Магнитные свойства массивов железных нанонитей: влияние геометрических параметров тема диссертации и автореферата по ВАК РФ 01.04.07, кандидат наук Елмекави Ахмед Хассан Абделрахман

  • Елмекави Ахмед Хассан Абделрахман
  • кандидат науккандидат наук
  • 2021, ФГБОУ ВО «Санкт-Петербургский государственный университет»
  • Специальность ВАК РФ01.04.07
  • Количество страниц 208
Елмекави Ахмед Хассан Абделрахман. Магнитные свойства массивов железных нанонитей: влияние геометрических параметров: дис. кандидат наук: 01.04.07 - Физика конденсированного состояния. ФГБОУ ВО «Санкт-Петербургский государственный университет». 2021. 208 с.

Оглавление диссертации кандидат наук Елмекави Ахмед Хассан Абделрахман

Table of Contents

Introduction

Chapter 1. Literature review

1.1 Applications of magnetic nanowires

Biomedical applications. Drug delivery

Biomedical applications. Hyperthermia

Magnetic field sensors

Acoustic and tactile sensors

Information storage

1.2 Factors determining the magnetic properties of arrays of nanowires

Chapter 2. Research methods

2.1 Sample synthesis

2.2 Samples attestation methods

2.2.1 Scanning Electron Microscopy (SEM)

2.2.2 X-ray diffraction (XRD)

2.2.3 Small-angle X-ray scattering

2.3 Methods of investigating magnetic properties

2.3.1 SQUID magnetometry

2.3.2 Analysis of first order magnetization reversal curves

2.3.3 Micromagnetic simulation

Chapter 3. FORC analysis of arrays of iron nanowires

3.1 Sample attestation

3.2 Magnetic properties

3.3 Conclusion

Chapter 4. Effect of length on magnetic properties

4.1 Samples attestation

4.2 Magnetic Properties

4.3 Concluding

Chapter 5. Theoretical approaches for describing the magnetic properties of arrays of iron nanowires

5.1 Samples Attestation

5.2 Analytical and numerical used models

5.3 Results and discussion

5.3.1 Geometry I. The magnetic field is applied parallel to the long axis of the wires

5.3.2 Geometry II. The magnetic field is applied perpendicular to the long axis of the wires

5.4 Conclusion

Conclusion

Acknowledgment

References

Рекомендованный список диссертаций по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК

Введение диссертации (часть автореферата) на тему «Магнитные свойства массивов железных нанонитей: влияние геометрических параметров»

Introduction

The noticeable progress in nanotechnology in recent decades has led to the active introduction of artificial nanomaterials into everyday life. They are rapidly penetrating such areas as electronics, medicine, energy production and storage, robotics, and many other areas. We literally contact them without even knowing it. For example, billions of hidden nanofibers are used to improve the stain resistance of clothing, and a protective layer of zinc oxide nanocrystals covers almost every pair of sunglasses.

In turn, this wide diversity of possible applications causes the further development of synthesis technologies and an enormous number of new forms of nanomaterials. At the moment, it is possible to produce spherical, pyramidal, octahedral, cubic, springs-like, and cylindrical nanoparticles in a wide range of sizes. Additionally, the nanoparticles can be arranged into various nanostructures. A special place among others occupied by the anisotropic nanoparticles with high aspect ratio called nanowires. Due to their shape, they can be easily manipulated via different mechanisms, allowing them to be used in computer microchips, piezoelectric materials, electronics, sensors, information storage devices, solar cells, biomedical applications, and so on.

In the current work nanowires based on magnetic material are considered. Due to well-established procedures of synthesis, modern magnetic nanowires possess high quality and can be produced with precise parameters. Besides that, arrays of nanowires can cover large areas, making them useful even on the macroscale. Interaction of magnetic nanowires with magnetic field makes them preferable for magnetic drug delivery and magnetic hyperthermia as therapeutic applications. Moreover, one can use them as magnetic sensors, details of spintronic and magnetic data storage devices, etc. Since different applications may require different manifestations of the magnetic properties of the responses, all magnetic parameters such as coercive force, remanent magnetization, saturation field, and others must be well-tuned and well easily controlled and predictable. This fact leads to numerous studies of the magnetic characteristics of magnetic nanowires made of various materials, including conventional mono-elements such as single-element

(Co, Ni, Fe), as well as their alloys. And the structure of nanowire arrays itself can be modified by synthesizing segmented nanowires from repeating layers of ferromagnetic and nonmagnetic materials. This approach is aimed to increase the density of information storage by using the "three dimensions". However, in the current work, the main attention is paid to "solid", not segmented nanowires.

The number of publications devoted to pure iron nanowires is much less than for nickel, cobalt, and composite alloys. The main reason is the oxidation of iron, which prevents the efficient use of iron-based materials. At the same time, the large magnetic moment and cubic crystal structure with relatively low magnetocrystalline anisotropy make iron unique for the manufacture of magnetic nanostructures. In addition, the use of a single element material helps to avoid the non-uniform distribution of components that often occurs when using alloys. Thus, the use of pure iron nanomaterials is promising for applications based on magnetic behavior. Innovative methods of synthesis have made it possible to avoid oxidation and, thus, to obtain nanowires from pure iron, thereby opening up the possibility of using all its advantages. Since this was done not so long ago, the variety of research tasks to be solved in this field of physics still great.

This work is devoted to a comprehensive study of the magnetic properties of arrays of pure iron nanowires. It is well known that the ratio of the geometric dimensions of nanowires plays a decisive role in the magnetic behavior of both an individual nanowire and an entire array. This ratio can be adjusted by changing the diameter or length of the thread. In this paper, the main focus is on the effect of length, and the diameter is considered as a parameter that determines the choice of the best model for micromagnetic modeling. Some studies on the influence of these quantities have already been carried out even for arrays of iron nanowires. However, firstly, as mentioned above, it was previously difficult to obtain precisely iron nanowires, and, secondly, this work expands the understanding of the magnetic behavior of such arrays by going beyond the limitations of the parameter values considered in previous works.

In particular, the influence of the anisotropy of the wires shape assuming a wider range of lengths, is considered in this work. In addition, for the first time for non-segmented

arrays of pure iron nanowires, the analysis of first-order reversal curves (FORC) is used, allowing to get information about the interaction between wires in the array.

Aim of the Work

Revealing the features of the magnetic behavior of iron nanowire arrays depending on the length and the diameter of an individual wire by means of conventional SQUID-magnetometry as well as first-order reversal curves analysis and micromagnetic modeling.

Tasks, which should be resolved in order to reach the aim of the work:

• Complex study of the spatial structure of iron nanowire arrays at atomic and nano scales using scanning electron microscopy, x-ray diffraction, and small-angle x-ray scattering.

• Study of integral magnetic properties of iron nanowire arrays by means of SQUID-magnetometry

• Study of switching fields and interactions in iron nanowire arrays using first-order reversal curves analysis.

• Comparison of the models used in the micromagnetic simulation of iron nanowires arrays.

The statements to be defended

1. The nature of the interactions revealed in the analysis of first order reversal curve for non-segmented pure iron nanowires 33 nm in diameter indicates the presence of nanowires magnetized antiparallel to others in fields below the saturation field. In the state of remanent magnetization, the fraction of such nanowires can reach 22%.

2. The growth of the coercive force of arrays of iron nanowires 52 nm in diameter with an increase in length from 3 to 21 ^m is described by the model of infinite interacting cylinders, and is due to a decrease in interactions. The process of magnetization reversal in such nanowires is realized through the mechanism of motion of a vortex domain wall.

3. Iron nanowires with a diameter greater than 52 nm are insensitive to morphological inhomogeneities arising in the process of synthesis by electrodeposition into the

pores of anodic aluminum oxide. To quantitatively describe the process of magnetization reversal of an array with misoriented two-dimensional nanostructured domains by the method of micromagnetic modeling, it is sufficient to take into account 7 nanowires within the mean-field model.

Approbation of the work

Results published in two articles in peer-reviewed journals:

1. Elmekawy A. H. A., Iashina E. G., Dubitskiy I. S., Sotnichuk S. V., Bozhev I. V., Napolskii K. S., Menzel D., & Mistonov A. A., Magnetic properties and FORC analysis of iron nanowire arrays. Materials Today Communications 25, 101609 (2020). https://doi.org/10.10167i.mtcomm.2020.101609

2. Dubitskiy I. S., Elmekawy A. H. A., Iashina E. G., Sotnichuk S. V., Napolskii K. S., Menzel D., & Mistonov A. A., Effect of Interactions and Nonuniform Magnetic States on the Magnetization Reversal of Iron Nanowire Arrays. Journal of Superconductivity and Novel Magnetism 34, 539-549 (2021). https://doi.org/10.1007/s10948-020-05711-y

The results of the work were reported at the following scientific activities:

1. Elmekawy A., Sotnichuk S., Napolsky K., Menzel D., Mistonov A., Study of the magnetic properties of iron-based nanowire arrays by the FORC method, 53-th School of Condensed Matter Physics 2019 (poster).

2. Elmekawy A., Sotnichuk S., Napolsky K., Menzel D., Mistonov A., Study of magnetic properties of arrays of iron-based nanowires by FORC, Joint European Magnetism Symposium-2019 (poster).

3. Elmekawy A., Sotnichuk S., Napolsky K., Menzel D., Heinemann A., Mistonov A., Study of the magnetic properties of arrays of iron-based nanowires by FORC, European Conference on Neutron Scattering 2019 (poster).

4. A. Elmekawy, S.V. Sotnichuk, K.S. Napolsky, D. Menzel, A.A. Mistonov, Magnetic properties of iron-based nanowires according to FORC, 5-th Annual All-Russian Youth Scientific Forum OpenScience-2019 (oral talk - the best in the section "Condensed Matter Physics").

5. I.S. Dubitskiy, E. G. Yashina, A. H. Elmekawy, S. V. Sotnichuk, A. A. Mistonov, Influence of interactions and inhomogeneous states on the magnetic properties of an array of iron nanowires, 54-th School of Condensed Matter Physics 2020 (oral talk).

6. A. Elmekawy, S. V. Sotnichuk, K. S. Napolsky, D. Menzel, A. A. Mistonov, Magnetic properties of arrays of segmented nanowires with different lengths of ferromagnetic segments, 54-th School of Condensed Matter Physics 2020 (poster).

Personal contribution of the author

The author independently processed and analyzed SEM and SAXS images of the studied samples, conducted SQUID magnetometric experiments, processed and analyzed the data obtained: complete magnetization reversal curves, as well as FORC data, processed and analyzed FORC data obtained by the vibration magnetometry method, took an active part in the discussion, and also presented the results at conferences and seminars of the department, actively participated in writing articles.

Contribution of coauthors

All the samples, studied in the current work were synthesized in the M.V. Lomonosov Moscow State University, by Stepan Sotnichuk and Kirill Napolsky. Sputtering of conducting layer onto the bottom of the samples was performed by Ivan Bozhev.

Ekaterina Iashina took part in SEM and SAXS measurements and processing. She also actively took part in an analysis of the part of experimental data, obtained by SQUID-magnetometry.

Micromagnetic modeling was performed by Ilya Dubitskiy.

Dirk Menzel provided an opportunity and assisted in conducting SQUID-magnetometry measurements.

Похожие диссертационные работы по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК

Заключение диссертации по теме «Физика конденсированного состояния», Елмекави Ахмед Хассан Абделрахман

Заключение

В данной работе были исследованы магнитные свойства массивов нанонитей из чистого железа. В ходе исследования были синтезированы три серии образцов методом электрохимического осаждения в поры матрицы анодного оксида алюминия.

По данным сканирующей электронной микроскопии определялись диаметры пор (нитей), межпоровое расстояние, длина нанонитей, размеры структурных доменов. Было показано, что получающиеся параметры хорошо согласуются с данными, прогнозируемыми при синтезе.

Железо, осаждённое в поры матрицы анодного оксида алюминия, находится преимущественно в a-Fe фазе. Оксидные компоненты методом широкоугольной дифракции не выявляются. Показано, что для нитей диаметром 33 нм характерно наличие преимущественного направления роста кристаллитов вдоль кристаллогафической оси типа <110>, в то время как для нитей большего диаметра текстура не обнаружена.

Данные по малоугловому рассеянияю синхротронного излучения, являющиеся комплементарными к сканирующей электронной микроскопии ввиду нелокальности метода, показывают хорошее соответствие периодичности структуры и размеров структурных доменов с результатами СЭМ-анализа.

Анализ кривых перемагничивания первого порядка, проведенный впервые для массивов несегментированных железных нанонитей указывает на наличие нитей, ориентированных антипараллельно другим в полях ниже поля насыщения, а также малое уширение распределения полей перемагничивания отдельных нанонитей.

Как коэрцитивная сила, так и квадратичность кривых перемагничивания увеличиваются с длиной нанонитей диаметром порядка 52 нм при приложении внешнего магнитного поля вдоль длинной оси нитей. Такое поведение свидетельствует об уменьшении межнитевого взаимодействия, и хорошо описывается моделью, учитывающей это взаимодействие.

Использование модели перемагничивания через механизм движения доменной стенки показало хорошее согласие с результатами, полученными при использовании модели взаимодействующих нанонитей. Этот факт свидетельствует о том, что именно этот механизм является доминирующим для массивов таких нитей, а также косвенно указывает на однодоменность нитей. Дополнительный анализ кривых перемагничивания первого порядка, использованный в этом случае, также указывает на спад межнитевых взаимодействий, переход от локального характера к влиянию среднего поля, с увеличением длины нитей, а также на поведение, похожее на однодоменное. Благодаря использованию аналитической модели магнитного поведения массивов магнитных нанонитей, а также микромагнитного моделирования было установлено, что морфологические дефекты (текстура, неполное заполнение пор, форма концов) оказывают заметное влияние на процесс перемагничивания нанонити. Особенно, важную роль играют дефекты на концах нанонитей, определяющие объём нуклеации неоднородных состояний.

Лучшее соответствие между экспериментальными и расчётными результатами было получено для модели 7 нанонитей в приближении среднего поля, что, вероятно, обусловлено, размером и разориентированностью структурных доменов в реальных массивах нанонитей. Кроме того, было показано, что сходимость выше для нитей большей толщины, где объём возникающего неоднородно состояния больше, и менее чувствителен к морфологическим неоднородностям.

Список литературы диссертационного исследования кандидат наук Елмекави Ахмед Хассан Абделрахман, 2021 год

Список литературы

1. Reich D.H. et al. Biological applications of multifunctional magnetic nanowires (invited) // J. Appl. Phys. 2003. Vol. 93, № 10. P. 7275-72SG. https://doi.org/1G.1G63/U55S672 .

2. Pondman K.M. et al. Au coated Ni nanowires with tuneable dimensions for biomedical applications // J. Mater. Chem. B. 2013. Vol. 1, № 44. P. 6129. https://doi.org/1G.1G39/c3tb2GSGSg .

3. Martínez-Banderas A.I. et al. Iron-Based Core-Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy // ACS Appl. Mater. Interfaces. 2019. Vol. 11, № 47. P. 43976-439SS. https://doi.org/1G.1G21/acsami.9b17512 .

4. Banerjee S.S., Chen D.-H. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery // Nanotechnology. 2008. Vol. 19, № 50. P. 505104. https://doi.org/1G.1GSS/G957-44S4/19/5G/5G51G4 .

5. Holligan D.L., Gillies G.T., Dailey J.P. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair // Nanotechnology. 2003. Vol. 14, № 6. P. 661-666. https://doi.org/1G.1GSS/G957-44S4/14/6/31S .

6. Sharma A. et al. Inducing cells to disperse nickel nanowires via integrin-mediated responses // Nanotechnology. IOP Publishing, 2015. Vol. 26, № 13. P. 135102. https://doi.org/1G.1GSS/G957-44S4/26/13/1351G2 .

7. Pondman K.M. et al. Magnetic drug delivery with FePd nanowires // J. Magn. Magn. Mater. Elsevier, 2G15. Vol. 3SG. P. 299-3G6. https://doi.org/1G.1G16/i.immm.2G14.1G.1G1 .

S. Alsharif N.A. et al. Biofunctionalizing Magnetic Nanowires Toward Targeting and Killing Leukemia Cancer Cells // IEEE Trans. Magn. 2019. Vol. 55, № 2. P. 1-5. https://doi.org/1G.11G9/TMAG.2G1S.2S64245 .

9. Egolf P.W. et al. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction // J. Appl. Phys. 2016. Vol. 120, № 6. P. 064304. https://doi.org/1G.1G63/1.496G4G6 .

1G. Nana A.B.A. et al. Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Cancer Therapeutics // Cancers (Basel). 2019. Vol. 11, № 12. P. 1956. https://doi.org/1G.339G/cancers11121956 .

11. Contreras M.F. et al. Magnetic nanowires and hyperthermia: How geometry and material affect heat production efficiency // 2015 IEEE Magnetics Conference (INTERMAG). IEEE, 2015. P. 1-1. https://doi.org/10.1109/INTMAG.2015.7157495 .

12. Alonso J. et al. FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia // J. Appl. Phys. 2015. Vol. 117, № 17. P. 17D113. https://doi.org/10.1063/1.4908300 .

13. Choi D.S. et al. Hyperthermia with Magnetic Nanowires for Inactivating Living Cells // J. Nanosci. Nanotechnol. 2008. Vol. 8, № 5. P. 2323-2327. https://doi.org/10.1166/jnn.2008.273 .

14. Lin W.-S. et al. Shape Effects of Iron Nanowires on Hyperthermia Treatment // J. Nanomater. 2013. Vol. 2013. P. 1-6. https://doi.org/10.1155/2013/237439 .

15. Lindeberg M., Hjort K. Interconnected nanowire clusters in polyimide for flexible circuits and magnetic sensing applications // Sensors Actuators A Phys. Elsevier, 2003. Vol. 105, № 2. P. 150-161. https://doi.org/10.1016/S0924-4247(03)00088-8.

16. Fert A., Piraux L. Magnetic nanowires // J. Magn. Magn. Mater. 1999. Vol. 200, № 1-3. P. 338-358. https://doi.org/10.1016/S0304-8853(99)00375-3 .

17. Daughton J.M. GMR applications // J. Magn. Magn. Mater. 1999. Vol. 192, № 2. P. 334-342. https://doi.org/10.1016/S0304-8853(98)00376-X .

18. Rossi N. et al. Magnetic Force Sensing Using a Self-Assembled Nanowire // Nano Lett. American Chemical Society, 2019. Vol. 19, № 2. P. 930-936. https://doi.org/10.1021/acs.nanolett.8b04174 .

19. Bauer M.J. et al. Magnetic field sensors using arrays of electrospun magnetoelectric Janus nanowires // Microsystems Nanoeng. Springer US, 2018. Vol. 4, № 1. P. 37. https://doi.org/10.1038/s41378-018-0038-x .

20. Classification P., Application F., Data P. ( 12 ) Patent Application Publication ( ( 43 No . : : US 2019 // United States Pat. Appl. Publ. 2019. Vol. US 2019 /.

21. McGary P.D. et al. Magnetic nanowires for acoustic sensors (invited) // J. Appl. Phys. 2006. Vol. 99, № 8. P. 08B310. https://doi.org/10.1063/1.2167332 .

22. Flatau A.B. et al. Magnetostrictive Fe-Ga Nanowires for actuation and sensing applications // Magnetic Nano- and Microwires. 2nd ed. Elsevier, 2020. P. 737776. https://doi.org/10.1016/B978-0-08-102832-2.00025-6 .

23. Park J.J. et al. Characterization of the magnetic properties of multilayer magnetostrictive iron-gallium nanowires // J. Appl. Phys. 2010. Vol. 107, № 9. P. 09A954. https://doi.org/10.1063/L3359852 .

24. Um J. et al. Template-assisted electrodeposited magnetic nanowires and their properties for applications // Magnetic Nano- and Microwires. 2nd ed. Elsevier, 2020. P. 675-695. https://doi.org/10.1016/B978-0-08-102832-2.00022-0 .

25. Gong S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires // Nat. Commun. Nature Publishing Group, 2014. Vol. 5, № 1. P. 3132. https://doi.org/10.1038/ncomms4132 .

26. Zhu B. et al. Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors // Small. 2014. Vol. 10, № 18. P. 3625-3631. https://doi.org/10.1002/smll.201401207 .

27. Park J.J. et al. Magnetostrictive Fe-Ga/Cu Nanowires Array With GMR Sensor for Sensing Applied Pressure // IEEE Sens. J. IEEE, 2017. Vol. 17, № 7. P. 2015-2020. https://doi.org/10.1109/JSEN.2017.2657789 .

28. Reddy S.M. et al. Electrochemical Synthesis of Magnetostrictive Fe-Ga/Cu Multilayered Nanowire Arrays with Tailored Magnetic Response // Adv. Funct. Mater. 2011. Vol. 21, № 24. P. 4677-4683. https://doi.org/10.1002/adfm.201101390 .

29. Grutter A.J. et al. Complex Three-Dimensional Magnetic Ordering in Segmented Nanowire Arrays // ACS Nano. 2017. Vol. 11, № 8. P. 8311-8319. https://doi.org/10.1021/acsnano.7b03488 .

30. Alfadhel A., Kosel J. Magnetic Nanocomposite Cilia Tactile Sensor // Adv. Mater. 2015. Vol. 27, № 47. P. 7888-7892. https://doi.org/10.1002/adma.201504015 .

31. Parkin S.S.P., Hayashi M., Thomas L. Magnetic Domain-Wall Racetrack Memory // Science (80-. ). 2008. Vol. 320, № 5873. P. 190-194. https://doi.org/10.1126/science.1145799 .

32. Um J. et al. Fabrication of Long-Range Ordered Aluminum Oxide and Fe/Au Multilayered Nanowires for 3-D Magnetic Memory // IEEE Trans. Magn. 2020. Vol. 56, № 2. P. 1-6. https://doi.org/10.1109/TMAG.2019.2942946 .

33. Parkin S., Yang S.-H. Memory on the racetrack // Nat. Nanotechnol. Nature Publishing Group, 2015. Vol. 10, № 3. P. 195-198. https://doi.org/10.1038/nnano.2015.41 .

34. Choi J. et al. Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp // J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2003. Vol. 21, № 2. P. 763. https://doi.org/10.1116/1.1556397 .

35. Maqableh M.M. et al. Low-Resistivity 10 nm Diameter Magnetic Sensors // Nano Lett. 2012. Vol. 12, № 8. P. 4102-4109. https://doi.org/10.1021/nl301610z .

36. Masuda H. et al. Highly ordered nanochannel-array architecture in anodic alumina // Appl. Phys. Lett. 1997. Vol. 71, № 19. P. 2770-2772. https://doi.org/10.1063/L120128 .

37. Rial J., Proenca M.P. A Novel Design of a 3D Racetrack Memory Based on Functional Segments in Cylindrical Nanowire Arrays // Nanomaterials. 2020. Vol. 10, № 12. P. 2403. https://doi.org/10.3390/nano10122403 .

38. Ruiz-Gómez S. et al. Observation of a topologically protected state in a magnetic domain wall stabilized by a ferromagnetic chemical barrier // Sci. Rep. 2018. Vol. 8, № 1. P. 16695. https://doi.org/10.1038/s41598-018-35039-6 .

39. Núñez A. et al. Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires // J. Phys. D. Appl. Phys. 2017. Vol. 50, № 15. P. 155003. https://doi.org/10.1088/1361-6463/aa622e .

40. Snijders P.C. et al. Spectroscopic evidence for spin-polarized edge states in graphitic Si nanowires // New J. Phys. 2012. Vol. 14, № 10. P. 103004. https://doi.org/10.1088/1367-2630/14/10/103004 .

41. Guerra Y. et al. Length distribution effects on the dipolar interactions for hexagonal arrays of nine nanowires // J. Magn. Magn. Mater. Elsevier B.V., 2020. Vol. 506, № November 2019. P. 166797. https://doi.org/10.1016/i.immm.2020.166797 .

42. Li H.-J. et al. Effects of dipolar interactions on magnetic properties of Co nanowire arrays // Chinese Phys. B. 2017. Vol. 26, № 11. P. 117503. https://doi.org/10.1088/1674-1056/26/11/117503 .

43. Kantar E. Geometry-Dependent Magnetic Properties of Ising-Type Multisegment Nanowires // J. Supercond. Nov. Magn. Journal of Superconductivity and Novel Magnetism, 2016. Vol. 29, № 10. P. 2699-2704. https://doi.org/10.1007/s10948-016-3603-2 .

44. Vázquez M., Vivas L.G. Magnetization reversal in Co-base nanowire arrays // Phys. status solidi. 2011. Vol. 248, № 10. P. 2368-2381. https://doi.org/10.1002/pssb.201147092 .

45. Yoo E. et al. Composition-driven crystal structure transformation and magnetic properties of electrodeposited Co-W alloy nanowires // J. Alloys Compd. Elsevier B.V, 2020. Vol. 843. P. 155902. https://doi.org/10.1016/uallcom.2020.155902 .

46. Khan S. et al. Structural, magnetic and electrical investigations of Fe1—XMnX (0 < x < 0.39) alloy nanowires via electrodeposition in AAO templates // Solid State Sci. Elsevier Masson SAS, 2020. Vol. 107, № July. P. 106351. https: //doi.org/ 10.1016/i.solidstatesciences.2020.106351 .

47. Ahmad N. et al. Dominance of Shape Anisotropy among Magnetostatic Interaction and Magnetocrystalline Anisotropy in Electrodeposited (FeCo)1-xCux (X = 0.10.5) Ternary Alloy Nanowires // J. Supercond. Nov. Magn. Journal of Superconductivity and Novel Magnetism, 2020. Vol. 33, № 5. P. 1495-1505. https://doi.org/10.1007/s 10948-019-05394-0 .

48. Vivas L.G. et al. Magnetic anisotropy in ordered textured Co nanowires // Appl. Phys. Lett. 2012. Vol. 100, № 25. P. 252405. https://doi.org/10.1063/L4729782 .

49. Vivas L.G. et al. Magnetic anisotropy in CoNi nanowire arrays: Analytical calculations and experiments // Phys. Rev. B. 2012. Vol. 85, № 3. P. 035439. https://doi.org/10.1103/PhysRevB.85.035439 .

50. Pirota K.R. et al. Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating // J. Appl. Phys. 2011. Vol. 109, № 8. P. 083919. https://doi.org/10.1063/L3553865 .

51. KAWAI S., ISHIGURO I., UEDA R. Structures and magnetic properties of anodic oxide coatings on aluminum containing electro-deposited Co, Ni and Co-Ni alloy // J. Japan Inst. Light Met. 1975. Vol. 25, № 5. P. 159-166. https://doi.org/10.2464/iilm.25.159 .

52. KAWAI S., ISHIGURO I., YOSHIMOTO H. Recording properties of anodic oxide films on aluminum containing electro-deposited ferro-magnetic metals and alloys // J. Japan Inst. Light Met. 1977. Vol. 27, № 9. P. 428-435. https://doi.org/10.2464/iilm.27.428 .

53. Turgut Z. et al. Magnetic properties and ordering in C-coated FexCo1-x alloy nanocrystals // J. Appl. Phys. 1998. Vol. 83, № 11. P. 6468-6470. https://doi.org/10.1063/L367922 .

54. Yu R.H. et al. Novel soft magnetic composites fabricated by electrodeposition // J. Appl. Phys. 2000. Vol. 87, № 9. P. 5840-5842. https://doi.org/10.1063/L372540 .

55. Qin D.H. et al. Fine magnetic properties obtained in FeCo alloy nanowire arrays // Chem. Phys. Lett. 2002. Vol. 358, № 5-6. P. 484-488. https://doi.org/10.1016/S0009-2614(02)00649-8 .

56. Ramazani A. et al. The influence of asymmetric electrodeposition voltage on the microstructure and magnetic properties of FexCo1-x nanowire arrays // J. Cryst. Growth. Elsevier, 2011. Vol. 327, № 1. P. 78-83. https://doi.org/10.1016/i.icrysgro.2011.05.Q11 .

57. Ramazani A. et al. Dual behaviors of magnetic CoxFe1-x (0<x<1) nanowires embedded in nanoporous with different diameters // J. Magn. Magn. Mater. Elsevier, 2012. Vol. 324, № 19. P. 3193-3198. https://doi.org/10.1016/i.immm.2012.05.036 .

58. Jiles D. Introduction to Magnetism and Magnetic Materials. CRC Press, Boca Raton, FL, 1998. 354 p.

59. Cho S.-G. et al. Magnetic and Microwave Properties of NiFe Nanowires Embedded in Anodized Aluminum Oxide (AAO) Templates // IEEE Trans. Magn. 2010. Vol. 46, № 2. P. 420-423. https://doi.org/10.1109/TMAG.2009.2033355 .

60. Salem M.S. et al. Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition // J. Mater. Chem. 2012. Vol. 22, № 17. P. 8549. https://doi.org/10.1039/c2im16339i .

61. Pardavi-Horvath M. et al. Interaction effects in Permalloy nanowire systems // J. Appl. Phys. 2008. Vol. 103, № 7. P. 07D517. https://doi.org/10.1063/1.2833304 .

62. Atalay S. et al. Magnetoimpedance effects in a CoNiFe nanowire array // J. Alloys Compd. 2013. Vol. 561. P. 71-75. https://doi.org/10.1016/i.iallcom.2013.01.173 .

63. Sharma G., Grimes C.A. Synthesis, characterization, and magnetic properties of FeCoNi ternary alloy nanowire arrays // J. Mater. Res. 2004. Vol. 19, № 12. P. 3695-3703. https://doi.org/10.1557/JMR.2004.0476 .

64. Sellmyer D.J., Zheng M., Skomski R. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays // J. Phys. Condens. Matter. 2001. Vol. 13, № 25. P. R433-R460. https://doi.org/10.1088/0953-8984/13/25/201 .

65. Zeng H. et al. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays // Phys. Rev. B. 2002. Vol. 65, № 13. P. 134426. https://doi.org/10.1103/PhysRevB.65.134426 .

66 Napolskii K.S. et al. Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential // Electrochim. Acta. 2011. Vol. 56, № 5. P. 2378-2384. https://doi.org/10.1016/i.electacta.2010.12.013 .

67. Aharoni A. Magnetization Curling // Phys. status solidi. 1966. Vol. 16, № 1. P. 342. https://doi.org/10.1002/pssb.19660160102 .

68. Ivanov Y.P., Vázquez M., Chubykalo-Fesenko O. Magnetic reversal modes in cylindrical nanowires // J. Phys. D. Appl. Phys. 2013. Vol. 46, № 48. P. 485001. https://doi.org/10.1088/0022-3727/46/48/485001 .

69. Dost R. et al. Effect of annealing on the electrical and magnetic properties of electrodeposited Ni and permalloy nanowires // J. Magn. Magn. Mater. 2020. Vol. 499. P. 166276. https://doi.org/10.1016/i.immm.2019.166276 .

70. Xu J. et al. Growth and magnetic interaction of single crystalline Ni gradientdiameter magnetic nanowire arrays // J. Mater. Sci. Springer US, 2019. Vol. 54, № 17. P. 11538-11545. https://doi.org/10.1007/s10853-019-03694-3 .

71. Kan J.J. et al. Periodic chiral magnetic domains in single-crystal nickel nanowires // Phys. Rev. Mater. 2018. Vol. 2, № 6. P. 064406. https://doi.org/10.1103/PhysRevMaterials.2.064406 .

72. Kozlov S.N. et al. Magnetoresistance of a single polycrystalline nickel nanowire // J. Appl. Phys. 2019. Vol. 125, № 6. P. 063902. https://doi.org/10.1063/1.5064680 .

73. Skryabina O. V. et al. Anomalous magneto-resistance of Ni-nanowire/Nb hybrid system // Sci. Rep. Springer US, 2019. Vol. 9, № 1. P. 14470. https://doi.org/10.1038/s41598-019-50966-8 .

74. Agarwal S., Khatri M.S. Effect of pH and Boric Acid on Magnetic Properties of Electrodeposited Co Nanowires // Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. Springer India, 2020. https://doi.org/10.1007/s40010-020-00708-7 .

75. Nath K., Sinha J., Banerjee S.S. Flipping anisotropy and changing magnetization reversal modes in nano-confined Cobalt structures // J. Magn. Magn. Mater. Elsevier B.V., 2019. Vol. 476, № August 2018. P. 412-416. https://doi.org/10.1016/i.immm.2018.12.093 .

76. Zhang H. et al. Growth mechanism and magnetic properties of Co nanowire arrays by AC electrodeposition // J. Magn. Magn. Mater. Elsevier B.V., 2018. Vol. 468, № July. P. 188-192. https://doi.org/10.1016/i.immm.2018.08.013 .

77. Doludenko I.M. et al. Nanowires Made of FeNi and FeCo Alloys: Synthesis, Structure, and Mössbauer Measurements // Phys. Solid State. 2020. Vol. 62, № 9. P. 1639-1646. https://doi.org/10.1134/S1063783420090061 .

78. Cesiulis H. et al. Electrodeposition of Iron-Group Alloys into Nanostructured Oxide Membranes: Synthetic Challenges and Properties // Curr. Nanosci. 2018. Vol. 15, № 1. P. 84-99. https://doi.org/10.2174/1573413714666180410154104 .

79. Noori F., Ramazani A., Almasi Kashi M. Controlling structural and magnetic properties in CoNi and CoNiFe nanowire arrays by fine-tuning of Fe content // J. Alloys Compd. Elsevier B.V, 2018. Vol. 756. P. 193-201. https://doi.org/10.1016/i.iallcom.2018.04.261 .

80. Goncharova A.S. et al. Oriented arrays of iron nanowires: synthesis, structural and magnetic aspects // J. Sol-Gel Sci. Technol. 2017. Vol. 81, № 2. P. 327-332. https://doi.org/10.1007/s 10971 -016-4254-2 .

81. AlMawlawi D., Coombs N., Moskovits M. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size // J. Appl. Phys. 1991. Vol. 70, № 8. P. 4421-4425. https://doi.org/10.1063/1.349125 .

82. Peng Y. et al. Magnetic properties and magnetization reversal of a-Fe nanowires deposited in alumina film // J. Appl. Phys. American Institute of Physics Inc., 2000. Vol. 87, № 10. P. 7405-7408. https://doi.org/10.1063/1.373001 .

83. Grobert N. et al. Enhanced magnetic coercivities in Fe nanowires // Appl. Phys. Lett. American Institute of Physics Inc., 1999. Vol. 75, № 21. P. 3363-3365. https://doi.org/10.1063/L125352 .

84. Yang S. et al. Preparation and magnetic property of Fe nanowire array // J. Magn. Magn. Mater. 2000. Vol. 222, № 1-2. P. 97-100. https://doi.org/10.1016/S0304-8853(00)00541-2 .

85. Dobosz I., Gumowska W., Czapkiewicz M. Synthesis and magnetic properties of Fe nanowire arrays electrodeposited in self-ordered alumina membrane // Arch. Metall. Mater. Polish Academy of Sciences, 2019. Vol. 64, № 3. P. 983-990. https://doi.org/10.24425/amm.2019.129484 .

86. Neetzel C. et al. Uniaxial Magnetization Performance of Textured Fe Nanowire Arrays Electrodeposited by a Pulsed Potential Deposition Technique // Nanoscale Res. Lett. Nanoscale Research Letters, 2017. Vol. 12, № 1. P. 598. https://doi.org/10.1186/s11671-017-2367-3 .

87. Neetzel C. et al. Uniaxial magnetization reversal process in electrodeposited high-density iron nanowire arrays with ultra-large aspect ratio // Results Phys. Elsevier B.V., 2019. Vol. 15. P. 102653. https://doi.org/10.1016/i.rinp.2019.102653 .

88. Frei E.H., Shtrikman S., Treves D. Critical Size and Nucleation Field of Ideal Ferromagnetic Particles // Phys. Rev. 1957. Vol. 106, № 3. P. 446-455. https://doi.org/10T 103/PhysRev.106.446 .

89. Lillo M., Losic D. Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology // J. Memb. Sci. 2009. Vol. 327, № 1-2. P. 11-17. https://doi.org/10.1016/i.memsci.2008.11.033 .

90. Roslyakov I. V. et al. Growth of Porous Anodic Alumina on Low-Index Surfaces of Al Single Crystals // J. Phys. Chem. C. 2017. Vol. 121, № 49. P. 27511-27520. https://doi.org/10.1021/acs.ipcc.7b09998 .

91. Fit2D. http://www.esrf.eu/computing/scientific/fit2d/.

92. Grigor'ev S. V. et al. Spatially ordered arrays of magnetic nanowires: Polariz ed-neutron scattering investigation // JETP Lett. 2007. Vol. 85, № 12. P. 605-610. https://doi.org/10.1134/S0021364007120041 .

93. Mayergoyz I.D. Hysteresis models from the mathematical and control theory points of view // J. Appl. Phys. American Institute of Physics, 1985. Vol. 57, № 8. P. 38033805. https://doi.org/10.1063/L334925 .

94. Preisach F. {U}ber die magnetische Nachwirkung // Zeitschrift f{u}r Phys. Springer, 1935. Vol. 94, № 5-6. P. 277-302.

95. Lupu N. Electrodeposited nanowires and their applications. BoD--Books on Demand, 2010.

96. Harrison R.J., Feinberg J.M. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing // Geochemistry, Geophys. Geosystems. 2008. Vol. 9, № 5. P. n/a-n/a. https://doi.org/10.1029/2008GC001987 .

97. Dobrota C.-I., Stancu A. What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires // J. Appl. Phys. 2013. Vol. 113, № 4. P. 043928. https://doi.org/10.1063/L4789613 .

98. Pike C.R., Roberts A.P., Verosub K.L. Characterizing interactions in fine magnetic particle systems using first order reversal curves // J. Appl. Phys. 1999. Vol. 85, № 9. P. 6660-6667. https://doi.org/10.1063/L370176 .

99. Roberts A.P., Pike C.R., Verosub K.L. First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples // J. Geophys. Res. Solid Earth. 2000. Vol. 105, № B12. P. 28461-28475. https://doi.org/10.1029/2000JB900326 .

100. Pike C.R. et al. First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array // Phys. Rev. B. 2005. Vol. 71, № 13. P. 134407. https://doi.org/10.1103/PhysRevB.71.134407 .

101. Beron F. et al. Magnetostatic Interactions and Coercivities of Ferromagnetic Soft Nanowires in Uniform Length Arrays // J. Nanosci. Nanotechnol. 2008. Vol. 8, № 6. P. 2944-2954. https://doi.org/10.1166/inn.2008.159 .

102. Alikhanzadeh-Arani S., Almasi-Kashi M., Ramazani A. Magnetic characterization of FeCo nanowire arrays by first-order reversal curves // Curr. Appl. Phys. Elsevier B.V, 2013. Vol. 13, № 4. P. 664-669. https://doi.org/10.1016/rcap.2012.10.014 .

103. Almasi Kashi M., Ramazani A., Esmaeily A.S. Magnetostatic Interaction Investigation of CoFe Alloy Nanowires by First-Order Reversal-Curve Diagrams // IEEE Trans. Magn. 2013. Vol. 49, № 3. P. 1167-1171. https://doi.org/10.1109/TMAG.2012.2230335 .

104. Ciureanu M. et al. First Order Reversal Curves (FORC) Diagrams of Co Nanowire Arrays // J. Nanosci. Nanotechnol. 2008. Vol. 8, № 11. P. 5725-5732. https://doi.org/10.1166/jnn.2008.228 .

105. Ramazani A. et al. Tuning magnetic fingerprints of FeNi nanowire arrays by varying length and diameter // Curr. Appl. Phys. Elsevier, 2015. Vol. 15, № 7. P. 819-828. https://doi.org/10.1016/jcap.2015.04.023 .

106. Montazer A.H., Ramazani A., Almasi Kashi M. Magnetically extracted microstructural development along the length of Co nanowire arrays: The interplay between deposition frequency and magnetic coercivity // J. Appl. Phys. 2016. Vol. 120, № 11. P. 113902. https://doi.org/10.1063/L4962372 .

107. Sánchez-Barriga J. et al. Interplay between the magnetic anisotropy contributions of cobalt nanowires // Phys. Rev. B. 2009. Vol. 80, № 18. P. 184424. https://doi.org/10.1103/PhysRevB.80.184424 .

108. Samanifar S. et al. Magnetic alloy nanowire arrays with different lengths: Insights into the crossover angle of magnetization reversal process // J. Magn. Magn. Mater. Elsevier, 2017. Vol. 430. P. 6-15. https://doi.org/10.1016/i.immm.2017.01.060 .

109. Xu J. et al. Effects of gradient diameter on magnetic properties of FeNi alloys nanowires arrays // J. Magn. Magn. Mater. Elsevier B.V., 2020. Vol. 499, № May

2019. P. 166207. https://doi.org/ 10.1016/j.jmmm.2019.166207 .

110. Pierrot A., Béron F., Blon T. FORC signatures and switching-field distributions of dipolar coupled nanowire-based hysterons // J. Appl. Phys. AIP Publishing LLC,

2020. Vol. 128, № 9. P. 093903. https://doi.org/10.1063/5.0020407 .

111. Dobrotä C.-I., Stancu A. Tracking the individual magnetic wires' switchings in ferromagnetic nanowire arrays using the first-order reversal curves (FORC) diagram method // Phys. B Condens. Matter. 2015. Vol. 457. P. 280-286. https://doi.org/10.1016/rphysb.2014.10.006 .

112. Fredkin D.R., Koehler T.R. Hybrid method for computing demagnetizing fields // IEEE Trans. Magn. IEEE, 1990. Vol. 26, № 2. P. 415-417. https://doi.org/10.1109/20.106342 .

113. Fischbacher T. et al. A Systematic Approach to Multiphysics Extensions of Finite-Element-Based Micromagnetic Simulations: Nmag // IEEE Trans. Magn. 2007. Vol. 43, № 6. P. 2896-2898. https://doi.org/10.1109/TMAG.2007.893843 .

114. Bonilla F.J., Lacroix L.-M., Blon T. Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy // J. Magn. Magn. Mater. Elsevier, 2017. Vol. 428, № December 2016. P. 394-400. https://doi.org/10.1016/iimmm.2016.12.069 .

115. Elmekawy A.H.A. et al. Magnetic properties and FORC analysis of iron nanowire arrays // Mater. Today Commun. 2020. Vol. 25. P. 101609. https : //doi. org/10.1016/i .mtcomm.2020.101609 .

116. Moraes S. et al. The Role of Cu Length on the Magnetic Behaviour of Fe/Cu Multi-Segmented Nanowires // Nanomaterials. 2018. Vol. 8, № 7. P. 490. https://doi.org/10.3390/nano8070490 .

117. Haehnel V. et al. Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes // Acta Mater. 2010. Vol. 58, № 7. P. 2330-2337. https://doi.org/10.1016/i.actamat.2009.12.019 .

118. Beron F. et al. Magnetic Behavior of Ni/Cu Multilayer Nanowire Arrays Studied by First-Order Reversal Curve Diagrams // IEEE Trans. Magn. 2008. Vol. 44, № 11. P. 2745-2748. https://doi.org/10.1109/TMAG.2008.2002000 .

119. Béron F. et al. Magnetostatic Interactions and Coercivities of Ferromagnetic Soft Nanowires in Uniform Length Arrays // J. Nanosci. Nanotechnol. 2008. Vol. 8, № 6. P. 2944-2954. https://doi.org/10.1166/jnn.2008.159 .

120. Proenca M.P. et al. Angular first-order reversal curves: an advanced method to extract magnetization reversal mechanisms and quantify magnetostatic interactions // J. Phys. Condens. Matter. 2014. Vol. 26, № 11. P. 116004. https://doi.org/10.1088/0953-8984/26/11/116004 .

121. Proenca M.P. et al. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays // J. Appl. Phys. 2013. Vol. 113, № 9. P. 093907. https://doi.org/10.1063/L4794335 .

122. Goncharova A.S. et al. Oriented arrays of iron nanowires: synthesis, structural and magnetic aspects // J. Sol-Gel Sci. Technol. 2017. Vol. 81, № 2. P. 327-332. https://doi.org/10.1007/s 10971 -016-4254-2 .

123. Goncharova A.S. et al. Oriented arrays of iron nanowires: synthesis, structural and magnetic aspects // J. Sol-Gel Sci. Technol. Springer US, 2017. Vol. 81, № 2. P. 327-332. https://doi.org/10.1007/s 10971 -016-4254-2 .

124. Vázquez M. et al. Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter // J. Appl. Phys. 2004. Vol. 95, № 11 II. P. 6642-6644. https://doi.org/10.1063/L1687539 .

125. Hertel R. Micromagnetic simulations of magnetostatically coupled Nickel nanowires // J. Appl. Phys. 2001. Vol. 90, № 11. P. 5752-5758. https://doi.org/10.1063/L1412275 .

126. Escrig J. et al. Remanence of Ni nanowire arrays: Influence of size and labyrinth magnetic structure // Phys. Rev. B. 2007. Vol. 75, № 18. P. 184429. https://doi.org/10.1103/PhysRevB.75.184429 .

127. Han G.C., Zong B.Y., Wu Y.H. Magnetic properties of magnetic nanowire arrays // IEEE Trans. Magn. 2002. Vol. 38, № 5. P. 2562-2564. https://doi.org/10.1109/TMAG.2002.801952 .

128. Muxworthy A.R., Roberts A.P. Muxworthy, A R, Roberts, A P, First-order reversal curve (FORC) diagrams , In: Gubbins, D and Herrero-Bervera, E, editor, Encyclopedia of Geomagnetism and Paleomagnetism, Springer, 2007, Pages: 266 -272. 2007. P. 266-272.

129. Salem M.S. et al. Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition // J. Mater. Chem. 2012. Vol. 22, № 17. P. 8549. https://doi.org/10.1039/c2im16339i .

130. Li H. et al. Magnetic properties and magnetization reversal in Co nanowires with different morphology // J. Magn. Magn. Mater. Elsevier B.V., 2019. Vol. 469, № August 2018. P. 203-210. https://doi.org/10.1016/i.immm.2018.08.063 .

131. Zighem F., Mercone S. Magnetization reversal behavior in complex shaped Co nanowires: a nanomagnet morphology optimization. 2014. https://doi.org/10.1063/L4901999 .

132. García Fernández J. et al. Two-Step Magnetization Reversal FORC Fingerprint of Coupled Bi-Segmented Ni/Co Magnetic Nanowire Arrays // Nanomaterials. 2018. Vol. 8, № 7. P. 548. https://doi.org/10.3390/nano8070548 .

133. Stancu A. et al. Micromagnetic and Preisach analysis of the First Order Reversal Curves (FORC) diagram // J. Appl. Phys. 2003. Vol. 93, № 10. P. 6620-6622. https://doi.org/10.1063/L1557656 .

134. Grigoriev S. V et al. Arrays of interacting ferromagnetic nanofilaments: Small-angle neutron diffraction study // JETP Lett. 2011. Vol. 94, № 8. P. 635-641. https://doi.org/10.1134/S0021364011200057 .

135. Ivanov Y.P., Vázquez M., Chubykalo-Fesenko O. Magnetic reversal modes in cylindrical nanowires // J. Phys. D. Appl. Phys. 2013. Vol. 46, № 48. P. 485001. https://doi.org/10.1088/0022-3727/46/48/485001 .

136. Ochoa A. et al. Finite-length Fe nanowire arrays: the effects of magnetic anisotropy energy, dipolar interaction and system size on their magnetic properties // J. Phys. D. Appl. Phys. 2017. Vol. 50, № 9. P. 095003. https://doi.org/10.1088/1361-6463/aa5763 .

137. Vázquez M. et al. Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics // J. Magn. Magn. Mater. 2005. Vol. 294, № 2. P. 174-181. https://doi.org/10.1016/ummm.2005.03.032 .

138. Kartopu G. et al. Size effects and origin of easy-axis in nickel nanowire arrays // J. Appl. Phys. 2011. Vol. 109, № 3. P. 033909. https://doi.org/10.1063/L3531565 .

139. Qin L. et al. Effect of length on the magnetic properties of Ni 300nm wide nanowires // Phys. E Low-dimensional Syst. Nanostructures. Elsevier, 2013. Vol. 50. P. 17-21. https://doi.org/10.1016/i.physe.2013.02.016 .

140. Zeng H. et al. Magnetic properties of self-assembled Co nanowires of varying length and diameter // J. Appl. Phys. 2000. Vol. 87, № 9. P. 4718-4720. https://doi.org/10.1063/L373137 .

141. Vivas L.G. et al. Coercivity of ordered arrays of magnetic Co nanowires with controlled variable lengths // Appl. Phys. Lett. 2011. Vol. 98, № 23. P. 232507. https://doi.org/10.1063/L3597227 .

142. Ciureanu M. et al. First Order Reversal Curves (FORC) Diagrams of Co Nanowire Arrays // J. Nanosci. Nanotechnol. American Scientific Publishers, 2008. Vol. 8, № 11. P. 5725-5732. https://doi.org/10.1166/jnn.2008.228 .

143. Kartopu G. et al. Magnetization behavior of ordered and high density Co nanowire arrays with varying aspect ratio // J. Appl. Phys. 2008. Vol. 103, № 9. P. 093915. https://doi.org/10.1063/L2917191 .

144. Mansouri N. et al. Electrodeposition of equiatomic FeNi and FeCo nanowires: Structural and magnetic properties // J. Magn. Magn. Mater. Elsevier B.V., 2020. Vol. 493. P. 165746. https://doi.org/10.1016/i.immm.2019.165746 .

145. Lim S.L. et al. Length dependence of coercivity in CoFe2 nanowire arrays with high aspect ratios // J. Alloys Compd. 2010. Vol. 505, № 2. P. 609-612. https://doi.org/10.1016/i.iallcom.2010.06.086 .

146. Samanifar S. et al. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length // J. Magn. Magn. Mater. Elsevier, 2015. Vol. 378. P. 73-83. https://doi.org/10.1016/i.immm.2014.10.155 .

147. Laroze D. et al. A detailed analysis of dipolar interactions in arrays of bi-stable magnetic nanowires // Nanotechnology. 2007. Vol. 18, № 41. P. 415708. https://doi.org/10.1088/0957-4484/18/41/415708 .

148. Escrig J. et al. Geometry dependence of coercivity in Ni nanowire arrays // Nanotechnology. 2008. Vol. 19, № 7. P. 075713. https://doi.org/10.1088/0957-4484/19/7/075713 .

149. Qin X.F. et al. Magnetization Reversal of High Aspect Ratio Iron Nanowires Grown by Electrodeposition // IEEE Trans. Magn. 2012. Vol. 48, № 11. P. 3136-3139. https://doi.org/10.1109/TMAG.2012.2205561 .

150. Bochmann S. et al. Preparation and physical properties of soft magnetic nickel-cobalt three-segmented nanowires // J. Appl. Phys. 2018. Vol. 124, № 16. P. 163907. https://doi.org/10.1063/L5049892 .

151. Jamet S. et al. Head-to-head domain walls in one-dimensional nanostructures: an extended phase diagram ranging from strips to cylindrical wires. 2014. P. 1-20.

152. Dubitskiy I.S. et al. Effect of Interactions and Non-uniform Magnetic States on the Magnetization Reversal of Iron Nanowire Arrays // J. Supercond. Nov. Magn. 2021. Vol. 34. P. 539-549. https://doi.org/10.1007/s10948-020-05711-y .

153. Hertel R. Computational micromagnetism of magnetization processes in nickel nanowires // J. Magn. Magn. Mater. 2002. Vol. 249, № 1-2. P. 251-256. https://doi.org/10.1016/S0304-8853(02)00539-5 .

154. Sun L. et al. Tuning the properties of magnetic nanowires // IBM J. Res. Dev. 2005. Vol. 49, № 1. P. 79-102. https://doi.org/10.1147/rd.491.0079 .

155. Proenca M.P. et al. Identifying weakly-interacting single domain states in Ni nanowire arrays by FORC // J. Alloys Compd. 2017. Vol. 699. P. 421-429. https://doi.org/10.1016/i.iallcom.2016.12.340 .

156. Carvallo C., Özdemir Ö., Dunlop D.J. First-order reversal curve (FORC) diagrams of elongated single-domain grains at high and low temperatures // J. Geophys. Res. Solid Earth. 2004. Vol. 109, № B4. P. 1-8. https://doi.org/10.1029/2003JB002539

157. Ishii Y., Sato M. Magnetic behavior of a film with columnar structure // J. Magn. Magn. Mater. 1989. Vol. 82, № 2-3. P. 309-312. https://doi.org/10.1016/0304-8853(89)90170-4 .

158. Schlesinger M., Paunovic M. Modern electroplating. John Wiley & Sons, 2011. Vol. 55.

159. Schaefer S. et al. NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyst with high noble metal utilisation // RSC Adv. 2016. Vol. 6, № 74. P. 70033-70039. https://doi.org/10.1039/C6RA10235B .

160. Pitzschel K. et al. Magnetic reversal of cylindrical nickel nanowires with modulated diameters // J. Appl. Phys. 2011. Vol. 109, № 3. P. 033907. https://doi.org/10.1063/L3544036 .

161. Ruiz-Clavijo A. et al. Tailoring Magnetic Anisotropy at Will in 3D Interconnected Nanowire Networks // Phys. status solidi - Rapid Res. Lett. 2019. Vol. 13, № 10. P. 1900263. https://doi.org/10.1002/pssr.201900263 .

162. Bran C. et al. Magnetization Ratchet in Cylindrical Nanowires: research-article // ACS Nano. American Chemical Society, 2018. Vol. 12, № 6. P. 5932-5939. https://doi.org/10.1021/acsnano.8b02153 .

163. Wolf D. et al. Holographic vector field electron tomography of three-dimensional nanomagnets // Commun. Phys. Springer US, 2019. Vol. 2, № 1. P. 87. https://doi.org/10.1038/s42005-019-0187-8 .

164. Biziere N. et al. Imaging the Fine Structure of a Magnetic Domain Wall in a Ni Nanocylinder // Nano Lett. 2013. Vol. 13, № 5. P. 2053-2057. https://doi.org/10.1021/nl400317i .

165. Stano M., Fruchart O. Chapter 3 - Magnetic Nanowires and Nanotubes / ed. Brück E. Elsevier, 2018. Vol. 27. P. 155-267. https://doi.org/https://doi.org/10.1016/bs.hmm.2018.08.002 .

166. Forster H. et al. Domain wall motion in nanowires using moving grids (invited) // J. Appl. Phys. 2002. Vol. 91, № 10. P. 6914. https://doi.org/10.1063/1. 1452189 .

167. Wieser R., Nowak U., Usadel K.D. Domain wall mobility in nanowires: Transverse versus vortex walls // Phys. Rev. B. 2004. Vol. 69, № 6. P. 064401. https: //doi.org/10.1103/PhysRevB.69.064401 .

168. Thiaville A., Nakatani Y. Domain-Wall Dynamics in Nanowiresand Nanostrips // Spin Dynamics in Confined Magnetic Structures III. Springer Berlin Heidelberg, 2006. Vol. 101. P. 161-205. https://doi.org/10.1007/10938171 5 .

169. Ebels U. et al. Spin Accumulation and Domain Wall Magnetoresistance in 35 nm Co Wires // Phys. Rev. Lett. 2000. Vol. 84, № 5. P. 983-986. https://doi.org/10.1103/PhysRevLett.84.983 .

170. Da Col S. et al. Nucleation, imaging, and motion of magnetic domain walls in cylindrical nanowires // Appl. Phys. Lett. 2016. Vol. 109, № 6. P. 062406. https://doi.org/10.1063/L4961058 .

171. Stano M. et al. Probing domain walls in cylindrical magnetic nanowires with electron holography // J. Phys. Conf. Ser. 2017. Vol. 903, № 1. P. 012055. https://doi.org/10.1088/1742-6596/903A/012055 .

172. Thiaville A. et al. Micromagnetic study of Bloch-point-mediated vortex core reversal // Phys. Rev. B. 2003. Vol. 67, № 9. P. 094410. https://doi.org/10.1103/PhysRevB.67.094410 .

173. Fangohr H. et al. A new approach to (quasi) periodic boundary conditions in micromagnetics: The macrogeometry // J. Appl. Phys. 2009. Vol. 105, № 7. P. 07D529. https://doi.org/10.1063/L3068637 .

174. Vock S. et al. The role of the inhomogeneous demagnetizing field on the reversal mechanism in nanowire arrays // J. Phys. D. Appl. Phys. 2017. Vol. 50, № 47. P. 475002. https://doi.org/10.1088/1361-6463/aa8eda .

175. Da Col S. et al. Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition // Appl. Phys. Lett. 2011. Vol. 98, № 11. P. 112501. https://doi.org/10.1063/L3562963 .

176. Wang T. et al. Magnetic behavior in an ordered Co nanorod array // Nanotechnology. 2008. Vol. 19, № 45. P. 455703. https://doi.org/10.1088/0957-4484/19/45/455703 .

177. Bochmann S. et al. Preparation and physical properties of soft magnetic nickel-cobalt three-segmented nanowires // J. Appl. Phys. 2018. Vol. 124, № 16. P. 163907. https://doi.org/10.1063/L5049892 .

178. Egolf P.W. et al. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction // J. Appl. Phys. 2016. Vol. 120, № 6. P. 064304. https : //doi.org/10.1063/1.4960406 .

179. Rodr\'\iguez-Carvajal J. An introduction to the program FullProf 2000 // Version July. 2001. P. 54.

180. Zolotoyabko E. Determination of the degree of preferred orientation within the March-Dollase approach // J. Appl. Crystallogr. International Union of Crystallography, 2009. Vol. 42, № 3. P. 513-518. https://doi.org/10.1107/S0021889809013727 .

181. Ivanov Y.P., Chubykalo-Fesenko O. Micromagnetic simulations of cylindrical magnetic nanowires // Magnetic Nano- and Microwires. Elsevier, 2015. P. 423448. https://doi.org/10.1016/B978-0-08-100164-6.00014-X .

182. Lavin R. et al. Angular dependence of magnetic properties in Ni nanowire arrays // J. Appl. Phys. 2009. Vol. 106, № 10. P. 103903. https://doi.org/10.1063/L3257242.

183. Hertel R., Kakay A. Analytic form of transverse head-to-head domain walls in thin cylindrical wires // J. Magn. Magn. Mater. Elsevier, 2015. Vol. 379. P. 45-49. https://doi.org/1Q.1Q16/i.immm.2014.11.Q73 .

184. Landeros P. et al. Reversal modes in magnetic nanotubes // Appl. Phys. Lett. 2007. Vol. 90, № 10. P. 102501. https://doi.org/10.1063/L2437655 .

185. Zighem F. et al. Dipolar interactions in arrays of ferromagnetic nanowires: A micromagnetic study // J. Appl. Phys. 2011. Vol. 109, № 1. P. 013910. https://doi.org/10.1063/L3518498 .

186. Panagiotopoulos I. et al. Packing fraction dependence of the coercivity and the energy product in nanowire based permanent magnets // J. Appl. Phys. 2013. Vol. 114, № 14. P. 143902. https://doi.org/10.1063/L4824381 .

187. Nam D.Y. et al. Magnetization reversal of ferromagnetic nanosprings affected by helical shape // Nanoscale. Royal Society of Chemistry, 2018. Vol. 10, № 43. P. 20405-20413. https://doi.org/10.1039/C8NR05655B .

188. Nguyen Vien G. et al. Study of the magnetization behavior of ferromagnetic nanowire array: Existence of growth defects revealed by micromagnetic simulations // J. Magn. Magn. Mater. Elsevier, 2016. Vol. 401. P. 378-385. https://doi.org/10.1016/i.immm.2015.10.070 .

189. Vilanova Vidal E. et al. A detailed study of magnetization reversal in individual Ni nanowires // Appl. Phys. Lett. 2015. Vol. 106, № 3. P. 032403. https://doi.org/10.1063/L4906108 .

190. Mercone S. et al. Morphology control of the magnetization reversal mechanism in Co 80 Ni 20 nanomagnets // J. Appl. Phys. 2015. Vol. 117, № 20. P. 203905. https://doi.org/10.1063/L4921592 .

191. Panagiotopoulos I. Athermal exploration of Kagome artificial spin ice states by rotating field protocols // J. Magn. Magn. Mater. 2015. Vol. 384. P. 70-74. https://doi.org/10.1016/i.immm.2015.02.026 .

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.