Local atomic and electronic structure of new cathode materials: computational design, operando diagnostics and rational synthesis (Локальная атомная и электронная структура новых катодных материалов: моделирование, operando диагностика и рациональный синтез) тема диссертации и автореферата по ВАК РФ 01.04.15, кандидат наук Мохамед Абделазиз Мохамед Абделазиз
- Специальность ВАК РФ01.04.15
- Количество страниц 231
Оглавление диссертации кандидат наук Мохамед Абделазиз Мохамед Абделазиз
Оглавление
Introduction
Chapter I. Literature review
1.2 Lithium-ion battery operation principle
1.3 Summary of synthesis methods
1.4 First principle calculations
1.5 In situ/operando studies applied to Li-ion batteries
Chapter II. Methods
2.1 Synthesis technique
2.1.1 UiO-66 synthesis
2.1.2 LiCoPO4 @UiO-66 composite synthesis
2.2 Characterization Techniques
2.2.1 Powder X-ray Diffraction
2.2.2 X-ray Absorption spectroscopy
2.2.3 X-Ray Photoelectron Spectroscopy
2.2.4 Electrochemical Cell Preparation
2.2.5 First principle calculations
Chapter III. Influence of the atmosphere on the activation process
Chapter IV. Computation study of the material stability upon lithium and sodium ^
intercalation
Chapter V. 3d doping LiCoPO4
Chapter VI. LiCoPO4 coated by UiO-66 metal-organic framework
Conclusion
Main publications on the theme of the dissertation
References
Рекомендованный список диссертаций по специальности «Молекулярная физика», 01.04.15 шифр ВАК
Катодные материалы для двухионных аккумуляторов на основе полимерных аминов2022 год, кандидат наук Обрезков Филипп Александрович
Высокоэнергоемкие катодные материалы для литий-ионных аккумуляторов на основе модифицированных Ni-обогащенных слоистых оксидов переходных металлов (High-energy-density cathode materials for Li-ion batteries based on modified Ni-rich layered transition metal oxides)2024 год, кандидат наук Орлова Елена Дмитриевна
Новые сульфатные неорганические соединения с переходными металлами: кристаллохимия и физические свойства2022 год, кандидат наук Некрасова Диана Олеговна
The Role of Carbon and Nanocomposite Hybrid Materials as Supports for Transition Metal Sulfide-based Catalysts in Higher Alcohols Synthesis from Syngas (Роль углерода и нанокомпозитных гибридных материалов в качестве носителей для катализаторов на основе сульфидов переходных металлов в синтезе высших спиртов из синтез-газа)2022 год, кандидат наук Осман Мохамед Изелдин Абдалла
Li-проводящий керамический электролит со структурой NASICON для твердотельных аккумуляторов2024 год, кандидат наук Сюй Сеюй
Введение диссертации (часть автореферата) на тему «Local atomic and electronic structure of new cathode materials: computational design, operando diagnostics and rational synthesis (Локальная атомная и электронная структура новых катодных материалов: моделирование, operando диагностика и рациональный синтез)»
INTRODUCTION
Relevance of the work. Ongoing research in the field of Li-ion batteries focuses on the improvement of energy density and power performance. A straightforward approach to improve these properties is the use of a high voltage positive electrode material. In the family of LiMPO4 olivines, the voltage of the redox pair equals 3.4 V, 4.1 V, and 5 V for M = Fe, Mn, Co correspondingly. The corresponding specific energy ranges from 578 W h kg-1 for LiFePO4 to 802 Wh kg-1 for LiCoPO4. However, the practical use of high-voltage materials faces two serious difficulties. First is the stability range of standard non-aqueous electrolytes (usually LiPF6 in EC/DMC), which lies between 3.5 V and 4.8 V versus Li/ Li+.
Due to the high voltage of the LiCoPO4, an interaction between cathode material and electrolyte occurs, leading to the decomposition of the electrolyte. The second issue is the poor electrical conductivity of LCP, which is six orders of magnitude less than for LiFePO4 - 10-15 cm-1 versus 10-9 cm-1. Surface coating and grain boundary engineering play a significant role in improving the cathode material's cycle stability. Usually, the source of carbon in the form of bulky organic molecules is added during material synthesis and then graphitized upon annealing. Metal doping can further improve structural stability, suppress unfavorable phase changes at voltages above 4.5 V, and stabilize the surface. As a result, sp2 conductive carbon coating improves electron mobility, while both carbon and metal dopants protect the cathode nanoparticles' surface.
The choice of coating material is the key to improve electrochemical performance. In this sense, metal-organic frameworks (MOF) can act both as a source of metal and conductive carbon for the surface coating. Xiao Long Xu et al. coated the commercial LiFePO4 by zeolitic imidazolate frameworks, ZIF-8. They report an improvement in cycling properties. In particular, the initial discharge capacity and capacity retention: 159.3 mAh g-1 in the first cycle, and 141 mAh/g after 200 cycles. Xie et al. coated Li1.2Mn0.54Co0.13Ni0.13O2 by ZrO2 using UiO-66-F4 MOF as a precursor. The MOF coated material's discharge capacity was 279 and 110.0 mAh/g at 0.1C and 5C, respectively. MOF-derived carbon was used as a coating layer for Li3V2(PO4)3 cathode material and led to remarkable enhanced
stability of electrochemistry with high discharge specific capacity at around 113.1 and 105.8 mAh /g at a rate of 0.5C and 1C after 1000 cycles.
Aim of the work: enhancing the electrochemical performance of LiCoPO4.
- developed the microwave approach for rapid one-pot synthesis of the highperformance phase of LiCoPO4;
- investigate the influence of the atmosphere on the activation process;
- advanced electrochemical and spectroscopic characterization of the as-prepared and
activated material;
- operando X-ray diagnostic of the material during charge/discharge cycles;
- computation study of the material stability upon lithium and sodium intercalation
- 3d metal doping of LiCoPO4;
- design of the coating for enhancing the electronic conductivity using organic molecules and metal-organic framework as a source of carbon.
The scientific novelty of the dissertation research is:
- For the first time, the LiCoPO4 was prepared by fast microwave-assisted solvothermal technique at low temperatures. The material can be activated under air without losses in electrochemical performance if compared to the activation in Ar;
- For the first time, we have synthesized NaCoPO4 both in p- and Pnma phases using protocol from LiCoPO4 synthesis. From the theoretical point of view, we introduce a routine for the practical construction of novel mixed LixNa1-xCoPO4 material by sequential substitution of Li to Na. We discuss its electrochemical properties and formation energies. GGA + U simulations for a large supercell of the Li1-xNaxCoPO4 structure allowed accurate estimations of the volume changes and working potentials of the material. We show that introducing sodium in the material's structure increases the operational voltage from 4.48 to 4.9 vs. Na/Na+;
- For the first time, we calculated accurate Bader charges on all atoms in the supercell and showed their variation across the insertion and extraction cycles of lithium and
sodium. We report the inherent relative stabilities of Li1-xNaxCoPO4 and LixCoPO4 (x = 0, 0.25,0.5,0.75, 1) and NaxCoPO4 (x = 0.25, 0.5, 0.75, 1) and show that sodium might play a significant role in the electrochemical performance of the cathode material;
- The 3d metal doping of LiCoPO4 enhanced the electrochemical performance of the material; to understand the reason for enhancing this performance, we used the synchrotron diffraction and XAS operando measurements upon charge/ discharge to detect the behavior of the structure and electronic properties. PCA analysis identifies the presence of only two local geometries around Co ions, which correspond to Co2+ in LiCoFePO4, Co3+ in CoFePO4, Fe+2 in LiCoFePO4, Fe3+ in CoFePO4 redox pairs;
- For the first time, we coated LiCoPO4 by UiO-66 metal-organic framework to enhance the conductivity of the cathode material and decrease the rate of degradation upon the interaction with electrolyte at high voltages. The discharge capacity of LiCoPO4@UiO-66 was 147 mAh/g, that is significantly better than the pure LiCoPO4;
- For the first time, operando XAS analysis was applied for the LiCoPO4@UiO-66 upon cycling. The diagnostics reveal no phase degradation and capacity fading can be attributed to Li extraction's impossibility from the LiCoPO4 material, e.g. by channel blocking.
Practical and theoretical relevance. The practical and theoretical significance of the work is based on the new stable high-voltage cathode materials with smart coating by the UiO-66 metal-organic framework as a source of metal and carbon. The work provides practical route for synthesis of LiCoPO4, LiCoFePO4, and LiCoPO4@UiO-66 by microwave-assisted solvothermal technique. For a wide range of materials, we studied the local atomic and electronic structure, morphology and electrochemical properties. The changes in metal oxidation state and phase changes were understood on the basis of operando diagnostics applying high intense synchrotron radiation and laboratory X-ray sources for long-term measurements. First principle calculations have been performed within Density functional theory for different compositions of Li1-xNaxCoPO4. The results help in further
understanding the performance of LiCoPO4 and introduce a practical route for constructing new cathode materials from the Li1-xNaxCoPO4.
The main provisions for the defence:
1. Microwave-assisted heating allows fast (3 hours) solvothermal synthesis of LiCoPO4 phase at low temperature (220 °C). At 700 °C the obtained powder undergoes a phase transition to electrochemically active Pnma phase. Such activation can be performed under air atmosphere without oxidation of Co ions and loss of electrochemical performance.
2. Ab initio GGA + U DFT simulations for a supercell of the Li1-xNaxCoPO4 structure allowed accurate estimations of the material's volume changes and working potentials upon lithium and sodium intercalation. Introducing sodium in the structure of the material increases the operational voltage from 4.5 to 4.9 vs. Na/Na+. The result shows the practical route for NaCoPO4 synthesis by electrochemical Li/Na substitution.
3. The electrochemical performance of LiCoPO4 was enhanced by doping with Fe. The long-range order and nanoscale local atomic and electronic structures of the material were probed by synchrotron-based operando XAS and XRD. PCA analysis identifies the presence of only two local structures around metal ions upon cycling, which were attributed to the same octahedral sites of Co2+/Co3+ and Fe2+/Fe3+. The lattice parameter "a" is expanded, while "b and c" are shrinking upon intercalation.
4. The cycling stability and discharge capacity of LiCoPO4 nanoparticles could be improved up to 147 mAh/g by coating with UiO-66 metal-organic framework. Based on the operando XAS analysis the olivine structure degradation was excluded as possible origin for capacity fading upon cycling.
Approbation of work. The main results of the dissertation research were presented at international and all-Russian conferences, including XVII Annual Youth Scientific Conference "Science and technologies of the south of Russia" (Russia, Rostov-on-Don, 2021), International Youth Scientific Conference Physics. Technology. FTI-2021 innovations (Russia, Ekaterinburg, 2021), ICNHBAS, (Egypt, Hurghada, 2019), The
conference "Week of Science", section "The Smart materials and Mega-class research facilities", (Russia, Rostov-on-Don, 2019), The international workshop of young researchers Smart material and mega-scale facilities, (Russia, Rostov- on-Don, 2018).
Publications on the subject of the dissertation. The main results of the dissertation were published in 5 articles in international peer-reviewed journals included in the databases of international scientific citation indices Scopus and Web of Science.
Personal contribution author consisted of searching and analyzing literature data, synthesizing the samples of LiCoPO4, LiCo0.5Fe0 5PO4, and LiCoPO4@UiO-66 metal-organic framework. The author analyzed the structure and electronic properties by XRD and XAS, respectively. He has prepared electrochemical cells for analysis of the electrochemical performance and measured the operando XAS and XRD upon charge/discharge. Preparation of publications was performed personally by the author of these thesis and then discussed with co-authors and scientific advisors.
The volume and structure of the work, the work consists of an introduction, six chapters, a conclusion and a bibliography. The work is stated on 109 pages, contains 45 figures, 5 tables and 170 references.
Похожие диссертационные работы по специальности «Молекулярная физика», 01.04.15 шифр ВАК
Моделирование влияния модификации структуры низкоразмерных материалов ZnO, β-C3N4, InSe и однослойного бора на их физические свойства2021 год, кандидат наук Лэй Сюе
Coordination compounds of some metals with hydroxy and hydrazine derivatives of benzoic acid as precursors of nanosized oxide catalysts (Координационные соединения некоторых металлов с гидрокси- и гидразинпроизводными бензойной кислоты в качестве предшественников наноразмерных оксидных катализаторов)2021 год, кандидат наук Алабада Русул Яхья Джасим
Ethanol Conversion into Oxygenates Over K-modified, Co(Ni, Fe)-promoted MoS2 Catalysts Supported on Activated Carbon Materials (Конверсия этанола в оксигенаты на K-модифицированных Co(Ni, Fe)-MoS2 катализаторах, нанесенных на углеродных носители)2023 год, кандидат наук Дифеко Тшепо Дункан
Функционализация графена биологически активными молекулами и лекарственными препаратами для применения в нанобиомедицине2022 год, кандидат наук Абделхалим Абделсаттар Осама Елемам
Влияние гетеровалентного допирования на структуру и фотостимулированные процессы в галогенидном перовските CsPbBr32022 год, кандидат наук Али Ибрагим Мохаммед Шарафелдин
Заключение диссертации по теме «Молекулярная физика», Мохамед Абделазиз Мохамед Абделазиз
ЗАКЛЮЧЕНИЕ
В заключительной части работы представлены выводы, сформулированные в рамках данной диссертации:
- Нам удалось синтезировать LiCoPO4 при низкой температуре 220 °С за 3 часа с помощью микроволнового сольвотермального метода. Рентгеновская дифракция подтвердила, что LiCoPO4 имеет одну орторомбическую фазу с пространственной группой Рп21а. Чтобы снизить стоимость изготовления LiCoPO4, мы применили процесс активации в атмосфере воздуха. Спектры за К-краем кобальта не выявили заметных изменений для образцов в окислительной атмосфере по сравнению с инертной. Таким образом, степень окисления кобальта и локальная атомная структура в образце после отжига в атмосфере воздуха были аналогичны таковым, полученным при отжиге в Аг. Синтезированный LiCoPO4 с пространственной группой Рп21а имеет низкую разрядную емкость - всего 30 мАч г-1 в первом цикле. После активации и перехода в пространственную группу Рпта разрядная емкость увеличилась до 55 и 57 мАч/г для образцов, активированных в Аг и воздухе.
- С помощью методов рентгеновской дифракции и теоретического моделирования в рамках теории функционала электронной плотности мы проанализировали кристаллическую структуру материалов LiCoPO4 и NaCoPO4 наличие вакансий натрия в материале. Присутствие вакансий № дополнительно подтверждается данными спектроскопии рентгеновского поглощения за К-краем Со, которые также выявили искажения в локальной координации Со из-за сосуществования фаз Со2+ и Со3+. Моделирование локальной атомной структуры для суперячейки во время процесса делитирования предсказывает уменьшение объема ячеек LixCoPO4 и №хСоР04. LiCoPO4 и №СоР04 имеют похожее поведение для энергии химической связи: после удаления 25% Li энергия связи увеличивается на 1.56 эВ на формульную единицу. №СоР04 или смешанный LixNayCoPO4 можно получить электрохимически путем замещения щелочных металлов. Расчетное
напряжение для LiCoPO4 составляет 4,6 В и не сильно меняется в зависимости от концентрации Li в ячейке, что близко к экспериментальному значению 4,8 В. Теоретическое напряжение для NaCoPO4 составляет 4,48 В, что сравнимо с экспериментальным значением, а напряжение для Li0,5Nao,5CoPO4 увеличивается до 4,9 В.
- Нам удалось синтезировать LiCo0,5Fe0,5PO4, и данные рентгеновской дифракции подтверждают, что он имеет одну орторомбическую фазу с пространственной группой Pbnm. Отсутствуют примеси из другой фазы. Легирование железом помогло уменьшить прямое взаимодействие между материалом катода и электролитом, улучшив электрохимические характеристики, поскольку первые 10 циклов имеют разрядную емкость около 90 мАч/ г. Согласно исследованию синхротронной дифракции в режиме operando при зарядке / разряде, параметр решетки «a» расширяется, а «b и c» сокращается. Анализ методом основных компонент (PCA) серии спектров за К-краем кобальта и железа показывает наличие только двух локальных геометрических форм вокруг ионов Co, которые соответствуют Co2+ в LiCoFePO4, Co3+ в CoFePO4, Fe+2 в LiCoFePO4, Fe3+ в окислительно-восстановительной паре CoFePO4. Мы также обнаружили, что в первом разряде около 40% ионов Li не могут быть возвращены в решетку LCP, и эта доля остается почти постоянной в других циклах.
- Альтернативный способ улучшения электрохимических характеристик заключался в покрытии LiCoPO4 металлорганической каркасной структурой на основе UiO-66. МОК использовался в качестве источника металла и углерода для создания буферного слоя между материалом катода и электролитом для уменьшения взаимодействия, тем самым увеличивая срок службы электролита и предотвращение быстрого разложения. Композит LiCoPO4/C@UiO-66 был синтезирован с помощью сольвотермального метода под воздействием микроволнового излучения за один этап и впоследствии отожжен. XRD подтвердил наличие единственной орторомбической фазы оливина без значительного количества примесей. Средний размер частиц
композитного материала, синтезированных в присутствии наночастиц UiO-66, уменьшился с 150-200 нм до 50 нм. Поверхность LiCoPO4/C@ UiO-66 была покрыта небольшими (<10 нм) частицами, относящиеся к аморфному диоксиду циркония. Разрядная емкость нового материала составила 147 мА ч г-1 - больше, чем у материала с классическим углеродным покрытием. Однако при использовании стандартного электролита EC / DMC наблюдалось снижение емкости. Мы использовали лабораторный стенд для операндо измерений спектров за К-краем кобальта и контролировали локальную атомную структуру Co в течение недельных экспериментов циклирования. Анализ PCA определяет наличие только двух локальных атомных окружений вокруг ионов Co, которые соответствуют Co2+ в LiCoPO4 и Co3+ в окислительно-восстановительной паре CoPO4. Мы также обнаружили, что при первом разряде около 15% ионов Li не могут быть возвращены в решетку оливина, и эта доля остается почти постоянной в других циклах. Последний факт можно объяснить частичной аморфизацией делитированной фазы CoPO4, что сделало ее недоступной для диффузии ионов лития. Основываясь на анализе XAS операции, мы демонстрируем, что снижение емкости не связано с деградацией структуры оливина, а скорее относится к проблеме извлечения Li из материала LiCoPO4, например из-за блокировки каналов на поверхности материала
ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИСЕРТАЦИИ Статьи, опубликованные в журналах, входящих в базы данных международных индексов научного цитирования Scopus и Web of Science. A1. Aboraia A. M. One-pot coating of LiCoPO4/C by a UiO-66 metal-organic framework / Aboraia A. M., Shapovalov V. V., Guda A. A., Butova V. V., Soldatov A. // RSC Advances. - 2020. - V. 10. - № 58. - Pp. 35206-35213.
A2. Aboraia A. M. First-principle calculation for inherent stabilities of LixCoPO4, NaxCoPO4 and the mixture LixNayCoPO4 / Aboraia A. M. , Shapovalov V. V., Vetlitsyna-Novikova K., Guda A. A., Butova V. V., Zahran H. Y., Yahia I. S., Soldatov A. V. // Journal of Physics and Chemistry of Solids. - 2020. -V. 136. - Art. no. 109192.
A3. Aboraia A. M. Activation of LiCoPO4 in Air / Aboraia A. M., Shapovalov V. V., Guda A. A., Butova V. V., Zahran H. Y., Yahia I. S., Soldatov A. V. // Journal of Electronic Materials. - 2021. - URL: https://doi.org/10.1007/s11664-021-08870-3
A4. Shapovalov V. V. Laboratory operando Fe and Mn K-edges XANES and Mossbauer studies of the LiFe0.5Mn0.5P04 cathode material / Shapovalov V. V., Guda A. A., Kosova N. V., Kubrin S. P., Podgornova O. A., Aboraia A. M., Lamberti C., Soldatov A. V. // Radiation Physics and Chemistry. - 2020. - V. 175. - Art. no. 108065
A5. Soldatov M. A. The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal-organic frameworks / Soldatov M. A. , Martini A., Bugaev A. L., Pankin I., Medvedev P. V., Guda A. A., Aboraia A. M., Podkovyrina Y. S., Budnyk A. P., Soldatov A. A., Lamberti C. // Polyhedron. - 2018. - V. 155. - Pp. 232-253.
Список литературы диссертационного исследования кандидат наук Мохамед Абделазиз Мохамед Абделазиз, 2021 год
Список цитируемой литературы
1. Larcher D., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries/ Larcher D., Beattie S., Morcrette M., Edstroem K., Jumas J.-C., Tarascon J. M. // Journal of Materials Chemistry. - 2007. - V. 17, № 36. - P. 37593772.
2. Assat G., Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries/ Assat G., Tarascon J. M. // Nature Energy. - 2018. - V. 3, № 5. - P. 373-386.
3. Chianelli R. R. Structure refinement of stoichiometric TiS2/ Chianelli R. R., Scanlon J. C., Thompson A. H. // Materials Research Bulletin. - 1975. - V. 10, № 12. - P. 1379-1382.
4. Palmer M. High voltage positive electrodes for high energy lithium-ion batteries / Palmer M. //. - 2016.
5. Nishi Y. Lithium ion secondary batteries; past 10 years and the future / Nishi Y. // Journal of Power Sources. - 2001. - V. 100, № 1-2. - P. 101-106.
6. Bruce P. G. Solid-state chemistry of lithium power sources/ Bruce P. G. // Chemical Communications. - 1997. № 19. - P. 1817-1824.
7. Yazami R. A reversible graphite-lithium negative electrode for electrochemical generators / Yazami R., Touzain P. A // Journal of Power Sources. - 1983. - V. 9, № 3. -P. 365-371.
8. Yazami R. Surface chemistry and lithium storage capability of the graphite-lithium electrode / Yazami R. // Electrochimica acta. - 1999. - V. 45, № 1-2. - P. 87-97.
9. Kraytsberg A. Higher, Stronger, Better... A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries / Kraytsberg A., Ein-Eli Y.// Advanced Energy Materials. - 2012. - V. 2, № 8. - P. 922-939.
10. Solid state electrochemistry. / Bruce P. G.: Cambridge university press, 1997.
11. Owen J. R. Rechargeable lithium batteries / Owen J. R. // Chemical Society Reviews. - 1997. - V. 26, № 4. - P. 259-267.
12. Huggins R. A. Solid electrolytes / Huggins R. A. // Advanced Batteries: Materials Science Aspects. - 2009. - P. 339-373.
13. Gholam-Abbas N. Lithium Batteries Science and Technology // Gholam-Abbas N., Gianfranco P. / Italy, Springer Science and Business Media. - 2009.
14. Vincent C. A. Polymer electrolytes / Vincent C. A.// Progress in solid state chemistry. - 1987. - V. 17, № 3. - P. 145-261.
15. Malik R. Kinetics of non-equilibrium lithium incorporation in LiFePO4 / Malik R., Zhou F., Ceder G.// Nature materials. - 2011. - V. 10, № 8. - P. 587-90.
16. Whittingham M. S. Lithium batteries and cathode materials / Whittingham M. S.// Chemical reviews. - 2004. - V. 104, № 10. - P. 4271-4302.
17. Ellis B. L. Positive electrode materials for Li-ion and Li-batteries / Ellis B. L., Lee K. T., Nazar L. F. // Chemistry of materials. - 2010. - V. 22, № 3. - P. 691-714.
18. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries / Xu K. // Chemical reviews. - 2004. - V. 104, № 10. - P. 4303-4418.
19. Peled E. The Anode/Electrolyte Interface / Peled E., Golodnitsky D., Penciner J. //. -2007. - P. 419-456.
20. Nie M. Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy / Nie M., Abraham D. P., Chen Y., Bose A., Lucht B. L. // The Journal of Physical Chemistry C. - 2013. - V. 117, № 26. - P. 1340313412.
21. Browning J. F., In situ determination of the liquid/solid interface thickness and composition for the Li ion cathode LiMn1. 5Ni0. 5O4 / Browning J. F., Baggetto L., Jungjohann K. L., Wang Y., Tenhaeff W. E., Keum J. K., Wood Iii D. L., Veith G. M.// ACS applied materials & interfaces. - 2014. - V. 6, № 21. - P. 18569-18576.
22. Cherkashinin G. Electron spectroscopy study of Li [Ni, Co, Mn] O2/electrolyte interface: electronic structure, interface composition, and device implications / Cherkashinin
G., Motzko M., Schulz N., Spath T., Jaegermann W.// Chemistry of Materials. - 2015. - V. 27, № 8. - P. 2875-2887.
23. Yabuuchi N. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3- LiCo1/3Ni1/3Mn1/3O2 / Yabuuchi N., Yoshii K., Myung S.-T., Nakai I., Komaba S. // Journal of the American Chemical Society. - 2011. -V. 133, № 12. - P. 4404-4419.
24. Aurbach D. The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts / Aurbach D., Daroux M., Faguy P., Yeager E. // Journal of electroanalytical chemistry and interfacial electrochemistry. - 1991. - V. 297, № 1. - P. 225-244.
25. Kwabi D. G. Materials challenges in rechargeable lithium-air batteries / Kwabi D. G., Ortiz-Vitoriano N., Freunberger S. A., Chen Y., Imanishi N., Bruce P. G., Shao-Horn Y. // MRS bulletin. - 2014. - V. 39, № 5. - P. 443-452.
26. McCloskey B. D. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry / McCloskey B. D., Bethune D. S., Shelby R. M., Girishkumar G., Luntz A. C. // The Journal of Physical Chemistry Letters. - 2011. - V. 2, № 10. - P. 1161-1166.
27. Freunberger S. A. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes / Freunberger S. A., Chen Y., Peng Z., Griffin J. M., Hardwick L. J., Bardé F., Novak P., Bruce P. G. // Journal of the American Chemical Society. - 2011. - V. 133, № 20. - P. 8040-8047.
28. Gauthier M. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights / Gauthier M., Carney T. J., Grimaud A., Giordano L., Pour N., Chang H.-H., Fenning D. P., Lux S. F., Paschos O., Bauer C. // The journal of physical chemistry letters. - 2015. - V. 6, № 22. - P. 4653-4672.
29. Thackeray M. M. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries / Thackeray M. M., Wolverton C., Isaacs E. D. // Energy & Environmental Science. - 2012. - V. 5, № 7. - P. 7854-7863.
30. Zhang Z. Fluorinated electrolytes for 5 V lithium-ion battery chemistry / Zhang Z., Hu L., Wu H., Weng W., Koh M., Redfern P. C., Curtiss L. A., Amine K. // Energy & environmental science. - 2013. - V. 6, № 6. - P. 1806-1810.
31. Gupta R. Chemical extraction of lithium from layered LiCoO2 / Gupta R., Manthiram A. // Journal of Solid State Chemistry. - 1996. - V. 121, № 2. - P. 483-491.
32. Li H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future / Li H., Zhou H. // Chemical Communications. - 2012. - V. 48, № 9. - P. 12011217.
33. Spong A. D. A solution-precursor synthesis of carbon-coated LiFePO4 for Li-ion cells / Spong A. D., Vitins G., Owen J. R. // Journal of the Electrochemical Society. - 2005.
- V. 152, № 12. - P. A2376.
34. Fergus J. W. Recent developments in cathode materials for lithium ion batteries / Fergus J. W. // Journal of power sources. - 2010. - V. 195, № 4. - P. 939-954.
35. Okada S. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries / Okada S., Sawa S., Egashira M., Yamaki J.-i., Tabuchi M., Kageyama H., Konishi T., Yoshino A. // Journal of Power Sources. - 2001. - V. 97. - P. 430-432.
36. Wolfenstine J. LiNiPO4-LiCoPO4 solid solutions as cathodes / Wolfenstine J., Allen J. // Journal of Power Sources. - 2004. - V. 136, № 1. - P. 150-153.
37. Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries / Amine K., Yasuda H., Yamachi M. // Electrochemical and Solid State Letters. - 2000. - V. 3, № 4. - P. 178.
38. Liu D. High-energy lithium-ion battery using substituted LiCoPO4: From coin type to 1 Ah cell / Liu D., Zhu W., Kim C., Cho M., Guerfi A., Delp S. A., Allen J. L., Jow T. R., Zaghib K. // Journal of Power Sources. - 2018. - V. 388. - P. 52-56.
39. Allen J. L. Electrolyte Optimization of a Substituted-LiCo1-xFexPO4 Cathode / Allen J. L., Allen J. L., Delp S. A., Jow T. R. // ECS Transactions. - 2014. - V. 61, № 27.
- P. 63.
40. Fang L. Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries / Fang L., Zhang H., Zhang Y., Liu L., Wang Y.// Journal of Power Sources. - 2016. - V. 312. - P. 101-108.
41. Maeyoshi Y. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method / Maeyoshi Y., Miyamoto S., Noda Y., Munakata H., Kanamura K. // Journal of Power Sources. - 2017. - V. 337. - P. 92-99.
42. Wolfenstine J. Effect of oxygen partial pressure on the discharge capacity of LiCoPO4 / Wolfenstine J., Lee U., Poese B., Allen J. L. // Journal of power sources. - 2005.
- V. 144, № 1. - P. 226-230.
43. Tadanaga K. Preparation of LiCoPO4 for lithium battery cathodes through solution process/ Tadanaga K., Mizuno F., Hayashi A., Minami T., Tatsumisago M. // Electrochemistry. - 2003. - V. 71, № 12. - P. 1192-1195.
44. Wolfenstine J. Electrical conductivity of doped LiCoPO4 / Wolfenstine J. // Journal of Power Sources. - 2006. - V. 158, № 2. - P. 1431-1435.
45. Wolfenstine J. Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4 / Wolfenstine J., Read J., Allen J. L. // Journal of Power sources. - 2007.
- V. 163, № 2. - P. 1070-1073.
46. Allen J. L. Transport properties of LiCoPO4 and Fe-substituted LiCoPO4 / Allen J. L., Thompson T., Sakamoto J., Becker C. R., Jow T. R., Wolfenstine J. // Journal of Power Sources. - 2014. - V. 254. - P. 204-208.
47. Prabu M. Impedance studies on the 5-V cathode material, LiCoPO 4 / Prabu M., Selvasekarapandian S., Reddy M. V., Chowdari B. V. R. // Journal of Solid State Electrochemistry. - 2012. - V. 16, № 5. - P. 1833-1839.
48. Xie J. Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering / Xie J., Imanishi N., Zhang T., Hirano A., Takeda Y., Yamamoto O. // Journal of Power Sources. - 2009. - V. 192, № 2. -P. 689-692.
49. Prabu M. Ionic transport properties of LiCoPO4 cathode material / Prabu M., Selvasekarapandian S., Kulkarni A. R., Karthikeyan S., Hirankumar G., Sanjeeviraja C. // Solid state sciences. - 2011. - V. 13, № 9. - P. 1714-1718.
50. Ikuhara Y. H. Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO 4 / Ikuhara Y. H., Gao X., Fisher C. A. J., Kuwabara A., Moriwake H., Kohama K., Iba H., Ikuhara Y. // Journal of Materials Chemistry A. - 2017.
- V. 5, № 19. - P. 9329-9338.
51. Sharabi R. Raman study of structural stability of LiCoPO4 cathodes in LiPF6 containing electrolytes/ Sharabi R., Markevich E., Borgel V., Salitra G., Gershinsky G., Aurbach D., Semrau G., Schmidt M. A., Schall N., Stinner C. // Journal of Power Sources.
- 2012. - V. 203. - P. 109-114.
52. Sharabi R. Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes / Sharabi R., Markevich E., Fridman K., Gershinsky G., Salitra G., Aurbach D., Semrau G., Schmidt M. A., Schall N., Bruenig C. // Electrochemistry communications. - 2013. - V. 28. - P. 20-23.
53. Markevich E. Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions / Markevich E., Sharabi R., Gottlieb H., Borgel V., Fridman K., Salitra G., Aurbach D., Semrau G., Schmidt M. A., Schall N. // Electrochemistry Communications. - 2012. - V. 15, № 1. - P. 22-25.
54. Nallathamby K. Carbonate anion controlled growth of LiCoPO4/C nanorods and its improved electrochemical behavior / Nallathamby K., Meyrick D., Minakshi M. // Electrochimica Acta. - 2013. - V. 101. - P. 18-26.
55. Jang I. C. LiFePO 4 modified Li 1.02 (Co 0.9 Fe 0.1) 0.98 PO 4 cathodes with improved lithium storage properties / Jang I. C., Son C. G., Yang S. M. G., Lee J. W., Cho A. R., Aravindan V., Park G. J., Kang K. S., Kim W. S., Cho W. I. // Journal of Materials Chemistry. - 2011. - V. 21, № 18. - P. 6510-6514.
56. Ludwig J. Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for Li-ion batteries / Ludwig
J., Marino C., Haering D., Stinner C., Gasteiger H. A., Nilges T. // Journal of Power Sources. - 2017. - V. 342. - P. 214-223.
57. Dimesso L. Influence of isovalent ions (Ca and Mg) on the properties of LiCo0. 9M0. 1PO4 powders / Dimesso L., Spanheimer C., Jaegermann W. // Journal of power sources. - 2013. - V. 243. - P. 668-675.
58. Fukutsuka T. Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors/ Fukutsuka T., Nakagawa T., Miyazaki K., Abe T. // Journal of Power Sources. - 2016. - V. 306. - P. 753-757.
59. Laszczynski N. Effect of coatings on the green electrode processing and cycling behaviour of LiCoPO 4/ Laszczynski N., Birrozzi A., Maranski K., Copley M., Schuster M. E., Passerini S. // Journal of Materials Chemistry A. - 2016. - V. 4, № 43. - P. 1712117128.
60. Brutti S. Interplay between local structure and transport properties in iron-doped LiCoPO 4 olivines/ Brutti S., Manzi J., Meggiolaro D., Vitucci F. M., Trequattrini F., Paolone A., Palumbo O. // Journal of Materials Chemistry A. - 2017. - V. 5, № 27. - P. 14020-14030.
61. Wu B. Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries / Wu B., Xu H., Mu D., Shi L., Jiang B., Gai L., Wang L., Liu Q., Ben L., Wu F. // Journal of Power Sources. - 2016. - V. 304. - P. 181-188.
62. Ludwig J. Recent progress and developments in lithium cobalt phosphate chemistry-syntheses, polymorphism and properties / Ludwig J., Nilges T. // Journal of Power Sources. - 2018. - V. 382. - P. 101-115.
63. Kimura T. The pseudo-single-crystal method: a third approach to crystal structure determination / Kimura T., Chang C., Kimura F., Maeyama M. // Journal of applied crystallography. - 2009. - V. 42, № 3. - P. 535-537.
64. Zhang M. Understanding and development of olivine LiCoPO 4 cathode materials for lithium-ion batteries / Zhang M., Garcia-Araez N., Hector A. L. // Journal of Materials Chemistry A. - 2018. - V. 6, № 30. - P. 14483-14517.
65. Xu Y. N. Comparative studies of the electronic structure of LiFePO 4, FePO 4, Li 3 PO 4, LiMnPO 4, LiCoPO 4, and LiNiPO 4 / Xu Y. N., Ching W. Y., Chiang Y. M. // Journal of applied physics. - 2004. - V. 95, № 11. - P. 6583-6585.
66. Fisher C. A. J. Lithium battery materials Li M PO4 (M= Mn, Fe, Co, and Ni): insights into defect association, transport mechanisms, and doping behavior / Fisher C. A. J., Hart Prieto V. M., Islam M. S. // Chemistry of Materials. - 2008. - V. 20, № 18. - P. 5907-5915.
67. Bramnik N. N. Thermal stability of LiCoPO4 cathodes / Bramnik N. N., Nikolowski K., Trots D. M., Ehrenberg H. // Electrochemical and Solid State Letters. - 2008.
- V. 11, № 6. - P. A89.
68. Theil S. Experimental investigations on the electrochemical and thermal behaviour of LiCoPO4-based cathode / Theil S., Fleischhammer M., Axmann P., Wohlfahrt-Mehrens M. // Journal of power sources. - 2013. - V. 222. - P. 72-78.
69. Nakayama M. Changes in electronic structure between cobalt and oxide ions of lithium cobalt phosphate as 4.8-V positive electrode material / Nakayama M., Goto S., Uchimoto Y., Wakihara M., Kitajima Y. // Chemistry of materials. - 2004. - V. 16, № 18.
- P. 3399-
70. Nakayama M. X-ray Absorption Spectroscopic Study on the Electronic Structure of Li1-x CoPO4 Electrodes as 4.8 V Positive Electrodes for Rechargeable Lithium Ion Batteries / Nakayama M., Goto S., Uchimoto Y., Wakihara M., Kitajima Y., Miyanaga T., Watanabe I. // The Journal of Physical Chemistry B. - 2005. - V. 109, № 22. - P. 1119711203.
71. Minakshi M. Lithium Extraction- Insertion from/into LiCoPO4 in Aqueous Batteries / Minakshi M., Singh P., Sharma N., Blackford M., Ionescu M. // Industrial & engineering chemistry research. - 2011. - V. 50, № 4. - P. 1899-1905.
72. Liu Y. Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts / Liu Y., Wang H., Lin D., Liu C., Hsu P. C., Liu W., Chen W., Cui Y. // Energy & Environmental Science. - 2015. - V. 8, № 6. - P. 1719-1724.
73. Boulineau A. Revealing electrochemically induced antisite defects in LiCoPO4: evolution upon cycling / Boulineau A., Gutel T.// Chemistry of Materials. - 2015. - V. 27, № 3. - P. 802-807.
74. Dai D. Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMPO4 (M= Mn, Fe, Co, Ni) with the olivine structure / Dai D., Whangbo M. H., Koo H. J., Rocquefelte X., Jobic S., Villesuzanne A. // Inorganic Chemistry. - 2005. - V. 44, № 7. - P. 2407-2413.
75. Wang J. Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries / Wang J., Sun X. // Energy & Environmental Science. - 2012. - V. 5, № 1. - P. 5163-5185.
76. Strobridge F. C. Identifying the structure of the intermediate, Li2/3CoPO4, formed during electrochemical cycling of LiCoPO4 / Strobridge F. C., Cl ément R. l. J., Leskes M., Middlemiss D. S., Borkiewicz O. J., Wiaderek K. M., Chapman K. W., Chupas P. J., Grey C. P. // Chemistry of Materials. - 2014. - V. 26, № 21. - P. 6193-6205.
77. Sauvage F. In situ measurements of li ion battery electrode material conductivity: Application to li x coo2 and conversion reactions / Sauvage F., Tarascon J. M., Baudrin E. // The Journal of Physical Chemistry C. - 2007. - V. 111, № 26. - P. 9624-9630.
78. Shimakawa Y. Verwey-Type Transition and Magnetic Properties of the LiMn2O4Spinels / Shimakawa Y., Numata T., Tabuchi J. // Journal of solid state chemistry. - 1997. - V. 131, № 1. - P. 138-143.
79. Ehrenberg H. Crystal and magnetic structures of electrochemically delithiated Li1- xCoPO4 phases / Ehrenberg H., Bramnik N. N., Senyshyn A., Fuess H. // Solid State Sciences. - 2009. - V. 11, № 1. - P. 18-23.
80. Palmer M. G. In situ phase behaviour of a high capacity LiCoPO 4 electrode during constant or pulsed charge of a lithium cell / Palmer M. G., Frith J. T., Hector A. L.,
Lodge A. W., Owen J. R., Nicklin C., Rawle J. // Chemical Communications. - 2016. - V. 52, № 98. - P. 14169-14172.
81. Dimesso L. Developments in nanostructured LiMPO 4 (M= Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture / Dimesso L., Forster C., Jaegermann W., Khanderi J. P., Tempel H., Popp A., Engstler J., Schneider J. J., Sarapulova A., Mikhailova D. // Chemical Society Reviews. - 2012. - V. 41, № 15. - P. 5068-5080.
82. Kang Y. M. Structurally stabilized olivine lithium phosphate cathodes with enhanced electrochemical properties through Fe doping / Kang Y. M., Kim Y. I., Oh M. W., Yin R. Z., Lee Y., Han D. W., Kwon H. S., Kim J. H., Ramanath G. // Energy & Environmental Science. - 2011. - V. 4, № 12. - P. 4978-4983.
83. Le Bacq O. Impact on electronic correlations on the structural stability, magnetism, and voltage of LiCoPO 4 battery / Le Bacq O., Pasturel A., Bengone O. // Physical Review B. - 2004. - V. 69, № 24. - P. 245107.
84. Zhou F. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M= Fe, Mn, Co, Ni / Zhou F., Cococcioni M., Kang K., Ceder G. // Electrochemistry communications. - 2004. - V. 6, № 11. - P. 1144-1148.
85. Tussupbayev R. Physical and electrochemical properties of LiCoPO4/C nanocomposites prepared by a combination of emulsion drip combustion and wet ball-milling followed by heat treatment / Tussupbayev R., Taniguchi I. // Journal of power sources. - 2013. - V. 236. - P. 276-284.
86. Nithya V. D. Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor / Nithya V. D., Pandi K., Lee Y. S., Selvan R. K. // Electrochimica Acta. -2015. - V. 167. - P. 97-104.
87. Liu J. Spherical nanoporous LiCoPO 4/C composites as high performance cathode materials for rechargeable lithium-ion batteries / Liu J., Conry T. E., Song X., Yang L., Doeff M. M., Richardson T. J. // Journal of Materials Chemistry. - 2011. - V. 21, № 27. - P. 99849987.
88. Zhong Y. Synthesis and lithium-ion storage performances of LiFe 0.5 Co 0.5 PO 4/C nanoplatelets and nanorods / Zhong Y., Wu Z., Li J., Xiang W., Guo X., Zhong B., Wang X. L. // Ionics. - 2018. - V. 24, № 8. - P. 2275-2285.
89. Ni J. Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques / Ni J., Gao L., Lu L. // Journal of power sources. - 2013. - V. 221.
- P. 35-41.
90. Delacourt C. Low temperature preparation of optimized phosphates for Li-battery applications / Delacourt C., Wurm C., Reale P., Morcrette M., Masquelier C. // Solid State Ionics. - 2004. - V. 173, № 1-4. - P. 113-118.
91. Vasanthi R. Olivine-type nanoparticle for hybrid supercapacitors / Vasanthi R., Kalpana D., Renganathan N. G. // Journal of Solid State Electrochemistry. - 2008. - V. 12, № 7-8. - P. 961-969.
92. Kumar P. R. Synthesis, characterization and electrical properties of carbon coated LiCoPO4 nanoparticles/ Kumar P. R., Venkateswarlu M., Misra M., Mohanty A. K., Satyanayana N. // Journal of nanoscience and nanotechnology. - 2011. - V. 11, № 4. - P. 3314-3322.
93. Rui X. Nanostructured metal sulfides for energy storage / Rui X., Tan H., Yan Q. // Nanoscale. - 2014. - V. 6, № 17. - P. 9889-9924.
94. Li H. H. Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances / Li H. H., Jin J., Wei J. P., Zhou Z., Yan J. // Electrochemistry Communications. - 2009. - V. 11, № 1. - P. 95-98.
95. Rosenberg S. In situ carbon-coated LiCoPO 4 synthesized via a microwave-assisted path / Rosenberg S., Hintennach A. // Russian Journal of Electrochemistry. - 2015.
- V. 51, № 4. - P. 305-309.
96. Kosova N. V. Effect of Fe 2+ substitution on the structure and electrochemistry of LiCoPO 4 prepared by mechanochemically assisted carbothermal reduction / Kosova N. V., Podgornova O. A., Devyatkina E. T., Podugolnikov V. R., Petrov S. A. // Journal of Materials Chemistry A. - 2014. - V. 2, № 48. - P. 20697-20705.
97. Kosova N. V. Bukhtiyarov A. V. Approaching better cycleability of LiCoPO4 by vanadium modification / Kosova N. V., Podgornova O. A., Bobrikov I. A., Kaichev V. V., // Materials Science and Engineering: B. - 2016. - V. 213. - P. 105-113.
98. Wang F. Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery / Wang F., Yang J., NuLi Y., Wang J.// Journal of Power Sources. - 2011. - V. 196, № 10. - P. 4806-4810.
99. Murugan A. V. One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4~ (M = Mn, Fe, and Co) Cathodes / Murugan A. V., Muraliganth T., Manthiram A. // JOURNAL- ELECTROCHEMICAL SOCIETY. -2009. - V. 156, № 2. - P. A79-A83.
100. Rommel S. M. Characterization of the carbon-coated LiNi 1- y Co y PO 4 solid solution synthesized by a non-aqueous sol-gel route / Rommel S. M., Rothballer J., Schall N., Brunig C., Weihrich R. // Ionics. - 2015. - V. 21, № 2. - P. 325-333.
101. Wu X. Morphology-controllable synthesis of LiCoPO4 and its influence on electrochemical performance for high-voltage lithium ion batteries / Wu X., Meledina M., Tempel H., Kungl H., Mayer J., Eichel R. A. // Journal of Power Sources. - 2020. - V. 450. - P. 227726.
102. Markevich E. Bruenig C. Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions / Markevich E., Sharabi R., Gottlieb H., Borgel V., Fridman K., Salitra G., Aurbach D., Semrau G., Schmidt M. A., Schall N., // Electrochemistry Communications. - 2012. - V. 15, № 1. - P. 22-25.
103. Bramnik N. N. Thermal stability of LiCoPO4 cathodes / Bramnik N. N., Nikolowski K., Ehrenberg H., Trots D. M. // Electrochem Solid State Letters Electrochemical and Solid-State Letters. - 2008. - V. 11, № 6. - P. A89-A93.
104. Ehrenberg H. Crystal and magnetic structures of electrochemically delithiated Li1-xCoPO4 phases / Ehrenberg H., Bramnik N. N., Senyshyn A., Fuess H. // Solid State Sciences. - 2009. - V. 11, № 1. - P. 18-23.
105. Bramnik N. N. Phase Transitions Occurring upon Lithium Insertion-Extraction of LiCoPO4 / Bramnik N. N., Nikolowski K., Baehtz C., Bramnik K. G., Ehrenberg H. // Chemistry of Materials. - 2007. - V. 19, № 4. - P. 908-915.
106. Osnis A. Systematic First-Principles Investigation of Mixed Transition Metal Olivine Phosphates LiM1-yM'yPO4 (M/M' = Mn, Fe, and Co) as Cathode Materials / Osnis A., Kosa M., Aurbach D., Major D. T. // The Journal of Physical Chemistry C. - 2013. - V. 117, № 35. - P. 17919-17926.
107. Markevich E. Fluoroethylene Carbonate as an Important Component in Electrolyte Solutions for High-Voltage Lithium Batteries: Role of Surface Chemistry on the Cathode / Markevich E., Salitra G., Fridman K., Sharabi R., Gershinsky G., Garsuch A., Semrau G., Schmidt M. A., Aurbach D. // Langmuir. - 2014. - V. 30, № 25. - P. 7414-7424.
108. Oh S. M. Olivine LiCoPO4-carbon composite showing high rechargeable capacity / Oh S. M., Myung S. T., Sun Y. K. // J. Mater. Chem. Journal of Materials Chemistry. - 2012. - V. 22, № 30. - P. 14932.
109. Manzi J. Surface chemistry on LiCoPO4 electrodes in lithium cells: SEI formation and self-discharge / Manzi J., Brutti S. // Electrochimica Acta. - 2016. - V. 222. - P. 1839-1846.
110. Wolfenstine J. LiCoPO4 mechanical properties evaluated by nanoindentation / Wolfenstine J., Allen J. L., Jow T. R., Thompson T., Sakamoto J., Jo H., Choe H.// Ceramics International. - 2014. - V. 40, № 8, Part B. - P. 13673-13677.
111. Kumar P. R. Enhanced electrochemical performance of carbon-coated LiMPO4 (M = Co and Ni) nanoparticles as cathodes for high-voltage lithium-ion battery / Kumar P. R., Madhusudhanrao V., B N., Venkateswarlu M., Satyanarayana N. // Journal of Solid State Electrochemistry . - 2016. - V. 20 -P. 1855-1863
112. Yang Z. How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods / Yang Z., Dai
Y., Wang S., Yu J. // TA Journal of Materials Chemistry A. - 2016. - V. 4, № 47. - P. 18210-18222.
113. Zhu H., Wang X. L., Li Y. L., Wang Z. J., Yang F., Yang X. R. // Chem. Commun. - 2009. - P. 5118.
114. Gangulibabu. Carbonate anion controlled growth of LiCoPO4/C nanorods and its improved electrochemical behavior / Gangulibabu, Nallathamby K., Meyrick D., Minakshi M. // Electrochimica Acta. - 2013. - V. 101. - P. 18-26.
115. Matsuoka M. Effect of carbon addition on one-step mechanical synthesis of LiCoPO4/C composite granules and their powder characteristics / Matsuoka M., Kondo A., Kozawa T., Naito M., Koga H., Saito T., Iba H. // Ceramics International. - 2017. - V. 43, № 1, Part B. - P. 938-943.
116. Yang J. Synthesis and Characterization of Carbon-Coated Lithium Transition Metal Phosphates LiMPO4 (M = Fe , Mn, Co, Ni) Prepared via a Nonaqueous Sol-Gel Route / Yang J., Xu J. J. // Journal of The Electrochemical Society. - 2006. - V. 153, № 4. - P. a716-a723.
117. Poovizhi P. N. Study of pristine and carbon-coated LiCoPO4 olivine material synthesized by modified sol-gel method / Poovizhi P. N., Selladurai S. // Ionics. - 2011. -V. 17, № 1. - P. 13-19.
118. Kumar P. R. Enhanced electrochemical performance of carbon-coated LiMPO4 (M = Co and Ni) nanoparticles as cathodes for high-voltage lithium-ion battery / Kumar P. R., Madhusudhanrao V., B N., Venkateswarlu M., Satyanarayana N. // Journal of Solid State Electrochemistry. - 2016. - V. 20, № 7. - P. 1855-1863.
119. Ornek A. Improving the cycle stability of LiCoPO4 nanocomposites as 4.8V cathode: Stepwise or synchronous surface coating and Mn substitution / Ornek A., Can M., Ye§ildag A. // Materials Characterization. - 2016. - V. 116. - P. 76-83.
120. Kreder Iii K. J. Vanadium-substituted LiCoPO4 core with a monolithic LiFePO4 shell for high-voltage lithium-ion batteries / Kreder Iii K. J., Manthiram A. // ACS Energy Letters. - 2017. - V. 2, № 1. - P. 64-69.
121. Ornek A. A new and effective approach to 4.8 V cathode synthesis with superior electrochemical qualities for lithium-ion applications / Ornek A. // Journal of Alloys and Compounds. - 2017. - V. 710. - P. 809-818.
122. Wu L., Novel synthesis of LiCoPO4-Li3V2 (PO4) 3 composite cathode material for Li-ion batteries/ Wu L., Shi S., Zhang X., Liu J., Chen D., Ding H., Zhong S. // Materials Letters. - 2015. - V. 152. - P. 228-231.
123. Eftekhari A. Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide / Eftekhari A. // Journal of The Electrochemical Society. - 2004. - V. 151, № 9. - P. A1456.
124. Wang Y. AlF3-modified LiCoPO4 for an advanced cathode towards high energy lithium-ion battery / Wang Y., Qiu J., Yu Z., Ming H., Li M., Zhang S., Yang Y. // Ceramics International. - 2018. - V. 44, № 2. - P. 1312-1320.
125. Allen J. L. Improved cycle life of Fe-substituted LiCoPO4 / Allen J. L., Jow T. R., Wolfenstine J. // Journal of Power Sources. - 2011. - V. 196, № 20. - P. 8656-8661.
126. Liu L. Unique synthesis of sandwiched graphene@(Li 0.893 Fe 0.036) Co (PO 4) nanoparticles as high-performance cathode materials for lithium-ion batteries / Liu L., Zhang H., Chen X., Fang L., Bai Y., Liu R., Wang Y. // Journal of Materials Chemistry A. - 2015. - V. 3, № 23. - P. 12320-12327.
127. Bresser D. Lithium-ion batteries (LIBs) for medium-and large-scale energy storage:: current cell materials and components / Bresser D., Paillard E., Passerini S. // Advances in batteries for medium and large-scale energy storageElsevier, 2015. - P. 125211.
128. Kreder Iii K. J. Aliovalent substitution of V3+ for Co2+ in LiCoPO4 by a low-temperature microwave-assisted solvothermal process / Kreder Iii K. J., Assat G., Manthiram A. // Chemistry of Materials. - 2016. - V. 28, № 6. - P. 1847-1853.
129. Wang F. Highly promoted electrochemical performance of 5 V LiCoPO4 cathode material by addition of vanadium / Wang F., Yang J., NuLi Y., Wang J. // Journal of Power Sources. - 2010. - V. 195, № 19. - P. 6884-6887.
130. Hanafusa R. Electrochemical and Magnetic Studies of Li-Deficient Li1-xCo1-xFexPO4 Olivine Cathode Compounds / Hanafusa R., Oka Y., Nakamura T. // Journal of The Electrochemical Society. - 2014. - V. 162, № 2. - P. A3045.
131. Wang Y. Cr-substituted LiCoPO4 core with a conductive carbon layer towards high-voltage lithium-ion batteries / Wang Y., Chen J., Qiu J., Yu Z., Ming H., Li M., Zhang S., Yang Y. // Journal of Solid State Chemistry. - 2018. - V. 258. - P. 32-41.
132. Allen J. L. Cr and Si Substituted-LiCo0. 9Fe0. 1PO4: Structure, full and half Li-ion cell performance / Allen J. L., Allen J. L., Thompson T., Delp S. A., Wolfenstine J., Jow T. R. // Journal of Power Sources. - 2016. - V. 327. - P. 229-234.
133. Kishore M. S. Influence of isovalent ion substitution on the electrochemical performance of LiCoPO4 / Kishore M. S., Varadaraju U. V. // Materials research bulletin. -2005. - V. 40, № 10. - P. 1705-1712.
134. Han Y. H. Improving electrochemical performance of LiCoPO4 via Mn substitution / Han Y. H., Ni J. F., Liu J. Z., Wang H. B., Gao L. J. // Materials Technology. - 2013. - V. 28, № 5. - P. 265-269.
135. Dimesso L. Properties of Ca-containing LiCoPO 4-graphitic carbon foam composites / Dimesso L., Spanheimer C., Mueller M. M., Kleebe H.-J., Jaegermann W. // Ionics. - 2015. - V. 21, № 8. - P. 2101-2107.
136. Dimesso L. Effect of Ca, Mg-ions on the properties of LiCo0. 9M0. 1PO4/graphitic carbon composites / Dimesso L., Becker D., Spanheimer C., Jaegermann W. // Progress in Solid State Chemistry. - 2014. - V. 42, № 4. - P. 184-190.
137. Karthickprabhu S. Structural and electrical studies on Zn2+ doped LiCoPO4 / Karthickprabhu S., Hirankumar G., Maheswaran A., Bella R. S. D., Sanjeeviraja C. // Journal of Electrostatics. - 2014. - V. 72, № 3. - P. 181-186.
138. Lin F. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries / Lin F., Liu Y., Yu X., Cheng L., Singer A., Shpyrko O. G., Xin H. L., Tamura N., Tian C., Weng T. C. // Chemical reviews. - 2017. -V. 117, № 21. - P. 13123-13186.
139. Harks P. In situ methods for Li-ion battery research: A review of recent developments / Harks P., Mulder F. M., Notten P. H. L. // Journal of power sources. - 2015. - V. 288. - P. 92-105.
140. Yang J. In situ analyses for ion storage materials / Yang J., Muhammad S., Jo M. R., Kim H., Song K., Agyeman D. A., Kim Y. I., Yoon W. S., Kang Y. M. // Chemical Society Reviews. - 2016. - V. 45, № 20. - P. 5717-5770.
141. Aboraia A. M. First-principle calculation for inherent stabilities of LixCoPO4, NaxCoPO4 and the mixture LixNayCoPO4 / Aboraia A. M. , Shapovalov V. V., Vetlitsyna-Novikova K., Guda A. A., Butova V. V., Zahran H. Y., Yahia I. S., Soldatov A. V. // Journal of Physics and Chemistry of Solids. - 2020. -V. 136. - Art. no. 109192.
142. Butova V. V. Water as a structure-driving agent between the UiO-66 and MIL-140A metal-organic frameworks / Butova V. V., Budnyk A. P., Charykov K. M., Vetlitsyna-Novikova K. S., Lamberti C., Soldatov A. V. // Chemical communications (Cambridge, England). - 2019. - V. 55, № 7. - P. 901-904.
143. Butova V. V. UiO-66 type MOFs with mixed-linkers - 1,4-Benzenedicarboxylate and 1,4-naphthalenedicarboxylate: Effect of the modulator and post-synthetic exchange / Butova V. V., Burachevskaya O. A., Ozhogin I. V., Borodkin G. S., Starikov A. G., Bordiga S., Damin A., Lillerud K. P., Soldatov A. V. // Microporous and Mesoporous Materials. -2020. - V. 305.
144. Aboraia A. M. One-pot coating of LiCoPO4/C by a UiO-66 metal-organic framework / Aboraia A. M., Shapovalov V. V., Guda A. A., Butova V. V., Soldatov A. // RSC Advances. - 2020. - V. 10. - № 58. - Pp. 35206-35213.
145. Soldatov M. A. The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal-organic frameworks / Soldatov M. A. , Martini A., Bugaev A. L., Pankin I., Medvedev P. V., Guda A. A., Aboraia A. M., Podkovyrina Y. S., Budnyk A. P., Soldatov A. A., Lamberti C. // Polyhedron. - 2018. - V. 155. - Pp. 232-253.
146. Shapovalov V. V. Laboratory operando Fe and Mn K-edges XANES and Mössbauer studies of the LiFe0.5Mn0.5PO4 cathode material / Shapovalov V. V., Guda A. A., Kosova N. V., Kubrin S. P., Podgornova O. A., Aboraia A. M., Lamberti C., Soldatov A. V. // Radiation Physics and Chemistry. - 2020. - V. 175. - Art. no. 108065
147. Shang S. L. Lattice dynamics, thermodynamics, and bonding strength of lithiumion battery materials LiMPO 4 (M= Mn, Fe, Co, and Ni): a comparative first-principles study / Shang S. L., Wang Y., Mei Z. G., Hui X. D., Liu Z. K. // Journal of Materials Chemistry. - 2012. - V. 22, № 3. - P. 1142-1149.
148. Zhu X. First principle calculation of lithiation/delithiation voltage in Li-ion battery materials / Zhu X., Chen N., Lian F., Song Y., Li Y. // Chinese Science Bulletin. -2011. - V. 56, № 30. - P. 3229-3232.
149. Kosa M. Structural trends in hybrid perovskites [Me2NH2]M[HCOO]3 (M = Mn, Fe, Co, Ni, Zn): Computational assessment based on Bader charge analysis / Kosa M., Major D. T. // CrystEngComm. - 2015. - V. 17, № 2. - P. 295-298.
150. Sun S. Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles / Sun S., Zeng H., Robinson D. B., Raoux S., Rice P. M., Wang S. X., Li G. // Journal of the American Chemical Society. - 2004. - V. 126, № 1. - P. 273-279.
151. Joly Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation / Joly Y. // Physical Review B. - 2001. - V. 63, № 12. - P. 125120.
152. Joly Y. Full-Potential Simulation of X-ray Raman Scattering Spectroscopy / Joly Y., Cavallari C., Guda S. A., Sahle C. J. // Journal of chemical theory and computation. -2017. - V. 13, № 5. - P. 2172-2177.
153. Aboraia A. M. Activation of LiCoPO4 in Air / Aboraia A. M., Shapovalov V. V., Guda A. A., Butova V. V., Zahran H. Y., Yahia I. S., Soldatov A. V. // Journal of Electronic Materials. - 2021. - URL: https://doi.org/10.1007/s11664-021-08870-3 (дата обращения 17.05.2021)
154. Jâhne C. A new LiCoPO 4 polymorph via low temperature synthesis / Jâhne C., Neef C., Koo C., Meyer H.-P., Klingeler R. // Journal of Materials Chemistry A. - 2013. -V. 1, № 8. - P. 2856-2862.
155. Shui J. L. LiCoPO4-based ternary composite thin-film electrode for lithium secondary battery / Shui J. L., Yu Y., Yang X. F., Chen C. H. // Electrochemistry communications. - 2006. - V. 8, № 7. - P. 1087-1091.
156. Tan L. Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method / Tan L., Luo Z., Liu H., Yu Y. // Journal of alloys and compounds. - 2010. - V. 502, № 2. - P. 407-410.
157. Kreder Iii K. J. Microwave-assisted solvothermal synthesis of three polymorphs of LiCoPO4 and their electrochemical properties / Kreder Iii K. J., Assat G., Manthiram A. // Chemistry of Materials. - 2015. - V. 27, № 16. - P. 5543-5549.
158. Hammond R. Structural chemistry of NaCoPO4 / Hammond R., Barbier J. // Acta Crystallographica Section B: Structural Science. - 1996. - V. 52, № 3. - P. 440-449.
159. Aydinol M. K. Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries / Aydinol M. K., Kohan A. F., Ceder G. // Journal of power sources. - 1997. - V. 68, № 2. - P. 664-668.
160. Ramos-Sanchez G. DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries / Ramos-Sanchez G., Callejas-Tovar A., Scanlon L. G., Balbuena P. B. // Physical Chemistry Chemical Physics. - 2014. - V. 16, № 2. - P. 743-752.
161. Gutierrez A. Microwave-assisted synthesis of NaCoPO4 red-phase and initial characterization as high voltage cathode for sodium-ion batteries / Gutierrez A., Kim S., Fister T. T., Johnson C. S. // ACS applied materials & interfaces. - 2017. - V. 9, № 5. - P. 4391-4396.
162. Yuan L.-X. Development and challenges of LiFePO 4 cathode material for lithium-ion batteries / Yuan L.-X., Wang Z.-H., Zhang W.-X., Hu X.-L., Chen J.-T., Huang
Y.-H., Goodenough J. B. // Energy & Environmental Science. - 2011. - V. 4, №2 2. - P. 269284.
163. Martini A. PyFitit: The software for quantitative analysis of XANES spectra using machine-learning algorithms / Martini A., Guda S. A., Guda A. A., Smolentsev G., Algasov A., Usoltsev O., Soldatov M. A., Bugaev A., Rusalev Y., Lamberti C., Soldatov A. V. // Computer Physics Communications. - 2020. - V. 250. - P. 107064.
164. Kreder K. J. Microwave-Assisted Solvothermal Synthesis of Three Polymorphs of LiCoPO4 and Their Electrochemical Properties / Kreder K. J., Assat G., Manthiram A. // Chem. Mater. Chemistry of Materials. - 2015. - V. 27, № 16. - P. 5543-5549.
165. Markevich E. Reasons for capacity fading of LiCoPO 4 cathodes in LiPF 6 containing electrolyte solutions / Markevich E., Sharabi R., Gottlieb H., Borgel V., Fridman K., Salitra G., Aurbach D., Semrau G., Schmidt M. A., Schall N., Bruenig C. // ELECOM Electrochemistry Communications. - 2012. - V. 15, № 1. - P. 22-25.
166. Reddy M. V. Impedance studies on the 5-V cathode material, LiCoPO4 / Reddy M. V., Reddy M. V., Reddy M. V., Chowdari B. V. R. // Journal of Solid State Electrochemistry. - 2012. - V. 16, № 5. - P. 1833-1839.
167. Kaus M. Electrochemical delithiation/relithiation of LiCoPO4: A two-step reaction mechanism investigated by in situ X-ray diffraction, in situ X-ray absorption spectroscopy, and ex situ 7Li/31P NMR spectroscopy / Kaus M., Issac I., Heinzmann R., Hahn H., Kubel C., Indris S., Heinzmann R., Doyle S., Mangold S., Hahn H., Chakravadhanula V. S. K., Kubel C., Ehrenberg H., Indris S., Ehrenberg H., Indris S. // J. Phys. Chem. C Journal of Physical Chemistry C. - 2014. - V. 118, №№ 31. - P. 17279-17290.
168. Richards W. D. Interface Stability in Solid-State Batteries / Richards W. D., Wang Y., Kim J. C., Ceder G., Miara L. J., Ceder G., Ceder G. // Chem. Mater. Chemistry of Materials. - 2016. - V. 28, № 1. - P. 266-273.
169. Wu F. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries/ Wu F., Maier J., Yu Y., Yu Y., Yu Y. // Chem. Soc. Rev. Chemical Society Reviews. - 2020. - V. 49, № 5. - P. 1569-1614.
170. Haas O. Synchrotron X-Ray Absorption Study of LiFePO4~ Electrodes / Haas O., Deb A., Cairns E. J., Wokaun A. // JOURNAL- ELECTROCHEMICAL SOCIETY. -2005. - V. 152, № 1. - P. A191-196.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.