А.С. Сегментирование и оконтуривание неоднородностей видеоизображений / О.Р. Никитин,. А.С. Пасечник. // Материалы.III конференции аспирантов и молодых ученых. — Ковров: 2008. -Часть Л. — С. 155-163.

103. Основные показатели состояния онкологической помощи населению России в 1997 г. (Под ред. акад. РАМН В.И. Чиссова, проф. В.В: Старинского, к.м.н. Л.В. Ременник). М.- 1998.- 166 с:

104. Павлов К.А., Назаренко В.П. Возможности оптимизации методов, исследований при профилактических осмотрах. // Вопр: Онкол. 1984. - №5. -С. 8- 12.

105. Приоров А.Л., Ганин А.Н:, Хрящев- В.В. Цифровая обработка изображений: Учеб. Пособие / Яросл. Гос. ун-т. Ярославль, 2001. 218с. ISBN 5- 8397-0198-Х

106. Приоров АЛ. Цифровая обработка изображений: Учеб. Пособие / A.JI. Приоров, И.В. Апальков, В.В. Хрящев, Яросл. Гос. ун-т., Ярославль, 2007. 235с. ISBN 978-5-8397-0541-8

107. Прэтт Э. Цифровая обработка изображений: Пер. с англ., М.: Мир, 1982.

108. Савельев B.C., Буянов В.М., Лукомский Г.И. Руководство по клинической эндоскопии.-М., 1985.-543 с.

109. Семиглазов В.Ф. Ранняя диагностика опухолей молочной железы. -Л.: Медицина, 1989.- 183 с.

110. Середа С.Н. Система автоматизированной обработки, анализа и хранения маммографических снимков. Автореф. дис. на соиск. уч. ст. к.т.к., Владимир, 2000. 153 с.

111. Странадко Е.Ф., Александрова Л.А., Осмоловский М.М. Медицинские и экономические аспекты применения ЭВМ в онкологическом скрининге // Советская медицина. -1986.- № 8.- С. 67150. Технические средства медицинской интроскопии. / Под, ред. Б.И.

112. Леонова. — М.: Медицина, 1989. З04'с., ил.

113. Технические средства рентгенодиагностики. / Под ред. И.А. Переелегина: — М.: Медицина, 1981. 376 е., ил.

114. Тихонов В.И. Автоматизированная система для обработки информации в НИИ онкологии // Автоматизированные информационные системы в онкологии.: Тез. докл. Всесоюз. симп. -Бишкек, 1991.- С. 19-21.

115. Теплинский В., Марк Стори. ТЕЛЕМЕДИЦИНА INTERNET, opyright © 1997, Январь 1997.

116. Теплинский В. ТЕЛЕМЕДИЦИНА АМСЗ, Copyright © 1997, Февраль, 1997.

117. Уэбб С. Физика визуализации изображений в медицине: Пер. с англ. -М.: Мир, 1991.- 552 с.

118. Уэбба С. Физика визуализации изображений в медицине: в 2-х томах. Т. 2: Пер. С англ. /- М.: Мир, 1991. 408 е., ил.

119. Франк Г.А., Белоус Т.А., Чнссов В.И. Морфологические особенности полипов • желудка // Клиническая хирургия. -1986.- № 5. С. 12-14.

120. Форсайт, Дэвид А., Понс,Жан Компьютерное зрение. Современный подход.-М.: Издательский дом «Вильяме», 2004.

121. Фукунага К. Введение в статистическую теорию распознавания образов, М.: Наука, 1979.

122. Цветкова Т.Л., Филинов В.Н. Комплексная автоматизация деятельности онкологической службы // Новые организационные формы противораковой борьбы.: Тез.докл. межгос. симп. -Челябинск, 1994.- С. 29.

123. Чиссов В;И., Старинский В.В.,, Ковалев Б.Н., Ременник Л.В. Состояние онкологической помощи населению Российской Федерации. // Российский онкологический журнал. № 1. 1996. С. 5 - 12.

124. Чиссов В.И., Трахтенберг А.Х. «Ошибки в клинической онкологии» -М. «Медицина», 1993. С. 66 70.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.