Методы адаптивного и робастного управления в условиях запаздывания и возмущающих воздействий тема диссертации и автореферата по ВАК РФ 05.13.01, кандидат технических наук Пыркин, Антон Александрович
- Специальность ВАК РФ05.13.01
- Количество страниц 151
Оглавление диссертации кандидат технических наук Пыркин, Антон Александрович
Введение
Глава 1. ОБЗОР МЕТОДОВ УПРАВЛЕНИЯ В УСЛОВИЯХ ЗАПАЗДЫВАНИЯ И ВОЗМУЩЕНИЙ. ПОСТАНОВКА ЗАДАЧИ.
1.1. Обзор методов управления в условиях запаздывания.
1.1.1. Предиктор Смита.
1.1.2. Предиктор Крстича. Метод бэкстеппинг.
1.2. Обзор методов управления в условиях возмущающих воздействий
1.3. Обобщенная постановка задачи.
Глава 2. МЕТОДЫ ПОСТРОЕНИЯ АДАПТИВНЫХ НАБЛЮДАТЕЛЕЙ МУЛЬТИГАРМОНИЧЕСКИХ СИГНАЛОВ.
2.1. Алгоритм адаптивной идентификации параметров смещенного синусоидального сигнала.
2.1.1. Постановка задачи.
2.1.2. Алгоритм идентификации частоты смещенного гармонического сигнала.
2.1.3. Алгоритм идентификации смещения, амплитуды и фазы
2.1.4. Числовой пример.
2.2. Алгоритм адаптивной идентификации частот и наблюдатель гармоник мультигармонического сигнала.
2.2.1. Постановка задачи.
2.2.2. Алгоритм идентификации частот смещенного мультигармонического сигнала.
2.2.3. Алгоритм идентификации смещения, амплитуд и фаз гармоник.
2.2.4. Числовой пример.
2.3. Заключительные выводы по главе.
Глава 3. КОМПЕНСАЦИЯ МУЛЬТИГАРМОНИЧЕСКИХ ВОЗМУЩЕНИЙ, ДЕЙСТВУЮЩИХ НА УСТОЙЧИВЫЙ ОБЪЕКТ С ЗАПАЗДЫВАНИЕМ В КАНАЛЕ УПРАВЛЕНИЯ.
3.1. Алгоритм компенсации мультигармонического возмущения, действующего на устойчивый линейный объект управления с запаздыванием.
3.1.1. Постановка задачи.
3.1.2. Алгоритм адаптивной идентификации частот
3.1.3. Синтез закона управления.
3.1.4. Числовой пример.
3.2. Алгоритм компенсации мультигармонического возмущения, действующего на устойчивый нелинейный объект управления с запаздыванием.
3.2.1. Постановка задачи.
3.2.2. Построение алгоритма компенсации возмущающего воздействия.
3.2.3. Алгоритм адаптивной идентификации частот.
3.2.4. Синтез закона управления.
3.2.5. Числовой пример.
3.3. Экспериментальные исследования алгоритма управления
3.4. Заключительные выводы по главе
Глава 4. КОМПЕНСАЦИЯ МУЛЬТИГАРМОНИЧЕСКИХ
ВОЗМУЩЕНИЙ, ДЕЙСТВУЮЩИХ НА
НЕУСТОЙЧИВЫЙ ОБЪЕКТ С ЗАПАЗДЫВАНИЕМ
В КАНАЛЕ УПРАВЛЕНИЯ.
4.1. Постановка задачи.
4.2. Алгоритм стабилизации неустойчивого объекта управления с запаздыванием.
4.3. Алгоритм адаптивной идентификации частот и наблюдатель гармоник мультигармонического возмущения.
4.4. Алгоритм компенсации мультигармонического возмущения, действующего на неустойчивый объект управления с запаздыванием.
4.4.1. Числовой пример.
4.5. Заключительные выводы по главе.
Рекомендованный список диссертаций по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК
Алгоритмы гибридного управления динамическими системами в задачах адаптации2012 год, кандидат технических наук Колюбин, Сергей Алексеевич
Адаптивное управление в условиях запаздывания, неполной информации о параметрах и переменных состояния системы2015 год, доктор наук Пыркин Антон Александрович
Развитие методов робастного и адаптивного управления в задачах компенсаций конечномерных возмущений2005 год, кандидат технических наук Кремлев, Артем Сергеевич
Адаптивное и робастное управление параметрически и функционально неопределенными объектами в условиях возмущений и запаздывания2006 год, доктор технических наук Бобцов, Алексей Алексеевич
Адаптивные идентификаторы квазигармонических возмущающих воздействий2009 год, кандидат технических наук Арановский, Станислав Владимирович
Введение диссертации (часть автореферата) на тему «Методы адаптивного и робастного управления в условиях запаздывания и возмущающих воздействий»
В теории автоматического управления особое место занимают системы с запаздыванием, задача управления которыми всегда привлекала внимание многих исследователей [8, 10-14, 17, 18, 23-27, 29-36, 40, 51, 53-58, 62, 63, 63, 64, 67, 68, 70-73, 78-80, 82-84, 88-91, 93-95, 97-99]. Выделение объектов с запаздыванием в отдельный класс вызвано, прежде всего, сложностью их исследования по сравнению с объектами, не содержащих временного запаздывания. Характерной особенностью систем управления для объектов с запаздыванием является зависимость состояния управляемого процесса от предыстории, и пренебрежение влиянием запаздывания приводит к ухудшению качества функционирования системы.
Эффект запаздывания особенно ярко проявляется при автоматическом управлении высокоскоростными самолетами, ракетами и сложными системами при наличии больших расстояний. Запаздывание реакции управляющей системы на возникшее нарушение процесса приводит, как правило, к возникновению автоколебаний в замкнутой системе, а нередко и к потере устойчивости.
Транспортное запаздывание может возникать в силу конструктивных особенностей системы. Например, при автоматическом управлении впрыском топлива в инжекторном двигателе внутреннего сгорания анализатор выхлопного газа проблематично поместить непосредственно в камере сгорания [56]. Решение задачи поддержания заданного стехиометрического соотношения является экологически и экономически выгодным, поскольку с одной стороны в атмосферу не выбрасываются вредные вещества, вызванные частичным сгоранием топлива, а с другой стороны производится оптимальный по объему впрыск топлива, необходимый для функционирования двигателя.
Бурный рост информационно-коммуникационных технологий привел к обширному использованию цифровых контроллеров в современных системах автоматики. Простота реализации, недорогая стоимость и малые габариты — все это привело к замене классических аналоговых регуляторов цифровыми. Однако, несмотря на относительно высокое быстродействие современные контроллеры, в силу сложности алгоритма управления, могут вызывать крайне нежелательное запаздывание.
При синтезе законов управления сложными химическими реакторами запаздывание имеет место в силу особенностей протекания химических реакций. Также запаздывание можно встретить, работая с экологическими, эволюционными, организационными, транспортными системами и многими другими.
При необходимости учитывать время запаздывания в математической модели следует использовать уравнения в форме, более общей, чем дифференциальная, а именно — дифференциально-разностные уравнения, представляющие собой более общий класс функциональных уравнений. Математическая модель в виде дифференциально-разностных уравнений охватывает в частных случаях процессы, описываемые дифференциальными уравнениями (то есть непрерывные системы регулирования), и процессы, описываемые разностными уравнениями (то есть импульсные системы регулирования). Кроме чистого запаздывания, рассмотрение которого приводит к дифференциально-разностным уравнениям, в системах управления встречаются так называемые распределенные запаздывания. Такое запаздывание наблюдается в системах с распределенными параметрами, описываемыми дифференциальными уравнениями в частных производных. В теории регулирования встречается также понятие эквивалентного запаздывания, которое используется при замене дифференциальных уравнений высокого порядка дифференциально-разностными уравнениями низкого порядка или нелинейных дифференциальных уравнений, линейными дифференциально-разностными уравнениями.
В настоящее время имеется большое количество работ по исследованию систем с запаздыванием [68]. Отметим, что использование функций Ляпунова для исследования устойчивости данного типа систем нельзя рассматривать в качестве общего подхода, поскольку теоремы прямого метода Ляпунова не допускают обращения. Поэтому большое значение имели работы [17, 29, 31], где для анализа устойчивости было предложено рассматривать вместо функций Ляпунова функционалы Ляпунова-Красовского, обладающие аналогичными свойствами.
Системы с запаздыванием можно разделить на три класса:
- объекты с запаздыванием по управлению;
- объекты с запаздыванием по состоянию, из которых можно выделить особый класс объектов — объекты нейтрального типа;
- объекты с запаздыванием по управлению и состоянию.
Синтез систем управления для объектов с запаздывающим управлением требует учета влияния величины запаздывания на устойчивость и качество переходных процессов в замкнутой системе. Уникальным подходом была идея Отто Смита [95J. Она заключалась в построении системы управления, в которой запаздывание не влияет на устойчивость и качество переходных процессов. Недостатками такого подхода является то, что он расчитан только на асимптотически устойчивые объекты управления, а также необходимость точного знания всех параметров системы. В последующие годы учеными со всего мира исследовались и были решены более сложные постановки задач управления в условиях запаздывания: для дискретных объектов управления
35], для параметрически не определенных объектов управления [18, 30, 57, 84], для неустойчивых объектов управления [68].
В настоящее время нет удовлетворительных решений, связанных с синтезом регуляторов в условиях временного запаздывания и возмущений. Задача компенсации внешних возмущающих воздействий относится к фундаментальным проблемам современной теории автоматического управления. Особый интерес представляют задачи управления по выходу, как линейными и нелинейными, так и устойчивыми и неустойчивыми объектами.
Весьма наглядный пример сложной технической системы, функционирующей в условиях нестационарной внешней среды, — надводное судно. В открытом море судно подвергается возмущениям, имеющим различную природу и происхождение. Выделяют три типа возмущений, существенно влияющих на качество управления: ветровые воздействия, волновые воздействия и течение. Система автоматического управления движением судна может решать различные задачи: стабилизация курса, движение вдоль заданной траектории, стабилизация продольной и поперечной скоростей, динамическое позиционирование в точке. К системам автоматического управления движением предъявляются жесткие требования к динамическим и точностным показателям качества. Например, для задачи стабилизации курса установившаяся ошибка не должна превышать значение 1 градуса. Для нефтеналивных судов большого водоизмещения, длина которых может быть более 100 метров, необходимо синтезировать системы динамического позиционирования в точке. При том, что судно может находиться под нефтяной вышкой более суток, система управления должна обеспечивать точность позиционирования с отклонением не более 20 см при различного рода возмущениях.
Более сложными техническими объектами в смысле управления являются летательные аппараты, обладающие сравнительно высокими скоростями полета. Сложность объясняется повышенными требованиями к безопасности движения. При этом сам летательный аппарат подвержен весьма серьезным внешним воздействиям: ветер, зоны турбулентности, грозовые тучи, и многое другое, характерное для данного типа объектов управления.
Нормальное функционирование высокоточных оптических систем требуют относительно спокойной и неподвижной внешней среды. Наличие возмущающих воздействий может крайне негативно сказываться на работе такой системы, поэтому влияние возмущения должно быть устранено. В прецизионном электроприводе необходимо минимизировать траекторную ошибку с помощью компенсации возмущающих воздействий. Задача компенсации возмущений решается стендами активной виброзащиты.
Заданную траекторию при движении орбитального тела сохраняет только центр масс, а весь корабль под действием различных возмущающих моментов может вращаться относительно системы координат, связанной с центром масс. Чтобы корпус корабля был неподвижен относительно своего центра, необходимо его стабилизировать в нужном положении. Управление кораблем или орбитальной космической станцией — это не только стабилизация его относительно центра масс, но и ориентация по отношению к внешней системе координат, например, по отношению к Солнцу. Сохранению же полученной ориентации будут препятствовать различного рода регулярные и нерегулярные возмущения, компенсация которых и составляет задачу стабилизации. Система стабилизации должна работать непрерывно, быть очень чувствительной к возмущающим моментам, которые могут иметь самое разнообразное происхождение, величину и продолжительность действия. Причин возможных внешних возмущений — десятки. Это и силы аэродинамического сопротивления, и гравитационное и магнитное поля Земли, и давление солнечной радиации, и столкновение с метеорами, возможные толчки и удары при встрече с другими космическими аппаратами. Источники возмущающих моментов могут находиться как внутри орбитальной космической станцией, так и вне ее. Внутренние возмущения могут быть вызваны не только работой подвижных частей оборудования, но и перемещениями членов экипажа. Если возмущения не компенсировать постоянно, то импульс момента может быть очень большим, а угловые скорости вращения будут расти неограниченно и станция может раскрутиться до большой скорости. Внешние возмущения естественного происхождения — аэродинамического, гравитационного или магнитного — характеризуются, с одной стороны, весьма малыми значениями возмущающего момента, с другой стороны, довольно большой продолжительностью их действия.
Нет никаких сомнений, что задача активной компенсации возмущающих воздействий является актуальной для широкого класса технических объектов управления. На сегодняшний день получено большое число алгоритмов управления в условиях внешних воздействий [2, 3, 6-9, 20, 42, 52, 74-77, 85-87]). Как правило, подходы к управлению при наличии возмущения предполагают использование интегральных регуляторов, повышение у системы порядка астатизма или же встраивание известной модели возмущающего воздействия (комбинированные регуляторы), что в подавляющем большинстве случаев является сильной идеализацией [5]. Однако, применение указанных методов ограничивается классом измеряемых, ограниченных возмущений или же возмущений с известной динамической моделью. С развитием адаптивного управления удалось найти более конструктивные решения в классе параметрически и сигналыю не определенных детерминированных возмущений [6-9, 20, 25].
При огромном количестве работ, посвященных методам синтеза регуляторов в условиях запаздывания зачастую не рассматривается наличие внешних возмущений, при этом не ясно, является ли тот или иной предложенный метод пригодным к использованию в реальном техническом объекте. Существует не меньшее количество результатов, где получены адаптивные и робастные схемы компенсации параметрически не определенных возмущающих воздействий. Однако, при наличии временного запаздывания в контуре управления практически все эти методы становятся неэффективными. Таким образом, необходимо разрабатывать новые подходы, позволяющие работать в условиях и запаздывания, и действия внешних возмущений, что подчеркивает актуальность данной работы.
Цель диссертационной работы. Целью диссертационной работы является разработка новых адаптивных и робастных алгоритмов управления линейными и нелинейными объектами в условиях запаздывания и внешних возмущающих воздействий, а также их апробация на мехатронных системах.
Для достижения поставленной цели решены следующие задачи:
1. Синтезирован алгоритм адаптивной идентификации частоты смещенного синусоидального сигнала.
2. Доказана теорема об экспоненциальной сходимости к нулю ошибки оценивания частоты, откуда показано робастное свойство алгоритма по отношению к нерегулярной составляющей в измеряемом сигнале.
3. Получен алгоритм идентификации смещения, амплитуды и начальной фазы сигнала.
4. На основе результатов для смещенного синусоидального сигнала получен алгоритм адаптивной идентификации всех параметров мультигармоничсского сигнала, включая частоты, амплитуды, начальные фазы всех гармоник и общее смещение.
5. Разработан адаптивный наблюдатель каждой гармоники и ее производной для измеряемого мультигармонического сигнала на основе оценок частот.
6. Разработан адаптивный предиктор, позволяющий получать упредительную оценку мультигармонического сигнала, на основе оценок всех частот, гармоник и их производных.
7. Разработан алгоритм идентификации всех частот мультигармонического возмущения, действующего на устойчивый объект управления.
8. Разработан алгоритм компенсации мультигармонического возмущающего воздействия, действующего на линейный устойчивый объект с запаздыванием в канале управления.
9. Разработан алгоритм компенсации мультигармонического возмущающего воздействия, действующего на нелинейный устойчивый объект с запаздыванием в канале управления.
10. Разработан алгоритм стабилизации возмущенного неустойчивого объекта с запаздыванием в канале управления.
11. Доказана теорема о том, что реакция стабилизированного объекта на мультигармоническое возмущение будет также мультигармоническим с теми же частотами.
12. Разработан алгоритм идентификации всех частот мультигармонического возмущения, действующего на неустойчивый объект управления.
13. Разработан алгоритм компенсации мультигармонического возмущающего воздействия, действующего на линейный неустойчивый объект с запаздыванием в канале управления.
14. Проведена апробация программных версий разработанных алгоритмов па мехатронном маятниковом комплексе.
Методы исследования. При получении теоретических результатов использовались метод функций Ляпунова, амплитудно-фазовые частотные характеристики линейных динамических звеньев, метод "Ьас1^ерр^" Мирослава Крстича. В работе также использованы общие методы теории автоматического управления и автоматизации технологических процессов, алгебры многочленов и теории матриц, теории дифференциальных уравнений с отклоняющимся аргументом.
Научная новизна. Новизна данной работы заключается в том, что рассматриваемая задача компенсации неизвестного мультигармонического возмущающего воздействия в условиях запаздывания решается впервые. Достаточно большое число работ посвящено управлению в условиях действия неизвестного возмущающего воздействия по измерениям только выходной переменной. Однако, несмотря на большое разнообразие методов решения и моделей объектов задача компенсации мультигармонических возмущающих воздействий для случая, когда канал управления характеризуется запаздыванием, не рассматривалась.
Практическая значимость. Практическая значимость полученных результатов заключается в том, что данные методы управления по выходной переменной (т. е. без измерения переменных состояния объекта или производных выходного сигнала) могут быть эффективно применены для широкого класса технических объектов, функционирующих в условиях возмущающих воздействий и запаздывания в каналах управления и измерения. Применение полученных методов позволит существенно ослабить требования к объему априорной информации о свойствах среды функционирования объекта управления; значительно снизить затраты на разработку и использование сенсорной техники для измерения всех переменных состояния системы или производных выходной переменной; расширить класс технических объектов, для которых могут быть успешно решены задачи высокоточного управления; повысить надежность системы благодаря устранению дополнительных помех, вызванных использованием датчиков переменных состояния или вычислителей производных выходной регулируемой переменной.
На защиту выносятся следующие основные результаты и положения:
1. Адаптивный наблюдатель параметров мультигармонического сигнала (частоты, амплитуды, начальные фазы), позволяющий получать оценки всех гармоник и их производных.
2. Алгоритм компенсации параметрически не определенного мультигармонического возмущения, действующего на устойчивый линейный объект с запаздыванием в канале управления.
3. Алгоритм управления устойчивым нелинейным объектом с запаздыванием, позволяющий парировать параметрически не определенное мультигармоническое возмущение.
4. Алгоритм стабилизации неустойчивого линейного объекта, функционирующего в условиях запаздывания в канале управления, с парированием параметрически не определенного мультигармонического возмущения.
Апробация работы. Основные результаты диссертации докладывались на следующих конференциях:
- 9th IFAC Workshop Adaptation and Learning in Control and Signal Processing, Saint-Petersburg, Russia, 2007. [43] (9-ая международная конференция по адаптации и обучению в управлении и обработке сигналов).
- 6th EUROMECH Nonlinear Dynamics Conference ENOC, Saint-Petersburg, Russia, 2008. [39, 44] (6-ая международная конференция по нелинейной динамике).
- 17th IFAC World Congress, Seoul. Republic Korea. 2008. [45, 46] (17-ый Всемирный конгресс по автоматическому управлению).
- The 2008 IEEE Multi-conference on Systems and Control, San Antonio, Texas, USA. [37] (Международная мультиконференция но системам и управлению).
- 12th International Student Olympiad on Automatic Control BOAC, Saint-Petersburg, Russia, 2008. [66] (12-ая международная студенческая олимпиада по автоматическому управлению (Балтийская олимпиада)).
- 3rd IEEE Multi-conference on Systems and Control (MSC 2009), Saint Petersburg, Russia, 2009. [48, 49] (3-я международная мультиконференция по системам и управлению).
- 4th International Conference 'Physics and Control' (Physcon 2009), Catania, Italy, 2009. [50] (4-ая международная конференция 'Физика и Управление').
- 9th IFAC Workshop on Time Delay System, Prague, Czech Republic, 2010. [51, 90, 91] (9-ая международная конференция по системам с временным запаздыванием).
- American Control Conference, Baltimore, USA, 2010. [89] (Американская конференция по управлению).
- 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy, 2010. [92, 93] (8-ой международный симпозиум по нелинейным системам управления).
- IV Межвузовская конференция молодых ученых, Санкт-Петербург,
2007. [26]
- V Межвузовская конференция молодых ученых, Санкт-Петербург,
2008. [15]
- VI Межвузовская конференция молодых ученых, Санкт-Петербург,
2009.
- VII Межвузовская конференция молодых ученых, Санкт-Петербург,
2010.
- X конференция молодых ученых "Навигация и управление движением", Санкт-Петербург, 2008.
-XII конференция молодых ученых "Навигация и управление движением", Санкт-Петербург, 2010.
- XXXVIII научная и учебно-методическая конференция СПбГУ ИТМО,
2009.
- XXXIX научная и учебно-методическая конференция СПбГУ ИТМО,
2010. [11]
- Первая Традиционная Школа "Управление, информация и оптимизация", Переславль-Залесский, 2009. [27]
- 5-ая научной конференции "Управление и информационные технологии" (УИТ-2008), Санкт-Петербург, 2008.
В 2009 году в течение месяца автор проходил научную стажировку в Университете Калифорнии в Сан-Диего (США) у профессора Мирослава Крстича, всемирно известного ученого в области адаптивного управления и запаздывания, занимаясь исследованием задачи управления неустойчивым объектом в условиях запаздывания в канале управления и внешнего возмущающего воздействия.
Автор работал соисполнителем по 3 грантам: РФФИ № 05-08-33388-а "Методы теории пассивных систем в задачах робастной стабилизации и управления пространственным движением роботов и мехатронных объектов"; РФФИ № 06-01-08038-офи "Методы адаптивного, нелинейного и робастного управления роботами и мехатронными объектами"; РФФИ № 06-08-01386-а "Разработка алгоритмов робастного и адаптивного управления техническими системами при ограничениях па пропускную способность каналов связи".
В данный момент автор работает соисполнителем 5 грантов: РФФИ № 09-08-00139-а "Развитие методов адаптивного и нелинейного управления мехатронными объектами с приложением к задачам управления манипуляционными и шагающими роботами"; РФФИ № 09-08-00803-а "Децентрализованное управление многокомпонентными техническими системами при информационных ограничениях"; АВЦП № 2.1.2/6326 "Адаптивное и автоматное управление мобильными роботами"; ФЦП № П498 "Разработка интеллектуальных систем навигации и управления мобильными роботами"; ФЦП № П 2479 "Многофункциональное приборостроение для промышленных систем управления. Проблема исследовательских работ:
Разработка систем управления движением прецизионных электроприводов приборных комплексов нового поколения".
В 2008 году автор выиграл конкурс "У.М.Н.И.К." с проектом "Разработка программно-аппаратных исследовательских комплексов для проверки алгоритмов управления в условиях запаздывания", а также стал абсолютным победителем Международной Балтийской олимпиады по автоматическому управлению ВОАС, проводимой в Санкт-Петербурге.
Работа выполнена на кафедре "Систем Управления и Информатики", поддержана Федеральной Целевой Программой "Научные и научно-педагогические кадры инновационной России" на 2009-2013 годы, проект № НК495П(2) "Создание макета механотронного исследовательского комплекса для анализа интеллектуальных методов управления сложными динамическими объектами".
Разработанные алгоритмы управления были исследованы на мехатронном маятниковом комплексе "The Mechatronics Control Kit", предоставленного фирмой "Mechatronic Systems, Incorporated" [81]. Рассматривается однозвенный маятник, снабженный маховиком. Маятник может совершать вращение в вертикальной плоскости. Маховик приводится в движение электродвигателем постоянного тока, который смонтирован на маятнике. Для исследования работы алгоритма в условиях запаздывания программно создается буфер, через который пропускается функция управления: сигнал управления подается на вход буфера, а выходной сигнал буфера поступает на объект управления. Величина имитируемого запаздывания определяется размером буфера. Для моделирования возмущающего воздействия в сигнал управления, поступающего на вход объекта управления, вводится возмущающая составляющая, которая недоступна для закона управления. Для исследования алгоритма управления в условиях действия возмущающего воздействия также будет осуществлен эксперимент, когда возмущение не моделируется программно, а создается реально. Для этого используется тележка на подвижной основе, на которой смонтирован маятник. Возмущение, создающее перемещение тележки в горизонтальной плоскости, вызывает устойчивые колебания маятника.
Публикации. Материалы диссертации опубликованы в 9 печатных работах в рецензируемых журналах [3, 4, 8-10, 15, 16, 25, 47], входящих в перечень ВАК, а также в 18 статьях в сборниках научных трудов всероссийских и международных конференций [26, 27, 37, 39, 43-46, 48-51, 66, 89-93].
Личный вклад автора. Автор диссертационной работы усилил результат по идентификации частоты смещенного синусоидального сигнала [2], упростив структуру идентификатора. При этом им была доказана теорема о том, что ошибка оценивания частоты ограничена затухающей экспоненциальной функцией времени. На основе оценки частоты был разработан алгоритм оценки амплитуды, смещения и начальной фазы сигнала. Полученный результат был обобщен на случай мультигармонического сигнала.
Автор разработал оригинальный метод компенсации детерминированного, мультигармонического возмущения, действующего на устойчивые линейный и нелинейный объекты с запаздыванием в канале управления. В отличие от известных существующих подходов, данный метод применим к объектам, модель которых может иметь произвольную относительную степень. Данный алгоритм является робастным по отношению к нерегулярной составляющей, присутствующей в возмущении.
Автор объединил предыдущий результат и метод М. Крстича [68] по стабилизации неустойчивых объектов управления с запаздыванием, получив тем самым новый метод управления неустойчивыми объектами с запаздыванием в условиях параметрически не определенных возмущающих воздействий.
Автор разработал мехатронную установку на подвижном основании, состоящей из маятника и инерционного колеса. Такая установка позволила осуществить апробацию разработанных алгоритмов управления в условиях запаздывания и возмущающих воздействий.
Структура и объем диссертации. Диссертация состоит из введения, четырех основных глав с выводами и заключения. Основная часть работы изложена на 151 странице. Список литературы включает 99 наименований.
Похожие диссертационные работы по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК
Адаптивное и робастное децентрализованное управление многосвязными объектами с односвязными подсистемами2007 год, доктор технических наук Паршева, Елизавета Александровна
Робастное и адаптивное управление колебательными режимами нелинейных систем2006 год, доктор технических наук Ефимов, Денис Валентинович
Адаптивное и робастное управление с компенсацией возмущений2001 год, доктор технических наук Никифоров, Владимир Олегович
Алгоритмы прямой адаптивной компенсации детерминированных возмущений в системах с запаздыванием2018 год, кандидат наук Парамонов, Алексей Владимирович
Адаптивные алгоритмы управления в условиях параметрически неопределенных возмущающих воздействий2017 год, кандидат наук Громов, Владислав Сергеевич
Заключение диссертации по теме «Системный анализ, управление и обработка информации (по отраслям)», Пыркин, Антон Александрович
Заключение
В диссертационной работе проведено исследование, связанное с проблемой управления в условиях запаздывания и действия возмущающих воздействий. Во введении приведены примеры задач управления в условиях запаздывания и действия возмущающих воздействий. В первой главе произведен анализ существующих методов управления, сформулирована обобщенная постановка задачи, обозначены три цели, каждая из которых рассматривается в рамках отдельной главы.
Во второй главе решена задача построения адаптивного наблюдателя мультигармонического сигнала, позволяющего получать оценки всех параметров, включая общее смещение, все частоты, амплитуды и начальные фазы. Доказана теорема о том, что алгоритм идентификации обеспечивает экспоненциальную сходимость к нулю ошибки оценивания частоты смещенного синусоидального сигнала. Показаны адаптивные свойства по отношению к изменению параметров сигнала. Изменяя параметры алгоритма можно управлять временем переходного процесса идентификации. Показано, что алгоритм обладает робастными свойствами по отношению к нерегулярной составляющей, присутствующей в сигнале.
В третьей главе решена задача компенсации мультигармонического возмущения для линейного и нелинейного объектов управления с запаздыванием по входу. С использованием результата второй главы получен адаптивный наблюдатель возмущающего воздействия, который оценивает все частоты возмущения, выделяет из многокомпонентного сигнала каждую гармонику и ее производную. На основе адаптивного наблюдателя строится предиктор, обеспечивающий формирование управляющего сигнала с упреждением на необходимое время запаздывания. Такой алгоритм позволяет обеспечить ограниченность всех траекторий системы и сходимость к нулю выходной переменной. На ряду с результатами математического моделирования представлен результат практического использования предлагаемого алгоритма управления на мехатронном исследовательском маятниковом комплексе "The Mechatronics Control Kit", предоставленного фирмой "Mechatronic Systems, Incorporated". Для исследования работы алгоритма в условиях запаздывания был программно создан буфер, через который пропускается функция управления: сигнал управления подается на вход буфера, а выходной сигнал буфера поступает на объект управления. Для исследования алгоритма управления в условиях действия возмущения используется тележка на подвижной основе, на которой смонтирован маятник.
В четвертой главе результат третей главы обобщается на случай неустойчивых систем с запаздыванием в канале управления. Алгоритм стабилизации неустойчивой системы с запаздыванием основан на решении уравнения в частных производных первого порядка ("transport PDE") [70], [68] с использованием классической процедуры бэкстеппинг [69]. Закон управления по выходу формируется из двух составляющих: первая расчитывается из соображений стабилизации неустойчивой системы, и вторая — для компенсации возмущения. Блок запаздывания предстапвляется в виде уравнения в частных производных, что позволяет применить процедуру бэкстеппинг [70]. Разработай регулятор, стабилизирующий систему с возмущением. Отсутствие запаздывания является частным случаем решенной задачи. С использованием результатов второй и третей глав строится адаптивный наблюдатель возмущающего воздействия, обеспечивающий оценку всех частот, и получен алгоритм расчета комбинированного регулятора, способного стабилизировать объект с запаздыванием по управлению и компенсировать при этом возмущающее воздействие.
Слова благодарности
Соискатель благодарен своему научному руководителю профессору Бобцову Алексею Алексеевичу за огромный вклад в данную работу и научную деятельность аспиранта, за полученные фундаментальные знания, опыт и практические навыки в современной теории нелинейных, адаптивных и робастных систем управления, а также за организацию научной стажировки в США.
Соискатель благодарен коллегам из США профессору Мирославу Крстичу, доктору Андрею Смышляеву, Николасу Бекиарису-Либерису за научную стажировку в Университете Калифорнии в Сан-Диего, обмен опытом и теоретическими знаниями, получение совместных результатов по управлению неустойчивыми объектами с запаздыванием [89, 90], с использованием которых была написана 4 глава диссертации.
Соискатель благодарен профессорам А.Л. Фрадкову и М. Спонгу за предоставление мехатронного маятникового комплекса Mechatronic Control Kit для исследования работоспособности алгоритмов управления.
Список литературы диссертационного исследования кандидат технических наук Пыркин, Антон Александрович, 2010 год
1. Андриевский Б. Р. Стабилизация перевернутого маятника с инерционным маховиком в качестве движителя. Управление в физико-технических системах / Под ред. А.Л. Фрадкова. — СПб.: Наука, 2004. С. 52-71.
2. Арановский C.B., Бобцов A.A., Кремлев A.C., Лукьянова Г.В. Робастный алгоритм идентификации частоты синусоидального сигнала // Известия РАН. Теория и системы управления. — 2007. № 3. — С. 1-6.
3. Арановский C.B., Бобцов A.A., Пыркин A.A. Адаптивный наблюдатель неизвестного синусоидального выходного возмущения для линейного объекта // Автоматика и телемеханика. — 2009. № 11. — С. 108-116.
4. Арановский C.B., Бардов В.М., Бобцов A.A., Капитонов A.A., Пыркин A.A. Синтез наблюдателя в условиях возмущения процесса измерения выхода объекта. // Изв. вузов. Приборостроение. — 2009. № 11. — С. 28-32.
5. Бесекрерский В.А., Попов Е.П. Теория автоматического управления. СПб.: Профессия, 2003.
6. Бобцов A.A. Алгоритм управления по выходу с компенсацией гармонического возмущения со смещением / / Автоматика и телемеханика. 2008 № 8. - С. 25-32.
7. Бобцов A.A. Алгоритм управления по выходу с компенсацией смещенного гармонического возмущения // Известия РАН. Теория и системы управления. 2009. № 1. С. 45-48.
8. Бобцов A.A., Пыркин A.A. Компенсация гармонического возмущения в условиях запаздывания по управлению // Известия РАН. Теория и системы управления. — 2008. № 4. — С. 19-23.
9. Бобцов A.A., Пыркин A.A. Компенсация неизвестного синусоидального возмущения для линейного объекта любой относительной степени // Автоматика и Телемеханика. — 2009. № 3. — С. 114-122.
10. Бобцов A.A., Колюбин С.А., Пыркин A.A. Компенсация неизвестного мультигармонического возмущения для нелинейного объекта с запаздыванием по управлению // Автоматика и телемеханика. — 2010. № И. С. 136-148.
11. И. Бобцов A.A., Колюбин С.А., Никифоров В.О., Пыркин A.A. Адаптивное и гибридное управление с компенсацией возмущений и запаздывания // XXXIX научная и учебно-методическая конференция СПбГУ ИТМО. — 2010.
12. Турецкий X. Анализ и синтез систем управления с запаздыванием. — М.: Машиностроение, 1973. — 328 с.
13. Еремин Е.Л., Теличенко Д.А. Алгоритмы адаптивной системы с запаздыванием по управлению в схеме с расширенной ошибкой и эталонным упредителем // Мехатроника, автоматизация, управление.- 2006. № 6. С. 9-16.
14. Кирьянен А.И. Устойчивость систем с последействием и их приложения.
15. СПб.: Издательство С.-Петербургского университета, 1994. — 235 с.
16. Колюбин С.А., Пыркин A.A., Рогожина К.П., Слинченкова М.В. Компенсация гармонического возмущения / / Научно-технический вестник СПбГУ ИТМО. 2008. Вып. 55. - С. 51-60.
17. Колюбин С.А., Пыркин A.A. Адаптивное управление маятником с реакционным маховиком // Мехатроника, автоматизация, управление. 2010. № 5. - С. 28-32.
18. Лихтарников A.A., Якубович В. А. Абсолютная устойчивость нелинейных систем // Приложения к книге Резван В. Абсолютная устойчивость автоматических систем с запаздыванием. — М.: Наука, 1983.
19. Миркин Е.Л. Метод адаптивного управления с эталонной моделью объектами с последействием / / Автоматизация технологических процессов. Фрунзе.: Изд. ФПИ. — 1987. — С. 64-69.
20. Мирошник И.В., Никифоров В.О., Фрадков А.Л. Нелинейное и адаптивное управление сложными динамическими системами. — СПб.: Наука, 2000. 549 с.
21. Никифоров В.О. Адаптивное и робастное управление с компенсацией возмущений. — СПб.: Наука, 2003. — 282 с.
22. Острём К., Виттенмарк Б. Системы управления с ЭВМ. — М.: Мир, 1987.
23. Первозванский A.A. Курс теории автоматического управления: Учеб. пособ. — М.: Наука. Гл. ред. физ.-мат. лит., 1986. — 616 с.
24. Проскурников A.B., Якубович В.А. Универсальные регуляторы для оптимального отслеживания полигармонических сигналов в системах с запаздыванием // Докл. РАН. 2006. Т. 406. № 2. - С. 109-174.
25. Проскурников A.B., Якубович В. А. Задача об абсолютной инвариантности для систем управления с запаздыванием // Докл.
26. РАН. 2004. Т. 397. № 5. - С. 610-614.
27. Пыркин A.A. Адаптивный алгоритм компенсации параметрически неопределенного смещенного гармонического возмущения для линейного объекта с запаздыванием в канале управления // Автоматика и Телемеханика. 2010. № 8. - С. 62-78.
28. Пыркин A.A. Управление в условиях запаздывания / / Научно-технический вестник СПбГУ ИТМО. — 2007. Вып. 38. — С. 287-292.
29. Синтез дискретных регуляторов при помощи ЭВМ / В.В. Григорьев, В.Н. Дроздов, В.В. Лаврентьев, A.B. Ушаков. — Л.: Машиностроение, 1972.
30. Резван В. Абсолютная устойчивость автоматических систем с запаздыванием. — М.: Наука, 1997. — 216 с.
31. Фуртат И.В., Цыкунов A.M. Адаптивное управление объектами с запаздыванием по выходу // Изв.-вузов. Приборостроение. — 2005. № 7. С. 15-19.
32. Цыкунов A.M. Адаптивное управление объектами с последействием. — М.: Наука, 1984. 245 с.
33. Цыкунов A.M. Алгоритмы скоростного градиента для систем с запаздыванием // Автоматика и телемеханика. — 1989. № 1. — С. 122-130.
34. Цыкунов A.M. Адаптивное и робастное управление динамическими объектами по выходу. М.: ФИЗМАТЛИТ, 2009. - 268 с.
35. Цыпкин Я.З. Устойчивость систем с запаздывающей обратной связью // Автоматика и телемеханика. — 1947. Т. 7. № 2, 3. — С. 107-129.
36. Цыпкин Я.З. Оптимальные адаптивные системы управления объектами с запаздыванием // Автоматика и Телемеханика. — 1986. № 8. — С. 5-24.
37. Янушевский Р.Т. Управление объектами с запаздыванием. — М.: Наука, 1987.
38. Andrievsky В., Fradkov A., Andrievsky A., Pyrkin A. Experimental study of nonlinear systems synchronization over the limited-band communication channel // The 2008 IEEE Multi-conference on Systems and Control. — San Antonio, Texas, USA.
39. Aranovskiy S., Bobtsov A., Kremlev A., Nikolaev N., Slita O. Identification of frequency of biased harmonic signal // IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 07). — Saint Petersburg, Russia, 2007.
40. Aranovskiy S., Bobtsov A., Nikolaev N., Pyrkin A., Slita O. An adaptive observer for chaotic Duffing system // 6th EUROMECH Conference ENOC. — Saint Petersburg, Russia, 2008.
41. Arstein Z. Linear systems with delayed controls: A reduction // IEEE Trans. Autom. Control. 1982. vol. 27. - P. 869-879.
42. Bobtsov A.A., Romasheva D.A. Frequency estimator of a biased sinusoid // Proc. 46th IEEE Conference on Decision and Control. — New Orlean, 2007.- P. 5534-5538.
43. Bobtsov A.A., Kremlev A.S. Adaptive compensation of biased sinusoidal disturbances with unknown frequency // Proc. 16th IFAC World Congress.- Prague, 2005.
44. Bobtsov A., Pyrkin A. A new approach to MRAC problem with disturbance rejection // 9th IFAC Workshop ALCOSP. — Saint-Petersburg, Russia, 2007.
45. Bobtsov A., Pyrkin A. Experimental research of consecutive compensator approach on basis of mechatronic systems // 6th EUROMECH Conference ENOC. — Saint-Petersburg, Russia, 2008.
46. Bobtsov A., Nikolaev N., Pyrkin A., Slita O. Adaptive observer design for chaotic Duffing system // 17th IFAC World Congress. — Seoul, Republic Korea, 2008.
47. Bobtsov A., Nikolaev N., Pyrkin A., Slita O. Stabilization of a chaotic Van der Pole system // 17th IFAC World Congress. — Seoul, Republic Korea, 2008.
48. Bobtsov A.A., Pyrkin A.A., Nikolaev N.A., Slita O.V. Adaptive observer design for chaotic Duffing system // Int. Journal of Robust and Nonlinear Control. 2009. vol. 19. - P. 829-841.
49. Bobtsov A.A., Kolyubin S.A., Pyrkin A.A. Adaptive stabilization of reaction wheel pendulum on moving LEGO platform // 3rd IEEE Multi-conference on Systems and Control (MSC 2009). Saint Petersburg, Russia, 2009.
50. Bobtsov A.A., Efimov D.V., Pyrkin A.A. Hybrid adaptive observers for locally Lipschitz systems with application to mechanical oscillators // 3rd IEEE Multi-conference on Systems and Control (MSC 2009). — Saint Petersburg, Russia, 2009.
51. Bobtsov A.A., Kolyubin S.A., Pyrkin A.A. Stabilization of reaction wheel pendulum on movable support with on-line Identification of Unknown Parameters // 4th International conference 'Physics and Control' (Physcon 2009). — Catania, Italy, 2009.
52. Bobtsov A.A., Pyrkin A.A. Adaptive output stabilization of time-delay nonlinear system // 9th IFAC Workshop on Time Delay System. — Prague, Czech Republic, 2010.
53. Bodson M., Douglas S. C. Adaptive algorithms for the rejection of periodic disturbances with unknown frequencies // Automatica. — 1997. vol. 33. — P. 2213-2221.
54. Bresch-Pietri D., Krstic M. Adaptive trajectory tracking despite unknown input delay and plant parameters // Automatica. — vol. 45. P. 2074-2081.
55. Evesque S., Annaswamy A.M., Niculescu S., Dowling A.P. Adaptive control of a class of time-delay systems // ASME Transactions on Dynamics, Systems, Measurement, and Control. 2003. vol. 125. — P. 186-193.
56. Fiagbedzi Y.A., Pearson A.E. Feedback stabilization of linear autonomous time lag systems // IEEE Trans. Autom. Control. — 1986. vol. 31. — P. 847-855.
57. Franceschi E.M., Muske K.R., Jones J.C.P. An adaptive delay-compensated PID air/fuel ratio controller // SAE. N. 2007-01-1342.
58. Gu K., Niculescu S.I. Survey on recent results in the stability and control of time-delay systems // Trans. ASME. 2003. vol. 125. - P. 158—165.
59. Hou M. Amplitude and frequency estimator of a sinusoid // IEEE Transactions on Automatic Control. — 2005. vol. 50. — P. 855-858.
60. Hsu L., Ortega R., Damm G. A globally convergent frequency estimator // IEEE Transactions on Automatic Control. vol. 44. — P. 698-7139.
61. Jankovic M. Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems // IEEE Trans, on Automatic Control. — 2001. vol. 46. P. 1048-1060.
62. Jankovic M. Control of nonlinear systems with time delay // IEEE Conference on Decision and Control. — 2003.
63. Jankovic M. Forwarding, backstepping, and finite spectrum assignment for time delay systems // American Control Conference. — 2006.
64. Jankovic M. Control of cascade systems with time delay — the integral cross-term approach // IEEE Conf. on Decision and Control. — 2006.
65. Khalil H. Nonlinear systems, third edition, Upper Saddle River. — New Jersey: Prentice Hall, 2002.
66. Kolyubin S., Pyrkin A. Adaptive control of a reaction wheel pendulum // 12th International Student Olympiad on Automatic Control BOAC. — Saint-Petersburg, Russia, 2008.
67. Krstic M. On compensating long actuator delays in nonlinear control // IEEE Trans. Autom. Control. 2008. vol. 53. - P. 1684-1688.
68. Krstic M. Delay compensation for nonlinear, adaptive and PDE systems. — Birkhauser, 2009.
69. Krstic M., Kanellakopoulos I., Kokotovic P.V. Nonlinear and adaptive control design. — Wiley, 1995.
70. Krstic M., Smyshlyaev A. Backstepping boundary bontrol for first-order hyperbolic PDEs and application to systems with actuator and sensor delays // Systems k Control Letters. 2008. vol. 57. - P. 750-758.
71. Kwon W.H., Pearson A.E. Feedback stabilization of linear systems with delayed control // IEEE Trans. Autom. Control. 1980. vol. 25. - P. 266-269.
72. Lin Z., Fang H. On asimptotic stabilizability of linear systems with delayed input // IEEE Transactions on Automatic Control. — 2007. vol. 52. N. 6. — P. 998-1013.
73. Manitius A.Z., Olbrot A.W. Finite spectrum assignment for systems with delays // IEEE Trans. Autom. Control. 1979. vol. 24. - P. 541-553.
74. Marino R., Santosuosso G. L., Tomei P. Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency // Automatica. — 2003. vol. 39. P. 1755-1761.
75. Marino R., Santosuosso G. L., Tomei P. Regulation of linear systems with unknown additive sinusoidal sensor disturbances // Proc. 17th IFAC World Congress. Seoul, Repulic Korea, 2008. - P. 4102-4107.
76. Marino R., Tomei P. Adaptive regulation of uncertain linear minimum phase systems with unknown exosystems // Proc. IEEE 45th Conf. on Decision and Control. San Diego, USA, 2006. - P. 1099-1104.
77. Mazenc F., Mondie S., Francisco R. Global asymptotic stabilization of feedforward systems with delay at the input // IEEE Trans. Automatic Control.- 2004. vol. 49. P. 844-850.
78. Mazenc F., Mondie S., Niculescu S.I. Global asymptotic stabilization for chains of integrators with a delay in the input // IEEE Trans, on Autom. Control. 2003. vol. 48. N. 1. - P. 57-63.
79. Mazenc F., Bliman P.A. Backstepping design for timedelay nonlinear systems // IEEE Transactions on Automatic Control. — 2004. vol. 51. — P. 149—154.
80. Mechatronics control kit, Model M-l, User's manual // Mechatronics Systems, Incorporated. — 2001.
81. Mirkin L. On the approximation of distributed-delay control laws // Systems & Control Letters. 2004. vol. 51. - P. 331-342.
82. Mondie S., Michiels W. Finite spectrum assignment of unstable time-delay systems with a safe implementation // IEEE Trans, on Automatic Control.- 2003. vol. 48. P. 2207-2212.
83. Niculescu S.I., Annaswamy A.M. An adaptive Smith-controller for time-delay systems with relative degree n > 2 // Systems &: Control Letters. — 2004. vol. 49. P. 347-358.
84. Nikiforov V.O. Adaptive servocompensation of input disturbances // Proc. 13th IFAC World Congress. San-Francisco, USA, 1996. - P. 175-180.
85. Nikiforov V.O. Adaptive non-linear tracking with complete compensation of unknown disturbances // European Journal of Control. — 1998. vol. 4. N. 2. P. 132-139.
86. Nikiforov V.O. Adaptive servocompensation of external unknown disturbances // Proc. 14th IFAC World Congress. — Beijing, China, 1999. — P. 283-289.
87. Olbrot A.W. Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays // IEEE Trans. Autom. Control. 1978. vol. 23. - P. 887-890.
88. Pyrkin A., Smyshlyaev A., Bekiaris-Liberis N., Krstic M. Rejection of sinusoidal disturbance of unknown frequency for linear system with input delay // American Control Conference. — Baltimore, USA, 2010.
89. Pyrkin A., Smyshlyaev A., Bekiaris-Liberis N., Krstic M. Output control algorithm for unstable plant with input delay and cancellation of unknown biased harmonic disturbance // 9th IFAC Workshop on Time Delay System. — Prague, Czech Republic, 2010.
90. Pyrkin A.A., Bobtsov A.A., Kremlev A.S. Rejection of unknown biased harmonic disturbance for nonlinear system with input delay // 9th IFAC Workshop on Time Delay System. — Prague, Czech Republic, 2010.
91. Pyrkin A.A., Bobtsov A.A., Kolyubin S.A. An adaptive observer with reduced order for chaotic duffing system transmitting a vector of parameters // 8th IFAC Symposium on Nonlinear Control Systems. — Bologna, Italy, 2010.
92. Pyrkin A.A., Bobtsov A.A., Chepinskiy S.A., Kapitanyuk Y.A. Compensation of unknown multiharmonic disturbance for nonlinear plant with delay in control // 8th IFAC Symposium on Nonlinear Control Systems. — Bologna, Italy, 2010.
93. Richard J.P. Time-delay systems: an overview of some recent advances and open problems // Automatica. — 2003. vol. 39. — P. 1667-1694.
94. Smith O.J.M. A controller to overcome dead time // ISA. — 1959. vol. 6. — P. 28-33.
95. Xia X. Global Frequency estimation using adaptive identifiers // IEEE Transactions on Automatic Control. 2002. vol. 47. — P. 1188-1193.
96. Zhong Q.C., Mirkin L. Control of integral processes with dead time. Part 2: Quantitative analysis // IEEE Proc. Control Theory k Appl. — 2002. vol. 149. P. 291-296.
97. Zhong Q.C. On distributed delay in linear control laws. Part I: Discrete-delay implementation // IEEE Transactions on Automatic Control. — 2006. vol. 49. P. 2074-2080.
98. Zhong Q.C. Robust Control of Time-delay Systems. — Springer, 2006.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.