Математическое моделирование развития напряженно-деформированного состояния тонких пластин при их стыковой сварке тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат физико-математических наук Слепцова, Екатерина Анатольевна
- Специальность ВАК РФ05.13.18
- Количество страниц 112
Оглавление диссертации кандидат физико-математических наук Слепцова, Екатерина Анатольевна
ВВЕДЕНИЕ
1. Краткий обзор математических моделей развития НДС тела при сварочном нагреве
§1.1 Расчетные схемы оценки тепловых процессов при сварке
§1.2 Разностные методы решения задачи Стефана.
§1.3 Расчетные схемы оценки сварочных напряжений и деформаций.
§1.4 Выводы к главе 1.
2. Математическая модель температурного поля при электродуговой сварке тонких пластин
§2.1 Приведение задачи Стефана к задаче теплопроводности с движущимся источником тепла
§2.2 Численный метод определения температурного поля при сварочном нагреве тонких пластин.
§2.2.1 Построение разностной схемы.
§2.2.2 Численная реализация разностной задачи.
§2.3 Выбор интервала сглаживания коэффициентов и аппроксимации сосредоточенного источника распределенным.
§2.4 Численные эксперименты
§2.5 Выводы к главе 2.
3. Численное исследование НДС тонких пластин при их сварочном нагреве
§3.1 Математическая модель деформирования тонких пластин при сварочном нагреве.
§3.2 Первый алгоритм решения упругопластической задачи в напряжениях
§3.2.1 Построение разностно-итерационной схемы.
§3.2.2 Численная реализация разностно-итерационной схемы
§3.3 Второй алгоритм решения упругопластической задачи в напряжениях
§3.3.1 Построение разностно-итерационной схемы.
§3.3.2 Сходимость итерационной схемы.
§3.3.3 Численная реализация.
§3.3.4 Испытание алгоритмов для определения сварочных напряжений и деформаций.
• §3.4 Численные эксперименты.
§3.4.1 Расчет временных напряжений и деформаций при сварке тонких пластин.
§3.4.2 Расчет остаточных напряжений и деформаций при сварке тонких пластин.
§3.5 Выводы к главе 3.
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Численное моделирование температурно-влажностного режима и деформации строительных материалов в условиях Севера1998 год, доктор технических наук Павлов, Алексей Романович
Разработка расчетно-экспериментальной методики прогнозирования микроструктуры и механических свойств различных зон сварного соединения при сварке плавлением низколегированных сталей2011 год, кандидат технических наук Хомич, Павел Николаевич
Разработка концепции проектирования режимов дуговой сварки металлических конструкций2004 год, доктор технических наук Рыбаков, Александр Сергеевич
Совершенствование традиционного и разработка нового методов диагностики остаточных напряжений в сварном соединении2015 год, кандидат наук Куров, Дмитрий Андреевич
Эволюция температурных напряжений как следствие процесса остывания и консолидации расплава при формировании слоистых материалов2012 год, кандидат физико-математических наук Пестов, Константин Николаевич
Введение диссертации (часть автореферата) на тему «Математическое моделирование развития напряженно-деформированного состояния тонких пластин при их стыковой сварке»
Актуальность темы.
Проблема сварочных напряжений и деформаций возникла почти одновременно с началом практического применения сварки для получения неразъемных соединений. Еще Н.Г. Славянов в своих работах в 1892 г. писал об опасности "вредных напряжений в металле возникающих при сварке. Однако внимание широкого круга исследователей эта проблема привлекла лишь в 30-е годы, когда началось бурное внедрение сварки в промышленность. За прошедшие годы появилось большое количество работ по экспериментальному и теоретическому исследованию процессов образования сварочных напряжений и деформаций, а также по оценке их влияния па несущую способность элементов сварных конструкций. Огромный вклад в развитие и решение многих практических и теоретических вопросов внесен советскими учеными Е.О. Патоном, Г.А. Николаевым, Б.Н. Горбуновым, Н.О. Окербломом, Н.Н. Ры-калиным, В.А. Винокуровым, А.Г. Григорьянцем, Н.Н. Прохоровым, К.М. Гатовским, В.И. Махненко, Г.Б. Талыповым и многими другими.
Современное сварочное производство имеет достаточно устойчивые темпы и динамику развития. Сформирован мощный арсенал сварочных технологий и постоянно расширяется сфера их применения. Для машиностроения, судостроения, энергетики, строительства и других отраслей промышленного производства сварка как промышленная технология не имеет альтернативных решений.
Поскольку количество освоенных методов сварки по видам энергии активации на сегодняшний день превышает сотню, а вариантов только дуговой сварки более тысячи, то поле деятельности для составления моделей и их совершенствования практически неограничено.
За последние годы появились работы В.А. Кархина, П. Зайффарт, А.С. Ильина, П. Раямяки, Р. Оссенбринка, В.Г. Михайлова, Г. Вольфарт, В.В. Мелюкова, А.С. Бабкина, J1.T. Епифанцева, A.M. Попкова, Э.В. Лазарсона, М.Я. Бровмана, Н.В. Пашацкого, А.В. Прохорова, Ю.В. Белоусова и многих других.
На основе исследований В.А. Судника, В.А. Ерофеева, А.С. Рыбакова в области математического моделирования процессов сварки разработано программное обеспечение для персональных компьютеров, позволяющее моделировать основные сварочные процессы контактной, дуговой, плазменной и лазерной сварки и резки: SPOTSIM, BUTTSIM, MAGSIM, LASIM, CUTSIM.
В возникновении и развитии сварочных напряжений и деформаций основным возмущающим фактором является изменение в широком диапазоне температуры свариваемого тела. Многие исследователи (В.А. Кархин, А.С. Ильин, Д.В. Мелюков, Р. Оссенбрипк, В.Г. Михайлов и др.) для расчета термического цикла сварки применяют аналитические формулы академика Н.Н. Рыкалина, в которых не учитываются теплота фазового перехода и зависимость теплофизических коэффициентов от температуры. Указанные факторы существенно влияют на формирование напряженно-деформированного состояния тела, и их неучет дает высокую погрешность результатов в высокотемпературной области.
Поэтому является актуальным построение новых эффективных моделей и разработка экономичных методов их численной реализации.
С целью более точного описания температурного поля задача определения температуры в свариваемых изделиях в диссертационной работе поставлена в виде двухфазной задачи Стефана в двумерной области.
Для численного решения задач типа Стефана широко используется метод сглаживания (А.А. Самарский, Б.Д. Моисеепко, Б.М. Будак, Е.Н. Соловьева, А.Б. Успенский), в основу которого положено предположение, что теплота фазового перехода выделяется в некоторой окрестности поверхности фазового перехода (Т* — А, Т* + А), т.е. принимается допущение, что фазовый переход происходит, начиная с некоторой температуры, которая ниже температуры плавления материала.
В диссертационной работе предложена модификация учета теплоты фазового перехода, более точно описывающая реальный процесс тепловыделения на поверхности фазового перехода, путем введения распределенного в окрестности [Т*, Т* + А) (в сторону образующейся фазы) источника тепла.
Во многих работах (В.И. Махненко, А.Г. Григорьянца, А.В. Прохорова, В.А. Кархина и др) задача о сварочных напряжениях и деформациях с использованием теории неизотермического пластического течения представляется в виде задачи упруго-пластически деформируемого тела в условиях переменных температур. Разработанные алгоритмы, в которых температурное поле определяется по формулам Н.Н. Рыкалина, позволяют численными методами отыскать скорости сварочных напряжений и деформаций, а для определения самих искомых величин приходится пользоваться формулами численного дифференцирования, которые вносят дополнительные погрешности в решение.
В настоящей работе для численного решения упруго-пластической задачи в напряжениях использована методика работы академика А.Н. Коновалова, разработанная для плоских статических задач теории упругости. Для определения сварочных напряжений и деформаций построены разностно-итерационные схемы, свободные от указанных недостатков.
Цель работы — разработка экономичного численного метода исследования развития напряженно-деформированного состояния тонких пластин при их сварочном нагреве.
В связи с этим в диссертационной работе были поставлены следующие задачи: Задачи:
1. Построение математической модели температурного поля при электродуговой сварке тонких пластин; разработка алгоритма и его численная реализация;
2. Разработка алгоритма численного исследования процесса развития напряженно-деформированного состояния тонких пластин при их стыковой сварке.
Объект исследований: тонкие пластины, подвергаемые электродуговой сварке встык.
Предмет исследований: закономерности процессов распространения тепла и развития напряженно-деформированного состояния тонких пластин при их электродуговой сварке встык.
Метод исследования. Для достижения поставленной цели выбран эффективный метод исследования проблемы сварочных напряжений и деформаций — метод математического моделирования. С его помогцыо можно получить информацию, труднодоступную для экспериментальных методов. Однако достаточно эффективное использование математических методов требует предварительного решения комплекса вопросов, связанных с выбором достаточно оптимальных математических моделей, эффективных методов их реализации, с разработкой системы расчетных алгоритмов.
Существуют две группы подходов в изучении деформационных процессов при сварке. К первой группе относятся подходы, основанные на представлениях и методах физики твердого тела. Теория дислокаций и микроскопические наблюдения являются основным исследовательским аппаратом этого направления. Вторая группа объединяет феноменологические подходы, когда, отвлекаясь от микроструктуры материала среды, рассматривают ее как сплошное тело, в котором имеют место только макроскопические напряжения и деформации (напряжения и деформации первого рода). Такой подход позволяет получить картину развития напряженно-деформированного состояния свариваемых тел при различных величинах параметров процесса сварки и граничных и начальных условиях задачи.
Научная новизна:
• Построена математическая модель температурного поля сварки, по новому учитывающая теплоту фазового перехода, путем введения распределенного в окрестности поверхности раздела фаз источника тепла.
• Разработан алгоритм численной реализации построенной модели, проведены численные расчеты при двух видах функции источника тепла.
• Предложены разностно-итерационные схемы для численного решения упругопластической задачи в напряжениях.
Практическая ценность. Диссертация посвящена определению сварочных напряжений и деформаций для широко применяемого на практике случая сварки тонких пластин. Разработанное программное средство, пригодное для определения напряженно-деформированного состояния тонких пластин, может быть использовано и для оценки остаточных напряжений (деформаций). Отдельную практическую ценность представляют алгоритмы и программы расчета температурной задачи.
Достоверность и обоснованность результатов, защищаемых в диссертации, следует из использования математических моделей, построенных на основе законов сохранения массы и энергии; применения эффективных и теоретически обоснованных вычислительных алгоритмов; а также сопоставления результатов с экспериментальными данными и известными результатами других авторов.
Основные положения, выносимые на защиту:
• Предложен новый способ учета теплоты фазового перехода в математической модели температурного поля сварки, путем введения распределенного в окрестности поверхности раздела фаз источника тепла.
• Разработан алгоритм численного решения двухфазной задачи Стефана в двумерной области, проведены численные расчеты при двух видах функции источника тепла.
• Построены алгоритмы для численной реализации математической модели деформирования тонких пластин при их сварочном нагреве. Проведены вычислительные эксперименты, показавшие их эффективность.
Апробация работы. Результаты диссертационной работы докладывались и обсуждались на Всероссийской научной конференции "Информационные технологии в науке, образовании и экономике" (Якутск, 2003), на IV Международной конференции по математическому моделированию (Якутск, 2004), на II, III, IV и V Всероссийских школах-семинарах студентов, аспирантов, молодых ученых и специалистов "Математическое моделирование развития Северных территорий РФ"(Якутск, 2004 - 2007), на IX Республиканской научной конференции "Лаврентьевские чтения РС(Я)11 (Якутск,
2005), на научном семинаре кафедры прикладной математики Института математики и информатики Якутского государственного университета (Якутск, 2009).
Публикации. Основные результаты диссертации опубликованы в 15 работах (9 статей и 6 тезисов докладов) [104] - [118].
Основная часть диссертационной работы состоит из трех глав.
В первой главе приведен краткий обзор математических моделей развития напряженно-деформированного состояния тела при сварке. Рассматриваются расчетные схемы оценки тепловых процессов, сварочных напряжений и деформаций, разностные методы решения задачи Стефана.
Во второй главе построена математическая модель температурного поля сварки в виде двухфазной задачи Стефана в двумерной области с движущимся источником тепла, изложена ее численная реализация, проведены численные эксперименты при двух видах функции источника. Сформулировано правило выбора параметра сглаживания так, чтобы учитывалось выделение теплоты фазового перехода на каждом временном шаге.
В третьей главе описывается математическая модель деформирования-тонких пластин при сварочном нагреве и ее численная реализация. Разработаны два алгоритма, по которым определение сварочных напряжений производится из решения разностно-итерационных схем. По теореме о разгузке А.А. Ильюшина разработан алгоритм для определения остаточных сварочных напряжений и деформаций. Выполнены расчеты при конкретных значениях входных данных задачи.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Методы расчета сварочных деформаций и напряжений судовых корпусных конструкций с применением метода конечных элементов, решений тепловой и деформационной задачи2013 год, доктор технических наук АЛФЕРОВ, Валентин Иванович
Прогнозирование остаточных сварочных напряжений и деформаций на стадии проектирования судового корпуса2002 год, кандидат технических наук Лихобабина, Елена Александровна
Моделирование кинетики напряжений и деформаций с учетом низкотемпературных фазовых превращений при лазерной обработке металлов1999 год, кандидат технических наук Павлова, Наталья Олеговна
Разработка методики определения режима импульсной аргонодуговой сварки труб с трубными решетками из стали 12Х18Н1ОТ2007 год, кандидат технических наук Раевский, Владимир Алексеевич
Исследование тепловых процессов в околошовной зоне при сварке взрывом2011 год, кандидат технических наук Хаустов, Святослав Викторович
Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Слепцова, Екатерина Анатольевна
§3.5 Выводы к главе 3
1. Построена математическая модель деформирования тонких пластин при сварочном нагреве в виде упругопластической задачи, которая состоит из уравнений равновесия, совместности деформаций, связи между напряжениями и деформациями, условия текучести и граничных условий.
2. Для численной реализации математической модели деформирования тонких пластин при сварочном нагреве разработаны два алгоритма. Проведены сравнения результатов решения упругопластической задачи в напряжениях по двум предложенным алгоритмам. Сопоставления с результатами, полученными В.И. Махненко решением вариационной задачи методом конечных разностей, показывают пригодность предлагаемой методики для численного исследования сварочных напряжений и деформаций.
3. Выполнены расчеты развития напряженно-деформированного состояния тонких пластин при электродуговой сварке встык двух тонких пластин при различных значениях параметров задачи: скорости сварки V, толщины пластины 5.
ЗАКЛЮЧЕНИЕ
В диссертационной работе методом вычислительного эксперимента выполнено исследование развития напряженно-деформированного состояния тонких пластин при сварочном нагреве.
Дадим последовательное изложение полученных в диссертационной работе результатов.
1 Математическая модель температурного поля при сварочном нагреве построена в двумерной области в виде двухфазной задачи Стефана с движущимся источником тепла, позволяющая учитывать теплоту фазового перехода, выделяющуюся на границе плавления (кристаллизации) и зависимость теплофизических характеристик от температуры. Предложен новый способ учета теплоты фазового перехода путем введения распределенного в окрестности межфазовой границы источника тепла.
2. Для численного решения температурной задачи сварки построена неявная разностная схема, которая реализована локально-одномерным методом в сочетании с итерациями по каждому направлению.
3. Правильный учет тепловыделения на поверхности фазового перехода зависит от выбора длины интервала сглаживания разрывных коэффициентов задачи теплопроводности. В связи с этим указан способ выбора длины интервала сглаживания. Показано, что произвольный выбор параметра сглаживания приводит к неправильным результатам.
4. Составлена компьютерная программа для численной реализации построенного алгоритма. Проведены численные эксперименты для случая сварки двух тонких пластин размерами 10 х 8 см, изготовленных из низкоуглеродистой стали. Приведены результаты численных расчетов при двух вариантах выбора функции источника тепла, которые сопоставлены с экспериментальными данными и результатами других авторов. Изучена зависимость распределения температурного поля при сварочном нагреве тонких пластин от следующих параметров модели: толщины пластины скорости сварки V, температуры окружающей среды Тс, эффективной мощности источника д.
5. Построена математическая модель деформирования тонких пластин при сварочном нагреве в виде упругопластической задачи, которая состоит из уравнений равновесия, совместности деформаций, связи между напряжениями и деформациями, условия текучести и граничных условий. Для решения данной задачи построены два алгоритма. Проведены сравнения численного решения упругопластической задачи в напряжениях с результатами, полученными В.И. Махненко решением вариационной задачи методом конечных разностей. Результаты расчетов показывают пригодность предлагаемой методики для численного исследования сварочных напряжений и деформаций.
6. Выполнены расчеты развития напряженно-деформированпиого состояния тонких пластин при электродуговой сварке встык двух тонких пластин при различных значениях параметров задачи: скорости сварки V, толщины пластины 5. С помощью теоремы о разгрузке А.А. Ильюшина разработан алгоритм для определения остаточных сварочных напряжений и деформаций.
Из перечисленных результатов следует научная новизна положений диссертационной работы, которая выносится на защиту:
1. Построена математическая модель температурной задачи сварки по новому учитывающая теплоту фазового перехода — путем введения распределенного в окрестности межфазовой границы источника тепла.
2. Разработан алгоритм численного решения двумерной задачи Стефана с движущимся источником тепла.
3. Построены разпостно-итерационные схемы для численного решения упругопластической задачи в напряжениях.
Соединение сваркой тонколистовых элементов широко применяется в практике. Исследование возникающего при этом их напряженно-деформированного состояния представляет как теоретический, так и практический интерес. Поэтому предложенная в диссертации математическая модель и вычислительный алгоритм для определения напряженно-деформированного состояния тонких пластин при сварочном нагреве имеют важную практическую значимость. Отдельную практическую ценность представляют алгоритмы и программы расчета, которые составлены так, что их можно применять для решения близких задач.
В последнее время актуальна проблема обеспечения хладостойкости, надежности и безопасности сварных конструкций в экстремальных климатических условиях Севера. Обзор работ показывает, что решение термической и деформационной задачи требует уточнений при сварке в условиях низких климатических температур. Разработка новых эффективных методов решения и исследование задачи развития напряженно-деформированного состояния тела при сварке в условиях низких климатических температур представляет научный и практический интерес.
Список литературы диссертационного исследования кандидат физико-математических наук Слепцова, Екатерина Анатольевна, 2009 год
1. Аммосов А.П. Термодеформационные процессы и разрушение сварных соединений. - Якутск : ЯФ СО АН СССР, 1988. - 136 с.
2. Аммосов А.П. Обеспечение хладостойкости сварных соединений низколегированных сталей при сварке в условиях низких климатических температур : авт. дис. . канд. техн. наук. М., 1986. - 22 с.
3. Аммосов А.П., Корнилова З.Г., Аммосова О.А. Регулирование производительности сварки // I ЕВРАЗИЙСКИЙ СИМПОЗИУМ по проблемам прочности материалов и машин для регионов холодного климата. Часть 2. Якутск, 2002. - С. 55-60.
4. Бабкин А.С., Епифанцев JI.T. Методики расчета оптимальных параметров дуговой сварки и наплавки // Свароч. пр-во. 2004. - №2. - С. 3-6.
5. Бабкин А.С. Применение теории подобия и размерности для описания процессов, происходящих при сварке // Свароч. пр-во. 2005. - №7. -С. 6-12.
6. Бадьянов Б.Н. Компьютерное управление процессами сварки // Свароч. пр-во. 2002. - №1. - С. 19-23.
7. Белоусов Ю.В. Оценка сосредоточенности поверхностного источника теплоты с нормальным распределением тепловой мощности // Свароч. пр-во. 2002. - №8. - С. 8-12.
8. Большаков К. П. Исследование термомеханических процессов при сварке элементов пролетных строений // Труды ВНИИ железнодорожного строительства и проектирования. М.: Трансжелдориздат, 1950. №2. - С. 129-207.
9. Бопдаренко А.Д. Расчет сварных конструкций. Кубуч, 1933. - 164 с.
10. Бровман М.Я. Метод расчета процесса теплопереноса с применением изотермических координат // Инженерно-физический журнал, 1995. -Ш. - С. 651-659.
11. Будак Б.М. Об одном варианте неявной разностной схемы с ловлей фронта в узел сетки для решения задач типа Стефана // Вычислительные методы и программирование. М.: Изд-во МГУ, 1967. - Вып. 4. - С. 231-241.
12. Будак Б. М., Васильев Ф.П., Успенский А.Б. Разностные методы решения некоторых краевых задач типа Стефана // Численные методы в газовой динамике. М.: ВЦ МГУ, 1965. - №4. - С. 139-183.
13. Будак Б. М., Гольдмап Н.Л., Успенский А.Б. Разностные схемы с выпрямлением фронтов для решения многофронтовых задач типа Стефана // Вычислительные методы и программирование. -М.: Изд-во МГУ, 1967. №4.- С. 206-216.
14. Будак Б. М., Соловьева Е.Н., Успенский А.Б. Разностный метод со сглаживанием коэффициентов для решения задач Стефана / / Журн. вычислит. математики и мат. физики. 1965. - Т.5. - №5. - С. 828-840.
15. Вабищевич П.Н. Метод фиктивных областей в задачах математической физики. М.: Изд-во МГУ, 1987. - 164 с.
16. Васильев Ф.П., Успенский А.Б. Разностный метод решения двухфазной задачи Стефана // Журн. вычислит, математики и мат. физики. 1963. - Т.З. - №5. - С. 874-886.
17. Великоиваненко Е.А., Махнепко В.И. Численное решение плоской задачи теории неизотермического течения применительно к сварочному нагреву // Физика и химия обработки металлов. 1968. - №4. - С. 81-96.
18. Винокуров В.А. Сварочные деформации и напряжения. М.: Машиностроение, 1968. - 236 с.
19. Винокуров В.А. Отпуск сварных конструкций для снижения напряжений. М.: Машиностроение, 1973. - 215 с.
20. Винокуров В.А. Хладостойкость сварных соединений // Сварка в машиностроении. М.: Машиностроение, 1979. - Т. 3. - С. 112-122.
21. Винокуров В.А., Григорьянц А.Г. Теоретическое определение временных и остаточных деформаций и напряжений при сварке пластин применительно к титановым и алюминиевым сплавам // Свароч. пр-во. 1968.- №5. С. 2-4.
22. Гатовский К. М., Полишко Определение температурных полей при решении задач о сварочных деформациях и напряжениях // Автомат, сварка. 1978. - №10. - С. 29-30.
23. Головизнин В.М., Симачева О. Г. Об одном методе построения расчетных сеток в областях с криволинейными границами // ЖВМиМФ. -1983. Т. 23. - №5. - С. 1245-1248.
24. Головизнин В.М., Самарская Е.А., Чу данов В. В. Метод "факторизован-ных тепловых смещений "для экономичного решения задач теплопроводности на неортогональных сетках // Дифф. уравнения. 1987. - Т. 23.- №7. С. 1143-1154.
25. Григорьянц А.Г. Расчетный метод исследования кинетики сварочных деформаций и напряжений // Изв. вузов. Машиностроение. 1978. - №5.- С. 146-149.
26. Дробышевич В. И. Алгоритм решения двухфазной задачи Стефана на основе формул протоковой прогонки // Численные методы и пакеты программ для решения уравнений математической физики. Новосибирск, 1985. - С. 82-93.
27. Игнатьева B.C. Распределение собственных напряжений в пластинах, сваренных за один проход // Свароч. пр-во. 1956. - №3. С. 12-17.
28. Ильин В.П., Яушева JI.B. Об одной разностной схеме решения двухфазной задачи Стефана // Методы решения систем вариационно-разностных уравнений. Новосибирск, 1979. - С. 82-96.
29. Ильюшин А.А. Пластичность. Основы общей математической теории. -М.: Изд-во АН СССР, 1963.
30. Каменомостская С.Л. О задаче Стефана // Матем. сб. 1961. - Т. 53. - Ш. - С. 489-514. '
31. Кархин В.А., Ильин А. С., Плошихин В.В., Приходовский А.А. Влияние теплоты плавления и кристаллизации на термический КПД процесса проплавления // Свароч. пр-во. 2004. - №10. - С. 3-8.
32. Кархин В.А., Ильин А.С., Плошихин В.В. Решение обратной задачи теплопроводности с учетом теплоты плавления и кристаллизации // Свароч. пр-во. 2003. - №7. - С. 3-6.
33. Кархин В.А. Тепловые основы сварки. JL: ЛГТУ, 1990. - 100 с.
34. Кархин В.А., Хомич П.II., Федотов Б.В., Раямяки П. Анализ термических циклов при контактной стыквовой сварке стали оплавлением // Свароч. пр-во. 2008. - №1. - С. 12-17.
35. Киселев С.Н., Киселев А.С., Куркин А.С. Современные аспекты компьютерного моделирования тепловых, деформационных процессов и структурообразования при сварке и сопутствующих технологиях // Свароч. пр-во. 1998. - №10. - С. 16-24.
36. Климов А. С., Казаков Ю.В. Использование системы MathCAD для исследования неустановившихся тепловых процессов при сварке // Свароч. пр-во. 2002. - №4. - С. 9-11.
37. Компьютерные технологии в соединении материалов // Материалы 2-й Всероссийской научно-технической конференции. Тула, 1998. - 102 с.
38. Коновалов А.Н. Итерационные разностные схемы для численного решения плоской статической задачи теории упругости в напряжениях // Численные методы механики сплошной среды. Новосибирск, 1975. -Т.6. - №2. - С. 52-69.
39. Лазарсон Э.В. Расчет площади поперечного сечения шва при дугововй сварке // Свароч. пр-во. 2006. - №12. - С. 6-9.
40. Ларионов В.П., Павлов А.Р., Тихонов А.Г., Слепцов О.И. Применение ЭВМ для численного определения температурного поля при сварке встык тонких пластин // Автомат.сварка. 1979. - №11. - С. 19-22.
41. Ларионов В.П., Павлов А.Р., Аммосов А.П., Тихонов А.Р. Расчетный метод исследования температурного поля при многослойной сварке j j Автомат.сварка. 1981. - №4. - С. 16-18.
42. Ларионов В.П., Павлов А.Р., Аммосов А.П. Особенности теплового баланса ванны при сварке в условиях низких климатических температур // Автомат.сварка. 1981. - №10. - С. 22-24.
43. Лейкин Н. С. О природе и величине термических напряжений и деформаций, возникающих при сварке малоуглеродистых сталей j j Сборник научно-исследовательских работ по сварке. М.: ОНТИ - НКТП, 1936. - С. 78-86.
44. Магиденко В. В. Использование универсальных математических пакетов для решения задач сварного производства // Свароч. пр-во. 1993. -№11-12. -С. 29-30.
45. Мажукин В.И., Повещенко Ю.А., Попов С.Б., Попов Ю.П. Об однородных алгоритмах численного решения задачи Стефана. М.: Препринт / Ин-т прикл.математики им. М.В. Келдыша АН СССР, 1985. - №122. -23 с.
46. Макаров Э.Л. Компьютерные программы для прогнозирования стойкости сварных соединений легированных сталей против образования холодных трещин // Изв. вузов. Машиностроение. 1998. - №4. - С. 118122.
47. Макаров Э.Л., Коновалов А.В., Якушин Б.Ф. Расчетный метод оценки стойкости сварных соединений сплавов против образования горячих трещин // Свароч. пр-во. 1997. - №11. - С. 13-16.
48. Математические методы в сварке АН УССР. Киев : ИЭС им. Е.О. Патона, 1986. - 176 с.
49. Махненко В. И. Расчетные методы исследования кинетики сварочных напряжений и деформаций. Киев : Наук.думка, 1976. - 319 с.
50. Махненко В. И. Тепловые процессы при сварке // Сварка в СССР. М : Наука, 1981. - Т. 2. - С. 27-45.
51. Махненко В.И., Великоиваненко Е.А., Махненко О.В., Розынка Г.Ф., Пивторак Н.И. Исследование влияния фазовых превращений на остаточные напряжения при сварке кольцевых стыков труб // Автомат, сварка. 2000. -№5. - С. 3-8.
52. Махненко В.И., Егорова Л. А. Области применения схемы мощного быст-родвижущегося источника тепла в расчетах температур при сварке // Автомат. Сварка. 1975. - №5. - С. 68-69.
53. Махненко В.И. Расчет тепловых процессов при сварке встык разнородных пластин // Физика и химия обработки материалов. 1967. - №6. -С. 23-30.
54. Махненко В.И., Петун Л.А., Шекера В.М. Расчет температурных циклов при сварке быстродвижущимся источником тонкой пластины с массивным теплом // Физика и химия обработки материалов. 1967. - №4.
55. Махненко В.И. Оценка тепловых процессов вблизи движущейся сварочной ванны // Автомат, сварка. 1969. - №11. - С. 1-6.
56. Махненко В.И., Шекера В.М. Влияние толщины пластины на характер напряженно-деформированного состояния при нагреве ее поверхности мощным быстродвижущимся источником // Свароч. пр-во. 1971. -№11.
57. Мейрманов A.M. Задача Стефана. Новосибирск: Наука, 1986. - 240 с.
58. Мелюков Д.В., Григорьянц А.Г. Определение мощности линейного быст-родвижущегося источника при нагреве тонкой пластины // Свароч. пр-во. 2002. - №3. - С. 8-9.
59. Мелюков В.В.; Чирков A.M. Оптимизация теплового режима лазерной сварки кольцевого соединения малого диаметра // Свароч. пр-во. 1999. - №12. - С. 9-14.
60. Николаев Г.А. Сварные конструкции. М.: Машгиз, 1962. - 552 с.
61. Окерблом Н. О. Термические и усадочные напряжения в сварных металлоконструкциях // Теория и практика сварного дела. Л.; М.: ОНТИ-НКТП, 1935. - С. 1-38.
62. Олейник О. А. Об одном методе решения общей задачи Стефана // Докл. АН СССР. 1960. - Т. 135. - №5. - С. 1054-1057.
63. Патон Е. О. и др. Усадочные напряжения при сварке цилиндрических сосудов // Автогенное дело. 1936. - №5. - С. 8-14; - №6. - С. 6-10.
64. Пашацкий Н.В., Прохоров А.В., Кононов С.Н. Аналитический расчет распределения температур при многопроходной сварке дисковых деталей // Свароч. пр-во. 2006. - №3. - С. 3-6.
65. Пашацкий П.В., Прохоров А.В. Тепловые процессы при сварке плоских изделий // Свароч. пр-во. 2000. - №. - С. 3-5.
66. Попков A.M. Методика определения скоростей нагрева и охлаждения металла при сварке и времени его пребывания выше заданной температуры // Свароч. пр-во. 2004. - №6. - С. 3-5.
67. Попков A.M. Выбор расчетной схемы распространения теплоты при сварке массивных изделий // Свароч. пр-во. 2002. - №11. - С. 3-5.
68. Прохоров Н.Н. Физические процессы в металлах при сварке. М.: Металлургия, 1968. - Т. 1.- 695 с.
69. Прохоров Н.Н. Технологическая прочность сварных швов в процессе кристаллизации. М.: Металлургия, 1979. - 248 с.
70. Раямяки П., Кархин В.А., Хомич П.И. Определение основных характеристик температурного поля для оценки типа затвердевания металла шва при сварке плавлением // Свароч. пр-во. 2007. - №2. - С. 3-7.
71. Рубинштейн Л.И. Проблема Стефана. Рига : Звайгзене, 1967. - 458 с.
72. Рыкалин Н.Н. Тепловые основы сварки. Ч. 1. Процессы распространения тепла при дуговой сварке. М.: Изд-во АН СССР, 1947. - 272 с.
73. Рыкалин Н.Н. Расчеты тепловых процессов при сварке. М.: Машгиз, 1951. - 295 с.
74. Самлрский А.А. Теория разностных схем. М.: Наука, 1977. - 653 с.
75. Самарский А.А., Моисеенко Б.Д. Экономичная схема сквозного счета для многомерной задачи Стефана // Журн. вычислит, математики и мат. физики. 1965. - Т.5. - №5. - С. 816-827.
76. Сапронова Н.А. Расчет тепловых процессов сварки на ЭВМ. : Учеб.пособие. Ижевск, 1990.
77. Слепцов О.И. Обеспечение технологической и эксплуатационной прочности сварных соединений северного исполнения // I ЕВРАЗИЙСКИЙ СИМПОЗИУМ по проблемам прочности материалов и машин для регионов холодного климата. Якутск, 2002. - С. 102-111.
78. Судник В.А., Ерофеев В.А., Радаи Д. Компьютерная имитация формирования шва при лазерно-лучевой сварке с зазором // Свароч. пр-во. -1999. №8. - С. 9-14.
79. Талыпов Г. Б. Приближенная теория сварочных деформаций и напряжений. Л.: Изд-во ЛГУ, 1957.
80. Шамсундар Н., Спэрроу Е.М. Применение метода энтальпии к анализу многомерной задачи теплопроводности при наличии фазового перехода // Теплопредача. 1975. - №3. - С. 14-22.
81. Bergmann Н. W. Numerical simulation of centre line not cracks in laser beam welding of aluminium close to the sheet edge // Mathematical Modeling of Weld Phenomena. London: The Institute of Materials, IOH Communications Ltd, 1998. - P. 658-668.
82. Boulton N.S., Lance Martin H.E. Determination of stress and strains of Welding 11 Proc. Inst. Mech. Engineer, 1936. - 123 p.
83. Clavier L., Arquis E., Caltagirone J.P., Gobin D.A. A fixed grid method for the numerical solution of phase change problems // Int. J. Number. Meth. End. 1994. - Vol. 37. - №26. - P. 4247-4261.
84. Douglas J., Gallie G.M. On the numerical integration of a parabolic differential equation subject to a moving boundary condition // Duke Math. J. 1955. - №4. - P. 557-572.
85. Easterling K. Introduction to the physical metallurgy of welding. Second edition. Butterworth Heinemann Ltd, - 1992. - 270 p.
86. Ehrlich L. W. A numerical method of solving heat flow problem with mouving boundary //J. Assoc. Comput. Machinery. 1958. - V.5. - №2. - P. 161-176.
87. Konovalov A.N. The fictitions regions method in problems of mathematical physics// Computing Method in Applied Sciences and Engineering. -Amsterdam; New York, Oxford, 1980. P. 29-40.
88. Kovaljov O.B., Larkin N.A., Fomin W.M., Yanenko N.N. The solution of nonhomogeneous thermal problems and the Stefan single-phase problem in arbitrary domains // Comput. Method in Appl. Sci.and Engineering. 1980. -Vol.22. - P. 259-271.
89. Kou S. Welding metallurgy. Second edition. John Wiley&Sons, 2003. 461 P
90. Kurz W., Ficher D.J. Fundamentals of solidification. Trans Tech Publications Ltd, 1998. - 305 p.
91. Lees M. A linear three-level difference scheme for quasilinear parabolic equation// Math, of Comput. 1966. - Vol. 20, №96. - p.516-522.
92. Masubuchi K. Analytical Investigation of Residual Stresses and Distortions Due to Welding // Welding J. 1960. - №39 (12).
93. Messier R. W. Principles of welding: processes, physics, chemistry, and metallurgy // John Wiley&Sons, 1999. 662 p.
94. Pavelic V. a.o. Experimental and Computed Temperatures Histories in gas Tangsten are welding of Thin Plates // Welding Research. - 1969. - №34. 7.
95. Rappaz M., Bellet M., Deville M. Numerical modeling in materials science and engineering. Springer, 2003. 540 p.
96. Rosenthal D. Etude theorique du regime thermique pendant la soudure a 1\ arc // 2 eme. Congres National des Sciences. Brussels, 1935.
97. Rosenthal D. Mathematical Theory of Heat Distribution during Welding and Catting. The Welding J., May, 1941.
98. А.Р. Павлов, Слепцова Е.А. Численное моделирование температурного поля при сварке тонких пластин //IV Международная конференция по математическому моделированию : тез. докл. отв. ред. И.Е. Егоров]. -Якутск, 2004. С. 85-86.
99. Павлов А.Р., Слепцова Е.А. Решение задачи Стефана сведением ее к задаче теплопроводности с движущимся источником тепла // Мат. заметки ЯГУ. 2005. - Т. 12, №1. - С. 87-94.
100. Слепцова Е.А., А.Р. Павлов Определение остаточных сварочных напряжений и деформаций при стыковой сварке тонких пластин // Вестник Самарского университета. Самара, 2008. - Серия: естественнонаучная, №2 (61). - С. 273-287.
101. Слепцова Е.А., А.Р. Павлов Математическое моделирование кинетики сварочных напряжений и деформаций при стыковой сварке тонких пластин // Вестник Поморского университета. Архангельск, 2008. - Серия: Естественные науки, №4. - С. 85-90. /1. С. 70.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.