"Методологические подходы к оценке роли гиппокампа в формировании ассоциативной эпизодической памяти" тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Воробьева Алисия Нуньес
- Специальность ВАК РФ00.00.00
- Количество страниц 62
Оглавление диссертации кандидат наук Воробьева Алисия Нуньес
Table of contents
PUBLICATIONS AND APPROBATION OF RESEARCH
List of abbreviations
INTRODUCTION
Research problem
Research goals
OVERVIEW
Study
Study
Theoretical novelty
Methodological novelty
Empirical novelty
Contribution of the author
KEY RESULTS
Study 1 (Methodological TES study)
Study 2 (iEEG study)
Provisions for the defense
CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES
APPENDICES
Appendix A. Research article " Transcranial direct current stimulation effects on memory consolidation: timing matters"
Appendix B. Research article "Online and offline effects of transcranial alternating current stimulation of the primary motor cortex"
Appendix C. Research article "Hippocampus-located processing speed of contextual information is associated with its congruence to the previously developed schemas"
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Experimental paradigms and data processing algorithms design in real time cognitive neuroimaging2021 год, кандидат наук Волкова Ксения Владимировна
Нейрофизиологические корреляты принятия решений в условиях риска2019 год, кандидат наук Япл Захарий Адам
Effects of individual experience on prevention and compensation of age-related cognitive decline: neural and behavioral evidence2022 год, кандидат наук Галло Федерико
Нейрокогнитивные механизмы обработки морфосинтаксической информации: мультимодальные исследования2024 год, кандидат наук Алексеева Мария Алексеевна
Методы обработки, декодирования и интерпретации электрофизиологической активности головного мозга для задач диагностики, нейрореабилитации и терапии нейрокогнитивных расстройств2022 год, доктор наук Осадчий Алексей Евгеньевич
Введение диссертации (часть автореферата) на тему «"Методологические подходы к оценке роли гиппокампа в формировании ассоциативной эпизодической памяти"»
INTRODUCTION
Research problem and its significance
One of the most important cognitive mechanisms that provides flexible regulation of behavior is the ability to compare and integrate the subject's background information about the world with novel information constantly coming from outside. The importance of prior knowledge or schema representation in facilitating memory encoding, consolidation, and retrieval has been well-established in research. The hippocampus (HC) plays a crucial role in integrating information across different brain networks during memory processes (Geib et al., 2017; Moscovitch et al., 2016; Nadel & Moscovitch, 1997; Squire & Zola-Morgan, 1991). Recent studies have also highlighted the involvement of the medial prefrontal cortex (mPFC) in establishing connections between object representations based on their congruence with prior knowledge or similarity to each other, thereby enhancing memory functions.
In this study, we aimed to investigate the potential of non-invasive brain stimulation (NIBS) techniques to modulate the functioning of the episodic memory network. Specifically, our focus was on suppressing the activity of the mPFC, which is a core hub within this network, in an attempt to downregulate deeper brain structures otherwise inaccessible for NIBS. NIBS techniques are largely used for studying cognitive processes and their neural underpinning in a causal manner by allowing a transient and reversible modulation of neural activity in a given brain region. Indeed, such techniques as transcranial magnetic stimulation (TMS) and transcranial electric stimulation (TES) allow to establish causal relationship between cognitive function and particular cortical regions.
TMS, however, came out inefficient to bring evidence to reject or support our hypothesis about causal involvement of the mPFC to associative memory processing. As a next step, we considered TES for the same purpose of mPFC activity modulation. Transcranial direct current stimulation (or micropolarization) is a widely used method to study neurocognitive functions. However, according to the findings of a recent meta-analysis, transcranial direct
current stimulation (tDCS) studies on long-term memory in healthy subjects have demonstrated statistically non-significant or weak effects (Galli et al., 2019). This can be attributed to the high heterogeneity of tDCS protocols employed, such as variations in stimulation intensity and duration, as well as potential temporal mismatches between the tDCS effect and the process under investigation (Vorobiova et al., 2019).
On the other hand, the usage of transcranial alternating current stimulation (tACS) allowing for modulation of endogenous oscillatory activity, was very appealing. Online effects of tACS are well known, however, our experimental paradigm required for an offline stimulation technique, for there is no evidence for time-locked tACS effects. It is a rather novel method, and we explored its possibilities in a full-scale combined TMS-tACS methodological study on motor cortex excitability. This precursory part was necessary as a groundwork, because testing tACS effects on motor cortex excitability allows to record direct electrophysiological response from muscle to check for reliability of tACS effects per se, which is impossible with cognitive tasks. Our study did not reveal any significant offline effects of tACS on motor cortex excitability. This result, though of high methodological value per se, leaned us to disclose the usage of tACS in our study of associative memory. Thus, we have decided to adopt a challenging but more accurate technique, such as stereoelectroencephalography (sEEG) as the most suitable alternative method for investigating a deep structures like the hippocampus.
To date, sEEG remains the number one provider of detailed information about dynamics of electrophysiological activity of the human HC involved in the memory functions (Johnson et al., 2020; Johnson & Knight, 2015). However, the implementation of this method for the purposes of a fundamental neurocognitive research has a number of potential limitations and disadvantages (Henin et al., 2019; Parvizi & Kastner, 2018; Youngerman et al., 2019). We reviewed the main results in the field of episodic memory mechanisms obtained with the stereo-electroencephalography (sEEG) method, as well as its basic principles, advantages
and limitations. Finally, using sEEG, we recorded the hippocampal local field potential in human subjects performing an associative memory encoding task.
Episodic memory
Episodic memory is a memory for person's own life events in a specific spatial and temporal context (Ranganath, 2010; Tulving, 1993). Starting from Bechterev's description of clinical cases (Бехтерев, 1994) and Milner and Scoville's seminal study of patients with hippocampal resection (Milner, 1972; Milner et al., 1968, 1998; Scoville, 1954; Scoville & Milner, 1957), clinical and neurophysiological evidence served as a foundation for the theoretical inferences about structure and mechanisms of episodic memory. Further development of neuroimaging techniques gave rise to the new insights about neural underpinning of the long-term memory system. Nowadays the episodic memory is assumed to be supported by the distributed network of cortical and subcortical structures, including hippocampal formation, prefrontal and posterior parietal cortices (Buckner et al., 1998; Buckner & Koutstaal, 1998; Burke et al., 2014; Kim, 2011; Long & Kahana, 2015; Paller & Wagner, 2002). It is suggested that the medial temporal lobes (MTL) structures (including the hippocampus, rhinal cortex, amygdala and parahippocampal gyrus) are responsible for the initial formation of the memory trace (Damasio et al., 1985; Milner et al., 1968; Preston & Eichenbaum, 2013; Scoville & Milner, 1957), whereas the neocortex, specifically the medial prefrontal cortex (mPFC) is involved in the binding of details and events into coherent memory trace within a given context (Brodt et al., 2016; Eichenbaum, 2017; Moscovitch et al., 2016; Sestieri et al., 2017; Squire, 1992). Moreover, cortico-hippocampal circuits allow for the construction and reconstruction of episodic events based in semantic structures and within its detail-rich context, i.e. providing an access to the interrelated representations (Behrens et al., 2008; Blumenfeld & Ranganath, 2007; Ghosh & Gilboa, 2014; Moscovitch & Winocur, 2002; Preston & Eichenbaum, 2013).
Cognitive neuroscience of memory is a challenging area of research, for various reasons. Episodic memory is a reconstructive process unfolding in time and charging a large network
of brain areas. For this reason, it requires for the research methods with high temporal and spatial resolution. Due to technical limitations for studying the human MTL, this brain area is not yet investigated at the same level of specificity as for the non-human animal models.
Non-invasive brain stimulation
NIBS techniques, such as transcranial magnetic stimulation (TMS) and transcranial electric stimulation (TES) are well-established methods for studying cognitive processes and their neural underpinning. NIBS is an umbrella term for methods which, by virtue of different non-invasive mechanisms, allow a transient and reversible modulation of neural activity in a particular brain region. Thus, they have advantage over other neuroimaging techniques, moving from correlative approach to establishing of causal relationship between a given brain region and its function. TMS affects brain tissue by generating strong electric field which elicits an electric current depolarizing neuronal membranes, thus inducing action potentials in cortical structure directly under the induction area (Wagner et al., 2007). A series of TMS pulses of specific frequency allows for safe short-term stable modulation (facilitation or inhibition) of cortical excitability (Huang et al., 2005; Rossi et al., 2009). TES, in turn, uses weak electric current to modulate brain activity, shifting its excitability by direct current stimulation, or entraining endogenous rhythmical activity by alternating current (tACS).
Intracranial EEG
Intracranial EEG (iEEG) is the main technique that provide high spatial and temporal resolution human memory data from the MTL. This method provides research opportunities that are inaccessible for non-invasive neuroimaging techniques (Chiong et al., 2018). Typically, iEEG involves patients with implanted stereotaxic electrodes due to the drug-resistant epilepsy. The number of electrodes in non-epileptic tissues depends on the total amount of electrodes and their position. Generally, it is assumed that up to 80% of contacts are located in non-epileptic brain tissue (Parvizi & Kastner, 2018). A stereo-EEG electrodes records local field potentials, i.e. compiled neuronal (and other electrophysiological) activity
with millimeter spatial and millisecond temporal resolution (Buzsaki et al., 2012; Parvizi & Kastner, 2018). High signal to noise ratio (compared to the scalp EEG and magnetoencephalography (MEG)) increases observed effect sizes and allows to conduct studies with relatively small sample size. However, this method presents several difficulties proceeding from the participants' clinical state. Typical limitations of an iEEG research include:
1) suboptimal physical and psychological state and engagement of participants due to seizures, pain, medication intake, fatigue, disturbances in the sleep-wake cycle, which only allow to conduct cognitive studies with a low amount of trials and relatively simple experimental design.
2) the experimenter's lack of full control over the environmental conditions during the experiment;
3) artifacts caused by the hospital equipment, patient's movements, or interictal activity that results in significant data leakage;
4) limited time of patients' availability due to the risk of infection and signal deterioration over time (Henin et al., 2019);
5) limited access to patients and small sample size (Youngerman et al., 2019);
6) heterogeneity of samples by diagnosis, age, sex, handedness, etc.;
7) influence of focal epileptic activity on the normal physiological activity (Henin et al., 2021), as well as possible functional (Alessio et al., 2013; Sidhu et al., 2013; Wilson et al., 2015; Witt et al., 2014; Witt & Helmstaedter, 2012) or structural (Bonilha et al., 2015; Buckmaster, 2010; Taylor et al., 2015; van Diessen et al., 2013) abnormalities in the epileptic brain;
8) limited spatial coverage of the brain by the implantation scheme (Johnson et al., 2020; Parvizi & Kastner, 2018);
9) additional massive data leakage due to an ambiguous status of the hippocampus: on the one hand, it is often a target for the stereo-electroencephalography (sEEG) as a potential candidate for the seizure onset zone, on the other hand, only data from the
non-epileptic hippocampi could be used for the research purposes, whereas an assumption of the hippocampus as a source of epileptic activity can be rejected only after surgery.
Therefore, an additional experimental control, as well as customized approach to data analysis and interpretation are required at all stages of iEEG-research, from study design to the data interpretation.
In summary, we identified the following gaps in this field of research, which we addressed in a series of studies: 1) previous studies robustly demonstrated the role of stimuli congruence to their memorization, but no studies causally addressed underlying brain mechanisms of this process; 2). Results of the NIBS memory studies are mixed and controversial, so additional methodological study is required to identify optimal stimulation parameters allowing to modulate memory functions; 3) no study of the human hippocampal electrophysiological activity was performed to investigate its involvement in the processing of information of various congruence.
Research goals and tasks
1) To perform a methodological study to identify an optimal protocol for tACS memory modulation;
2) To identify the patterns of electrophysiological activity associated to the memorization of information of varying congruence:
- To perform a review of iEEG studies of episodic memory aimed to identify known patterns of hippocampal oscillatory activity related to episodic memory processing, as well as predominant methodological problems in this field of research;
- To perform a study with sEEG and to analyze the difference in hippocampal evoked response potentials (ERP) depending on the congruence of encoding material.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
"An investigation into the modulation of learningprocesses by social context via neuroimaging, computational modeling, and meta-analysis"2023 год, кандидат наук Мартинез-Саито Марио
Сенсорная нейропластичность,вызванная звуковыми стимулами,ассоциированными с монетарным подкреплением2021 год, кандидат наук Горин Алексей Александрович
Neurobiological mechanisms of social punishment as a cooperation promoter2019 год, кандидат наук Зинченко Оксана Олеговна
"Neurocognitive mechanisms of social influence on decision-making through narratives"2023 год, кандидат наук Нтуманис Иоаннис
"Взаимодействие ценностно-зависимого и сенсомоторного механизмов интеграции сенсорных признаков при целостном зрительном восприятии предмета"2022 год, кандидат наук Козунов Владимир Вячеславович
Заключение диссертации по теме «Другие cпециальности», Воробьева Алисия Нуньес
ВЫВОДЫ
1. Прямая регистрация электрофизиологической активности гиппокампа человека указывает на вовлеченность гиппокампа в когнитивную обработку сложной контекстуальной информации, как конгруэнтной, так и неконгруэнтной ранее сформированному семантическому знанию.
2. Обработка информации, конгруэнтной сформированному ранее семантическому знанию, сопровождается более ранней активацией гиппокампа по сравнению с обработкой информации, требующей установления новых ассоциативных связей.
Список литературы диссертационного исследования кандидат наук Воробьева Алисия Нуньес, 2023 год
СПИСОК ЛИТЕРАТУРЫ
Ивашкина О.И., Торопова К.А., Рощина М.А., Анохин К.В. Формирование и извлечение ассоциативной памяти на комплексный сигнал у мышей: специфическое участие нейронов области СА1 гиппокампа. Журнал высшей нервной деятельности им. И. П. Павлова. 2020. 70 (3): 326-340. Корсаков С.С. Медико-психологическое исследование одной формы болезни памяти. Психология памяти. Хрестоматия. Под ред. Гиппен-рейтер Ю. Б., Романова В. Я. М.: ЧеРо, 1998. С. 62-75.
Леонтьев А. Н. Развитие памяти: экспериментальное исследование развития высших психологических функций. Становление психологии деятельности: Ранние работы. Под ред. Леонтьева А.А., Леонтьева Д.А., Соколовой Е.Е. М.: Смысл, 2003. С. 27-199. Пиаже Ж. Психология интеллекта. СПб.: Питер, 2003 г. 78 с.
Торопова К.А., Трошев Д.В., Ивашкина О.И., Анохин К.В. Активация экспрессии с-1о8 в ретро-сплениальной коре, но не гиппокампе, сопровождает формирование ассоциации между обстановкой и безусловным стимулом и ее последующее извлечение у мышей. Журнал
высшей нервной деятельности им. И.П. Павлова. 2018. 68 (6): 759-774.
Anderson R.C. Role of the Reader's Schema in Comprehension, Learning, and Memory. Theoretical Models and Processes of Literacy. Ed. Alver-mann D.E., Unrau N.J., Ruddell R.B. New York: Routledge, 2018. 136-145 pp.
Axmacher N., Cohen M.X., Fell J., Haupt S., Dümpelmann M., Elger C.E., Schlaepfer T.E., Lenartz D., Sturm V., Ranganath C. Intracranial EEG Correlates of Expectancy and Memory Formation in the Human Hippocampus and Nucleus Accumbens. Neuron. 2010. 65 (4): 541-549.
Axmacher N., Elger C.E., Fell J. Working memory-related hippocampal deactivation interferes with long-term memory formation. J. Neurosci. 2009. 29 (4): 1052-1060.
Bartlett F.C., Burt C. Remembering: a study in experimental and social psychology. Br. J. Educ. Psychol. 1933. 3 (2): 187-192.
Bermúdez-Margaretto B., Beltrán D., Cuetos F., Domínguez A. Brain signatures of new (pseudo-) words: Visual repetition in associative and non-associative contexts. Front. Hum. Neurosci. 2018. 12: 354.
Buzsáki G., Anastassiou C.A., Koch C. The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012. 13 (6): 407420.
Buzsáki G., Llinás R. Space and time in the brain. Science. 2017. 358 (6362): 482-485.
Buzsáki G., Tingley D. Space and Time: The Hippocampus as a Sequence Generator. Trends Cogn. Sci. 2018. 22 (10): 853-869.
Cohen M.X., Elger C.E., Ranganath C. Reward expectation modulates feedback-related negativity and EEG spectra. Neuroimage. 2007. 35 (2): 968-978.
Davis C.P., Altmann G.T.M., Yee E. Situational systematicity: A role for schema in understanding the differences between abstract and concrete concepts. Cogn. Neuropsychol. 2020. 37 (1-2): 142153.
Eichenbaum H. Memory: Organization and Control. Annu. Rev. Psychol. 2017. 68 (1): 19-45.
Fernández G., Morris R.G.M. Memory, Novelty and Prior Knowledge. Trends Neurosci. 2018. 41 (10): 654-659.
Frank D., Montaldi D., Wittmann B., Talmi D. Beneficial and detrimental effects of schema incongru-ence on memory for contextual events. Learn. Mem. 2018. 25 (8): 352-360.
Ghosh V.E., Gilboa A. What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia. 2014. 53 (1): 104-114.
Gilboa A., Marlatte H. Neurobiology of Schemas and Schema-Mediated Memory. Trends Cogn. Sci.
2017. 21 (8): 618-631.
Kóster M., Finger H., Graetz S., Kater M., Gruber T. Theta-gamma coupling binds visual perceptual features in an associative memory task. Sci. Rep.
2018. 8 (1): 1-9.
Kutas M., Hillyard S.A. Reading between the lines: Event-related brain potentials during natural sen-
tence processing. Brain Lang. 1980. 11 (2): 354— 373.
Li F, Yi C, Jiang Y, Liao Y, Si Y, Dai J., Yao D, Zhang Y, Xu P. Different Contexts in the Oddball Paradigm Induce Distinct Brain Networks in Generating the P300. Front. Hum. Neurosci. 2019. 12 (January): 1-10.
Lisman J., Buzsaki G., Eichenbaum H., NadelL., Ranganath C, Redish A.D. Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 2017. 20 (11): 14341447.
Luo W., Guan J.-S. Do Brain Oscillations Orchestrate Memory? Brain Sci. Adv. 2018. 4 (1): 16-33.
Miller J., Watrous A. J., Tsitsiklis M, Lee S.A., Sheth S.A., Schevon C.A., Smith E.H., SperlingM.R., Sharan A., Asadi-Pooya A.A., Worrell G.A., Meisenhelter S., In-man C.S., DavisK.A., Lega B., Wanda P.A., DasS.R., Stein J.M., GorniakR., Jacobs, J. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nat. Commun. 2018. 9 (1): 2423.
Milner B., Corkin S., Teuber H.-L. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of HM. Neuropsychologia. 1968. 6 (3): 215-234.
Mohan H., Verhoog M.B., Doreswamy K.K., Eyal G., Aardse R., Lodder B.N., Goriounova N.A., Asa-moah B., Brakspear A.B.C.B., Groot C., van der Sluis S., Testa-Silva G., Obermayer J., Boudewi-jns Z.S.R.M., Narayanan R.T., Baayen J. C., Segev I., Mansvelder H.D., de Kock C.P. Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocor-tex. Cereb. Cortex. 2015. 25 (12): 4839-4853.
Molnar G., Olah S., Komlosi G., Fule M., Szabadics J., Varga C., Barzo P., Tamas G. Complex events initiated by individual spikes in the human cerebral cortex. PLoS Biol. 2008. 6 (9): 1842-1849.
Morett L.M., LandiN., Irwin J., McPartland J.C. N400 amplitude, latency, and variability reflect temporal integration of beat gesture and pitch accent during language processing. Brain Res. 2020. 1747 (August): 147059.
Morris R.G.M. Theories of hippocampal function. The Hippocampus Book. Ed. Andersen P., Morris R., Amaral D., Bliss T., O'Keefe J. Oxford, UK: Oxford University Press, 2006. 581-713 pp.
Murray E.A., Wise S.P., Graham K.S. Representational specializations of the hippocampus in phylogenet-ic perspective. Neurosci. Lett. 2018. 680: 4-12.
Nadel L., Campbell J., Ryan L. Autobiographical Memory Retrieval and Hippocampal Activation as a Function of Repetition and the Passage of Time. Neural Plast. 2007. 2007: 1-14.
O'Reilly R.C., Rudy J.W. Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Psychol. Rev. 2001. 108 (2): 311-345.
Oostenveld R., Fries P., Maris E., Schoffelen J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electro-
physiological Data. Comput. Intell. Neurosci. 2011. 2011: 1-9.
Parvizi J., Kastner S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 2018. 21 (4): 474-483.
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 2007. 118 (10): 2128-2148.
Staresina B.P., Fell J., Lam A.T.A. Do, Axmacher N., Henson R.N. Memory signals are temporally dissociated in and across human hippocampus and perirhinal cortex. Nat. Neurosci. 2012. 15 (8): 1167-1173.
Staresina B.P., Fell J., Dunn J.C., Axmacher N., Hen-son R.N. Using state-trace analysis to dissociate the functions of the human hippocampus and perirhinal cortex in recognition memory. Proc. Natl. Acad. Sci. 2013. 110 (8): 3119-3124.
Staresina B.P., Reber T.P., Niediek J., Bostrom J., ElgerC.E., Mormann F. Recollection in the human hippocampal-entorhinal cell circuitry. Nat. Commun. 2019. 10 (1): 1503.
Stark S.M., Reagh Z.M., Yassa M.A., Stark C.E.L. What's in a context? Cautions, limitations, and potential paths forward. Neurosci. Lett. 2018. 680: 77-87.
Strange B.A., Witter M.P., Lein E.S., Moser E.I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 2014. 15 (10): 655669.
Sutton S., Braren M, Zubin J., John E.R. Evoked-Po-tential Correlates of Stimulus Uncertainty. Science (80-.) . 1965. 150 (3700): 1187-1188.
Tadel F., Baillet S., Mosher J.C., Pantazis D., Leahy R.M. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011. 2011: 1-13.
Tonegawa S., Morrissey M.D., Kitamura T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 2018. 19 (8): 485-498.
Tulving E. Episodic and semantic memory. Organization of memory. Ed. Tulving E., Donaldson W. NY: Academic Press, 1972. 381-403 pp.
van der Linden M, Berkers R.M.W.J., Morris R.G.M., Fernández G. Angular Gyrus Involvement at Encoding and Retrieval Is Associated with Durable But Less Specific Memories. J. Neurosci. 2017. 37 (39): 9474-9485.
van Kesteren M.T.R., RuiterD.J., Fernández G, Hen-son R.N. How schema and novelty augment memory formation. Trends Neurosci. 2012. 35 (4): 211-219.
van Kesteren M.T.R., Beul S.F., Takashima A., Henson R.N., Ruiter D.J., Fernández G. Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: From congruent to incongruent. Neuropsychologia. 2013. 51 (12): 2352-2359.
Van Strien J.W., Hagenbeek R.E., Stam C.J., Rom-bouts S.A.R.B., Barkhof F. Changes in brain electrical activity during extended continuous word recognition. Neuroimage. 2005. 26 (3): 952-959.
Vogel S., Kluen L.M., Fernández G., Schwabe L. Stress leads to aberrant hippocampal involvement when processing schema-related information. Learn. Mem. 2018. 25 (1): 21-30.
Xia X., Hu L. EEG: Neural Basis and Measurement. EEG Signal Processing and Feature Ex-traction.Singapore: Springer Singapore, 2019. 721 pp.
YapleZ, Shestakova A., Klucharev V. Feedback-related negativity reflects omission of monetary gains: Evidence from ERP gambling study. Neurosci. Lett. 2018. 686 (July): 145-149.
Youngerman B.E., Khan F.A., McKhann G.M. Stereo-electroencephalography in epilepsy, cognitive neurophysiology, and psychiatric disease: safety, efficacy, and place in therapy. Neuropsychiatr. Dis. Treat. 2019. 15: 1701-1716.
A. N. Vorobiova"' b- #, T. Fedeleb, |E. F. Pavone}', J. Sarnthein^, L. Imbach", M. Feurra"' b
aCentre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
bHSE University, Moscow, Russia cBraintrends Ltd., Rome, Italy dUniversity Hospital Zurich, Zurich, Switzerland e University of Zurich, Zurich, Switzerland #e-mail: alicianunez.v@gmail.com
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.