Методология оптимизационного проектирования морских судов на основе многоуровневых математических моделей и методов активного диалога тема диссертации и автореферата по ВАК РФ 05.08.03, доктор технических наук Савинов, Геннадий Володарович
- Специальность ВАК РФ05.08.03
- Количество страниц 301
Оглавление диссертации доктор технических наук Савинов, Геннадий Володарович
Введение.
Раздел 1.
Актуальные проблемы проектирования судов и пути совершенствования методологии их анализа.
1.1. Основные проблемы системной оптимизации судов.
1.2. Анализ адекватности оптимизационных математических моделей задач проектирования.
1.3. Схемы согласования задач проектирования подсистем судна.
1.4. Система моделей для судов с доминирующими функциональными подсистемами.
Раздел 2.
Совершенствование методов оптимизационного проектирования на основе многоуровневых моделей.
2.1 Оптимизационные математические модели задач проектирования и их особенности.
2.2 Классические методы анализа непрерывных оптимизационных моделей.
2.3 Метод опорной точки.
Раздел 3.
Проблема выбора критерия эффективности судна.
3.1. Критерии эффективности в задаче пополнения флота.
3.2. Общая постановка задачи определения главных размерений и основных коэффициентов формы.
3.3. Критерии эффективности судна.
3.4. Математическая модель задачи оптимизации главных размерений на основе экономических критериев.
3.5. Сравнение результатов оптимизации при различных критериях эффективности судна.
Раздел 4.
Организация активного диалога для анализа математических моделей задач оптимизационного проектирования.
4.1. Активный диалог, как методология системной оптимизации.
4.2. Диалоговые методы оптимизации.
4.3. Вычислительный эксперимент и его технология.
4.4. Определение главных размерений судна с использованием методологии активного диалога.
Раздел 5.
Проектное обоснование характеристик формы корпуса судна.
5.1. Проектная постановка задачи оптимизации формы корпуса судна.
5.2. Общие требования к расчетным методам оценки сопротивления судна на оптимизационных этапах проектирования.
5.3. Новый способ оценки сопротивления формы на основе анализа поля давления.
5.4. Задание судовой геометрии для оптимизации формы корпуса.
5.5. Практическая методика проектировочной отработки формы корпуса судна на основе активного диалога.
5.6. Результаты оптимизации формы корпуса для судов различного типа.
5.6.1. Лесовозы.
5.6.2. Рыбопромысловые суда.
5.6.3. Универсальные сухогрузные суда.
5.6.4. Траулеры.
5.6.5. Суда смешанного плавания.
Раздел 6.
Проектные аспекты оптимизации корпусных конструкций.
6.1 Подсистемная структура конструктивно-прочностной оптимизации корпуса и общая постановка задачи проектирования корпусных конструкций
6.2. Основные принципы решения задачи оптимизационного проектирования конструкций, рассчитываемых на прочность.
6.3. Оптимизационное проектирование конструкций с ограничениями на устойчивость или частоту собственных колебаний.
6.4. Проектная версия модифицированного метода конечных элементов.
Рекомендованный список диссертаций по специальности «Проектирование и конструкция судов», 05.08.03 шифр ВАК
Разработка методики проектного оптимизационного анализа скоростных пассажирских судов и катеров2002 год, кандидат технических наук Кутенев, Андрей Александрович
Разработка методологии обоснования проектных характеристик судов смешанного и внутреннего плавания с учетом доминирующих эксплуатационных факторов2006 год, доктор технических наук Сахновский, Борис Михайлович
Методики и алгоритмы автоматизированного параметрического проектирования судовых конструкций2009 год, кандидат технических наук Мьинт Кхайн
Методика определения главных размерений безлюковых контейнеровозов на начальных стадиях проектирования2009 год, кандидат технических наук Бурменский, Андрей Дмитриевич
Обоснование проектных характеристик портовых буксиров для Социалистической Республики Вьетнам2010 год, кандидат технических наук Нгуен Зуй Бак
Введение диссертации (часть автореферата) на тему «Методология оптимизационного проектирования морских судов на основе многоуровневых математических моделей и методов активного диалога»
Актуальность исследования.
Оптимизационные математические модели используются при решении различных судостроительных задач и прежде всего при решении задач проектирования уже на протяжении почти ста лет, начиная с известной работы И.Г.Бубнова [42]. Однако отсутствие эффективных методов формирования и анализа оптимизационных математических моделей ограничивало их практическое значение и только с появлением вычислительной техники и разработкой эффективных численных методов началось их широкое применение.
В современной же теории проектирования судов использование различных оптимизационных математических моделей стало уже обычным делом. За последние 30 лет трудами целого ряда ученых и практиков: Л.М.Ногида, В.В.Ашика, А.В.Бронникова, В.М.Пашина, В.С.Дорина, И.Г.Захарова и др. были разработаны математические модели и методы их анализа для таких задач, как: оптимизация пополнения флота, выбор основных элементов (главных размерений ) судна, проектирование формы корпуса судна, оптимизация конструкций судового корпуса и т. д. Практически невозможно найти проектировочную задачу, для которой не была бы разработана формальная оптимизационная модель и методика ее анализа. Однако, и в настоящее время, необходимо постоянное совершенствование, как самих оптимизационных математических моделей, так и методов их анализа.
Причина зтого кроется в стремлении повысить адекватность используемых математических моделей реальной практике проектирования. Для этого приходится рассматривать многоуровневые и многоаспектные математические модели судна, которые в наибольшей степени учитывают всю сложность проблем, возникающих в процессе проектирвания.
Современное судно - это сложная инженерная система, процесс проектирования которой носит многоуровневый итерационно - циклический характер. Сначала решается так называемая внешняя задача проектирования, где определяется место будущего судна в транспортной или промысловой системе, в которой предполагается его эксплуатировать. На основе этого анализа определяются включаемые в техническое задание на проектирование судна его основные характеристики, а так же определяется критерий или несколько критериев по которым будет производиться оценка качества выполненого проекта.
Затем решается внутренняя задача проектирования, а по сути дела, комплекс взаимосвязанных задач оптимального проектирования различных судовых подсистем, в совокупности образующих судно как единую систему. При этом при проектировании каждой подсистемы используют свой критерий эффективности, который может быть получен из глобального критерия эффективности для всего судна (если он один), например, с использованием методики, разработанной В.М.Пашиным [122].
Ясно, что качество любого реального объекта, и в особенности такого сложного как судно, невозможно оценить одним показателем. Действительно, такой показатель должен отражать как перспективные интересы будущего судовладельца, которые проявляются в стремлении обеспечить будущему судну наилучшие эксплуатационные характеристики, так и текущие, которые проявляются в стремлении вложить минимум средств в постройку судна. Очевидно, что эти критерии противоречивы и при проектировании любой подсистемы или судна в целом возникают серьезные проблемы с выбором критерия или анализом результатов при решении задачи в многокритериальной постановке.
Однако принципиальным недостатком многих оптимизационных моделей является неучет неформализуемых качественных критериев, которыми пользуется проектант при использовании классического вариантного метода проектирования. Вариантный метод возник еще в начале века (см. [111]) и в его основу положен выбор наилучшего - "оптимального" решения из ряда некоторых заранее рассчитанных вариантов. Окончательный выбор производится проектантом, что конечно порождает некоторый субъективизм в выборе решения, но и позволяет использовать некоторые неформализуемые соображения, по которым один вариант предпочитается другому. Как правило, эти соображения воплощают в себе знакомый проектанту опыт проектирования и эксплуатации аналогичных судов или систем.
Так как количество вариантов, которые могут быть рассмотрены проектантом, ограничено и от качества этих вариантов зависит, в конечном итоге, качество окончательного решения, то в классическом проектировании сам проектант предлагает варианты для анализа и, тем самым, предопределяет основные свойства окончательного решения. Как правило, в основе таких вариантов лежит некоторый прототип проектируемого объекта, а сами варианты получаются с помощию изменений этого прототипа.
При использовании оптимизационных математических моделей варианты получаются в процессе их анализа и проектант не всегда участвует в их формировании. Это позволяет, во-первых, исключить из рассмотрения заведомо нереальные варианты, а, во-вторых, провести более объективный подбор вариантов.
На практике из анализа оптимизационных моделей обычно не удается получать все варианты, удовлетворяющие проектанта, так как в число формальных критериев модели не удается ввести те качественные оценки, на которые опирается его интуиция.
Вообще говоря, необходимость использованя опыта проектанта и его интуиции или прототипа связано с невозможностью прямого отслеживания того влияния, которое оказывает качество проектируемой подсистемы на эффективность всего судна. Поэтому, выбирая отдельные варианты, проектант пытается уточнить количественную взаимосвязь между критериями эффективности всего судна и свойствами отдельных вариантов спроектированной подсистемы.
Развитие вычислительной техники и численных методов анализа привело к созданию новых эффективных процедур по расчету различных характеристик судов. Прежде всего надо отметить развитие метода конечных элементов для расчета судовых конструкций и методов расчета полного сопротивления судна на основе прямой оценки составляющих сопротивления и на основе статистической обработки данных по модельным испытаниям.
Применение современных более точных расчетных методик на ранних стадиях проектирования требует создания новой методологии, основанной на структурно-дифференцированных многоуровневых математических моделях отдельных подсистем, в наибольшей степени учитывающих всю сложность проблем, возникающих в процессе проектирования.
Принципиальным моментом при использовании многоуровневых моделей является необходимость их согласованной оптимизации. В этой области продолжаются активные разработки. Сложный характер критериев эффективности всего судна их противоречивость и неформализуемость заставляют искать новые пути согласованной оптимизации, отличные от построения локальных критериев эффективности.
В работе в качестве инструмента анализа и согласованной оптимизации структурно-дифференцированных многоуровневых моделей подсистем предлагается использовать методологию активного диалога. Она требует проведения анализа оптимизационных математических моделей с привлечением вычислительной техники и в режиме активного диалога, объединяющего процесс исследования проектантом свойств рассматриваемой модели реального объекта, т.е. некоторый процесс дообучения самого проектанта с постоянной коррекцией модели с целью ее оптимизации и учета всего комплекса формальных и неформализуемых требований. Такая методика анализа математических моделий была названа А.А.Самарским вычислительным экспериментом [175].
Для реализации процесса анализа оптимизационной модели с использованием активного диалога необходима большая гибкость исходной модели, специальные методы ее исследования, опирающиеся на универсальные алгоритмы решения задач оптимизации.
Как правило, всякая математическая модель - это модель целого класса объектов, из которого рассматриваемый объект получается при фиксации (выборе) некоторых параметров модели. При проведении анализа модели в диалоговом режиме проектант не может выйти за рамки выбранного класса объектов и вынужден ограничиться вариацией параметров модели и методов ее анализа. При этом возникает следующее противоречие: если класс рассматриваемых объектов широк, то сложность математической модели будет очень большой и процесс анализа затянется или станет невозможным, если, наоборот, класс объектов узок, то получаемая модель может быть неадекватной и результаты ее анализа не удовлетворят проектанта.
В вычислительном эксперименте подразумевается возможность перехода от одного класса моделируемых объектов к другому. Для этого, конечно, требуется создание специальных математических моделей, ориентированных на использование в вычислительных экспериментах. Обычно, в этом случае рассматриваются модели достаточно узкого класса объектов. Они обладают приемлемой сложностью и легче поддаются анализу. Результаты этого анализа позволяют принимать решения о переходе к другому классу объектов.
Таким образом, в процессе активного диалога (вычислительного эксперимента) последовательно уточняется математическая модель рассматриваемого объекта, понятия проектанта о свойствах проектируемого объекта и само решение (параметры спроектированного объекта).
Переход к методологии активного диалога требует разработки новых математических моделей оптимального проектирования судов, это прежде всего относится к задаче формирования облика судна, выбора главных размерений судна и к задаче определения формы корпуса судна.
Необходимость коррекции некоторых моделей связана также с изменением экономических критериев оценки эффективности таких хозяйственных систем как флот в целом, контейнерная система и др.
Методология активного диалога позволяет добиться повышения обоснованности решений принимаемых на основе анамиза многоуровневых оптимизационных моделей проектирования судов, во-первых, за счет более четкого введения в процесс формирования и анализа этих моделей опыта проектанта, который позволил бы учесть неформализуемые требования и качественные критерии оценки эффективности проектируемой подсистемы. При этом для устранения некоторого субъективизма, связанного с ограниченностью опыта каждого проектанта нужно в процессе анализа модели дать ему необходимую информацию о проек-тируемй подсистеме, чтобы он опираясь на полученные данные мог принять обоснованное решение об адекватности рассматриваемой математической модели и при необходимости скорректировать ее во втором приближении.
Во-вторых, методология активного диалога является так же удобным инструментом для улучшения адекватности моделей отдельных подсистем судна. Обычно, для повышения точности в модель вводят все новые и новые характеристики проектируемой подсистемы. Однако количество в данном случае не всегда переходит в качество и, как показано в работе, часто растет лишь сложность модели. Только использование многоуровневых моделей в сочетании с оптимизацией их структуры и параметров, позволяет решить эту проблему. Применение активного диалога для анализа таких моделей позволяет учитывать весь опыт проектирования накопленный в прототипах и знаниях проектанта, который проявляется прежде всего в разумных ограничениях на параметры и постоянной коррекции этих ограничений по мере уточнения свойств проектируемой подсистемы.
С этих же позиций надо отметить, что важным классом проектировочных моделей являются модели статистические. С одной стороны, как отмечал JI.M. Ногид, достаточно полные статистические модели, дифференцированные по группам судов, отражают реальный опыт компетентных проектантов, то есть являются, по сути дела, следами активного кооперационного диалога. С другой стороны, статистические модели проявляют область допустимых значений на количественные характеристики и их соотношения для рассматриваемых групп судов. В области статистического моделирования для проектных задач судостроения важное значение имеют и идеи В.В.Ашика по учету колеблемости.
В настоящей работе рассмотрен весь комплекс вопросов, связанных с использованием многоуровневых структурно-дифференцированных оптимизационных математических моделей для решения основных задач проектирования судов.
Проанализированы предпосылки метододологии активного диалога и сформулированы задачи, решения которых требует использования именно этой методологии.
Разработаны методики применения активного диалога для задач выбора главных размерений и проектирования формы корпуса, которые реализованы в виде алгоритмов и программ, объединенных в программные комплексы. Эффективность методик подтверждена выполненными расчетами и их использованием в конкретных проектных и исследовательских организациях.
Общая характеристика исследования.
Диссертация состоит из введения, шести разделов, заключения и содержит четыре приложения.
Похожие диссертационные работы по специальности «Проектирование и конструкция судов», 05.08.03 шифр ВАК
Разработка способов проектного обоснования характеристик малых судов и катеров с учетом факторов обитаемости2008 год, кандидат технических наук Юдкина, Юлия Владимировна
Проектное обоснование перспективного типа накатно-контейнерного судна для Союза Мьянма2009 год, кандидат технических наук Чжо Лин
Методика проектирования скоростных пассажирских и спасательных катамаранов2010 год, кандидат технических наук Пхио Цза Хейн
Развитие численных моделей гидродинамики и гидроупругости для задач проектирования корпуса судна2005 год, доктор технических наук Чижиумов, Сергей Демидович
Методология проектного эвристико-динамичного анализа и синтеза концепции объектов морской техники2000 год, доктор технических наук Разуваев, Владимир Николаевич
Заключение диссертации по теме «Проектирование и конструкция судов», Савинов, Геннадий Володарович
Заключение.
На основе изложенных разработок сформулированы следующие выводы и рекомендации, в совокупности характеризующие принципиальные положения методологии оптимизационного проектирования морских судов на основе многоуровневых структурно-дифференцированных математических моделей и методов активного диалога.
1. Показано, что методология оптимизационного проектирования морских судов на основе многоуровневых структурно-дифференцированных математических моделей и методов активного диалога является новым продуктивным научным направлением в теории проектирования судов. Она способствует созданию новых эффективных методик решения целого ряда проблем оптимального проектирования судов. Эта же методология является новым удобным для практики инструментом согласования отдельных подзадач в рамках многоуровневой оптимизационной математической модели проектирования судна.
2. Выполнен анализ актуальных проблем теории проектирования судов и выявлены задачи решения которых можно получить в рамках развиваемой методологии.
Это проблема сбалансированности отдельных моделей по горизонтали и соподчиненности по вертикали в рамках многоуровневой структуры глобальной модели проектного анализа.
Задача оптимизации моделей отдельных подсистем с целью определения оптимального уровня сложности и адекватности, чтобы сбалансировать достаточный уровень адекватности с минимизацией объема вычислений, необходимых для анализа моделей.
Это проблема обеспечения гибкости математических моделей с целью достижения их максимальной адекватности за счет наиболее полного учета специфики конкретной оптимизируемой подсистемы.
Задача организации активного контроля со стороны проектанта всего процесса решения оптимизационных задач с целью минимизации вычислительных затрат и улучшения качества получаемых решений.
3. Показано, что использование методологии активного диалога позволяет проводить согласованную оптимизацию подсистем судна даже в тех случаях, когда нет четкого понимания критерия эффективности судна в целом, или когда приходится использовать качественные критерии эффективности.
4. Выявлены причин^ снижающие адекватность оптимизационных математических моделей. Установлено, что в задачу оптимизации следует включать только такие характеристики проектируемой подсистемы, приращения которых оцениваются с необходимой точностью. Остальные характеристики следует оценивать вне рамок задачи математического программирования с максимальным привлечением опыта и знаний проектанта.
5. Показано, что появление в математических моделях рассчитываемых характеристик, которые не могут быть включены в задачу оптимизации требует использования новой методологии анализа таких моделей.
6. Разработана методология анализа таких математических моделей основанная на использовании вычислительного эксперимента - активного диалога и постоянной коррекции оптимизационной модели для достижения максимальной адекватности.
7. Предложена методология согласованной оптимизации подсистем на основе использования активного диалога для анализа многоуровневых моделей. Показано, что она наиболее эффективна при проектировании судов с доминирующими функциональными подсистемати.
8. Выявлены обшие закономерности оптимизационных математических моделей задач проектирования. На основе анализа этих закономерностей сформулированы требования, предъявляемые к методам оптимизации, которые должны использоваться для исследования таких моделей с применением методологии активного диалога.
9. Показано, что в наибольшей степени этим требованиям удовлетворяет разработанный автором метод опорной точки. Выполнено теоретическое исследование этого метода и проведены тестовые расчеты, подтвердившие его эффективность.
10. Разработана обшая схема организации диалоговых систем оптимизации. На основе сформулированных принципов созданы программные комплексы по решению задач оптимизации связанных с определением главных размерений судна и основных коэффициентов формы и проблемой оптимизации формы корпуса судна.
11. Проведеное исследование влияния различных критериев эффективности судна на выбор его главных размерений и основных коэффициентов формы показало, что выбор критерия прежде всего определяет величину коэффициента общей полноты судна, а остальные параметры определяются ограничениями. Это позволило для преодоления трудностей с выбором критерия эффективности судна и оценкой его истиной величины предложить решать задачу с использованием вычислительного эксперимента -активного диалога. Разработана методика анализа математической модели задачи с помощью вычислительного эксперимента и выполнены расчеты, позволяюшие оценить возможности предложенного подхода.
12. Разработан новый подход и к задаче пополнения флота, учитывающий отсутствие единого владельца флота. Данный подход основывается на использовании критерия структурного типа для оценки эффективности флота в целом. Разработанная математическая модель позволяет оптимизировать возможности транспортного флота при заданном уровне затрат на его развитие, не затрагивая интересы отдельных судовладельцев.
13. В работе для задачи проектирования формы корпуса судна разработана методика анализа ее математической модели с использованием вычислительного эксперимента.
14. Для этого предложена специальная математическая модель судовой геометрии, основное достоинство которой состоит в разумном использовании корпуса прототипа, являющегося практической реализацией целого комплекса взаимопротиворечивых требований, предъявляемых к форме корпуса. Это делает предлагаемую методику адекватной существующей практике проектирования, всегда отталкивающейся от некоторого прототипа.
15. Сформулированы требования, которым должны удовлетворять расчетные методы определения сопротивления судна, используемые при решении задачи оптимизации формы корпуса судна. Для удовлетворения этим требованиям предложено оценивать качество обтекания корпуса с помощью экстремальных коэффициентов давления. Сохранение оптимального или близкого к оптимальному качества обтекания корпуса считается необходимым условием достоверности сравнительных оценок полного сопротивления судна.
16. Установлена качественная и количественная связь между минимальными коэффициентами давления в носу и корме, рассчитанными в предположении о невязком обтекании корпуса и коэффициентом сопротивления формы. Получены новые приближенные формулы, позволяющие оценивать влияние оптимизации распределения давления на корпусе судна на величину сопротивления формы.
17. С использованием разработанной методики оптимального проектирования формы корпуса судна были выполнены практические расчеты по отработке формы коруса для судов различных типов. Сравнительные модельные испытания, выполненные в бассейне ЦНИИ им. акад. А.Н.Крылова показали высокую эффективность предлагаемого подхода.
18. В работе проведен анализ математических моделей подсистемы проектирования конструкций корпуса. Для задачи проектирования упругой конструкции, рассчитываемой на прочность получены необходимые условия сходимости метода линеаризации для решения данной задачи и показано для каких конструкций они выполняются.
19. Разработана методика анализа математических моделей задач проектирования конструкций с ограничениями на устойчивость или частоту собственных колебаний, основанная на использовании необходимых условий оптимальности.
20. Предложен ряд эффективных методов решения систем уравнений, возникающих при расчете упругих конструкций.
21. Выполнены исследования численной устойчивости метода матричной прогонки и одного блочно-треугольного разложения для решения систем линейных алгебраических уравнений, возникающий при расчете упругих конструкций методом конечных элементов. Показано, при какой нумерации элементов относительно закреплений конструкции эти методы будут численно устойчивы и результатам расчетов можно доверять.
22. Предложен и теоретически обоснован обобщенный метод сопряженных градиентов для решения линейных и нелинейных систем уравнений. Этод метод особенно эффективен при расчетах конструкций в процессе их оптимизации.
23. Для расчета критических усилий и частот собственных колебаний предложено минимизировать функционалы специального вида, отличные от отношения Рэлея. Показано, что такие функционалы имеют лучшие свойства чем отношение Релея.
24. Предложен и теоретически обоснован метод декомпозиции для определения минимальных собственных значений положительно определенных матриц, который может быть использован для расчета критических усилий и частот собственных колебаний составных конструкций. Этот метод позволяет определять нижние оценки для минимальных собственных значений, что особенно важно для практики.
25. Разработан модифицированный метод конечных элементов, предназначенный для расчета устойчивости и колебаний упругих конструкций. Математическая модель задачи при использовании этого метода представляет собой задачу минимизации отношения Релея на подппространстве заданном системой ограничений. С помощью специальных преобразований, основанных на формулах метода пополнения, задача сводится к нахождению максимального собственного значения матрицы, для чего можно воспользоваться простым и эффективным степенным методом. В итоге, удается объединить процесс формирования задачи с ее решением, что значительно сокращает общий объем вычислительных затрат.
26. Выполненые расчеты с использованием разработанных оптимизационных математических моделей показали, что опираясь на эффективные методы анализа и методологию активного диалога - вычислительного эксперимента можно добиться адекватности этих моделей реальной практике проектирования. На современном этапе развития науки и техники успех в решении тех или иных проблем следует связывать прежде всего с внедрением новых компьютерных технологий и в частности вычислительного эксперимента.
С учетом проанализированных положений в качестве основных результатов на защиту выносится следующее:
1. Совокупность методологических разработок по оптимизации судов, создающих возможность формирования нового научного направления - оптимизационного проектирования морских судов
208 на основе многоуровневых структурно-дифференцированных математических моделей и методов активного диалога.
2. Разработка, теоретическое исследование и методология применения метода опорной точки для анализа оптимизационных математических моделей задач проектирования судов.
3. Обшая схема организации диалоговых систем оптимизации. Основные принципы создания программных комплексов по решению задач оптимального проектирования с использованием методологии активного диалога (вычислительного эксперимента).
4. Методологические разработки по формированию модели задачи определения главных размерений судна, выбору критерия оптимизации и технологии согласованной оптимизации данной подсистемы в рамках многоуровневой модели проектирования всего судна.
5. Математическия модель судовой геометрии для оптимизации обводов судна.
6. Новая методика оценки сопротивления формы корпуса судна для проектировочных расчетов на основе анализа поля давления.
7. Методология для проектного обоснования формы корпуса судна с использованием вычислительного эксперимента - активного диалога.
8. Теоретическое исследование ряда математических моделей и методов их анализа для задач проектирования различных конструкций судового корпуса.
Список литературы диссертационного исследования доктор технических наук Савинов, Геннадий Володарович, 1998 год
1. Абрамов Ю.Ш. Вариационные методы в теории операторных пучков. Спектральная оптимизация. Л.: Изд-во ЛГУ, 1983.
2. Александров В.Л. Новые организационно технологические решения при строительстве конкурентоспособных судов. Труды Первой Международной конференции МОРИНТЕХ'95, Санкт-Петербург, 1995, с. 27 - 36.
3. Алымов И.П. Очерки системы струйного образования судов. Морской сборник, 1879, N9, с. 1 - 54, N10, с. 1 - 52.
4. Алымов И.П. Опыт фактического применения системы струйных образований судов. Морской сборник, 1879, N12, с. 103 - 156.
5. Амромин Э.Л., Мизин И.О. Метод оценки влияния строевой по шпангоутам на сопротивление формы. Вопросы судостроения, серия "Проектирование судов", вып. 13, 1977.
6. Амромин Э.Л., Лордкипанидзе А.Н., Тимошин Ю.С. Введение "запрещенных" амплитуд при вычислении волнового сопротивления. // Прикл. математика и механика, 1992, т.56, вып. 1, с. 163-167.
7. Артюшков Л.С., Ачкинадзе А.Ш., Русецкий А.А. Судовые движители. Л., Судостроение, 1988, с.296.
8. Афанасьев В.И. Практический способ построения теоретического чертежа. Морской сборник, 1896, N4, с. 77 - 106.
9. Ачкинадзе А.Ш. Оптимальный движительный комплекс корпус конечнолопастной гребной винт. //Мореходные качества судов и и средств освоения океана. Тр. Ленингр. кораблестроит. ин.-та: ЛКИ, 1986. с. 57 - 63.
10. Ашик В.В. Проектирование судов.Л., Судостроение, 1975, с.352.
11. Ашик В.В., Богданов А.А., Мараева И.Б., Шебалов А.Н. Методы построения и согласования судовой поверхности с помощью ЭВМ. Л., Судостроение, 1978, с. 80.
12. Ашик В.В., Царев Б.А., Челпанов И.В. Значение коэффициентов использования технических характеристик судов в качестве критериев оптимизации. В кн. : Общие вопросы проектирования судов, вып. 199, Л., Судостроение, 1973, с. 92-100.
13. Ашик В.В., Царев Б.А., Челпанов И.В. Влияние иерархических уровней логико-математической модели проектируемых судов на динамичность прогнозируемых характеристик. В кн. : Общие вопросы проектирования судов, вып. 199, Л., Судостроение, 1973, с. 180-191.
14. Бабаков И.М. Теория колебаний.М. Наука, 1963.
15. Бавыкин Г.В., Васильев В.И., Царев Б.А. Пути компенсации перевеса унифицированных конструкций. Труды ЛКИ, 1975, вып. 99, с. 7 - 11.
16. Бавыкин Г.В., Васильев В.И., Царев Б.А. Оценка взаимосвязи и количества параметров стандартизации корпусных конструкций. Труды ЛКИ, 1975, вып. 99, с. 16 - 20.
17. Базилевский Ю.С., Вальдман Н.А., Мизин И.О., Савинов Г.В. Проектирование формы корпуса судна. Судостроение, 1996,N 1, с.З 7.
18. Базилевский Ю.С., Вальдман Н.А., Савинов Г.В. Опыт использования методов оптимального проектирования для отработки формы корпуса судна. Труды Второй Международной конференции МОРИНТЕХ'97, том 1, Санкт-Петербург, 1997, с.167-171.
19. Баничук Н.В. Оптимизация форм упругих тел. М.: Наука, 1980, 256 с.
20. Баничук Н.В. Введение в оптимизацию конструкций. М.: Наука, 1986, 302 с.
21. Баничук Н.В., Вельский В.Г., Кобелев В.В. Оптимизация в задачах с неизвестными границами // Механика твердого тела. 1984, N3, с. 46-52.
22. Барабанов Н.В. Конструкция корпуса морских судов. Л., Судостроение, 1981.
23. Баранова И.Н., Родионов А.А., Савинов Г.А.Применение модифицированного метода конечных элементов для расчета колебаний стержневых систем.//Математическое моделирование и автоматизированные системы в судостроении: Труды ЛКИ, Л., ЛКИ, 1986, с.78-84.
24. Басин A.M., Миниович И.Я. Теория и расчет гребных винтов. Л., Судпромгиз, 1963, с.760.
25. Березанский О.М. Разработка метода относительных жест-костей для оптимального проектирования конструкций //Труды ЛКИ, 1977, вып. 120, с. 14-18.
26. Березанский О.М. Многокритериальный подход к оптимизации судовых конструкций //Математическое обеспечение автоматизированных систем в судостроении: Труды ЛКИ, JL, 1987, с. 6-10.
27. Березанский О.М. Использование математических моделей корпусных конструкций при автоматизированном проектировании судов. //Математические методы и средства автоматизированных систем в судостроении: Труды ЛКИ, Л., 1988,
28. Березанский О.М., Кульцеп А.В. Алгоритм оптимального распределения материала в связях судовых стержневых систем. //Математическое модели и САПР в судостроении: Труды ЛКИ, Л., 1987, с. 13-17. с. 7-12.
29. Березанский О.М.,Савинов Г.В. Метод опорной точки для решения задач оптимизации.//Прикладная математика и вычислительные системы в судостроении:Труды ЛКИ, 1989.
30. Березанский О.М., Семенов Ю.Н. Решение задач проектирования судов на основе многокритериальной оптимизации. Судостроительная промышленность. Серия: системы автоматизации проектирования, производства и управления. 1988, N9, с. 78 85.
31. Бойцов Г.В. Проблемы оптимизации судового корпуса. // Судостроение, 1983, N2, с.5-8.
32. Бойцов Г.В. Оптимизация судового корпуса с учетом требований снижения его металлоемкости и трудоемкости сборки // Судостроение, 1984, N3, с. 7-10.
33. Бойцов Г.В., Палий О.М. Прочность и конструкция корпуса судовноых типов. Л., Судостроение, 1979
34. Брахман Т.Р. Многокритериальность и выбор альтернатив в технике. М.,Радио и связь, 1984.
35. Бреслав Л.Б. Технико экономическое обоснование средств освоения Мирового океана. Л., Судостроение, 1982.
36. Бреслав Л.Б. Экономические модели в судостроительном производстве. Л., Судостроение, 1984.
37. Бронников А.В. Выбор критерия для определения элементов транспортных судов в процессе проектирования. // Общие вопросы проектирования судов, 1973, Вып 199, с. 63-72.
38. Бронников А.В. Основные составляющие науки о проектировании. Судостроение, 1979, N4.
39. Бронников А.В. Морские транспортные суда. JL, Судостроение, 1984, с. 351.
40. Бронников А.В. Проектирование судов. JL, Судостроение, 1991, с. 320.
41. Бубнов И.Г. Составление теоретических чертежей при помощи прогрессики. Спб., изд. Морской академии, 1906 1908.
42. И.Г. Бубнов. Об одном методе определения главных размеров проектируемого судна. Избранные труды. JL, Судостроение, 1956.
43. Васильев A.JI. Стандартизация в судокорпусостроении. JL, Судостроение, 1978.
44. Васильев A.JI. Модульное судостроение. М., Знание, 1981.
45. Вашедченко А.Н. Автоматизированное проектирование судов. JI. Судостроение, 1985, стр. 160.
46. Войткунский Я.И. Сопротивление воды движению судов. JL, Судостроение, 1964.
47. Гайкович А.И. Применение алгоритма комбинированного случайно релаксационного поиска при оптимизации элементов сухогрузного судна. Труды ЛКИ, вып. 90, 1974, с. 33 - 38.
48. Гайкович А.И. Сопоставление методов оптимизации, используемых при проектировании судов. В кн.: Общие вопросы проектирования судов, вып. 199, Л., Судостроение, с. 1975, 53 -62.
49. Гайкович А.И. Оптимизация элементов и характеристик контейнерных судов с использованием ЭВМ. Судостроение, 1975, N8, с. 15 16.
50. Гайкович А.И. Оптимизация элементов и характеристик контейнеровоза с применением ЭВМ. Судостроение, 1978, N2, с. 9 13.
51. Гайкович А.И. Применение ЭВМ при проектировании контейнерного транспортного рефрижераторного судна. Труды ЛКИ: Проектирование судов, 1980, с. 69 74.
52. Гайкович А.И. Принципы построения математических моделей судов для выбора их главных размерений. Кибернетика на морском транспорте, вып. 10, Киев, Техника, 1981, с. 26-31.
53. Гайкович А.И. Применение современных математических методов в проектирование судов. Л., Изд. ЛКИ 1982, с. 89.
54. Гайкович А.И. О точности математических методов проектирования судов. Труды ЛКИ: Обоснование характеристик проектируемых судов. 1984, с. 25 30.
55. Гайкович А.И. Проектирование контейнерных судов. Л., Изд. ЛКИ 1985, 41, с. 91.
56. Гайкович А.И., Родионов В.В. Подход к проектированию корабля с позиций теории иерархических многоуровневых систем. Труды Первой Международной конференции МОРИН-ТЕХ'95, Санкт-Петербург, 1995, с. 109 124.
57. Гайкович А.И., Царев Б.А. Принципы построения логико математической модели оптимизации элементов контейнерного судна. Труды ЛКИ, 1974, вып. 90, с. 33-38.
58. Геловани А.В., Юрченко В.В. Компьютерное моделирование. Математическое моделирование, 1989, т.1, N1,с.4-12.
59. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. / Пер. с англ. М., Мир, 1985, с.510.
60. Гире И.В., Сретинский Л.Н. Влияние размеров корабля на его волновое сопротивление. ПММ, 1946,N1 ,с.21-32.
61. Глозман М.К. Технологичность конструкций корпуса морских судов. Л., Судостроение, 1984.
62. Глозман М.К., Васильев А.Л. Технологичность конструкций корпуса судна. Л., Судостроение, 1971, с.279.
63. Глушков В.Н., Цауне А.Я. Безусловная минимизация в задачах на собственные значения с дополнительными условиями.// Ж. вычисл.матем. и матем.физ. 1985, т.25, N2, с.298-301.
64. Готман А.Ш. Проектирование хорошо обтекаемых судовых обводов из развертывающихся поверхностей. Л., Судостроение, 1974, с. 6 9.
65. Готман А.Ш. Определение волнового сопротивления и оптимизация обводов судов (Часть 1. Волновое сопротивление судов. Часть 2. Методы расчёта волнового сопротивления. Оптимизация обводов корпуса водоизмещающих судов.). Новосибирск, НГАВТ, 1995, стр. 322.
66. Губкин С.А. Особенности развития теории исследовательского проектирования кораблей и его автоматизации на современном этапе. Труды Первой Международной конференции МО-РИНТЕХ'95, Санкт-Петербург, 1995, с. 37 41.
67. Демешко Г.Ф. Определение главных размерений амфибийных судов на воздушной подушке. // Оптимизационное проектирование судов: Сб. науч. тр./ JL 1990, с. 74-80.
68. Демешко Г.Ф. Проектирование судов. Амфибийные суда на воздушной подушке. В 2-х книгах. СПб., Судостроение, 1992.
69. Демешко Г.Ф., Цымляков Д.Е. Место и тенденции развития скоростных судов в мировом судоходстве. Труды Второй Международной конференции МОРИНТЕХ'97, том 1, Санкт-Петербург, 1997, с.223-224.
70. Дмитриева Н.Е. Применение линейного программирования при планировании пополнения флота. В сб.: Применение вычислительной техники на водном транспорте. М. - JL, Транспорт, 1964, с. 39 - 45.
71. Дмитриева Н.Е., Халиф А.П., Чалов В.В. Применение математических методов и ЭВМ для определения эффективности капитальных вложений в пополнение морского транспортного флота. М. JL, Транспорт, 1966.
72. Дорин B.C. Общие принципы построения системы автоматизированного проектирования судов. Вопросы судостроения: вып. 2, JL, Судостроение, 1972, с.3-22.
73. B.C. Дорин, В.М. Пашин, В.Е. Солдатов. Применение экономико- математических методов и ЭВМ при проектировании судов. Судостроение, 1967, N11, с. 17-24.
74. B.C. Дорин, В.М. Пашин, В.Е. Солдатов. Экономико-математическая модель и пути решения задачи установления оптимальных типов транспортных судов. -Труды НТО Судпро-ма, JL, Судостроение, 1968, вып. 111, с. 9-14.
75. Евдокимова H.JL, Троицкий Б.А. Метод аппроксимации судовой поверхности. Труды ЛКИ, 1974, вып. 91, с. 101-106.
76. Ефремова Г.В., Савинов Г.В., Шебалов А.Н. Выбор формы корпуса на начальных этапах проектирования.// Методы прикладной и вычислительной математики в судостроении: Труды ЛКИ, Л.,ЛКИ, 1979.
77. Жуковский Н.Е. ПСС, т. IV, ОНТИ, 1937.
78. ЗангвилУ.И. Нелинейное программирование. Единый подход. М.,Наука,1973.
79. Захаров И.Г. Теория компромисных решений при проектировании корабля.Л., Судостроение, 1987, с.136.
80. Зенкевич О. Метод конечных элементов в технике. / Пер. с англю М., Мир, 1975, с. 542.
81. Зойтендейк Г. Метод возможных направлений,ИЛ, 1963.
82. Канторович Л.В. Перспективы работы в области автоматизации программирования на базе крупноблочной системы.-Труды Матем. ин-та АН СССР,1968,т.96, с.5-15.
83. Канторович Л.В. Пути развития вычислительных средств для решения больших задач оптимального планирования и управления. Оптимизация.- Труды СО АН СССР, ин-т Матем., 1972, с. 5 7.
84. Карлин Л.В., Савинов Г.В., Савинова Г.В. К вопросу оптимального проектирования судовых перекрытий. //Методы прикладной математики в судостроении. Оптимизация и стандартизация характеристик судов и их конструкций: Труды ЛКИ, вып. 120, 1977.
85. Кобзарь А.В., Троицкий Б.А. Упрощенный метод аппроксимации судовой поверхности и проектирования теоретического чертежа. Вопросы судостроения, серия "Проектирование судов", 1977, вып. 13, с. 27-31.
86. Ковалев В.А. Новые методы автоматизации проектирования судовой поверхности. Л., Судостроение, 1982, с.212.
87. Короткин Я.И. Вопросы прочности морских транспортных судов. Л., Судостроение, 1965.
88. Костюков А.А. Теория корабельных волн и волнового сопротивления. Л., Судостроение, 1959.
89. Краев В.И. Экономические обоснования при проектировании морских судов.Л., Судостроение, 1981, с. 278.
90. Краев В.И., Ступин O.K., Халиф А.И., Белицкий Ю.П. Модель оптимизации программы пополнения морского грузового флота. Труды ЦНИИМФ, Л., Транспорт, 1973, вып. 168, с. 3 - 14.
91. Краев В.И., Ступин O.K., Лимонов Э.Л. Экономические обоснования при проектировании морских грузовых судов. Л., Судостроение, 1973.
92. Крейн М.Г. О форме судна наименьшего мичелловского сопротивления.-В кн.:Аннотации докл. АН СССР на Всесоюзном съезде по теоретической и прикладной механике, М., 1960,с.111-115.
93. Крылов А.Н. Воспоминания и очерки. М., АН СССР, 1956.
94. Курдюмов А.А. Прочность корабля. Л., Судпромгиз, 1956, с.384.
95. Линдблад А. Проектирование обводов транспортных судов. Л. Судостроение,1965.
96. Логачев С.И. Морские танкеры. Л., Судостроение, 1970.
97. Логачев С.И. Транспортные суда будущего. Л., Судостроение, 1976.
98. Лойцянский Л.Г. Механика жидкости и газа.М., Наука, 1987,840 с.
99. Любавина Н.М.,Пашин В.М. Модификация метода опорной гиперплоскости для локального поиска в задачах нелинейного программирования.-В сб.: Вопросы судостроения. Л., Судостроение, 1977, вып. 13, с. 127-130.
100. Любушин Н.П. Развитие идей И.Г. Бубнова по оптимизации характеристик проектируемых судов. Судостроение, 1993,N1.
101. Марчук Г.И. Методы вычислительной математики. М., Наука, 1989, с.608.
102. Марчук Г.И., Кузнецов Ю.А. Итерационные методы и квадратичные функционалы. В кн. Методы вычислительной математики. Новосибирск, Наука, 1975, с. 4-143.
103. Машунин Ю.К. Методы и модели векторной оптимизации. М., Наука, 1986.
104. Мирошниченко И.П. Морские сухогрузные суда открытого типа. М., Морской транспорт, 1962.
105. Мирошниченко И.П., Лимонов Э.Л. Быстроходные грузовые лайнеры. Л., Судостроение, 1969.
106. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. М.,Наука, 1978,с 351.
107. Мучник Л.Н. Оптимизация основных параметров морских крупнотоннажных танкеров. Труды НТО Судпрома, Л., Судостроение, 1968, вып. 111, с. 21 - 26.
108. Никитин В.Н., Головань С.В. Разработка математической модели судовой поверхности для решения задачи оптимизации главных размерений судов. Труды Второй Международной конференции МОРИНТЕХ'97, том 1, Санкт-Петербург, 1997, с. 273 -278.
109. Ногид JI.M. Теория проектирования судов. JL, Судпром-гиз, 1955.
110. JI.M.Ногид. Из истории развития теории проектирования судов -Труды Ленинградского кораблестроительного института, ЛКИ, 1955, вып. XIV, стр. 19-29.
111. Ногид Л.М. Проектирование формы судна и построение теоретического чертежа.Л., Судпромгиз, 1962, 243с.
112. Ортега Дж., Рейнболдт В. Итерационные методы решения нелинейных систем уравнений со многими неизвестными. / Пер. с англ. М., Мир, 1975, с.558.
113. Павленко Г.Е. Судно наименьшего сопротивления. Труды ВНИТОСС, т. И, вып. 3, 1937.
114. Павленко Г.Е. Об упрощенных формах судов. М., Речиз-дат, 1948.
115. Павленко Г.Е. Сопротивление воды движению судов. М.,Морской транспорт,1966.
116. Пашин В.М. О выборе основных элементов судов на воздушной подушке. Труды ЦНИИ им. акад. А.Н. Крылова, 1964, вып. 215, с. 117 - 124.
117. Пашин В.М. О применении ЭЦВМ для выбора элементов проектируемого судна. В сб.: Рыболовный флот по материалам II конференции по развитию флота рыбной промышленности стран - членов СЭВ. Т. 2, Л., Судостроение, 1965, с. 335 - 336.
118. Пашин В.М. Математическая модель задачи оптимизации пополнения рыбопромыслового флота. Судостроение, 1971, N 5, с.7-10.
119. Пашин В.М. Математическая модель задачи оптимизации пополнения рыбопромыслового флота.-Труды ЦНИИ им. акад. А.Н.Крылова,1971,вып. 267, с.5-17.
120. Пашин В.М. Учет влияния серийности постройки судов при оптимизации пополнения флота. В сб.: Экономические проблемы стандартизации в судостроении. Л. Судостроение, 1974, с. 118 - 125.
121. Пашин В.М. Критерии для согласованной оптимизации подсистем судна. JI. Судостроение, 1976.
122. Пашин В.М. Оптимизация судов. JT. Судостроение, 1983, с. 295.
123. Пашин В.М., Мизин И.О. Согласованная оптимизация формы корпуса и основных элементов судна. // Гидродинамика транспортных судов, ЦНИИ им. акад. А.Н. Крылова, 1981, с. 27-44.
124. Пашин В.М., Сужение Э.Н. Математические модели задачи оптимизации пополнения портовых буксиров.-Труды ЦНИИ им. акад. А.Н.Крылова,1971, вып.267, с.34-44.
125. Пашин В.М., Сужение Э.Н. Постановка и описание задачи выбора оптимальных элементов рыбопромысловых судов. -Труды ЦНИИ им. акад. А.Н. Крылова, 1971, вып. 267, с. 45 53.
126. Первов В.А. Однопараметрический метод расчетного проектирования судовой поверхности. Труды НТО судпрома, 1963, вып. 111, с. 85-92.
127. Полак М. Численные методы оптимизации. М., Мир, 1974.
128. Попов Ю.П., Самарский А.А. Вычислительный эксперимент. В сб. Компьютеры, модели, вычислительный эксперимент. М. Наука, 1988, с.16-136.
129. Постнов В.А. Численные методы расчета судовых конструкций. Л. Судостроение, 1977, с.280.
130. В.А.Постнов, С.А.Дмитриев, Б.К.Елтышев, А.А.Родионов. Метод суперэлементов в расчетах инженерных сооружений. Л., Судостроение, 1979, с.288.
131. Постнов В.А., Хархурим И.Я. Метод конечных элементов в расчетах судовых конструкций. Л., Судостроение, 1974, с.344.
132. Проектирование судов с использованием ЭВМ. Зарубежный опыт судостроения. ЦНИИ "Румб", 1979.
133. Пшеничный Б.Н. Алгоритмы для общей задачи математического программирования. -"Кибернетика", N5, 1970.
134. Б.Н. Пшеничный., Ю. М. Дашилин. Численные методы в экстремальных задачах. М.: Наука, 1975, стр. 320.
135. Разлетова И.Б., Родионов А.А. Об управлении собственными частотами судовых перекрытий при оптимальном проектировании. Труды ЛКИ: Применение численных методов в расчетах судовых конструкций. 1984, с. 74 79.
136. Разлетова И.Б., Родионов А.А. Оптимизация судовых перекрытий при заданной величине критической силы. Труды ЛКИ: Устойчивость и динамика судовых конструкций. 1985, с. 84 90.
137. Разуваев В.Н., Царев Б.А. Логико-математическая модель оптимизации судна на подводных крыльях. В кн.: Архитектура и проектирование судов, вып. 1, Владивосток, изд. Даль-госуниверситета, 1977, с. 80-85.
138. Раков А.И. Оптимизация основных характеристик и элементов промысловых судов. Л., Судостроение, 1978.
139. Рейнов М.Н. Профильное сопротивление тел с большим удлиннением. Труды ЛКИ, вып. XIII, 1952.
140. Рейнов М.Н. Математическая модель судовой поверхности. Л., Судостроение, 1977.
141. М.Н.Рейнов , В.А. Марков. Универсальная программа для решения задач нелинейного программирования. В сб.: Вопросы судостроения, Серия: Математические методы, программирование, эксплуатация ЭВМ, 1975, вып. 6, стр.45-55.
142. Реклейтис Г., Рейвиндран А., Рэгсдейл К. Оптимизация в технике. В 2т.// Пер. с англ. М.: Мир, 1986, Т1-стр. 350, Т2-стр. 320.
143. Родионов А.А. Алгоритм оптимизации бортового набора транспортных судов, не имеющих в грузовой части поперечных переборок. Труды ЛКИ: Прочность и надежность судовых конструкций. 1982, с. 74 82.
144. Родионов А.А. Декомпозиция задачи оптимизации судовых конструкций на базе метода суперэлементов. Труды ЛКИ: Прочность новых типов транспортных судов. 1983, с. 67 71.
145. Родионов А.А. Использование методов оптимизации в расчетном проектировании конструкций. // Судостроение, 1985, N11, с.7-10.
146. Родионов А.А. Математические методы проектирования оптимальных конструкций судового корпуса. Л., Судостроение, 1990, с.248.
147. Родионов А.А. Использование математических моделей оптимизации судовых конструкций. // Судостроение, 1992, N8-9, с. 6 10.
148. Родионов А.А. Математические модели автоматизированного проектирования корпуса. Труды Первой Международной конференции МОРИНТЕХ'95, Санкт-Петербург, 1995, с. 135- 139.
149. Родионов А.А. Использование коэффициентов чувствительности при проектировании конструкций судового корпуса. // Судостроение, 1997, N1, с. 12 16.
150. Родионов А.А. Савинов Г.В.Проектирование конструкций минимальной массы из условий обеспечения устойчивости. //Применение численных методов в строительной механике кора-бля:Материалы по обмену опытом,вып 397,JI.Судостроение, 1984.
151. Родионов А.А. Савинов Г.В. Модифицированный метод конечных элементов для расчета колебаний судовых конструкций. //Применение численных методов в строительной механике корабля: Материалы по обмену опытом, вып 416,J1 .Судостроение, 1986, с.51-56.
152. Родионов А.А., Упырев В.М. Алгоритм и программа оптимизации судовых перекрытий. Труды ЛКИ: Применение численных методов в расчетах судовых конструкций. 1984, с. 80 84.
153. Родионов А.А., Упырев В.М. Проектирование перекрытий минимальной массы при ограничениях на размеры связей. Труды ЛКИ: Устойчивость и динамика судовых конструкций. 1985, с. 96- 103.
154. Родионов А.А., Упырев В.М. Определение размеров поперечных сечений при оптимизации стержневых моделей судовых конструкций. Труды ЛКИ: Проблемы общей и местной прочности судовых конструкций. 1987, с. 70 75.
155. Родионов А.А., Упырев В.М. Расчетное проектирование судовых перекрытий. // Судостроение, 1987, N4, с.26-31.
156. Родионов Н.Н. Современные танкеры. Л., Судостроение, 1980, с. 280.
157. Савинов Г.В. К построению многошаговых релаксационных методов. // Прикладная и вычислительная математика в судостроении. Оптимизация и стандартизация характеристик судов и их конструкций:Труды ЛКИ,Л.,ЛКИ,1975.
158. Савинов Г.В. Сходимость метода линеаризации для задач проектирования конструкций. //Прикладная и вычислительная математика в судостроении. Оптимизация и стандартизация характеристик судов и их конструкций: Труды ЛКИ, вып. 107, 1976, с.41-45.
159. Савинов Г.В. Вычислительная устойчивость матричной прогонки. Журнал вычисл. математ. и матем. физики, 1977, т.17, N2, с.306-319.
160. Савинов Г.В. Метод сопряженных градиентов для решения систем нелинейных уравнений.//Численные методы и вопросы организации вычислений: Записки научных семинаров ЛОМИ, том 70 / Под редакцией В.Н. Кублановской и Т.Н. Смирновой. Л.,Наука, 1977.
161. Савинов Г.В. Метод сопряженных градиентов для определения собственных значений. // Методы прикладной математики в судостроении. Оптимизация и стандартизация характеристик судов и их конструкций: Труды ЛКИ, Л., ЛКИ, вып.120, 1977, с.55-58.
162. Савинов Г.В. Численная устойчивость блочного треугольного разложения для одного класса линейных систем. Журнал вычисл. математ. и матем. физики, 1978, т. 18, N6, с.1589-1593.
163. Савинов Г.В. Обобщенный метод сопряженных градиентов для решения линейных систем.//Численные методы и вопросы организации вычислений:Записки научных семинаров ЛОМИ, том 80/ Под редакцией В.Н. Кублановской и Т.Н. Смирновой. Л.,Наука, 1978.
164. Савинов Г.В. Один обобщенный метод сопряженных градиентов для определения экстремальных собственных значений. // Методы прикладной математики в судостроении.: Труды ЛКИ, Л., ЛКИ, 1980, с.109-113.
165. Савинов Г.В. Некоторые общие принципы построения диалоговых систем оптимизации.//Прикладная математика и САПР в судостроении:Труды ЛКИ,1982.
166. Савинов Г.В. Оределения экстремальных собственных значений минимизацией функционалов специального вида. Журнал вычисл. математ. и матем. физики, 1985, N2.
167. Савинов Г.В. Оценка результатов хозяйственной деятельности на основе анализа экономических процессов. // Экономические проблемы управления промышленным производством: Межвузовский сборник научных трудов.Л., ЛФЭИ, 1987, с.110 114.
168. Савинов Г.В. Метод декомпозиции для определения экстремальных собственных значений. // Математические методы и средства автоматизированных систем в судостроении.: Труды ЛКИ, Л., ЛКИ, 1988.
169. Савинов Г.В. Организация вычислений при решении задач практической оптимизации. //Численные методы и вопросы организации вычислений.XI : Записки научных семинаров ЛОМИ, т.229, 1995, с.268-274.
170. Савинов Г.В. Вычислительный эксперимент в задачах оптимального проектирования судов. Труды Второй Международной конференции МОРИНТЕХ'97, том 1, Санкт-Петербург, 1997, с.35-38.
171. Савинов Г.В.,Савинова Г.В. Расчет устойчивости упругих конструкций с помощью минимизации отношения Релея в подпространствах./ /Математическое моделирование автоматизированных систем в судостроении:Труды ЛКИ,Л., ЛКИ, 1987, с.107-112.
172. А.А. Самарский. Математическое моделирование и вычислительный эксперимент. Вестник, АН СССР, 1979, N5, стр. 38-49.
173. Самарский А.А. Что такое вычислительный эксперимент. В сб. Что такое прикладная математика. М. Знание, 1980.
174. Самарский А.А. Вычислительный эксперимент в задачах технологии. Доклады АН СССР 1981, с. 77 88.
175. Семенов Ю.Н. Методы исследования операций в задаче оптимизации состава флота. Кибернетика на морском транспорте. Респ. межвед. науч. техн. сб. Киев, 1979, N8, с. 106
176. Семенов Ю.Н. О построении математических моделей оптимизации состава отечественного флота. Труды НТО им. акад. А.Н. Крылова, Материалы по обмену опытом, 1979, вып. 291, с. 46 51.
177. Середа А.-В.И . Алгоритм расчленения для решения задачи оптимизации пополнения флота. В сб.: Вопросы судостроения, Серия Проектирование судов, 1977, вып. 13, стр. 12-19. Судостроение, 1985, стр. 160.
178. Сизов В.Г. Метод проектирования формы корабля наивысших пропульсивных качеств. Автореферат дисс. на соискание ученой степени к.т.н., ОИИМФ, 1948.
179. Сиротникова JI.A., Турбал В.К., Щередин В.Н. Выбор формы обводов и движетельного комплекса судна. Судостроение, 1980, N3.
180. Смородин А.И.Расчет волнового сопротивления в реальной жидкости. Вопросы судостроения. Серия 1, Проектирование судов.,1972, с.122-129.
181. Соболь И.М., Статников Р.Б. Выбор оптимальных параметров в задачах со многими критериями. М., Наука, 1981, с.110.
182. Соколов В.П. Постановка задач экономического обоснования судов. Д., Судостроение, 1987, с. 163.
183. Соколов В.П. Экономическое обоснование проектов судов в условиях рынка. Судостроение, 1993,N1.
184. Солдатов В.Е. Алгоритмы оптимизации в задаче определения оптимального пополнения рыбопромыслового флота. -Труды ЦНИИ им. акад. А.Н. Крылова, 1971, вып. 267, с. 17 22.
185. Солдатов В.Е. Алгоритмы оптимизации элементов рыбопромысловых и буксирных судов. Труды ЦНИИ им. акад. А.Н. Крылова, 1971, вып. 267, с. 58 - 67.
186. Справочник по строительной механике корабля. Под ред. Ю.А.Щиманского. т.З, Д., Судпромгиз, 1960.
187. Справочник по теории корабля, т.1. JL, Судостроение, 1985, с. 764.
188. Статников Р.В., Матусов И.В. Поиск оптимальных решений с помощью конечно-элементных программ общего назначения. // Докл. АН 1994, т.336, N4, с.481-484.
189. Тимошенко С.П. Устойчивость стержней пластин и оболочек. М.: Наука, 1971.
190. Тимошин Ю.С. Возможности применения вычислительных методов для оптимизации обводов корпуса. В книге "Проблемы прикладной гидромеханики судна", JL, Судостроение, 1975.
191. Типовая методика определения экономической эффективности капитальных вложений. М.,Экономика, 1969 (Госплан СССР, Госстрой СССР, Президиум АН СССР).
192. Титов И.А.,Четыркин А.Н. Приближенное определение основных характеристик современных контейнеровозов. Судостроение, 1993,N1.
193. Троицкий Б.А. Использование в начальных стадиях проектирования аналитического выражения судовой поверхности. Труды НТО Судпрома, JL, Судостроение, 1968, вып 111, с. 78-84.
194. Троицкий Б.А. Формулировка задачи выбора главных размерений буксиров приближенным методом. Труды ЦНИИ им. акад. А.Н. Крылова, 1971, вып. 267, с. 53 - 58.
195. Троицкий В.А., Петухов JI.B. Оптимизация формы упругих тел. М.: Наука, 1982, 432 с.
196. Турбал В.К., Шпаков B.C., Штумпф В.М. Проектирование обводов и движете лей морских транспортных судов. Д., Судостроение, 1983.
197. Уилкинсон Дж. X. Алгебраическая проблема собственных значений./ Пер. с англ. М., Наука, 1970, с.564.
198. Фаддеев Д.К. Фаддеева В.Н. Вычислительные методы линейной алгебры. М. Физматгиз, 1963.
199. Флетчер К. Вычислительные методы в динамике жидкостей. В двух томах. М., Мир, 1991.
200. А. Фиакко, Г. Мак-Кормик. Нелинейное программирование. Методы последовательной безусловной минимизации. // Пер. с англ., М.: Мир, 1972, стр. 240.
201. Ханович И.Г. Анализ и проектирование формы судовой поверхности. J1. М., Госстройиздат, 1933.
202. Химмельблау Д. Прикладное нелинейное программирование //Пер. с англ. М.: Мир, 1975, стр. 536.
203. Худяков Л.Ю. Исследовательское проектирование кораблей. Л., Судостроение, 1980.
204. Царев Б.А. Оптимизационные обоснования при проектировании крейсерско гоночных яхт.- В кн.: Теория и проектирование судов, вып. 251 JL, Судостроение, 1977, с. 88-91.
205. Царев Б.А. Выявление многоэкстремальности целевой функции в кибернетческих моделях задач проектирования судов. Кибернетика на морском транспорте, вып. 9, Киев, Техника, 1980, с. 90 - 96.
206. Царев Б.А. Задача оптимизации проектных характеристик транспортных судов с ветроэнергетическими установками. Труды НКИ: Исследование, проектирование и постройка парусных судов, 1982, с. 69-73.
207. Царев Б.А. Преобразование целевых функций в задачах системной оптимизации проектных характеристик судов. Труды ЛКИ: Обоснование характеристик проектируемых судов, 1984, с. 44-50.
208. Царев Б.А. Анализ взаимосвязи функциональных подсистем при проектировании судов. Труды НКИ: Автоматизированное проектирование и конструкции судов, 1986, Николаев, с. 48-58.
209. Царев Б.А. Особенности проектной оптимизации судов с доминирующими функциональными подсистемами. Труды ЛКИ: Проектирование морских судов и плавучих технических средств, 1987, с. 41-46.
210. Царев Б.А. Оптимальное проектирование скоростных судов. Л.,: ЛКИ, 1988, с. 100.
211. Чапман Ф.Г. Опыт теоретического рассуждения об удобнейшем образовании и надлежащей величине линейных кораблей, а равномерно фрегатов и других меньших военных судов. Спб., 1836.
212. Четвертаков М.М. Технология математического моделирования при автоматизированном исследовательском проектировании корабля. Труды Первой Международной конференции МО-РИНТЕХ'95, Санкт-Петербург, 1995, с. 42 55.
213. Четвертаков М.М., Шауб П.А. Общие принципы разработки математических моделей судов. Вопросы судостроения. Сер. Математические методы, 1975, вып. 8, с. 46 - 64.
214. Шауб П.А. Проблемные вопросы современного проектирования судов. // Судостроение, 1991, N10.
215. Шауб П.А. Введение в теорию функционального проектирования корабля. Труды Первой Международной конференции МОРИНТЕХ'95, Санкт-Петербург, 1995, с. 102 108.
216. Шауб П.А. Особенности аналитического моделирования функциональных структур при функциональном проектировании. Труды Второй Международной конференции МОРИН-ТЕХ'97, том 1, Санкт-Петербург, 1997, с. 54 59.
217. Шауб П.А., Никольский В.И. Особенности формирования математической модели судна с позиции САПР. // Судостроение, 1984, N5, с. 8 9.
218. Шебалов А.Н. Нелинейная теория волн и волнового сопротивления. Учебное пособие. JL,Изд.ЛКИ, 1984, 104с.
219. Шебалов А.Н. Линейная теория волнового сопротивления судна. Учебное пособие. Л., Изд.ЛКИ, 1985, 104с.
220. Шлихтинг Г. Теория пограничного слоя. М. Наука, 1974, 712 с.
221. Яковлев И.А. Проектирование судовых обводов. Л., ЛКИ, 1937.
222. Колев П.Н., Трънулов Н.М. Проектироване и архитектура на кораба. Варна, ВМЕИ, 1987.
223. Amromin E.L. Timoshin J.S. Determination of minimum resistance hull forms by methods of nonlinear programming. Preprints of International seminar on wave resistance, SNAJ, Tokyo, 1976.
224. Basilevsky Y.,Mizin I.,Savinov G.,Waldman N. Optimisation of ship hydrodynamic design. Proc. of CADMO/94 and ITS/94, Southhampton, pp.13-19.
225. Basilevsky Y.S, Mizin I.O, Savinov G.V, Urlapov M.B, Waldman N.A. Advancet computer technique for hydrodynamic ship optimisation. Proc. of PRADS'95 , Seoul, Korea, 1995, pp.2.1350 2.1357.
226. Benford H. Measures of Merit for Ship Design. // Marine Technology. Vol. 7, N4, 1970.
227. Goss R.O. Economic Criteria for Optimal Ship Design. // Trans. RINA. Vol. 107, 1965.
228. Hess J.,Smith A. Calculation of Non-Lifting Potential Flow about Arbitrary Three-Dimensional Bodies. Jorn. of Ship Research, 1964, v.8, N 2, p. 22-44.
229. Hestens M.R., Stiefel E. Method of conjugate gradients for solving linear sistems. J. Res. Nat. Rur. Stand. 1952, vol.49, p.409-436.
230. Hogner E. Influense lines for the wave resistanse of ships. I.PRSL, ser.A, v.155, N885, 1936.
231. Holtrop J.,Mennen G.G.J An approximate power prediction method. International Shipbuilding Progress, 1982, v29,N 335.
232. Huanng C.C. Optimal ship forms for minimum wave resistance. Rep. NONA 72-1, College of Eng., Univ. of California,Berkley.
233. Kanevsky G.I., Mizin I.O., Timoshin Y.S. The Use of Numerical Computer Experiment for Mathematical Definition of Ship Hull Form before the Model Tank Tests. Proceedings of SMSSH-84, v.l, Varna,1984.
234. Kavlie D., Мое J. Applikation of non-linear Programming to optimum Grillage Design with non-convex Sets of Variables // Intern. J. for numerical Methods in Engineering. 1969, Vol.1, N4, pp. 351-378.
235. Kelley J.E. The cutting plane method for solving convex programs. J.Soc.Ind. Appl.Math.,8,N 4, 1960, 703-712.
236. Kilgore U. Developable Hull Surfaces. Fisching Boat of the World, 1967, vol. 3, p. 648.
237. Lund S. Optimum Design of tranverse frame Structures in Tankers // European Shipbuilding. 1971, Vol.20, N5, pp. 3-9; N6, pp. 2-11.
238. Mandel Phillip, Reuven Leopold. Optimization methods applied to design.-Trans. Soc. Naval. Archit. and Marin Engrs New York, 1966 (1967), vol 74, p. 477-505 , Discuss p. 505-521.
239. Mandel P., Reuven L. Optimization Methods Applied to Ship Design. Transactions SNAME, 1966, vol. 74, p. 477 - 521.
240. Mizin I.O.,Savinov G.V.,Waldman N.A. Hydrodynamic Optimisation of Hull Fofm Surface. Selected Papers. Vol 1, Applied Hydrodynamics. St.Petersburg, State Marine Technical University, 1993, pp. 91-100.
241. Mizin I.O.,Savinov G.V.,Waldman N.A. Analysis of the Hydro-dynamic Criteria of ship surface optimisation. Proc. of the 6 Congress of the IMAM, vol. 2, Varna,Bulgaria,1993.
242. Мое. J. Integrated Design of tanker Structures // Eupopean Shipbuilding 1972/. Vol/ 21 , N 3-4, p. 49-59.
243. Nolan T.I. Computer aided Design of Developable Hull Surfaces. Marine Technology, 1971, vol. 8, N2.
244. Pashin V.M., Mizin I.O., Shpakov V.S., Shtumpf V.M. Effectiveness of the Optimisation of Forms of Models of Ships. Wageningen, Netherlands,1985, Pr., vol. 2.228
245. Rozhdestvensky K.V., Savinov G.V. Optimal Disign of Wing Sections in Extrem Ground Effect. Proc. of 22nd Symposium on Naval Hydro dynamics, Washington,DC,1998,pp.10-19.
246. Schneekluth H. Ship design for efficiency and economy. Butte-Worth. 1987. p. 266.
247. Taylor D.W. On Ships Forms derived by Formulae. Trans. Soc. Naval Archit. and Marin Engrs. 1903, vol. XI, p. 242.
248. Weinblum G. Schiffe geringsten widerstands.Proc. of the third Congress on Applied micanics,Stochholm, 1930, pp449-458.
249. Wehausen J.V. The wave resistance of Ships Advances in applied mechanics. Academic press. N.Y.,1973, vol. 13,p.93-245.
250. Wen-Chin Lin, Wtbster W.C., Wehausen J.V. Ships of minimum total resistance. Jrans. of Intern. Seminar on teoretical wave resistance. Ann Arbor, 1963, pp 909-956.
251. X.Xinlian,J.Zhuoshang,Y.Yu. Nonlinear programming for fleet planning.Int.Shipbuild.Progr.,40 no.421,1993, pp. 93-103.
252. Young D.M. Iterative solution of large linear sistems. Academic Press, 1971.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.