Математические методы и модели краткосрочного прогноза чрезвычайных ситуаций на постоянно наблюдаемых натурных объектах тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат физико-математических наук Бараненко, Фёдор Фёдорович
- Специальность ВАК РФ05.13.18
- Количество страниц 283
Оглавление диссертации кандидат физико-математических наук Бараненко, Фёдор Фёдорович
Введение.
1 Анализ математических методов и моделей краткосрочного прогноза состояния постоянно наблюдаемых натурных объектов.
1.1 Современное состояние проблемы краткосрочного прогноза параметров состояния постоянно наблюдаемых натурных объектов.
1.2 Природные условия, влияющие на возникновение чрезвычайной ситуации на постоянно наблюдаемых натурных объектах. Специфические особенности природных условий Краснодарского края.
1.3 Элементы регрессионного анализа.
1.4 Адаптивные модели прогноза значений временных рядов (Хольта, Брауна)
1.5 Спектральный анализ Фурье.
1.6 Модели авторегрессии с проинтегрированным скользящим средним в остатках (АРПСС-модели).
1.7 Численные методы интерполяции.
Математическая модель течения грунтовых
1.9 Элементы нейросетевого моделирования.
1.10 Общая постановка задачи диссертационного исследования.
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Моделирование и прогноз возникновения паводковых ситуаций в руслах горно-равнинных рек2012 год, кандидат физико-математических наук Вандина, Наталья Валерьевна
Совершенствование методов и технологий прикладного численного моделирования в гидравлике открытых потоков2005 год, доктор технических наук Беликов, Виталий Васильевич
Дождевые наводнения на реках юга Дальнего Востока: методы расчетов, прогнозов, оценок риска2005 год, доктор географических наук Гарцман, Борис Ильич
Развитие теории и методов гидравлических, ледотехнических и гидротермических расчетов водоемов и водотоков с ледяным покровом2002 год, доктор технических наук Козлов, Дмитрий Вячеславович
Расчёт гидродинамических процессов при разрушении водоподпорных грунтовых сооружений и ледовых образований2011 год, кандидат технических наук Кушнерова, Ольга Николаевна
Введение диссертации (часть автореферата) на тему «Математические методы и модели краткосрочного прогноза чрезвычайных ситуаций на постоянно наблюдаемых натурных объектах»
Актуальность темы исследования. В настоящее время в России остро стоит проблема предупреждения чрезвычайных ситуаций, наносящих ежегодно серьезный экономический ущерб многим регионам России. Например, согласно данным Российского информационного агентства только на реках Краснодарского края и республики Адыгея в год возникает в среднем около 40 паводковых чрезвычайных ситуаций, суммарный ущерб от которых составляет более 1 млрд. рублей. Данное диссертационное исследование посвящено чрезвычайным ситуациям природного характера, прогноз и моделирование которых возможен путем постоянного наблюдения и анализа их параметров. К такого рода чрезвычайным ситуациям относятся ситуации, возникающие вследствие геофизических (землетрясения и т.д.), геологических (сели, оползни и т.д.), метеорологических (ливни, засухи и т.д.) или гидрологических (паводки, наводнения) явлений.
Центральное место среди задач обеспечения эколого-экономической безопасности занимает задача прогноза возникновения чрезвычайной ситуации. Другой важной задачей является задача оценки возможного экономического ущерба, .наносимого региону .^Иногда может оказаться, чтозатраты. на упреждающие мероприятия превосходят ущерб, наносимый последствиями самой чрезвычайной ситуации. В этом случае целесообразнее эвакуировать из рассматриваемого района людей и материальные ценности, чем проводить упреждающие мероприятия.
На сегодняшний день существует большое количество разного рода моделей прогноза чрезвычайных ситуаций, краткий обзор некоторых из них приведен ниже, но они, как правило, не универсальны и имеют довольно узкую область применения. В частности, практически все модели прогноза паводков разработаны для прогноза таких ситуаций на равнинных реках и, как показывают численные эксперименты, не пригодны для прогноза возникновения паводковых ситуаций на реках горноравнинного типа. В связи с этим проблема разработки новых и адаптации существующих математических моделей прогноза чрезвычайных ситуаций применительно некоторым в недостаточной степени исследованным натурным объектам, в частотности, к горно-равнинным рекам, является актуальной, практически и теоретически значимой.
Диссертационная работа выполнена в рамках исследований, проводившихся в рамках грантов РФФИ 09-01-96513-рюга и 06-05-96628-рюга.
Центральная проблема, в рамках которой проводились исследования, -проблема математического моделирования и достоверного краткосрочного прогноза возникновения и предупреждения чрезвычайной ситуации на постоянно наблюдаемых натурных объектах (на примере пресноводных водоемов и горноравнинных рек). Комплексное решение указанной проблемы позволит реально оценить угрозу природной чрезвычайной ситуации в регионе и значительно сократить затраты на упреждающие мероприятия.
Задача, на решение которой были направлены проводимые исследования, — предложить математическую модель краткосрочного прогноза возникновения природных чрезвычайных ситуаций на постоянно наблюдаемых натурных объектах, позволяющую осуществлять такой прогноз с минимальной в среднеквадратичном смысле погрешностью; на основе этой модели разработать методику оценки экономического ущерба, причиняемого региону возникновением указанной ситуации.
Степень разработанности проблемы. В настоящее время проблемам и организации предупреждения возникновения чрезвычайных ситуаций природного характера посвящено много исследований, как у нас в стране (Кучмент Л.С., Найденов В.И., Гельфан А.Н., Воробьев Ю.Л. и др.), так и за рубежом (Хеннегрифф В., Колокотронис В., Клэйр, Эхман, Абрахарт, Мутиах, К. Лай, С. Чэн и др.). Однако научные исследования в этой области охватывают далеко не все натурные объекты, подверженные риску возникновения чрезвычайных ситуаций природного характера. В частности, что касается паводков, то их исследования в основном направлены на оценку вероятности возникновения паводковых ситуаций на равнинных реках, и к горно-равнинным рекам неприменимы. Значительное число исследований посвящено возникновению паводковых ситуаций на реках Сибири и Крайнего севера, таких как Лена, Обь, Енисей. Для этих регионов созданы паводковые атласы, сформированы статистические базы данных периодичности возникновения паводковых ситуаций. Однако эти данные и модели, как показывают численные эксперименты, неприменимы для прогноза паводковых ситуаций на горноравнинных реках, к которым относятся многие реки Краснодарского края, в частности, река Кубань.
В ряде исследовательских институтов параллельно ведутся научно-исследовательские работы по аналогичной тематике. В частности, в государственном океанографическом институте РАН (ГОИН) Васильевым A.C., Коноваловым M.J1. и другими авторами разработана модель прогноза состояния морской экологической системы. На центральном сайте Гидрометцентра России представлены результаты современных исследований по прогнозу максимального уровня воды в руслах рек (в частности, в русле реки Ангара у с. Богучаны - автор Л.Г. Шуляковский). В основу построения указанных моделей положены методы регрессионного анализа.
Проблемам в области гидрологии суши и водных ресурсов посвящены работы JT.C. Кучмента, внесшего важный вклад в изучение и математическое моделирование пространственно-временных закономерностей гидрологических пр'бцессовГ ЗПйо^ледаие'^бдат^под' 'руКШЩ'М 'вШадгаён" цикл. исследований по созданию методов прогнозирования и расчетов экстремальных значений гидрологических характеристик в условиях антропогенного изменения гидрологических систем и изменения климата.
В работах Кузьмина В.А. выявлены и объяснены основные причины низкого качества краткосрочных прогнозов экстремальных паводков и половодий, показаны пути борьбы с недостатками, связанными с ограниченностью числа используемых моделей и наблюдаемых гидрологических характеристик и отсутствием информации о второстепенных и неизмеряемых стокообразующих факторах. Интерес представляют автоматизированный прогноз паводков с помощью корректировки прогноза методами постобработки и рекалибровки гидрологической модели, а также различные модификации SLS-метода (пошаговой линейной оптимизации).
Широко известны работы в области нелинейной динамики поверхностных вод суши автора Найденова В.И. Работы посвящены проблемам многолетних колебаний уровня бессточных и проточных водоемов, в частности речного стока, основное внимание уделено многолетним колебаниям уровня Каспийского моря.
В работе Розенберга Г.С. представлены различные статистические и вероятностные методы экологического прогнозирования, некоторые из них были использованы при подготовке диссертационной работы.
Динамико-стохастическому моделированию формирования талого стока посвящены работы А.Н. Гельфана. В работах Денисова В.М. представлен способ расчета максимальных расходов для малых водосборов на основании гидрометеорологических параметров водосборов, свойств почвогрунтов и наблюдаемых характеристик дождей. Методы имитационного моделирования развития паводка представлены в работе A.B. Доброва и С.В. Рябова.
Исследования в области экоинформатики проводятся в рамках СПб НИИ экологической безопасности РАН. Методы иерархического управления эколого-экономическими системами и математическое моделирование динамики качества водных ресурсов представлены в работах Угольницкого Г.А., Горстко А.Б. и др. катастрофических процессов в природной среде и техногенной сфере. Указанные авторы работают в области исследования моделей катастрофических процессов и формирования «кризисных» баз данных для территорий Сибири и Крайнего Севера.
Постоянно ведутся работы в области управления рисками в условиях чрезвычайных ситуаций, стратегий безопасности, предотвращению, смягчению последствий и ликвидации чрезвычайных ситуаций. Известными авторами и исследователями в этой сфере являются Воробьев Ю.Л., Владимиров В.А., Малинецкий Г.Г. и др., работы которых посвящены поиску общих закономерностей в области теории риска. Исследованиям управления чрезвычайными ситуациями посвящены работы Архиповой Н.И. Интерес представляют работы Косяченко С.А. в области автоматизированных систем управления чрезвычайными ситуациями. При подготовке данной диссертационной работы были использованы эконометрические методы анализа и управления эколого-экономическими рисками, представленные в работах Тихомирова Н.П., Потравного И.М. и др.
В Краснодарском крае исследования в области математического моделирования и прогноза природных чрезвычайных ситуаций на постоянно наблюдаемых натурных объектах активно начали проводиться только в последнее десятилетие, и к настоящему моменту накопленная информация требует систематизации и обработки.
Несмотря на то, что в области моделирования и прогноза чрезвычайных ситуаций было получено много важных результатов, ряд проблем остается нерешенными до настоящего времени. В частности, существующие модели прогноза не в равной степени эффективны и применимы для разного рода натурных объектов. Стоит отметить, что большая часть моделей и методов основана на многолетних наблюдениях и предназначена для долгосрочного прогноза, в результате чего точность краткосрочного прогноза, полученного этими методами, снижается. Зачастую входные данные зашумлены и их обработка требует использования методов фильтрации. На сегодняшний день существует несколько различных способов фильтрации и подавления шумов в наблюдаемых величинах. '"'Н67~как пр^ весьма сложные "Ш1горйтЖ1,''чтб* снижает ' скорость расчета прогнозируемых величин. Что касается прогноза оценки экономического ущерба от последствий природных чрезвычайных ситуаций, то в этой области также не существует универсальных методов и схем, позволяющих администрации региона выбрать оптимальную стратегию поведения населения при возникновении чрезвычайной ситуации, природного характера на рассматриваемой территории.
Объект исследования - процессы, влияющие на возникновение чрезвычайных ситуаций.
Предмет исследования — чрезвычайные ситуации природного характера на постоянно наблюдаемых натурных объектах (на примере чрезвычайных ситуаций на пресноводных водоемах и горно-равнинных реках).
Цель и задачи диссертационного исследования.
Цель — на основе статистической обработки данных разработать и исследовать новые методы математического моделирования и соответствующие алгоритмы краткосрочного прогноза чрезвычайных ситуаций, динамические и дискретные стохастические модели, позволяющие с минимальной в среднеквадратичном смысле погрешностью осуществить прогноз основных характеристик постоянно наблюдаемых натурных объектов, а также оценить вероятность возникновения чрезвычайной ситуации и величину предполагаемого экономического ущерба.
Для достижения поставленной цели необходимо решить следующие задачи.
1. Разработать новые методы математического моделирования для краткосрочного прогноза параметров натурных объектов и определения вероятности чрезвычайной ситуации и предполагаемого экономического ущерба от ее последствий.
2. Разработать алгоритмы и программное обеспечение, позволяющее автоматизировать процесс краткосрочного прогноза чрезвычайных ситуаций на постоянно наблюдаемых натурных объектах.
3. С помощью разработанного программного обеспечения провести вычисШтельньтй эксперимент с использованием' эк'спёримёнтШтьных ^данных7'в~том'' "" "" числе качественно новыми и ранее не используемыми на практике. По результатам численного эксперимента определить наиболее эффективные (дающие минимальную среднеквадратичную погрешность по отношению к экспериментальным данным) алгоритмы прогноза параметров постоянно наблюдаемых натурных объектов и определения вероятности возникновения чрезвычайной ситуации.
Теоретико-методологическая основа и инструментальный аппарат. В рамках данного диссертационного исследования использовались следующие математические модели и методы:
1. Статистические методы (регрессионный анализ, адаптивные, АРПСС-модели).
2. Численные методы интерполяции.
3. Нейросетевые технологии.
4. Методы стохастического анализа.
5. Методы прямой и косвенной оценки экономического ущерба.
Реализация моделей и методов прогноза на практике осуществлялась как с помощью пакетов прикладных программ Statistica 6.0, Maple и MS Excel, так и с помощью специально разработанных для этих целей программных продуктов: «Цифровой комплекс обработки газоразрядных изображений» (свидетельство о государственной регистрации программы для ЭВМ №2008610954 от 22 февраля 2008 года), «Автоматический прогноз паводковой ситуации» (свидетельство о государственной регистрации программы для ЭВМ №2008610953 от 22 февраля 2008 года), «Автоматизированный комплекс оценки водных ресурсов региона» (свидетельство о государственной регистрации программы для ЭВМ № 2010610794 от 25 января 2010 года).
Информационно-эмпирическая базой для проведения исследований послужили статистические данные уровня воды на водозамерных постах реки Кубань, других рек Краснодарского края и Краснодарского водохранилища, параметров биологических индикаторов, уровня осадков, испарений и температуры " на метеорологических станциях Краснодарского края. • — .™.
Положения, выносимые на защиту.
1. Методика обработки статистических данных для краткосрочного прогноза возникновения чрезвычайных ситуаций, основанная на анализе параметров натурных объектов с помощью линейных и нелинейных регрессионных, нейросетевых, адаптивных и АРПСС — моделей (на примере пресноводных водоемов и горно-равнинных рек). В прикладных исследованиях реализуется на примере паводков с помощью программного комплекса «Автоматизированный комплекс прогноза паводковых ситуаций».
2. Методика прогноза возникновения природных чрезвычайных ситуаций, основанная на обработке параметров биологических индикаторов (на примере пресноводных водоемов и горно-равнинных рек). В прикладных исследованиях реализуется с помощью программного комплекса «Автоматический комплекс обработки газоразрядных изображений».
3. Стохастическая модель прогноза параметров натурных объектов (на примере горно-равнинных рек) с применением метода фильтрации линейных стохастических систем.
4. Методика прогноза величины возможного экономического ущерба, основанная на результатах прогноза параметров натурных объектов, влияющих на возникновение чрезвычайной ситуации. В прикладных исследованиях реализуется для оценки ущерба от паводковой ситуации на пресноводных водоемах с помощью программного комплекса «Автоматизированный комплекс прогноза паводковых ситуаций».
Научная новизна диссертационного исследования. Полученные результаты не имеют аналогов в практике краткосрочного прогноза природных чрезвычайных ситуаций в пресноводных водоемах, в частности руслах горно-равнинных рек. В известных моделях статистического прогноза природных чрезвычайных ситуаций на постоянно наблюдаемых натурных объектах чаще всего используется аппарат линейного регрессионного анализа. Однако применительно к некоторым объектам, например горно-равнинным рекам, как показывают вычислительные эксперименты,-этот метод не позволяет получить прогнозируемые значения с высокой степенью точности. С помощью предлагаемых методов удается получить более точные результаты краткосрочного, а в ряде случаев и среднесрочного, прогноза чрезвычайных ситуаций на пресноводных водоемах Краснодарского края, чем с помощью указанных выше методов.
Впервые применен метод прогноза вероятности возникновения чрезвычайной ситуации, основанный на обработке параметров биологических индикаторов (их газоразрядных изображений).
Применение стохастических моделей, в которых учитывается наличие шумов в результатах наблюдений параметров натурных объектов и используется механизм линейной фильтрации, позволяет получить более адекватные экспериментальным данным результаты прогноза возникновения природной чрезвычайной ситуации, чем в известных моделях.
В экономической литературе описаны различные методики оценки величины ущерба, наносимого природными и техногенными катастрофами. Однако все они слабо адаптированы к оценке величины ущерба, наносимого некоторыми видами чрезвычайных ситуаций, в частности паводковыми ситуациями. Предложенные программные продукты позволяют получить именно такие оценки.
Таким образом, в рамках задачи моделирования и краткосрочного прогноза чрезвычайной ситуации на постоянно наблюдаемых натурных объектах научная новизна заключается в
1. использовании способа фильтрации линейных стохастических систем в стохастической модели прогноза параметров натурных объектов;
2. применении качественно новых входных данных для оценки вероятности природной чрезвычайной ситуации на постоянно наблюдаемых натурных объектах (газоразрядных изображений биологических индикаторов);
3. разработке методики обработки статистических данных для краткосрочного прогноза параметров натурных объектов; 4. ' адаптации методики косвенной оценки и прямого счета экономического ущерба к оценке предполагаемого экономического ущерба от природной чрезвычайной ситуации на постоянно наблюдаемых натурных объектах.
Теоретическая и практическая значимость. Разработанные методы и модели прогноза чрезвычайных ситуаций на постоянно наблюдаемых натурных объектах не имеют аналогов в практике краткосрочного прогноза. Они апробированы на статистических данных и могут быть использованы метеослужбами для прогноза чрезвычайных ситуаций (не только для краткосрочного, но и в ряде случаев среднесрочного прогноза). Разработанные программные продукты удобно использовать в прикладных исследованиях и на гидрологических постах, благодаря удобному интерфейсу, простоте использования и отсутствия необходимости в серьезной математической подготовке пользователей.
Публикации. По результатам работы опубликована 21 научная работа, в том числе 1 монография, 4 статьи в журналах из перечня рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук, рекомендованных ВАК Минобрнауки России. Разработанные программные продукты зарегистрированы в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам, что подтверждается 3 свидетельствами о регистрации программ для ЭВМ [133-135].
Логическая структура и объем диссертации. Диссертационная работа состоит из введения, 4 глав, общих выводов и заключения, списка литературы (163 источника, в том числе 13 иностранных). Она содержит 185 страниц, 38 рисунков, 17 таблиц, 7 приложений.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Регулирование водного и биогенного баланса малых рек при освоении водосборов2011 год, доктор технических наук Коваленко, Сергей Николаевич
Прогнозирование весеннего стока для предупреждения риска затопления территории2012 год, кандидат наук Апухтин, Александр Валерьевич
Сток рек бассейна Терека2013 год, кандидат географических наук Рец, Екатерина Петровна
Планирование режимов работы гидроэлектростанций в условиях недостатка гидрологической информации2010 год, кандидат технических наук Исмагилов, Тагир Салаватович
Обоснование запасов влаги в почве для охраны от подтопления и иссушения агроландшафтов2012 год, кандидат технических наук Гельмиярова, Виктория Николаевна
Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Бараненко, Фёдор Фёдорович
ЗАКЛЮЧЕНИЕ
Сформулированная во введении цель достигнута, поставленные задачи, которые надо было решить для её достижения, подробно исследованы; результаты этих исследований изложены в главах 2-4. На основе этих исследований можно сделать следующие выводы.
1. Известные методы прогноза состояния постоянно наблюдаемых натурных объектов не универсальны. В частности, методы прогноза уровня воды в руслах равнинных рек малопригодны для подобного прогноза в руслах горноравнинных рек.
2. Предложенные во второй главе математические модели краткосрочного прогноза чрезвычайных ситуаций на постоянно наблюдаемых натурных объектах (регрессионные, адаптивные, АРПСС-модели, модели, основанные на использовании интерполяционных полиномов Ныртона, Чебышева, Лагранжа, полиномиальных сплайнов и использующие алгоритм прогноза с коррекцией) позволяют осуществить такой прогноз с меньшей в среднеквадратичном смысле погрешностью, чем известные модели и методы.
3. Во второй главе предложен оригинальный метод оценки вероятности возникновения природной чрезвычайной ситуации, основанный на результатах наблюдений за биологическими объектами (индикаторами), который удобно использовать на практике.
4. Предложенный во второй главе метод оценки количества грунтовых вод в районе угрозы возникновения природной чрезвычайной ситуации позволяет отследить их перемещение и учитывать степень их влияния на возникновение этой ситуации в заданном районе. Этот метод можно использовать также для оценки перемещения загрязненных потоков грунтовых вод.
5. Предложенные в третьей главе дискретные и непрерывные стохастические модели прогноза колебаний основных характеристик натурных объектов позволяют осуществлять с высокой степенью точности прогноз их значений. Их удобно использовать на практике.
6. Предложенная в п.3.6 третьей главы стохастическая модель прогноза изменения основных характеристик натурных объектов позволяет осуществить прогноз на основе только одного последнего наблюдения. Преимуществом используемого фильтра и этой модели прогноза является простота их реализации, быстродействие (не требуется решения дифференциальных уравнений). Недостатком данной модели является меньшая точность прогноза, чем с помощью модели, основанной на использовании фильтра Калмана-Бьюси для ряда наблюдений.
7. Нейросетевые методы прогноза природной чрезвычайной ситуации на постоянно наблюдаемых натурных объектах, предложенные в п.3.7 третьей главы, позволяют осуществлять не только краткосрочный, но и среднесрочный прогноз параметров натурных объектов (до трех месяцев с момента последнего наблюдения). Однако они являются громоздкими и требуют больше оперативной памяти ЭВМ при решении прикладных задач.
8. Разработанная и описанная в четвертой главе методика оценки экономического ущерба, причиняемого региону природной чрезвычайной ситуацией, позволяет спрогнозировать величину данного ущерба, определить целесообразность проведения упреждающих мер в случае возникновения такой ситуации.
Список литературы диссертационного исследования кандидат физико-математических наук Бараненко, Фёдор Фёдорович, 2011 год
1. Kuchment L. S. Dynamic-Stochastic Models of Rainfall and Snowmelt Runoff Formation Текст. / L. S. Kuchment, A.N. Gelfan // Journ. of Hydrol. Sci. 1991. Vol. 36. No. 2. P. 153—169.
2. Kuchment L. S. Long-Term Probabilistic Forecasting of Snowmelt Flood Characteristics and the Forecast Uncertainty Текст. / L. S. Kuchment, A. N. Gelfan // Internat. Assn of Hydrol. Sciences Publ. 2007. No. 313. P.213—221.
3. Kuchment L. S. Application of Dynamic-Stochastic Models of Runoff Generation for Estimating Extreme Flood Frequency Distribution Текст. / L. S. Kuchment, A. N. Gelfan, V. N .Demidov// Internat. Assn of Hydrol. Sciences Publ. 2003. No. 281. P. 107—114.
4. Physicostatistical Model of Rainfall Flood Formation and Determination of Its Parameters Текст.: Proc. of the Symp. "Mathematical Models in Hydrology". Warsaw, 1971.
5. Proceedings of Symp. Water Resources and Environment Текст. Kyoto (Japan), 1996. Vol. l.P. 335—362.
6. Proceedings of Symposium "Soil-Vegetation-Atmosphere Transfer Schemes and Large-Scale Hydrological Model" Текст. Maastricht. 2001. No. 270. P. 175—183.
7. The 11th Stockholm Water Symposium, Sweden, Aug. 13—16, 2001 Текст. 2001. P. 272—275.
8. The Encyclopedia of Life Support Systems: Our Fragile World. Challenges and Opportunities for Sustainable Development Текст. London, 2001. Vol. 1.
9. The Use of Analog and Digital Computers in Hydrology Текст. / IAHS, IASH/AIHS. UNESCO. 1968. Vol. 11. No. 81.
10. Water Resources Systems- Hydrological Risk, Management and Development Текст. / Proceedings of Symposium HS02b Held during IUGG2003 at Sapporo, July 2003. 2003. No. 281. P. 107—114.
11. Абшаев A. M. Оповещения о паводках и селях ливневого происхождения радиолокационным методом Текст. / А. М. Абшаев, К. Б. Лиев // Известия высших учебных заведений Северо-Кавказского региона. Серия «Естественные науки». 2007. №3. С. 49—53.
12. Айвазян, С. А. Прикладная статистика и основы эконометрики Текст. / С.А. Айвазян, B.C. Мхитарян. М.: ЮНИТИ, 1998.1022 с. ISBN 5-238-00013-8.
13. Айвазян С. А. Прикладная статистика. Основы эконометрики Текст.: в 2 т. Т.1. Теория вероятностей прикладная статистика / С.А. Айвазян, B.C. Мхитарян. М.: ЮНИТИ, 2001. 1088 с. ISBN 5-238-00304-8.
14. Альтшуль А. Д. Гидравлические сопротивления Текст. / А.Д. Альтшуль. М.: Недра, 1982. 224 с.
15. АрхиповаН. И. Управление в чрезвычайных ситуациях Текст. / Н.И. Архипова, В.В. Кульба. 3-е изд.,перераб. и доп. М.: РГГУ, 2008. 474 с. ISBN 978-57281-0935-8.
16. Бараненко Ф.Ф. Математические модели паводковых ситуаций в русле горноравнинной реки: науч. моногр. / Ф.Ф. Бараненко, Е.А. Семенчин / Под науч. ред. И. В. Кочубея. М.: Физматлит, 2010. 122 с. ISBN 978-5-94052-199-0.
17. Бараненко Ф.Ф. Нейросетевое моделирование прогноза уровня воды на горноравнинных реках / Е.А. Семенчин, Ф.Ф. Бараненко, A.B. Войтюк // Экологические системы и приборы. 2010. Т.2. №11. С.98-104.
18. Бараненко Ф. Ф. Моделирование движения грунтовых вод // Математические методы и информационно-технические средства Текст. / Ф. Ф. Бараненко, А. В. Войтюк // Тр. VBcepoc. науч.-цракт. конф.: 19 июня 2009 г. Краснодар, 2009. С. 12—16.
19. Бараненко Ф.Ф. Стохастическая модель прогноза паводковых ситуаций на горно-равнинных реках / Е.А. Семенчин, Ф.Ф. Бараненко, A.B. Войтюк // Математическое моделирование. 2010. Т.22. №10. С. 109-118
20. Бахвалов Н. С. Численные методы Текст. : учеб. пособие для физ.-мат. специальностей вузов / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков ; под общ. ред. Н. И. Тихонова. 2-е изд. М. : Физматлит, 2002. 630 с. Библиогр.: с. 622-626. ISBN 5-93208-043-4.
21. Бендат Дж. Прикладной анализ случайных данных Текст.: пер. с англ. / Дж. Бендат, А. Пирсол. М.: Мир, 1989. 540 с.
22. Блешль Г. Оперативное прогнозирование паводков в бассейне реки Камп Текст. / Г. Блешль, К. Рэзлер, Й. Комма // Гидросооружения. 2008. №1. С. 46— 50.
23. Бойченко А. П. О плазмоподобном состоянии биологической материи Текст. / А. П. Бойченко; Кубанский гос. ун-т. Краснодар, 2006. 97 с. Деп. в ВИНИТИ 11.12.2006, № 1537-В2006.
24. Бойченко А. П. Основы газоразрядной фотографии Текст. / А. П. Бойченко, М. А. Шустов. Томск: SST, 2004. 316 с. ISBN 5-936291-50-2.
25. Боревский Б. В. Методика определения параметров водоносных горизонтов по данным откачек. Текст. / Б. В. Боревский, Б. Г. Самсонов, JI. С. Язвин. М.: Недра, 1973. 302 с.
26. Боровиков В.П. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов Текст. / В.П. Боровиков. 2-е изд. СПб.: Питер, 2003. 688 с. ISBN 5272-00078-1.
27. Боровиков В. П. STATISTICA: Статистический анализ и обработка данных в среде Windows . Текст. / В. П. Боровиков, И. П. Боровиков. М.: ФИЛИНЪ, 1998. 608 с. ISBN 5-89568-003-Х: 53.20.
28. Боровиков В.П. Учебник по математической статистике с упражнениями в системе STATISTICA Электронный ресурс. / В.П. Боровиков, Г.И. Ивченко. URL: http://www.statsoit.ru/home/portal/textbook2/default.htm (дата обращения: 29.08.2010).
29. Бочевер Ф. М. Теория и практические методы гидрогеологических расчетов эксплуатационных запасов подземных вод Текст. / Ф. М. Бочевер. М.: Недра, 1968. 328 с.
30. Булинский A.B. Теория случайных процессов Текст. / А. В. Булинский, А. Н. Ширяев. М.: Физматлит, 2003. 400с. ISBN 5-9221-0335-0.
31. Бураков Д. А. Методика прогноза максимального уровня воды р. Ангары у с. Богучаны. Электронный ресурс. / Бураков Д. А., В. Ф. Космакова. URL: http://method.hydromet.ru/ methods/water/water.html / (дата обращения: 23.11.2007).
32. Варшанина Т. П. Нейросетевая модель прогноза паводков на малых реках Адыгеи Текст. / Т. П. Варшанина, Д. В. Митусов, О. А. Плисенко, И. В. Стародуб // Известия Рос. акад наук. Сер. геогр. 2007. № 6. С. 87—93.
33. Васильев А. В. Кавитационные повреждения строительных водосбросов Бурейского гидроузла при пропуске паводков в 2003—2006 гг. Текст. / А. В. Васильев, А. С. Гаркин, Г. К. Дерюгин // Гидротехническое строительство. 2008. № 1. С. 42—47.
34. Васильев А. С. Инженерно-технологические проблемы мониторинга и прогнозирования состояния гидросферы атмосферных и морских экологических систем Текст. / А. С. Васильев // Наука и технологии в промышленности. 2006. № 3. С. 65—71.
35. Владимиров В. А. Управление риском. Риск, устойчивое развитие, синергетика Текст. / В. А. Владимиров, Ю. JI. Воробьев, Г. Г. Малинецкий, А. С. Посашков и др. М.:Наука, 2000. 432 с.
36. Власова Г. А. Пространственно-временная изменчивость структуры и динамики вод Охотского моря Текст. / Г. А. Власова, А. С. Васильев, Г. В. Шевченко. М.: Наука, 2008. 359 с. ISBN 978-5-02-036034-1.
37. Воды суши: проблемы и решения Текст. / РАН, Ин-т водных проблем; отв. ред. М. Г. Хубларян. М.: [б. и.], 1994. 560 с.
38. ВойтюкА. В. Краткосрочное прогнозирование наполняемости Краснодарского водохранилища с помощью АРПСС-моделей Текст. / А. В.
39. Войтюк А. В. Применение адаптивных моделей линейного роста для краткосрочного прогноза наполняемости водохранилища Текст. / А. В. Войтюк, Ф. Ф. Бараненко, Е. А. Семенчин // Обозрение прикладной и промышленной математики. 2007. Т. 14. вып. 1. С. 98—99.
40. Волков И. К. Случайные процессы Текст.: Учеб. для вузов / И.К. Волков, С.М. Зуев, Г.М. Цветкова; под ред. В.С. Зарубина, А.П. Крищенко. М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. 448 с.
41. Воробьев Ю. Л. Катастрофы и общество Текст.: Монография / Воробьев Ю.Л. М.: Контакт-Культура, 2000. 331 с.
42. Воробьев Ю. JI. Основные направления государственной стратегии управления рисками на пороге XXI века Текст. / Ю. JI. Воробьев // Безопасность Евразии. 2001. №2. С. 536—544.
43. Воробьев Ю. J1. Управление рисками и устойчивое развитие: Человеческое измерение Текст. / Ю. JI. Воробьев. Г. Г. Малинецкий, Н. А. Махутов // Общественные науки и современность. 2000. №4. С. 150—162.
44. Временная типовая методика определения экономического ущерба, причиняемого народному хозяйству загрязнением окружающей среды Текст. М.: Экономика, 1983. 124 с.
45. Гавич И. К. Гидрогеодинамика Текст.: Учебник для вузов / И. К. Гавич. М.: Недра, 1988.349 с.
46. Гельфан А. Н. Динамико-стохастическое моделирование формирования талого стока. Текст. / А. Н. Гельфан. М.: Наука, 2007. 280 с. ISBN 978-5-02-033651-3.
47. Герасимов И.П. Географический прогноз: теория, методы и региональный аспект Текст. / И. П. Герасимов; отв. ред. И.П. Герасимов, B.C. Преображенский. М.: Наука, 1986. 89 с.
48. Гихман И.И. Введение в теорию случайных процессов Текст. / И.И. Гихман, A.B. Скороход. 2 изд. М.: Наука, 1977.568 с. - * ' ~ —
49. Гихман И. И. Теория случайных процессов. Т.2 Текст. / И. И. Гихман, А. А. Скороход. М.: Наука, 1973. 640с.
50. Глобальные проблемы как источник чрезвычайных ситуаций: Междунар. конф. 22-23 апр. 1998г. Текст.: Докл. и выступления / Под. ред. Ю.Л. Воробьева. М.: УРСС, 1998.318 с.
51. Гмурман В. Е. Теория вероятностей и математическая статистика Текст. / В. Е. Гмурман. М.: Высш.шк., 2003. 479 с.
52. Горстко А. Б. Введение в моделирование эколого-экономических систем Текст. / А. Б. Горстко, Г.А. Угольницкий. -Ростов н/Д.: Издательство РГУ, 1990.112.С.
53. Государственный доклад о состоянии защиты населения и территорий Российской Федерации от чрезвычайных ситуаций природного и техногенного характера в 2002 году Текст. М.: ФЦ ВНИИ ГОЧС, 2003. 178 с.
54. Государственный Океанографический Институт Российской академии наук Электронный ресурс. URL: http://oceanography.ru/researchworks/ (дата обращения: 27.09.2008).
55. ГрязноваА. Г. Оценка недвижимости Текст.: Учебник для вузов/ А. Г. Грязнова, М. А. Федотова и др.; под ред. А. Г. Грязновой. М.: Финансы и статистика, 2007. 496 с. ISBN 5-279-02270-5.
56. Денисов В. М. Методика определения максимальных расходов воды и объемов стока дождевых паводков для малых водосборов Текст. / В. М. Денисов, А. В. Пак // Метеорология и гидрология. 2009. № 12. С. 65—76.
57. Добров А. В. Концептуальные основы построения имитационной модели формирования и развития паводка Текст. / А. В. Добров, С. В. Рябов // Проблемы безопасности и чрезвычайных ситуаций. 2007. № 3. С. 28—32.
58. Доспехов Б. А. Методика полевого опыта (с основами статистической обработки результатов исследований) Текст. / Б. А. Доспехов. 5-е изд., перераб. и доп. М.: Агропромиздат, 1985. 351 с.
59. Елисеева И. И. Практикум по эконометрике Текст.: учеб. пособие для эконом, вузов / И. И. Елисеева, С. В. Курышева, Н. М. Гордеенко и др.; под ред. И. И. Елисеевой. М.: Финансы и статистика, 2003. 191с. ISBN 5-279-02313-2.
60. Елисеева И. И. Эконометрика Текст. : учеб. для вузов по специальности 061700 "Статистика" / И. И. Елисеева, С. В. Курышева, Т. В .Костеева и др.; под ред. И.И.Елисеевой. М.: Финансы и статистика, 2003. 342с. Библиогр.: с. 337. ISBN 5279-01955-0.
61. Заенцев И. В. Нейронные сети: основные модели Текст. / И. В. Заенцев. Воронеж: ВГУ, 1999. 78 с.
62. Зайцев Г. Н. Методика биометрических расчетов Текст.: математическая статистика в экспериментальной ботанике / Г. Н. Зайцев. М.: Наука, 1973. 256 с.
63. Замков О.О. Математические методы в экономике Текст.: учебник / О.О. Замков, А. В. Толстопятенко, Ю. Н. Черемных. М.: МГУ им. М.В.Ломоносова, Изд-во "ДИС", 1997.368 с.
64. Захаров В.М. Анализ морфологической изменчивости как метод оценки состояния природных популяций Текст. / В.М. Захаров, A.B. Яблоков // Радиоэкология почвенных животных. 1985. С. 176 185.
65. Захаров В.М. Здоровье среды: методика оценки Текст. / В.М. Захаров, A.C. Баранов, В.И. Борисов, A.B. Валецкий, Н.Г. Кряжева, Е.К. Чистякова, А.Т. Чубинишвили // М.: Центр экологической политики России, 2000. 68 с. ISBN 593692-020-8.
66. Иванов С. А. Оптимальная динамика стохастических кластерных систем и энтропия Текст. / С. А. Иванов // Обозрение прикладной и промышленной математики. 2002. Т. 9. вып. 3. С. 505—524.
67. Иванов С. А. Стохастические фракталы в информатике Текст. / С. А. Иванов. М.: Парус, 2003. 132с. Библиогр.: с. 86-93.
68. Исаев A.A. Атмосферные осадки. 4.1. Изменчивость характеристик осадков на территории России и сопредельных стран Текст.: Учеб. пособие / МГУ. Геогр. фак. М.: Изд-во Моск. ун-та, 2002. 191с.
69. Кендалл М. Многомерный статистический анализ и временные ряды Текст. / М. Кендалл, А. Стьюарт. М.: Наука, 1976. 736 с.
70. Кирлиан С.Д. Высокочастотные разряды в электрическом поле конденсатора: фотографирование токами высокой частоты, высокочастотная электронно-ионная оптика Текст. / С.Д. Кирлиан, В.Х. Кирлиан. Краснодар: Просвещение-Юг, 2003. 200 с.
71. КолчинВ. Ф. Системы случайных уравнений Текст. / В. Ф. Колчин. М.: МИЭМ, 1988.402 с.
72. Кононов Д. А. Экологический менеджмент: сценарии развития объектов и управление экологической обстановкой Текст. / Д. А. Кононов, В. В. Кульба // Инженерная экология. 1996. № 6. С. 78—99.
73. Корн Г. Справочник по математике для научных работников и инженеров Текст. / Г. Корн, Т. Корн. М.: Наука. Гл. ред. физ.-мат. лит., 1984. 832 с.
74. Косяченко С. А. Модели, методы и автоматизация управления в условиях чрезвычайных ситуаций (обзор) Текст. / С. А. Косяченко, Н. А. Кузнецов, В. В. Кульба, А. Б. Шелков // Автоматика и телемеханика. 1998. № 6. С. 3—66.
75. Кремер Н.Ш. Эконометрика Текст.: Учебник для вузов / Н. Ш. Кремер, Б. А. Путко; под ред. проф. Н.Ш. Кремера. М.: ЮНИТИ-ДАНА, 2002. 311 с. ISBN 5-23800333-1.
76. Кроличенко В. В. Социальные последствия аварий плотин и катастрофических паводков Текст. / В. В. Кроличенко // Известия высших учебных заведений. Серия «Геодезия и аэрофотосъемка». 2006. № 1. С. 61—66.
77. Кузьмин В. А. Постобработка и корректировка прогнозов паводков, выпускаемых при помощи автоматизированных систем Текст. / В. А. Кузьмин, А. А. Заман // Метеорология и гидрология. 2009. № 8. С. 80—90.
78. Кузьмин В. А. Фундаментальные основы автоматизированного прогнозирования дождевых паводков Текст. / В. А. Кузьмин // Естественные и технические науки. 2009. № 6. С. 271—285.
79. Кучмент JI. С. Динамико-стохастические модели формирования речного стока Текст. / JI. С. Кучмент, А. Н. Гельфан ; Рос. акад. наук. М.: Наука, 1993. 103 с.
80. Кучмент JI. С. Модели процессов формирования речного стока Текст./ JI. С. Кучмент. Л.: Гидрометеоиздат, 1980. 143 с.
81. Кучмент JI. С. Чувствительность гидрологических систем: Влияние антропогенных изменений речных бассейнов и климата на гидрологический цикл Текст. / JI. С. Кучмент, Ю. Г. Мотовилов, Н. А. Назаров. М.: Наука, 1990. 144 с.
82. Кучмент JI.C. Формирование речного стока: Физико-математические модели Текст. / JI. С. Кучмент, В. Н. Демидов, Ю. Г. Мотовилов. М.: Наука, 1983. 216 с.
83. КучментЛ. С. Статистическое самоподобие пространственных изменений снегозапасов и его применение при моделировании талого стока Текст. / Л. С. Кучмент, А. Н. Гельфман //Метеорология и гидрология. 1997. Вып. 6. С. 80—90.
84. Кюнж Ж.А. Численные методы в задачах речной гидравлики: практическое применение Текст. / Ж.А. Кюнж, Ф.М. Холли, А. Вервей. Пер. с англ. М.: Энергоатомиздат, 1985. 256 с.
85. Лепихин А. П. К оценке эффективности применения дамб для снижения рисков затоплений при прохождении экстремально высоких паводков Текст. / А. П. Лепихин // Водное хозяйство России: проблемы, технологии, управление. 2006. №6. С. 27—32. ' .
86. Лиев К. Б. Оповещение о паводках и селях ливневого происхождения радиолокационным методом Текст. / К. Б. Лиев, М. Т. Абшаев // Безопасность жизнедеятельности. 2007. № 12. С. 29—33.
87. Липцер Р.Ш. Статистика случайных процессов (нелинейная фильтрация и смежные вопросы). Текст. / Р.Ш. Липцер, А.Н. Ширяев. М.: Наука, 1974. 696 с.
88. Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов Текст.: Учеб. пособие / Ю.П. Лукашин. М.: Финансы и статистика, 2003. 416 с.
89. Мал ков А. В. Определение гидродинамических параметров водоносных горизонтов в условиях перетекания Текст. / А. В. Малков // Известия вузов. Сер. «Геология и разведка». 2007. № 1. С. 31—34.
90. Марчук Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. М.: Наука, 1982. 319 с.
91. Матросов A.B. Maple 6. Решение задач высшей математики и механики Текст.: научное издание / A.B. Матросов. СПб.: БХВ Петербург, 2001. 528 е.: ил. (Мастер: практическое руководство). ISBN 5-94157-021-Х.
92. Методический кабинет Гидрометцентра России Электронный ресурс. URL: http://method.hydromet.ru/ (дата обращения: 15.09.2008).
93. Миркин Б. Г. Анализ качественных признаков и структур Текст. / Б. Г. Миркин. М.: Статистика, 1980. 318 с.
94. Москвичев В. В. Моделирование катастрофических процессов в природной среде Электронный ресурс. / В. В. Москвичев.2005. URL: http://www.nsc.ru/win/ sbras/rep/rep2005/tom2/pdf/005.pdf (дата обращения: 05.02.2008).
95. Найденов В. И. Нелинейные модели колебаний речного стока Текст. / В. И. Найденов, В. И. Швейкина // Водные ресурсы. 2002. Т. 29. № 1. С. 62—67.
96. Необратимые процессы в природе и технике Текст.: Труды Четвертой Всероссийской конференции 29-31 января 2007 г. М.: МГТУ им. Н.Э. Баумана, ФИАН 2007. 355 с.
97. Осипов В. И. Управление природными рисками Текст. / В. И. Осипов // Вестник Российской академии наук. М., 2002. № 9. С. 678—686.
98. Официальный сайт компании "StatSoft" Электронный ресурс. М., 2007. URL: http://www.statsoft.ru/ (дата обращения: 18.07.2010).
99. Пененко В. В. Методы и модели для изучения природной среды и оценки экологических рисков Текст. / В. В. Пененко, Е. А. Цветкова // Оптика атмосферы и океана. 2002. Т. 15. № 5—6. С. 412—417.
100. Перепелица В.А. Математические модели и методы оценки рисков экономических, социальных и аграрных процессов Текст. / В. А. Перепелица, Е. В. Попова. Ростов н/Д.: Изд-во Рост. Унта, 2002. 208 с.
101. Пресман A.C. Электромагнитные поля и живая природа Текст. / А. С. Пресман. М.: Наука, 1986. 288 с.
102. Природные ресурсы Кубани: Атлас-справочник Карты. 1 : 1 600 000. Ростов н/Д, 2004. 32 с.
103. Пугачев B.C. Стохастические дифференциальные системы. Анализ и фильтрация Текст. / В. С. Пугачев, И. Н. Синицын. М.: Наука, 1990. 632 с.
104. Розенберг Г.С. Экологическое прогнозирование (Функциональные предикторы временных рядов) Текст. / Г. С. Розенберг, В. К. Шитиков, П. М. Брусиловский. Тольятти: ИЭВБ РАН, 1994. 182 с.
105. Свидетельство о государственной регистрации программы для ЭВМ. Цифровой комплекс обработки газоразрядных изображений Текст. /
106. Ф. Ф. Бараненко, А. В. Войтюк; заявитель и правообладатель Кубан. гос.ун-т — №2008610954/2007615279; заявл. 24.12.07; опубл. 22.02.08. 1 с.
107. Севастьянов Б.А. Курс теории вероятностей и математической статистики Текст. / Б.А. Севастьянов. М.: Наука, 1982. 256 с.
108. Семенчин Е. А. Вероятностная модель прогноза паводковых ситуаций на реках Краснодарского края Текст. / Е. А. Семенчин, Ф. Ф. Бараненко, А. В. Войтюк // Обозрение прикладной и промышленной математики. 2007. Т. 14. вып. 5. С. 929—931.
109. Семенчин Е.А. Об одном способе фильтрации линейных стохастических систем Текст. / Е.А. Семенчин // Известия вузов. Северо-Кавказский регион. Естественные науки. Ростов н/Д, 2003. №4. С.11-15.
110. Сервер «Погода России». Архив погодных условий. Электронный ресурс. URL: http://meteo.infospace.ru/ (дата обращения: 24.11.2007).
111. Тихомиров H. П. Методы анализа и управления эколого-экономическими рисками: Учеб. пособие для вузов Текст. / Н.П. Тихомиров, И.М. Потравный, Т.М. Тихомирова; под ред. Н. П. Тихомирова. М.: ЮНИТИ-ДАНА, 2003. 350 с. ISBN 5238-00489-3.
112. Тихонов А.Н. Уравнения математической физики Текст.: Учеб. пособие для ун-тов / А.Н. Тихонов, A.A. Самарский. 4-е изд., испр. М.: Наука, 1972. 735 с.
113. Тихонов В. И. Марковские процессы Текст. / В. И. Тихонов, М. А. Миронов. М.: Советское радио, 1977. 488 с.
114. УокенбахД. Профессиональное программирование на VBA в Excel 2003. Текст.: пер. с англ. / Джон Уокенбах. М.: Издательский дом «Вильяме», 2005. 800 е.: ил. Парал. Тит. Англ. ISBN 5-845-90541-9.
115. Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика Текст.: пер. с англ. / Ф. Уоссерман. М.: Мир, 1992. 184 с.
116. Флеминг У. Оптимальное управление детерминированными и стохастическими системами Текст.: пер. с англ. / У. Флеминг, Р. Ришел. М. : Мир, 1978. 316 с. : граф., схемы. Библиогр.: с. 298-311.
117. Фролов А. В. Динамико-стохастическое моделирование многолетних колебаний речного стока Текст. / А. В. Фролов // Водные ресурсы. 2006. Т. 33. №5. С. 740.
118. Халафян A.A. Статистический анализ данных. STATISTICA 6.0. Текст. / A.A. Халафян. 2-е изд. испр. и доп. Краснодар: КубГУ, 2005. 308 с.
119. Халафян А. А. STATISTICA 6.0. Статистический анализ данных Текст. / A.A. Халафян. М.: Бином, 2007. 512 с. ISBN 978-5-9518-0215-6.
120. Хеннегрифф В. Методика определения факторов климатических изменений, применяемая для характеристики паводков в Земле Баден-Вюртемберг Текст. / В. Хеннегрифф, В. Колокотронис // Гидросооружения. 2008. № 1. С. 4—9.
121. Шелобаев С. И. Экономико-математические методы и модели Текст. : учеб. пособие для студ. вузов, обуч. по экон. спец. / С.И. Шелобаев. 2-е изд. , перераб. и доп. М. : ЮНИТИ, 2005. 286 с. Библиогр.: с. 281-283 . ISBN 5-238-00753-1.
122. Ширяев А. Н. Стохастические модели финансовой математики Текст. / А. Н. Ширяев. М.: ФАЗИС, 1998. 544 с. ISBN 5-7036-0044-8.
123. Штенгелов Р. С. Гидрогеодинамические расчеты на ЭВМ Текст. : учеб. пособие для вузов / P.C. Штенгелов, B.JL Веселова, С.О. Гриневский [и др.]; ред. P.C. Штенгелов. М.: Изд-во МГУ, 1994. 335 с.: ил. ISBN 978-5-211-03065-7.
124. Шуляковский JI. Г. К методике прогноза заторных уровней воды Текст. / JL Г. Шуляковский, В. А. Еремина // Метеорология и гидрология. 1952. № 1. С. 46—51.
125. Шуман А. Снижение риска возникновения паводков с помощью плотин: проблемы и решения Текст. / А. Шуман, Е. Лехтгалер // Гидросооружения. 2009. № 1. С. 66—69.
126. Яглом А. М. Корреляционная теория стационарных случайных функций Текст. / А. М. Яглом. Л.: Гидрометеоиздат, 1981. 282 с.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.