Лигниназы базидиомицетов тема диссертации и автореферата по ВАК РФ 03.00.04, доктор биологических наук Леонтьевский, Алексей Аркадьевич
- Специальность ВАК РФ03.00.04
- Количество страниц 267
Оглавление диссертации доктор биологических наук Леонтьевский, Алексей Аркадьевич
Список сокращений.
I. Введение.
1.1. Актуальность проблемы.
1.2. Состояние вопроса.
1.3. Цель и задачи исследования.
1.4. Научная новизна.
1.5. Практическая значимость.
1.6. Связь работы с крупными программами.
1.7. Апробация работы.
1.8. Публикации.
1.9. Благодарность.
II. Обзор литературы «Биодеградация лигнина грибами белой гнили»
II. 1. Лигнин: определение, функции, распространение.
II. 1.1. Общие сведения.
II. 1.2. Биосинтез лигнина.
II.1.3. Строение лигнина.
II. 1.4. Препараты лигнина.
11.2. Микробиология разложения лигнина.
11.2.1. Анаэробное разложение лигнина.
11.2.2. Разложение лигнина бактериями.
- Актиномицеты.
- Эубактерии.
- Туннелирующие бактерии.
11.2.3. Разложение лигнина грибами.
- Грибы «мягкой» гнили древесины.
- Грибы «бурой» гнили древесины.
- Грибы «белой» гнили древесины.
- Другие грибы.
11.2.4. Микробные сообщества.
11.3. Физиология разложения лигнина грибами белой гнили.
11.3.1. Субстратная адаптация грибов белой гнили.
11.3.2. Условия разложения лигнина грибами белой гнили.
- Лигнинолитическая активность как функция вторичного метаболизма.
- Индуцибельность лигнинолитической системы.
- Необходимость косубстрата.
- Необходимость аэробных условий.
11.4. Энзимология разложения лигнина грибами белой гнили.
11.4.1. Лигнинолитические ферментные комплексы.
11.4.2. Лигнин пероксидаза.
- Определение.
- История изучения и распространение.
- Строение лигнин пероксидазы.
- Каталитические свойства.
- Лигнинолитические свойства.
- Функции лигнин пероксидазы.
- Особенности экспрессии и идентификации.
11.4.3. Мп-пероксидаза.
- Определение.
- История изучения и распространение.
- Строение Мп-пероксидазы.
- Каталитические свойства.
- Лигнинолитические свойства.
- Функции Мп-пероксидазы.
- Особенности экспрессии и идентификации.
11.4.4. Другие пероксидазы.
- Mn-зависимая лигнин пероксидаза.
- Классическая пероксидаза
- «Новые» пероксидазы.
11.4.5. Лакказа.
- Определение.
- История изучения.
- Распространение.
- Локализация.
- Строение лакказы.
- Каталитические свойства.
- Лигнинолитические свойства.
- Функции лакказы.
- Особенности экспрессии и идентификации.
11.4.6. Перекись-генерирующие ферменты.
- Глюкозо-оксидаза.
- Метанол-оксидаза.
- Глиоксаль-оксидаза.
- Арил-алкоголь оксидаза.
11.4.7. Редуктазы.
- Арил-алкоголь дегидрогеназа.
- Хинон-редуктаза.
- Целлобиозо-дегидрогеназа.
11.5. Неэнзиматические реакции при биодеградации лигнина.
11.6. Прикладное значение грибов белой гнили.
11.6.1. Обработка природных лигнин-содержащих материалов.
11.6.2. Разложение ксенобиотиков.
III. Методы и материалы.
111.1. Микроорганизмы.
111.2. Методы культивирования микроорганизмов.
111.3. Методы определения активности ферментов.
111.4. Очистка ферментов.
111.5. Электрофорез и изоэлектрофокусировка.
111.6. Спектральные методы.
111.7. Высокоэффективная жидкостная хроматография.
111.8. Лигнинолитические реакции культур грибов и очищенных ферментов.
111.9. Биоремедиация почвы.
111.10. Идентификация продуктов разложения хлорфенолов. 117 III. 11. Аналитические методы.
III. 12. Материалы и реактивы.
IV. Результаты.
IV.1. Лигнинолитические свойства гриба Panus tigrinus 8/18 при разных способах культивирования.
IV.1.1. Скрининг лигнинолитических грибов.
IV. 1.2. Стационарная погруженная культура Panus tigrinus 8/18.
IV. 1.3. Твердофазная культура/*, tigrinus 8/18.
IV. 1.4. Определение ключевого лигнинолитического фермента.
IV.2. Новый способ погруженного культивирования Panus tigrinus 8/18.
IV.2.1. Индукция лигнинолитических ферментов.
IV.2.2. Подбор компонентов культуральной среды.
IV.2.3. Новые приемы культивирования.
IV.2.4. Варианты нового способа погруженного культивирования.
IV.3. Mn-зависимая лигнин пероксидаза Panus tigrinus 8/18.
IV.3.1. Физико-химические свойства очищенной МпЛП.
IV.3.2. Каталитический цикл.
IV.3.3. Лигнинолитические свойства.
IV.4. Лакказа Panus tigrinus 8/18 и феномен желтых лакказ.
IV.4.1. Общая характеристика.
IV.4.2. Спектральные свойства.
IV.4.3. Каталитические свойства.
IV.4.4. Множественные формы.
IV.4.5. Феномен желтых лакказ.
IV.4.6. Лигнинолитические свойства голубых и желтых лакказ.
IV.5. Прикладное значение лигнинолитических грибов и ферментов.
IV.5.1. Обработка лигнин-содержащих материалов.
IV.5.2. Разложение хлорфенолов грибами белой гнили.
V. Обсуждение результатов. 181 V.I. Лигнинолитические свойства Panus tigrinus 8/18 при разных способах культивирования. 181 V.2. Новый способ погруженного культивирования Panus tigrinus 8/18. 183 V.3. Mn-зависимая лигнин пероксидаза (МпЛП) P. tigrinus. 185 V.4. Лакказа P. tigrinus 8/18 и феномен желтых лакказ.
V.5. Прикладное значение лигнинолитических грибов и ферментов.
VI. Выводы.
Рекомендованный список диссертаций по специальности «Биохимия», 03.00.04 шифр ВАК
Физиологические особенности гриба panus tigrinus BKM F-3616D и свойства ферментов лигнолитического комплекса, продуцируемых им2000 год, кандидат биологических наук Атыкян, Нелли Альбертовна
Гибридная Mn-пероксидаза гриба Panus Tigrinus 8/182005 год, кандидат биологических наук Лисов, Александр Викторович
Биотехнология нетоксичных композиционных материалов из отходов растительного сырья и микробиологической промышленности2003 год, доктор биологических наук Кадималиев, Давуд али-оглы
Целлобиозодегидрогеназа почвенного аскомицета ИНБИ 2-26(-)2004 год, кандидат биологических наук Карапетян, Карен Навасардович
Биохимические и физиологические аспекты деградации полициклических ароматических углеводородов (ПАУ) лигнинолитическими грибами2014 год, кандидат наук Позднякова, Наталия Николаевна
Введение диссертации (часть автореферата) на тему «Лигниназы базидиомицетов»
1.1. Актуальность проблемы.
Лигнин - ароматический биополимер, обязательный компонент всех наземных растений, крайне широко распространен на Земле, составляя 25% сухого веса фотосинтезирующей биомассы. В отличие от других биополимеров, - белков, нуклеиновых кислот и полисахаридов, лигнин не имеет регулярной структуры и содержит более десяти разных типов межмономерных связей, что определяет его устойчивость к химическому и микробиологическому разложению. Считается, что лигнин - самое устойчивое природное соединение.
Значимость лигнина для биосферы и хозяйственной деятельности человека трудно переоценить: сам факт существования лигнина определяет возможность существования растительного мира; изобилие лигнина и высокое удельное содержание углерода (вдвое выше чем у целлюлозы) делают этот материал одним из главных участников глобального круговорота углерода; продукты биотрансформации лигнина - основной источник гумуса, определяющего плодородие почв; лигноцеллюлоза - один из основных сырьевых ресурсов современной цивилизации. Однако, определение места лигнина в природе и решение технологических и экологических проблем при использовании лигнин-содержащих материалов ограничены недостаточным пониманием процессов биодеградации лигнина. Прогресс в этой области знания заметно уступает таким смежным вопросам как биодеградация целлюлозы или биосинтез лигнина. Причины - в сложности строения и вариабельности структуры лигнина у разных видов и даже в разных частях растений, в недостатке надежных и адекватных методов его изучения.
К настоящему времени в качестве эффективного биодеструктора лигнина охарактеризована лишь одна группа микроорганизмов, это - базидиомицеты, вызывающие т.н. белую гниль древесины. Пока неясно, является ли это следствием упомянутых технических трудностей, так что открытие новых микроорганизмов-лигнинолитиков из других таксонов лишь вопрос времени, или же это, - отражение реальной картины ограниченности природных лигнинолитических ресурсов вследствие сложности и устойчивости структуры лигнина.
В качестве лигнинолитических агентов грибов белой гнили определены внеклеточные ферменты класса оксидоредуктаз: лигнин пероксидаза, Мп-пероксидаза и лакказа. Стало очевидным, что эти ферменты работают в составе сложно организованных ферментных комплектов. Однако, до настоящего времени нет общепринятых представлений о деполимеризации лигнина отдельными ферментами и о взаимодействиях внутри лигнинолитических ферментных комплексов.
Тем не менее, во всем мире ведется интенсивная разработка биотехнологий на основе лигнинолитических грибов и ферментов как для обработки лигноцеллюлозных материалов (производство бумаги, хлопкового и льняного волокна и т.п.), так и для утилизации лигнин-содержагцих отходов. Эффективность лигнинолитических систем грибов при разложении устойчивого лигнина и неспецифичность лигнинолитических ферментов послужили поводом для использования интактных культур грибов и отдельных ферментов для разложения устойчивых ксенобиотиков. Описаны многочисленные примеры трансформации или минерализации разных типов устойчивых ксенобиотиков, что также активно применяется для разработки технологий биоремедиации различных природных сред.
1.2. Состояние вопроса.
К началу настоящей работы было известно, что базидиомицеты белой гнили древесины являются единственной группой микроорганизмов, способных разлагать лигнин [Kirk, 1984; Leisola and Fiechter, 1985]. Были изучены также физиологические условия проявления лигнинолитической активности этими грибами. Лигнинолитическая активность проявлялась как функция вторичного метаболизма вне зависимости от наличия или отсутствия лигнина, лигнин не разлагался без легко усваиваемого косубстрата, эффективность разложения лигнина стимулировалась повышенным парциальным давлением кислорода. Для соблюдения этих условий был разработан метод погруженного культивирования грибов в виде мицелиального мата в тонком слое жидкой среды, в 100% кислородной атмосфере, без перемешивания[Клгк et al., 1978]. Этот метод позволял получать культуры грибов с активированной лигнинолитической системой, однако, был слишком трудоемким, дорогим, и, главное, давал крайне низкий выход лигнинолитических ферментов. Кроме того, искусственная жидкая среда отличалась по физическим свойствам и составу от природных ростовых субстратов грибов, - древесины, травяного или лиственного опада. Это оставляло сомнения в идентичности лигнинолитических ферментных систем, получаемых в лабораторных условиях, и существующих в природе.
Характерным признаком лигнинолитических грибов белой гнили, отличающим их от других дереворазрушающих грибов, была способность продуцировать внеклеточные фенолоксидазы, - лакказу и пероксидазу. Однако, выделенные фенолоксидазы не окисляли нефенольные подструктуры, преобладающие в полимерном лигнине и определяющие его устойчивость к разложению. Этот парадокс был разрешен в 1984 г., когда у гриба белой гнили Phanerochaete chrysosporium были открыты новые лигнинолитические пероксидазы - лигнин пероксидаза и Mn-пероксидаза [Tien and Kirk, 1984; Kuwahara et al., 1984a], Надежды на прорыв в изучении энзимологии разложения лигнина связывали только с лигнин пероксидазой: это единственный фермент, для которого надежно доказали способность разрушать нефенольные подструктуры лигнина.
Другие ферменты, - лакказа и Mn-пероксидаза, - воспринимались как вспомогательные, способные лишь детоксифицировать фенольные продукты деполимеризации лигнина лигнин пероксидазой и вызывать некоторые изменения в полимерной структуре лигнина. Позднее, в 1991 г. был обнаружен эффект медиации у лакказ: в присутствии синтетических соединений определенной структуры голубая лакказа приобретала способность разлагать устойчивые соединения с редокс-потенциалом, превосходящим собственный [Bourbonnais and Paice, 1990]. Аналогичные реакции были найдены и для Mn-пероксидазы. Этот фермент разлагал нефенольные подструктуры лигнина в присутствии медиаторов радикальной природы, образующихся при сопряженном окислении тиолов или ненасыщенных липидов [Gold et al., 1990; Jensen et al., 1996]. Эти находки привели к размыванию идеи ключевого фермента лигнинолитического ферментного комплекса, каковым считали лигнин пероксидазу. Но строгих доказательств эффективности феномена медиации для лакказы и Mn-пероксидазы при разложении лигнина в природе не получено до сих пор.
Подавляющее количество исследований биодеградации лигнина проводили на примере базидиомицета белой гнили Phanerochaete chrysosporium. Интенсивное изучение этого организма дало свои результаты: основные сведения по физиологии и энзимологии разложения лигнина грибами были получены в экспериментах с Р. chrysosporium. Однако, со временем выяснилось, что P. chrysosporium не продуцирует лакказу в обычных условиях, чем отличается от типичных лигнинолитических грибов. Кроме того, концентрирование исследовательского интереса на единственном, хотя и хорошо изученном во всех аспектах организме, оставляло за рамками научного поиска разнообразие ферментных и метаболических систем других грибов.
В настоящее время, при изучение энзимологии биодеградации лигнина большее внимание уделяется новым видам грибов, распространяется практика использования твердофазного культивирования на природных ростовых субстратах, общий характер исследований переориентируется от изучения отдельных ферментов к выяснению взаимосвязей внутри ферментных ансамблей, включая неэнзиматические реакции.
Похожие диссертационные работы по специальности «Биохимия», 03.00.04 шифр ВАК
Внеклеточные оксидоредуктазы лигнинолитического комплекса базидиального гриба Trametes Pubescens (Schumach.) Pilat2006 год, кандидат биологических наук Никитина, Оксана Викторовна
Лакказа и Mn-пероксидаза базидиомицета Cerrena maxima: Характеристика и роль в биосинтезе гуминоподобных веществ2003 год, кандидат биологических наук Явметдинов, Ильдар Самиуллович
ИЗУЧЕНИЕ ОРГАНИЗАЦИИ МУЛЬТИГЕННОГО СЕМЕЙСТВА ЛАККАЗ БАЗИДИАЛЬНОГО ГРИБА TRAMETES HIRSUTA – ЭФФЕКТИВНОГО ДЕСТРУКТОРА ЛИГНИНА2015 год, кандидат наук Васина Дарья Владимировна
Сообщество неспорулирующих мицелиальных грибов ИНБИ 2-26 из диоксинсодержащих тропических почв2003 год, кандидат биологических наук Васильченко, Лилия Григорьевна
Участие ферментов и липидов мицелия гриба Lentinus tigrinus в биодеградации фенолов2007 год, кандидат биологических наук Надеждина, Оксана Сергеевна
Заключение диссертации по теме «Биохимия», Леонтьевский, Алексей Аркадьевич
VI. Выводы.
1. Впервые изучены физиологические и лигнинолитические характеристики гриба Panus tigrinus в условиях погруженного и твердофазного культивирования.
P. tigrinus проявлял лигнинолитическую активность при переходе культуры ко вторичному метаболизму. При сопоставлении с другими грибами, P. tigrinus демонстрировал наибольшую скорость разложения лигнина. В отличие от типичных лигнинолитических грибов, лигнинолитическая активность P. tigrinus стимулировалась марганцем.
2. Изучены состав и организация лигнинолитического ферментного комплекса гриба Panus tigrinus.
P. tigrinus не продуцирует лигнин пероксидазу при любых условиях культивирования. В состав лигнинолитического ферментного комплекса Р. tigrinus входят новая Мп-зависимая лигнин пероксидаза, как ключевой фермент, и семейство лакказ.
3. Разработан новый способ погруженного культивирования грибов, повышающий выход лигнинолитических ферментов.
Способ включает использование минеральной среды, лимитированной по азоту, специфических органических и неорганических индукторов ферментов, детергента твина-80, иммобилизацию мицелия и температурный сдвиг. Выход ферментов, по сравнению со стандартными условиями культивирования увеличен в 50 раз.
4. Впервые выделен и охарактеризован новый лигнинолитический фермент -Mn-зависимая лигнин пероксидаза (МпЛП) Panus tigrinus.
Новый фермент обладает уникальным каталитическим циклом: в его заключительной реакции Соединение II восстанавливается до нативно й1 формы как марганцем, так и органическим субстратом. Вследствие этого, каталитические свойства фермента сочетают характеристики лигнин пероксидазы и Mn-пероксидазы. Физико-химические свойства нового фермента аналогичны свойствам других лигнинолитических пероксидаз.
5. Впервые обнаружен и изучен феномен желтых лакказ у лигнинолитических грибов.
Желтые лакказы грибов Partus tigrinus, Phlebia radiata, Phlebia tremellosa и Agaricus bisporus, выделенные из твердофазных культур, не имели типичных спектральных и каталитических свойств, в отличие от голубых лакказ из погруженных культур. Предполагается, что желтые лакказы образуются в результате модификации обычных голубых лакказ продуктами разложения лигнина. При этом изменяются вторичная структура и микроокружение атомов меди в активном центре, желтая лакказа приобретает способность окислять устойчивые подструктуры лигнина. Выделены и охарактеризованы множественные формы желтой лакказы гриба Panus tigrinus.
6. Разработаны способы практического применения свободных и иммобилизованных голубых лакказ грибов для делигнификации лигноцеллюлозных материалов и трансформации хлорфенолов.
При использовании грибных лакказ для отбеливания лигноцеллюлозного волокна достигали 70-75% делигнификации.
Впервые изучена реакция трансформации 2,4,6-трихлорфенола лакказами. Предложен способ удаления хлорфенолов из водной среды иммобилизованными лакказой (за 10-15 мин. при 400 мг/л токсиканта).
7. Разработаны способы практического применения культуры Panus tigrinus для биоремедиации почвы и воды.
В полевых условиях P. tigrinus снижал содержание полихлорфенолов до 48% за 4 месяца при исходной концентрации до 500 мг на кг почвы.
При трансформации 2,4,6-трихлорфенола в воде культурой P. tigrinus и очищенными лакказами/*. tigrinus и С. versicolor, впервые обнаружен 3,5-дихлоркатехол как продукт о^шо-дегалогенирования хлорфенола. Впервые предложен способ адаптации лигнинолитических грибов к высоким концентрациям ксенобиотиков на примере хлорфенолов.
Список литературы диссертационного исследования доктор биологических наук Леонтьевский, Алексей Аркадьевич, 2002 год
1. Андреева, В. А. 1988. Фермент пероксидаза. Участие в защитном механизме растений. Ред. Ю. Н. Журавлев. Москва, Наука. 128 с.
2. Блажей А., Шутый, Л. 1977. Фенольные соединения растительного происхождения. Мир, Москва, 239 стр.
3. Бухало А.С. 1988. Высшие базидиомицеты в чистой культуре. Отв. редактор Дудка И. А. Ин-т ботаники им. Н. Г. Холодного АН УССР. Киев, Наукова думка, 144 с.
4. Варфоломеев С. Д., Наки А., Ярополов А. И., Березин И. В. 1985. Кинетика и механизм каталитического восстановления молекулярного кислорода в присутствии лакказы. Биохимия. 50, 9: 1411-1420.
5. Волчатова И. В., Медведева, С. А., Бабкин В. А. 1994. Изучение состава внеклеточных ферментов грибов Phanerochaete chrysosporium и Coriolus villosus. Биохимия. 59, 6: 797-803.
6. Гиндилис, А. Л., Баранов, Ю. А., Жажина, Е. О., Гаврилова, В. П., Верзилов В. В., Ярополов А. И. 1990. Лакказа из базидиального гриба Cerrena maxima. Некоторые свойства и кинетический механизм действия. Биохимия. 55, 2: 315-322.
7. Головлева Л. А., Квеситадзе Г. И., Элисашвили В. И., Леонтьевский А. А. 19876. Лигнинолитическая активность грибов при твердофазной ферментации виноградной лозы. Докл. АН СССР. 297, 3: 718-720.
8. Головлева, Л. А., Мальцева, О. В., Леонтьевский, А. А., Мясоедова, Н. М., Скрябин, Г. К. 1987а. Биосинтез лигниназы при твердофазной ферментации соломы грибами Panus tigrinus. Докл. АН СССР. 294, 4: 992-995.
9. Дзедзуля Е. И., Беккер, Е. Г. 2000. Мп-Пероксидаза из Bjerkandera adusta 90-41. Очистка и субстратная специфичность. Биохимия. 65, 6: 829-835.
10. Ю.Довгань И. В., Медведева Е. И. 1983. Изменения в структурных элементах лигнина бурой водоросли Cytoceria barbata различного возраста. Химия природных соединений. 19, 1, 81-84.
11. Кузнецов, В. Д., Филиппова, С.Н., Рыбакова, A.M. 1984. О природе бурого пигмента и составе фенолоксидаз у Streptomyces galbis. Микробиология. 53, 2: 251-256.
12. Левит, М. Н., Шкроб, А. М. 1992. Лигнин и лигниназа. Биоорганическая химия. 18, 3: 309-345.
13. Леонтьевский, А. А., Мясоедова Н. М., Баскунов Б. П., Позднякова Н. Н., Варес Т., Калккинен Н., Хатакка А. И., Головлева, Л. A. 1999b. Реакции голубых и желтых лакказ с модельными соединениями лигнина. Биохимия. 64, 10: 1362-1369.
14. Леонтьевский, А. А., Головлева, Л. А. 1990. Внеклеточные лигнин-разрушающие ферменты гриба Pan us tigrinus. Биохимия. 55, 3: 423-431.
15. Леонтьевский, А. А., Мясоедова, Н. М., Овчаренко, В. И., Головлева, Л. А. 1992. Влияние ионов Mn(II) на экспрессию лигнинолитических ферментов гриба белой гнили Panus tigrinus 8/18. Биохимия. 57, 4: 582-587.
16. Наки А., Варфоломеев С. Д., Березин, И. В. 1981. Кинетические закономерности восстановления молекулярного кислорода медьсодержащей оксидазой (лакказой). Докл. АН СССР. 260, 3: 646-649.
17. Орлов Д. С. Гумусовые кислоты почв и общая теория гумификации. 1990. Москва, Изд-во МГУ. 325 с.
18. Резников В. М., Михасёва М. Ф., Зильберглейт М. А. 1978. Лигнин водоросли Fucus vesiculosus. Химия природных соединений. 14, 5: 554-556.
19. Рубин Б. А., Логинова Л. Н. 1973. Альтернативные пути биологического окисления. Итоги науки и техники. Серия Биологическая Химия. Т.6. Ред. В. Л. Кретович. Москва, ВИНИТИ. 196 с.
20. Тиранов, П. П. 1992. Технические лигнины, их получение и использование. Целлюлоза, бумага и картон. Вып. 5. 60 с. Москва, ВНИПИЭИлеспром.
21. Чудаков М. И. 1961. Лигнин. Успехи химии. 30, 2: 184-219.
22. Шкроб, А. М., Левит, М. Н., Арчаков, А. И. 1989. Модельные подходы к изучению механизма действия лигниназы. Чем отличается лигниназа от других пероксидаз? 15, 1: 53-69.
23. Элисашвили, В. И., Гошадзе, М. К., Циоменко, А. Б., Гиндилис, А. Л., Квеситадзе, Г. И. 1992. Очистка и свойства лакказы базидиального гриба Cerrena unicolor. Прикл. Биохим. Микробиол. 28, 4: 512-517.
24. Adhi, Т. P., Korus, R. A., and D. L. Crawford. 1989. Production of major extracellular enzymes during lignocellulose degradation by two streptomycetes in agitated submerged culture. Appl. Environ. Microbiol. 55, 5: 1165-1168.
25. Adler, E. 1977. Lignin chemistry past, present and future. Wood. Sci. Technol. 11: 169218.
26. Agarwal, U. P., and R. H. Atalla. 1986. In situ Raman microprobe studies of plant cell walls: Macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B. S. P. Planta. 169: 325-332.
27. Agosin, E., Blanchette, R. A., Silva, H., Lapierre, C,., Cease, K. R., Ibach, R. E., Abad, A. R. and P. Muga. 1990. Characterization of palo podrido, a natural process of delignification in wood. Appl. Environ. Microbiol. 56, 1: 65-74.
28. Agosin, E., Jarpa, S., Rojas, E. and E. Espejo. 1989. Solid-state fermentation of pine sawdust by selected brown-rot fungi. Enzyme Microb. Technol. 11:511-517.
29. Akamatsu, Y., Ma, D. В., Higuchi, T. and M. Shimada. 1990. A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. FEBS Letters. 269, 1: 261-263.
30. Akileswaran, L., Brock, B. J., Cereghino, J. L., and M. H. Gold. 1999. 1,4-Benzoquinone reductase from Phanerochaete chrysosporium cDNA cloning and regulation of expression. Appl. Environ. Microbiol. 65, 2: 415-421.
31. Akita, M., Tsutsumi, D., Kobayashi, M., and H. Kise. 2001. Structural change and catalytic activity of horseradish peroxidase in oxidative polymerization of phenol. Biosci. Biotechnol. Biochem. 65, 7: 1581-1588.
32. Alexandre, G., and I. B. Zhulin. 2000. Laccases are whidespread in bacteria. Trends in Biotechnology. 18, 2: 41-42.
33. Alic, M., Akileswaran, L. and M. Gold. 1997. Characterization of the gene encoding manganese peroxidase isozyme 3 from Phanerochaete chrysosporium. Biochim. Biophys. Acta. 1338: 1-7.
34. Alleman, В. C., Logan, B. and R. L. Gibertson. 1992. Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose. Appl. Environ. Microbiol. 58, 12: 4048-4050.
35. Amann, M. 1997. The Lignozym® process coming closer to the mill. Materials of 9th Int. Symp. on Wood and Pulping Chemistry. Montreal.
36. Ambert-Belay, K., Fuchs, S. M., and M. Tien. 1998. Identification of the veratryl alcohol binding site in lignin peroxidase by site-directed mutagenesis. Biochem. Biophys. Res. Commun. 251: 283-286.
37. Ander, P. 1994. The cellobiose-oxidizing enzymes CBQ and CbO as related to lignin and cellulose degradation a review. FEMS Microbiol. Rev. 13, 2/3: 297-3 12.
38. Ander, P. and K.-E. Eriksson. 1978. Lignin degradation and utilization by microorganisms. In: Progress in Industrial Microbiology. M. J. Bull, Ed. V.14, Amsterdam, Elsevier, p. 1-27.
39. Ander, P., Eriksson, K.-E., and H.-S. Yu. 1983. Vanillic acid metabolism by Sporotrichum pulverulentum: evidence for demetoxylation before ring-cleavage. Arch. Microbiol. 136: 1-6.
40. Andersson, L. A., Renganathan, V., Chiu, A. A., Loehr, Т. M., and M. H. Gold. 1985. Spectral characterization of diarylpropane oxygenase, a novel peroxide-dependent, lignin-degrading heme enzyme. J. Biol. Chem. 260, 10: 6080-6087.
41. Andrawis, A., Johnson, K. A., and M. Tien. 1988. Studies on Compound I formation of the lignin peroxidase from Phanerochaete chrysosporium. J. Biol. Chem. 263, 3: 1195-8.
42. Andrawis, A., Pease, E. A., Kuan, I.-C., Holzbaur, E., and M. Tien. 1989. Characterization of two lignin peroxidase clones from Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 162, 2: 673-680.
43. Aramayo, R., and W. E. Timberlake. 1990. Sequence and molecular structure of the Aspergillus nidulans у A (laccase I) gene. Nucleic Acids Res. 18, 11: 3415.
44. Archibald, F. 1992a. Lignin peroxidase activity is not important in biological bleaching and delignification of unbleached Kraft pulp by Trametes versicolor. Appl. Environ. Microbiol. 58, 9: 3101-3109.
45. Archibald, F., and B. Roy. 1992. Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor. Appl. Environ. Microbiol. 58, 5: 1496-1499.
46. Arjmand, M. and H. Sandermann. 1985. Mineralization of chloroaniline/lignin conjugates and of free chloroanilines by the white rot fungus Phanerochaete chrysosporium. J. Agric. Food Chem. 33, 6: 1055-1060.
47. Armenante, P. M., Pal, N. and G. Lewandowski. 1994. Role of mycelium and extracellular protein in the biodegradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60, 6: 1711-1718.
48. Artolozada, M. J., Kubatova, E., Vole, J., and H. M. Kalisz. 1997. Pyranose 2-oxidase from Phanerochaete chrysosporium — further biochemical characterization. Appl. Microbiol. Biotechnol. 47: 508-514.
49. Asada, Y., Miyabe, M., Kikkava, M., and M. Kuwachara. 1986. Oxidation of NADH by peroxidase of a lignin-degrading basidiomycete Phanerochaete chrysosporium and its involvement in the degradation of lignin model compound. Agric.Biol.Chem. 50,2: 525-9.
50. Asada, Y., Miyabe, M., Kikkava, M., and M. Kuwachara. 1987. Extracellular NADH-oxidizing peroxidase produced by a lignin-degrading basidiomycete, Phanerochaete chrysosporium. J. Ferment. Technol. 65, 4: 483-487.
51. Assavanig, A., Amornkitticharoen, В., Ekpasial, N., Meevootisom, V., and T. W. Flegel. 1992. Isolation, characterization and function of laccase from Trichoderma. Appl. Microbiol. Biotechnol. 38, 2: 198-202.
52. Asther, M., Capdevila, C., and G. Corrieu. 1988b. Control of lignin peroxidase production by Phanerochaete chrysosporium INA-12 by temperature shifting. Appl. Environ. Microbiol. 54, 12: 3194-3196.
53. Asther, M., Lesage, L., Drapron, R., Corrieu, G. and E. Odier. 1988a. Phospholipid and fatty acid enrichment of Phanerochaete chrysosporium INA-12 in relation to ligninase production. Appl. Microbiol. Biotechnol. 27, 4: 393-398.
54. Atalla, R. H. and U. P. Agrawal. 1985. Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science. 227, 636-638.
55. Backa, S., Gierer, J., Reitberger, Т., and Nilsson, T. 1992. Hydroxyl radical activity in brown-rot fungi studied by a new chemiluminiescence method. Holzforschung. 46: 61-67.
56. Band, L. 1997. Structural properties of peroxidases. J. Biotechnol. 53: 253-263.
57. Banci, L., Bertini, I., Bini, Т., Tien, M. and P. Turano. 1993b. Binding of horseradish, lignin, and manganese peroxidases to their respective substrates. Biochemistry. 32: 58255831.
58. Banci, L., Bertini, I., Kuan, I-C., Tien, M., Turano, P., and A. J. Vila. 1993a. NMR Investigation of isotopically labeled cyanide derivatives of lignin peroxidase and manganese peroxidase. Biochemistry. 32, 49: 13483-1349.
59. Banci, L., Bertini, I., Pozzo, L. D., Conte, R. D., and M. Tien. 1998. Monitoring the role of oxalate in manganese peroxidase. Biochemistry. 37, 25: 9009-9015.
60. Banci, L., Bertini, I., Turano, P., Tien, M., and Т. K. Kirk. 1991. Proton NMR investigation into the basis for the relatively high redox potential of lignin peroxidase. Proc. Natl. Acad. Sci. USA. 88, 16: 6956-6960.
61. Bao, W., Fukushima, Y., Jensen, K. A., Jr., Moen, M. A., and К. E. Hammel. 1994. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett. 354: 297- 300.
62. Bao, W., O'Malley, D. M., Whetten, R., and R. R. Sederoff. 1993. A laccase associated with lignification in loblolly pine xylem. Science. 260: 672-674.
63. Barr, D. P., Shah, M. M., and S. D. Aust. 1993. Veratryl alcohol-dependent production of molecular oxygen by lignin peroxidase. J. Biol. Chem. 268, 1: 241-244.
64. Barr, D. P., Shah, M. M., Grover, T. A., and S. D. Aust. 1992. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 298, 2: 480-485.
65. Batt, C., and M. Solberg. 1985. Association of laccase activity with conidiation in an aflatoxygenic strain of Aspergillus parasiticus. FEMS Microbiol. Lett. 27:2 77-280.
66. Bavendamm, W. 1928. Uber das Vorkommen und den Nachweis von Oxydasen bei holzzerstorenden Pilzen. Z. Pflanzenkrank. Pflanzenschutz. 38: 258-276.
67. Behrendt C. J., and R. A. Blachette. 1997. Biological processing of pine logs for pulp and paper production with Phlebiopsis gigantea. Appl. Environ. Microbiol. 63, 5: 1995-2000.
68. Benner, R., and R. E. Hodson. 1985. Thermophilic ananerobic biodegradation of 14C.lignin, [14C]cellulose, and [I4C]lignocellulose preparations. Appl. Environ. Microbiol. 50,4: 971-976.
69. Benner, R., Maccubbin, A. E., and R. E. Hodson. 1984. Anaerobic degradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl. Environ. Microbiol. 47, 5: 998-1004.
70. Bergbauer, M., Eggert, C., and G. Kraepelin. 1991. Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 35: 105-109.
71. Bernard-Vailhe, M. A., Besle, J. M., and J. Dore. 1995. Transformation of 14C-lignin-labeled cell wall of wheat by Syntrophococcus sucromutants, Eubacterium oxireducens, and Neocallimastix frontalis. Appl. Environ. Microbiol. 61, 1: 379-381.
72. Bertrand, G. 1894. Sur le latex de la laccase et de l'arbre a laque C. R. Hebd Seances Acad. Sci. (Paris).118: 1215-1217.
73. Bertrand, G. 1896. Sur la presence simultanee de la laccase et de la tyrosinase dans le sue de quelques champignons. C.R.Hebd Seances Acad.Sci. (Paris). 123, 11: 463-465.
74. Bilal, F., and C. F. Thurston. 1996. Purification of laccase II from Armillaria mellea and comparison of its properties with those of laccase I. Micol. Res. 100: 1099-1105.
75. Blanchette, R. A. 1991. Delignification by wood-decay fungi. Ann. Rev. Phytopathol. 29: 381-398.
76. Blanchette, R. A. 1984. Manganese accumulation in wood decayed by white rot fungi. Phytopathology. 74: 725-730.
77. Blanchette, R. A., Abad, A. R., Farrell, R. L., and T. D. Leathers. 1989. Detection of lignin peroxidase and xylanase by immunocytochemical labeling in wood decayed by basidiomycetes. Appl. Environ. Microbiol. 55, 6: 1457-1465.
78. Blanchette, R. A., and I. D. Reid. 1986. Ultrastructural aspects of wood delignification by Phlebia (Merulius) tremellosus. Appl. Environ. Microbiol. 52, 2: 239-245.
79. Bligny, R. and R. Douce. 1983. Biochem. J. 209: 489-493.
80. Blondeau, R. 1989. Biodegradation of natural and synthetic humic acids by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 55,5: 1282-1285.
81. B6ckle, В., Martinez, M. J., Guillen, F., and A. T. Martinez. 1999. Mechanism of peroxidase inactivation in liquid cultures of the ligninolytic fungus Pleurotus pulmonaris. 65, 3: 923-928.
82. Bogan, B. W., Lamar, R. Т., and К. E. Hammel. 1996a. Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl. Environ. Microbiol. 62, 5: 1788-1792.
83. Bollag, J.-M., and A. Leonowicz. 1984. Comparative studies of extracellular fungal laccases. Appl. Environ. Microbiol. 48, 4: 849-854.
84. Bonnarme, P., and T. W. Jeffries. 1990. Mn(ll) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl. Environ. Microbiol. 56, 1: 210-217.
85. Bonnen, A. M., Anton, L. H., and A. B. Orth. 1994. Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. Appl.Environ.Microbiol. 60,3:960-965.
86. Bono, J.-J., Goulas, P., Вое, J.-F., Portet, N., and J.-L. Seris. 1990. Effect of Mn(II) on reactions catalyzed by lignin peroxidase from Phanerochaete chrysosporium. Eur. J. Biochem. 192, 1: 189-193.
87. Boominthan, K., Dass, S. В., Randall, T. A., and C. A. Reddy. 1990b. Nitrogen-deregulated mutants of Phanerochaete chrysosporium a lignin-degrading basidiomycete. Arch. Microbiol. 153, 6: 521-527.
88. Borgmeyer, J. R., and D. L. Crowford. 1985. Production and characterization of polymeric lignin degradation intermediates from two different Streptomyces spp. Appl. Environ. Microbiol. 49, 2: 273-278.
89. Boudet, A. M., Lapierre, C., and J. Grima-Pettenati. 1995. Biochemistry and molecular biology of lignification. New Phytol. 129: 203-236.
90. Bourbonnais, R. and M. G. Paice. 1988. Veratryl alcohol oxidases from the lignin degrading basidiomycete Pleurotus sajor-saju. Biochem. J. 255: 445-450.
91. Bourbonnais, R. and M. G. Paice. 1987. Oxidation and reduction of lignin-related aromatic compounds by Aureobasidiumpullulans. Appl.Microbiol.Biotechnol. 26: 164-9.
92. Bourbonnais, R., and M. G. Paice. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267, 1: 99-102.
93. Bourbonnais, R., and M. G. Paice. 1992. Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis -(3-ethylbenzthiazoline-6-sulfonate). Appl. Microbiol. Biotechnol. 36, 6: 823-827.
94. Bourbonnais, R., Paice, M. G., Freiermuth, В., Bodie, E., and S. Borneman. 1997a. Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol. 63, 12: 4627-4632.
95. Boyle, C. D., Kropp, B. R. and I. D. Reid. 1992. Solubilization and mineralization of lignin by white rot fungi. Appl. Environ. Microbiol. 58, 10: 3217-3224.
96. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microorganisms qualities of protein utilizing the principle of pritein-dye binding. Anal. Biochem. 72, 1: 248-254.
97. Brock, B. J. and M. H. Gold. 1996. 1,4-Benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium'. spectral and kinetic analysis. Arch. Biochem. Biophys. 331, 1: 31-40.
98. Brock, В. J., Rieble, S., and M. H. Gold. 1995. Purification and characterization of a 1,4-benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 8: 3076-3081.
99. Brown, J. A., Glenn, J. K., and M. H. Gold. 1990. Manganese regulates expression of manganese peroxidase. J. Bacteriol. 172, 6: 3125-3130.
100. Brown, J. A., Li, D., Alic, M., and M. H. Gold. 1993. Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59, 12: 4295-4299.
101. Buswell, J. A., Hamp, S., and K.-E. Eriksson. 1979. Intracellular quinone reduction in Sporotrichum pulverulentum by a NAD(P)H:quinone oxidoreductase. FEBS Lett. 108: 229-232.
102. Buswell, J. A., and E. Odier. 1987. Lignin biodegradation. In: Critical Reviews in Biotechnology. G. Stewart and I. Russell, Eds. CRC Press, Boca Raton, Florida, p. 1-60.
103. Butler, J. H. A., and J. C. Buckerfield. 1979. Digestion of lignin by termites. Soil. Biol. Biochem. 11: 507-513.
104. Cai, D., and M. Tien. 1989. On the reaction of lignin peroxidase compound III (isozyme H8). Biochem. Biophys. Res. Commun. 162, 1: 464-469.
105. Cai, D., and M. Tien. 1990. Characterization of the oxocomplex of lignin peroxidases from Phanerochaete chrysosporium: equilibrium and kinetics studies. Biochemistry. 29, 8: 2085-2091.
106. Cai, D., and M. Tien. 1992b. Kinetic studies on the formation and decomposition of compounds II and III. Reactions of lignin peroxidase with H2O2. J. Biol. Chem. 267, 16: 11149-11155.
107. Cai, D., and M. Tien. 1993. Lignin-degrading peroxidases of Phanerochaete chrysosporium. J. Biotechnol. 30, 1: 79-90.
108. Caldwell, E. S., and C. Steelink. 1969. Phenoxy radical intermediated in the enzymatic degradation of lignin model compounds. Biochim. Biophys. Acta. 184: 420-431.
109. Call, H. P. 1994. Process for modifying, breaking down or bleaching lignin, materials containing lignin or like substrates. PCT. World patent application WO 94/29510.
110. Call, H. P., and I. Miicke. 1995. Enzymatic bleaching of pulp with the laccase-mediator-system (LMS). American Ind. Chem. Engin. Series № 307, V.91: 38-52.
111. Call, H. P., and I. Miicke. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym® process). J. Biotechnol. 53, 2-3: 163-202.
112. Calvo, A. M., Copa-Patino, J. L., Alonso, O., and A. E. Gonzalez. 1998. Studies of the production and characterization of laccase activity in the basidiomycete Coriolopsis gallica, an efficient decolorizer of alkalinbe effluents. 171, 1: 31-36.
113. Cameron, M. D., Timofeevski, S., and S. D. Aust. 2000. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 54, 6: 751-758.
114. Caramelo, L., Martinez, M. J., and A. T. Martinez. 1999. A search for ligninolytic peroxidases in the fungus Pleurotus eringii involving a-keto-/-thiomethylbutiric acid and lignin model dimers. Appl. Environ. Microbiol. 65, 3: 916-922.
115. Carneiro, A., Abreu, A., Evtuguin, D. V., Neto, C. P., Guebitz, G., and A. C. Paulo. 2000. Polyoxometalates as promoters of laccase-assisted reactions. J. Mol. Catal. B: Enzymatic. 9, 4-6: 293-295.
116. Cernakova, M., Kockova-Krakochvilova, A., Suty, L., Semek, J., and L. Kuniak. 1980. Biochemical similarities among strains of Aureobasidiumpullulans. Foila Microbiol. 25: 68-73.
117. Chefetz, В., Chen, Y., and Y. Hadar. 1998. Purification and characterization of laccase from Chaetomium thermophilium and its role in humification. Appl. Environ. Microbiol. 64, 9: 3175-3179.
118. Chen, C.-L. and H.-M. Chang. 1985. Chemistry of lignin biodegradation. In: Biosynthesys and biodegradation of wood components. T. Higuchi, Ed. AP Inc., London, p. 535-556.
119. Chen, C.-L., Chang, H.-M. and Т. K. Kirk. 1983. Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Wood Sci. Technol. 3: 35-37.
120. Chen, J.-Y., Shimizu, Y., Takai, M. and J. Hayashi. 1995. A method for isolation of milled-wood lignin involving solvent swelling prior to enzyme treatment. Wood Sci. Technol. 29, 4: 295-306.
121. Chen, W., Supanwong, K., Ohmiya, K., Shimizu, S., and IT. Kawakami. 1985. Anaerobic degradation of veratrylglycerol-/?-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria. Appl. Environ. Microbiol. 50, 6: 1451-1456.
122. Chet, I., Trojanowski, J., and A. Hiittermann. 1985. Decolorization of the dye Poly B-411 and its correlation with lignin degradation by fungi. Microbios Lett. 29:37-43.
123. Choi, G. H., Larson, T. G. and D. L. Nuss. 1992. Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol. Plant-Microbe Interact. 5: 119-128.
124. Chua, M. G. S., Choi, S. and Т. K. Kirk. 1983. Mycelium binding and depolymerization of synthetic 14C-labeled lignin during decomposition by Phanerochaete chrysosporium. Holzforschung. 37: 55-61.
125. Claus, H., and Z Filip. 1997. The evidence of a laccase-like enzyme activity in a Bacillus sphaericum strain. Microbiol. Res. 152: 209-216.
126. Clayton, N. E., and V. R. Srinivasan. 1981. Biodegradation of lignin by Candida sp. Naturwissenschaften. 68: 97-98.
127. Colberg, P. J., and L. Y. Young. 1985a. Anaerobic degradation of soluble fractions of 14C-lignin.lignocellulose. Appl. Environ. Microbiol. 49, 2: 345-349.
128. Colberg, P. J., and L. Y. Young. 1985b. Aromatic and volative acid intermediates observed during anaerobic metabolism of lignin-derived oligomers. Appl. Environ. Microbiol. 49, 2: 350-358.
129. Coll, P. M., Tabernero, C., Santamaria, R. and P. Perez. 1993b. Characterization and structural analysis of the laccase I gene from newly isolated ligninolytic basidiomycete PM1 (CECT 2971). Appl. Environ. Microbiol. 59, 12: 4129-4135.
130. Collins, P. J., O'Brein, M. M., and A. D. W. Dobson. 1999. Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from Trametes versicolor. Appl. Environ. Microbiol. 65, 3: 1343-1347.
131. Collins, P. J., and A.D.W. Dobson. 1995. Extracellular lignin and manganese peroxidase production by the white-rot fungus Coriolus versicolor 290. Biotechnol.Lett. 17: 989-92.
132. Collins, P. J., Kotterman, M. J. J., Field, J. A., and A. D. W. Dobson. 1996. Oxidation of anthracene and bezoa.pyrene by laccases from Trametes versicolor. Appl. Environ. Microbiol. 62, 12: 4563-4567.
133. Commanday, F., and J. M. Macy. 1985. Effect of substrate nitrogen on lignin degradation by Pleurotus ostreatus. Arch. Microbiol. 142: 61-65.
134. Cookson, L. J. 1995. Reliability of Poly B-411, a polymeric anthraquinone-based dye, in determinating the rot type caused by wood-inhabiting fungi. Appl. Environ. Microbiol. 61, 2: 801-803.
135. Cowling, E. В., and W. Merrill. 1966. Nitrogen in wood and its role in wood deterioration. Can. J. Bot. 44: 1539-1554.
136. Crawford, D. L., and R. L. Crawford. 1984. Recent advances in studies of the mechanisms of microbial degradation of lignins. Enzyme Microb. Technol. 6: 434-442.
137. Crawford, D. L., Pometto III, A. L., and R. L. Crawford. 1983. Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol. 45: 898-904.
138. Crowe, J. D., and S. Olsson. 2001. Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl. Environ. Microbiol. 67, 5: 2088-2094.
139. Daniel, G. 1994. Use of electron microscopy for aiding our understanding of wood biodegradation. FEMS Microbiol. Rev. 13, 2/3: 199-233.
140. Daniel, G. F., Nilsson, Т., and A. P. Singh. 1987. Degradation of lignocellulosics by unique tunnel-forming bacteria. Can. J. Microbiol. 33: 943-948.
141. Dardas, A., Gal, D., Barrelle, M., Sauret-Ignazi, G., Sterjiades, R., and J. Pelmont. 1985. The demethylation of guaiacol by a new bacterial cytochrome P-450. Arch. Biochem. Biophys. 236, 2: 585-592.
142. Dass, S. В., and C. A. Reddy. 1990. Characterization of extracellular peroxidases produced by acetate-buffered cultures of the lignin degrading basidiomycete Phanerochaete chrysosporium. FEMS Microbiol. Lett. 69, 3: 221-224.
143. Datta, A., Bettermann, A., and Т. K. Kirk. 1991. Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl. Environ. Microbiol. 57, 5: 1453-1460.
144. Davis, S., and R. G. Burns. 1992. Covalent immobilization of laccase on activated carbon for phenolic effluent treatment. Appl. Microbiol. Biotechnol. 37, 4: 474-479.
145. Davidson, R. W., Campbell, W. A., and D. J. Blaisdell. 1938. Differentiation of wood-desaying fungi by their reactions on gallic or tannic acid medium. J. Agric. Res. 57, 9: 683-695.
146. Dean, J. F. D., and K.-E. L. Eriksson. 1994. Laccase and deposition of lignin in vascular plants. ITolzforschung. 48: 21-33.
147. Dec, J., and J. M. Bollag. 1990. Detoxification of substituted phenols by oxidoreductase enzymes through polymerization reactions. Arch.Environ.Contam.Toxicol. 19: 543-550.
148. Dekker, R. F., and A. M. Barbosa. 2001. The effects of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp. Enzyme Microb. Technol. 28, 1: 81-88.
149. Deobald, L. A., and D. L. Crawford. 1989. Lignin biotransformations by an aromatic aldehyde oxidase produced by Slreplomyces viridosporus T7A. Appl. Biochem. Biotechnol. 20/21: 153-163.
150. DePillis, G. D., and P. R. O. de Montellano. 1989. Substrate oxidation by the heme edge of fungal peroxidases. Reaction of Coprinus macrorhizus peroxidase with hydrazines and sodium azide. Biochemistry. 28, 19: 7947-7952.
151. DePillis, G. D., Wariishi, H., Gold, M. H., and P. R. O. de Montellano. 1990. Inactivation of lignin peroxidase by phenylhydrasine and sodium azide. Arch. Biochem. Biophys. 280, 1: 217-223.
152. De Vries, О. M. H., Kooistra, W. H. C. F. and J. G. H. Wessels. 1986. Formation of an extracellular laccase by a Schizophyllum commune dikaryon. J. Gen. Microbiol. 132, 10: 2817-2826.
153. Dey, S., Maiti, Т. K., and В. C. Bhattacharyya. 1991. Lignin peroxidase production by a brown-rot fungus, Polyporus osireiformis. J. Ferment. Bioeng. 72: 402-404.
154. Diamantidis, G., Effosse, A., Potier, P., and R. Bally. 2000. Purifcation and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem. 32: 919-927.
155. Dill, I., and G. Kraepelin. 1986. Palo podrido: model for extensive delignification of wood by Ganoderma appalantum. Appl. Environ. Microbiol. 52: 1305-1312.
156. Dill, I., and G. Kraepelin. 1988. Derr Abbau von Lignin/Cellulose durch Weissfaule-Pilze: Einfluss spezifischer okologischer Faktoren. Forum Microbiologic. 11, 88:484-9.
157. Dill, I., Salnikow, J., and G. Kraepelin. 1984. Hydroxyproline-rich protein material in wood and lignin Fagus sylvatica. Appl. Environ. Microbiol. 48: 1259-1261.
158. Dittmer, J. К., Patel, N. J., Dhawale, S.W., and S. S. Dhawale. 1997. Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiol. Lett. 149, 1: 65-70.
159. Dix, N. J., and J. Webster. 1995. Fungal ecology. Chapman and Hall, London, Glasgow.
160. Dodson, P. J. Evans, C. S., Harvey, P. J., and J. M. Palmer. 1987. Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyses Ca-Cp cleavage in lignin model compound. FEMS Microbiol. Lett. 42, 1: 17-22.
161. Donnely, P. K., and D. L. Crawford. 1988. Production by Streptomyces viridosporus T7A of an enzyme which cleaves aromatic acids from lignocellulose. Appl. Environ. Microbiol. 54, 9: 2237-2244.
162. Dosoretz, C. G., Chen, H.-C., and H. E. Grethlein. 1990b. Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56, 2: 395-400.
163. Dosoretz, C. G., Dass, S. В., Reddy, C. A. and H. E. Grethlein. 1990c. Protease-mediated degradation of lignin peroxidase in liquid cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56, 11: 3429-3434.
164. Doyle W. A., Blodig, W., Veitch, N. C., Piontek, K., and A. T. Smith. 1998. Two substrate interaction sited in lignin peroxidase revealed by site directed mutagenesis. Biochemistry. 37: 15097-15105.
165. D'Souza, Т. M., Boominathan, K., and C. A. Reddy. 1996. Isolation od laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl. Environ. Microbiol. 62,10: 3739-3744.
166. Duran, N., Rodriguez, J., Ferraz, A., and V. Campos. 1987a. Chrysonilia sitophila (TFB-27441): a hyperligninolytic strain. Biotechnol. Lett. 9, 5: 357-360.
167. Duran, N., Rodriguez, J., and I. Ferrer. 1987 6. Ligninases from Chrysonilia sitophila (TFB 27441 strain). Appl. Biochem. Biotechnol. 16: 157-163.
168. Durrant, A. J., Wood, D. A., and R. B. Cain. 1991. Lignocellulose biodegradation by Agaricus bisporus during solid substrate fermentation. J.Gen.Microbiol. 137:751-755.
169. Durrens, P. 1981. The phenol oxidases of the ascomycete Podospora anserina: the three forms of the major laccase activity. Arch. Microbiol. 130:121-124.
170. Dutton, M. V., and C. S. Evans. 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42, 9: 881-895.
171. Dutton, M. V., Evans, С. S., Atkey, P. Т., and D. A. Wood. 1993. oxalate production by basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 39, 1: 5-10.
172. Edens, W. A., Goins, T. Q., Dooley, D., and J. M. Henson. 1999. Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. trilici. Appl. Environ. Microbiol. 65, 7: 3071-3074.
173. Edwards, S. L., Raag, R., Wariishi, H., Gold, M. H., and T. L. Poulos. 1993. Crystal structure of lignin peroxidase. Proc. Natl. Acad. Sci. USA. 90, 2: 750-754.
174. Eggert, C., Temp, U., Dean, J. F. D., and K.-E. Eriksson. 1995. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett. 376: 202-206.
175. Eggert, C., Temp, U., Dean, J. F. D., and K.-E. Eriksson. 1996b. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391: 144-148.
176. Eggert, C., Temp, U., and K.-E. Eriksson. 1996a. The ligninolytic system of the white rot fungus Picnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62,4: 1151-1158.
177. Eriksson, K.-E. 1987. Production ofF^C^ in Phanerochaete chrysosporium during lignin degradation. Phil. Trans. R. Soc. Lond. A321: 455-459.
178. Eriksson, K.-E., Blanchette, R. A., and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer Series in Wood Sciences. Т. E. Timell, Ed. Springer-Verlag, Berlin, Heidelberg.
179. Eriksson, K.-E., Pettersson, В., Vole, J., and V. Musilek. 1986. Formation and partial characterization of glucose-2-oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 23: 257-262.
180. Esser, K., Dick, S., and W. Gielen. 1964. Die phenoloxydasen des Ascomyceten Podospora anserina. II. Reiningung und eigenschaften der laccase. Archive fur Mikrobiologie. 48: 306-318.
181. Esser, K., and W. Minuth. 1970. The phenoloxidases of the ascomycete Podospora anserina. V. Genetic redgulation of the formation of laccase. Genetics. 64: 441-458.
182. Faison, B. D., and Т. K. Kirk. 1983. Relationship between lignin degradation and production of reduced oxygen species by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 46: 1140-1145.
183. Faison, B. D., and Т. K. Kirk. 1985. Factors involved in regulation of a ligninase activity in Phanerochaete chrysosporium. Appl. Environ. Microbiol. 49, 2: 299-304.
184. Farmer, V. C., Henderson, M. E. K., and J. D. Russel. 1960. Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem. J. 74: 257-262.
185. Farrell, R. L. 1987. Industrial application of lignin-transforming enzymes. Phil. Trans. R. Soc. Lond. A 321: 549-553.
186. Farrell, R. L., Murtagh, К. E., Tien, M., Mozuch, M. D., and Т. K. Kirk. 1989. Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb. Technol. 11, 6: 322-328.
187. Fawer, M. S., Sterli, J., Cliffe, S., and A. Fiechter. 1991. The characterization of immobilized lignin peroxidase by flow injection analysis. Biochim. Biophys. Acta 1076: 15-22.
188. Ferrer, I., Esposito, E., and N. Duran. 1992. Lignin peroxodase from Chrysonilia sitophila: heat denaturation kinetics and pH stability. Enzyme Microb.Technol.14:402-6.
189. Ferraz, A., and N. Duran. 1995. Lignin degradation during softwood decaying by the ascomycete Chrysonilia sitophila. Biodegradation. 6: 265-274.
190. Field, J. A., de Jong, E., Feijoo-Costa, G., and J. A. M. de Bont. 1993. Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends in Biotechnol. 11: 44-49.
191. Forney L. J., Reddy, M., Tien, M., and S. D. Aust. 1982a. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by white-rot fungus Phanerochaete chrysosporium. J. Biol. Chem. 257: 11455-11462.
192. Forney L. J., Reddy, M., and H. S. Pankratz. 1982b. Ultrastructural localization of hydrogen peroxide production in ligninolytic Phanerochaete chrysosporium cells. Appl. Environ. Microbiol. 44: 732-736.
193. Forrester, I. Т., Grabski, A. C. G., Burgess, R. R., and G. F. Leatham. 1988. Manganese, Mn-dependent peroxidase and the biodegradation of lignin. Biochem. Biophys. Res. Commun. 157, 3: 992-999.
194. Frazer, A. C., and L. Y. Young. 1986. Anaerobic Ci metabolism of the 0-methyl-14C-labelled substituent of vanillate. Appl. Environ. Microbiol. 51, 1: 84-87.
195. Freeman, J. С., Nayar, P. G., Begley, T. P. and J. J. Villafranea. 1993. Steehiometry and spectroscopic identity of copper centers in phenoxazinone synthase: A new addition to the blue copper oxidase family. Biochemistry. 32; 4826-4830.
196. Freimund, S., Huwig, A., Gifforn, F., and S. Kopper. 1998. Rare keto-aldoses from enzymatic oxidation: substrates and oxidation products of pyranose 2-oxidase. Chem. Eur. J. 4, 12: 2442-2455.
197. Freiter, E. R. 1979. Chlorophenols. In: Encyclopedia of chemical technology. 3rd ed., V. 5. H. F. Mark, D. F. Othmer, C. G. Overberger, and G. T. Seaborg, Eds. John Wiley and Sons, Inc., New-York. p. 864-872.
198. Froehner, S. C., and K.-E. Eriksson. 1974a. Induction of Neurospora crassa laccase with protein synthesis inhibitor. J. Bacteriol. 120, 1: 450-457.
199. Froehner, S. C., and K.-E. Eriksson. 1974b. Purification and properties of Neurospora crassa laccase. J. Bacteriol. 120, 1: 458-465.
200. Fu, S.Y., Yu, H.-s., and J. A. Buswell. 1997. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiol. Lett. 147, 1: 133-137.
201. Fujian, X., Hongzhang, C., and L. Zuohu. 2001. Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol. 80, 2: 149-151.
202. Fukushima, Y., and Т. K. Kirk. 1995. Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. Appl. Environ. Microbiol. 61,3: 872-876.
203. Galliano, H., Gas, G., and A. M. Boudet. 1990. Lignin biodegradation by culture Rigidoporus lignosus in solid state conditions. FEMS Microbiol. Lett. 67, 3: 295-300.
204. Galliano, H., Gas, G., Seris, J. L., and A. M. Boudet. 1991. Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn-peroxidase and laccase. Enzyme Microb. Technol. 13: 478-482.
205. Geiger, J. P., Huguenin, В., Nicole, M., and D. Nandris. 1986. Laccases of Rigidoporus lignosus and Phellinus noxius. II. Effect of RJignosus laccase LI on thioglycolic lignin ofhevea. Appl. Biochem. Biotechnol. 13: 97-110.
206. Germann, U. A., and K. Lerch. 1986. Isolation and partial nucleotide sequence of the laccase genes from Neurospora crassa: amino acid sequence homolgy of the protein to human ceruloplasmin. Proc. Natl. Acad. Sci. U.S.A. 83: 8854-8858.
207. Germann, U. A., Muller, G., Hunziker, P. E., and K. Lerch. 1988. Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxy-terminal processing of a precursor. J. Biol. Chem. 263, 885-896.
208. Gettemy, J. M., Ma, В., Alic, M., and M. H. Gold. 1998. Reverse transcription-PCR analysis of the regulation of the manganese peroxidase gene family. Appl. Environ. Microbiol. 64, 2: 569-579.
209. Gianfreda, L., Xu, F., and J.-M. Bollag. 1999. Laccases: a useful group of oxidoreductive enzymes. Bioremediation J. 3, 1: 1-25.
210. Gierer, J., and A. E. Opara. 1973. Studies on the enzymatic degradation of lignin. The action of peroxidase and laccase on monomeric and dimeric model compounds. Acta Chem. Scand. 27: 2909-2922.
211. Gifforn, F. 2000. Fungal pyranose oxidases: occurence, properties and biochemical application in carbohydrate chemistry. Appl. Microbiol. Biotechnol. 54: 727-740.
212. Gigi, O., Marbach, I., and A. M. Mayer. 1981. Properties of gallic acid-induced extracellular laccase of Botrytis cinerea. Phytochemistry. 20: 1211-1213.
213. Gilbertson, R. L. 1980. Wood-rotting fungi of North America. Micologia. 72: 1-49.
214. Giroux, H., Vidal, P., Bouchard, J., and F. Lamy. 1988. Degradation of Kraft indulin lignin by Streptomyces viridosporus and Streptomyces badius. Appl. Environ. Microbiol. 54, 12: 3064-3070.
215. Glancer, M., and S. N. Ban. 1989. Biodegradation of lignin from the acid hydrolisate of cornstover by selected mixed culture of yeasts. Process Biochem. June: 109-113.
216. Glenn, J. K., Akileswaran, L., and M. H. Gold. 1986. Mn(II) Oxidation is the principial function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251, 2: 688-696.
217. Glenn, J. K., and M. H. Gold. 1985. Purification and characterization of an extraxcellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242, 2: 329-341.
218. Glumoff, Т., Winterhalter, К. H., and J. D. G. Smit. 1989. Monoclinic crystals of lignin peroxidase. FEBS Lett. 257, 1: 59-62.
219. Godfrey, B. J., Mayfield, M. В., Brown, J. A., and M. H. Gold. 1990. Charcterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene. 93: 119-124.
220. Gold, M. H., and M. Alic. 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev. 57, 3:605-622.
221. Golovleva, L. A., Maltseva, О. V., Myasoedova, N. M., Leontievsky, A. A. Panus tigrinus 144 degrading lignin. 1986. Proc. of the Third Int. Conf. "Biotechnology in the Pulp and Paper Industry", Stokholm, June 16-19,1986. p. 28-30.
222. Golovleva, L. A., Zaborina, О. E., and A. Y. Arinbasarova. 1993. Degradation of 2,4,6-TCP and a mixture of isomeric chlorophenols by immobilized Streptomyces rochei 303. Appl. Microbiol. Biotechnol. 38: 815-819.
223. Golovleva, L. A., Zaborina, O.E., Pertsova, R.N., and B.P. Baskunov. 1994. Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation, 2: 201-208.
224. Gooding, P. S., Bird, C., and S. P. Robinson. 2001. Molecular cloning and characterisation of banana fruit polyphenol oxidase. Planta. 213, 5: 748-757.
225. Goodwin, D. C., Aust, S. D., and T. A. Grover. 1995. Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry. 34: 5060-5065.
226. Gorlatov, S. N., Maltseva, О. V., Schevchenko, V. I., and L. A.Golovleva. 1989. Degradation of chlorophenols by Rhodococcus erythropolis. Microbiology. 58: 802-806.
227. Gouka, R. J., van der Heiden, M., Swarthoff, Т., and С. T. Verrips. 2001. Cloning of a phenol oxidase gene from Acremonium murorum and it expression in Aspergillus aamori. Appl. Environ. Microbiol. 67, 6: 2610-2616.
228. Goycoolea, M., Seelenfreund, D., Ruttiman, C., Gonzalez, В., and R. Vicuna. 1986. Monitoring bacterial consumption of low molecular weight lignin derivatives by high peroformance liquid chromatography. Enzyme Microb. Technol. 8: 213-216.
229. Green, T. R. 1977. Significance of glucose oxidase in lignin degradation. Nature 256, 5615: 78-80.
230. Gross, G. G. 1985. Biosynthesis and metabolism of phenolic acids and monolignols. In: Biosynthesis and biodegradation of wood components. T. Higuchi, Ed. Academic Press, Inc., London, p. 229-271.
231. Grotewold, E., Taccioli, G. E., Aisemberg, G. O. and N. D. Judewicz. 1988. A single-step purification of an extracellular fungal laccase. MIRCEN J. Appl. Microb. Biotechnol. 4, 3: 357-363.
232. Guillen, F., and C. S. Evans. 1994. Anysaldehyde and veratraldehyde acting as redox cycling agents for H2O2 production by Pleurotus eryngii. Appl. Microbiol. Biotechnol. 60, 8: 2811-2817.
233. Guillen, F., Gomez-Toribio, V., Martinez, M. J., and A. T. Martinez. 2000a. Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch. Biochem. Biophys. 383, 1: 142-147.
234. Guillen, F., Martinez, А. Т., and M. J. Martinez. 1990. Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl. Microbiol. Biotechnol. 32, 4: 465-469.
235. Guillen, F., Martinez, А. Т., and M. J. Martinez. 1992. Substrate specificiy and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur. J. Biochem. 209, 2: 603-611.
236. Guillen, F., Martinez, А. Т., Martinez, А. Т., and C. S. Evans. 1994. Hydrogen-peroxide-producing system of Pleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase. Appl. Microbiol. Biotechnol. 41,4: 465-470.
237. Guillen, F., Martinez, M. J., Munoz, C., and A. T. Martinez. 1997. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch. Biochem. Biophys. 339, 1: 190-199.
238. Guillen, F., Munoz, C., Gomez-Toribio, V., Martinez, А. Т., and M. J. Martinez. 2000b. Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii. Appl. Environ. Microbiol. 66, 1: 170-175.
239. Gupta, R. K., Spiker, J. K., and D. L. Crawford. 1988. Biotransformation of coal by ligninolytic Streptomyces. Can. J. Microbiol. 34: 667-674.
240. Gutierrez, A., Bocchini, P., Galletti, G. C., and A. T. Martinez. 1996. Analysis of lignin-polysacharide complexes formed during grass lignin degradation by cultres of Pleurotus species. Appl. Environ. Microbiol. 62, 6: 1928-1934.
241. Gutierrez, A., Caramelo, L., Prieto, A., Martinez, M. J., and A. T. Martinez. 1994. Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Appl.Environ.Microbiol. 60, 6: 1783-1788.
242. Gutierrez, A., del Rio, J. C., Martinez-Inigo, M. J., Martinez, M. J., and A.T. Martinez. 2002. Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl. Environ. Microbiol. 68, 3: 1344-1350.
243. Ha, H-C., Honda, Y., Watanabe, Т., and M. Kuwahara. 2001. Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 55, 6: 704-711.
244. Haars, A., and A. Hutterman. 1980. Function of laccase induction in the white rot fungus Fomes annosus. Arch. Microbiol. 125: 233-237.
245. Haars, A., and A. Hutterman. 1983. Laccase induction in the white rot fungus Heterobasidion annosum (Fr.) Bref. (Fomes annosus Fr. Cooke). Arch. Microbiol. 134: 309-313.
246. Haemmerli, S. D., Leisola, M. A., and A. Fiechter. 1986a. Polymerisation of lignins by ligninase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 35, 1: 33-36.
247. Haemmerli, S. D., Schoemaker, H. E., Schmidt, H. W. H., and M. S. A. Leisola. 1987. Oxidation of veratryl alcohol by the lignin peroxidase of Phanerochaete chrysosporium, involvement of activated oxygen. FEDS Lett. 220, 1: 149-154.
248. Haider, К., and J. К. Martin. 1988. Mineralisation of 14C-labelled humic acid and of humic acid-bound 14C-xenobiotics by Phanerochaete chrysosporium. Soil. Biol. Biochem. 20: 425-429.
249. Haider, K., and J. Trojanowski. 1975. Decomposition of specifically 14C-labelled phenols and dehydropolymers of coniferyl alcohol as model for lignin degradation by soft and white rot fungi. Arch. Microbiol. 105, 1: 33-41.
250. Haider, K., Trojanowski, J., and V. Sundman. 1978. Screening for lignin degrading bacteria by means of 14C-labelled lignins. Arch. Microbiol. 119, 1: 103-106.
251. Hale, M. D., and R. A. Eaton. 1985a. The ultrastructure of soft rot fungi. I. Fine hyphae in wood cell walls. Mycologia. 77, 3: 447-463.
252. Hale, M. D., and R. A. Eaton. 1985b. The ultrastructure of soft rot fungi. II. Cavity-forming hyphae in wood cell walls. Mycologia. 77, 4: 594-605.
253. Hall, P. L. 1980. Enzymatic transformation of lignin. Enzyme Microb. Technol. 2, 2: 170-176.
254. Hammel, K.E., Jensen, K.A., Mozuch, M.D., Landucci, L. L., Tien, M., and E. A. Pease. 1993. Ligninolysis by a purified lignin peroxidase. J. Biol. Chem. 268, 17: 12274-12281.
255. Hammel, К. E., Kalyanaraman, В., and Т. K. Kirk. 1986. Oxidation ofpolycyclic aromatic hydrocarbons and dibenzo/?.-dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 261: 16948-26952.
256. Hammel, К. E., and M. A. Moen. 1991. Depolimerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb. Technol. 13: 15-18.
257. Hammel, К. E., Mozuch, M. D., Jensen, K. A., and P.J. Kersten. 1994. H202 Recycling during oxidation of the arylglycerol /3-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Biochemistry. 33, 45: 13349-13354.
258. Hammel, К. E., and P. J. Tardone. 1988. The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry. 27, 17: 6563-6568.
259. Hammel, К. E., Tien, M., Kalyanaraman, В., and Т. K. Kirk. 1985. Mechanism of oxidative Ca-Cp cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals. J.Biol.Chem. 260,14:8348-53.
260. Haraguchi, Т., Fukushima, M., Fukuda, S., and N. Morochoshi. 1983. Degradation of milled-wood lignin by an enzyme prepared from a wood-destroying fungus, Stereum frustulosum. Biodeterioration. 5:75-83.
261. Harkin, J. M. 1967. Lignin a natural polymeric product of phenol oxidation. In: Oxiditive coupling of phenols. W. I. Taylor and A. R. Battersby, Eds., Marcel Dekker, New York. p. 243-321.
262. Harkin, J. M., and J. R. Obst. 1973. Lignification in trees: indication of exclusive peroxidase participation. Science. 180: 296-297.
263. Harris, R. Z., Wariishi, H., Gold, M. H., and P. R. O. de Montellano. 1991. The catalytic site of manganese peroxidase. J. Biol. Chem. 266: 8751-8758.
264. Harvey, P. J., Gilardi, G.-F., Goble, M. L., and J. M. Palmer. 1993. Charge transfer reactions and feedback control of lignin peroxidase by phenolic compounds: significance in lignin degradation. J. Biotechnol. 30, 1: 57-69.
265. Harvey, P. J., and J. M. Palmer. 1990. Oxidation of phenolic compounds by ligninase. J. Biotechnol. 13: 169-179.
266. Harvey, P. J. , Palmer, J. M. , Schoemaker, H. E., Dekker, H. L., and R. Wever. 1989. Pre-steady-state kinetic study on the formation of Compound I and II of ligninase. Biochim. Biophys. Acta. 994: 59-63.
267. Harvey, P. J., Schoemaker, H. E., and J. M. Palmer. 1985a. Enzymatic degradation of lignin and its potential to supply chemicals. Ann.Proc.Phytochem.Soc Eur. 26, 249-266.
268. Harvey, P. J., Schoemaker, H. E., and J. M. Palmer. 1986. Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett. 195, 1/2: 242-246.
269. Harvey, P. J., Schoemaker, H. E., and J. M. Palmer. 1987. Lignin degradation by white rot fungi. Plant, Cell and Environment. 10, 709-714.
270. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13: 125-135.
271. Hatvani, N., Kredics, L., Antal, Z., and I. Mecs. 2002. Changes in activity of extracellular enzymes in dual cultures of Lentinula edodes and mycoparasitic Trichoderma strains. J. Appl. Microbiol. 92, 3: 415-423.
272. Have, R., Hartmans, S., and J. A. Field. 1997. Interference of peptone and tyrosine with the lignin peroxidase assay. Appl. Environ. Microbiol. 63, 8: 3301-3303.
273. Hawari, J., Flalasz, A., Beaudet, S., Paquet, L., Ampleman, G., and S. Thiboutot. 1999. Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures atpH 4.5. Appl. Environ. Microbiol. 65, 7: 2977-2986.
274. Heinfling, A., Martinez, А. Т., Martinez, M. J., Bergbauer, M., and U. Szewzyk. 1998. Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol. Lett. 165, 43-50.
275. Henderson, M. E. K. 1961. The metabolism of aromatic compounds related to lignin by some hyphomycetes and yeast-like fungi in soil. J. Gen. Microbiol. 26: 155-165.
276. Henriksson, G., Pettersson, G., Johansson, G., Ruiz, A. and E., Uzcategui. 1991. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur. J. Biochem. 196, 1: 101-106.
277. Hernandes, M., Rodriguez, J., Soliveri, J., Сора, J. L., Perez, M. I., and M. E. Arias. 1994. Paper mill effluent decolorization by fifty Streptomyces strains. Appl. Environ. Microbiol. 60, 11: 3909-3913.
278. Highly, T. L. 1987. Effect of carbohydrate and nitrogen on hydrogen peroxide formation by wood decay fungi in solid medium. FEMS Microbiol.Lett. 48:373-377.
279. Higuchi, T. 1985. Biosynthesis of lignin. In: Biosynthesis and biodegradation of wood components. T. Higuchi, Ed. Academic Press, Inc., London, p. 141- 160.
280. Higuchi, T. 1990. Lignin biochemistry: biosynthesis and biodegradation. Wood. Sci. Technol. 24: 23-63.
281. Higuchi, Т., Ito, Y., and I. Kawamura. 1967. p-Hydroxiphenylpropane component of grass lignin and role of tyrosine ammonia liase in its formation. Phytochemistry. 6: 875881.
282. Hofrichter, M., Lundell, Т., and A. Hatakka. 2001. Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl.Environ.Microbiol. 67, 10: 4588-93.
283. Holzbaur, E. L. F., and M. Tien. 1988. Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem.Biophys.Res.Commun. 155,2:626-33
284. Hrazdina, G., and G. J. Wagner. 1985. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys. 237, 1: 88-100.
285. Hudson, H. J. 1986. Fungal biology. Edward Arnold. 298 p.
286. Huoponen, K., Olikka, P., Kalin, M., Walther, I., Mantsala, P., and J. Reiser. 1990. Characterisation of lignin peroxidase-encoding genes from lignin-degrading basidiomycetes. Gene. 89, 1: 145-150.
287. Huynh, V.-B., Paszczynski, A., Olson, P., and R. L. Crawford. 1986. Transformation of arylpropane lignin model compounds by lignin peroxidase of the white-rot fungus Phanerochaete chrysosporium. Arch. Biochim. Biophys. 250, 1: 186-196.
288. Hyde, S. M., and P. M. Wood. 1997. A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophoraputeana: Fe(III) reduction by cellobiosedehydrogenase and Fe(II) oxidation at a distance from hyphae. Microbiology. 143, 1: 259-266.
289. Ichimura, Т., Watanabe, O., and S. Maruyama. 1998. Lnhibition of HIV-1 protease by water-soluble lignin-like substrate from an edible mushroom, Fucoporia obliqua. Biosci. Biotechnol. Biochem. 62, 3: 575-577.
290. Iqbal, M., Mercer, D. K., Miller, P. G. G., and A. J. McCarthy. 1994. Thermostable extracellular peroxidases from Streptomyces thermoviolaceus. Microbiology. 140, 6: 1457-1465.
291. Iimura, Y., Hartikainen, P., and K. Tatsumi. 1996. Dechlorination of tetrachloroguaiacol by laccase of white-rot basidiomycete Coriolus versicolor. Appl. Microbiol. Biotechnol. 45: 434-439.
292. Ikeda, Т., Holtman, K., Kadla, J. F., Chang, H.-m. H. M., and H. Jameel. 2002. Studies on the effect of ball milling on lignin structure using a modified DFRC method. J. Agric. Food. Chem. 50, 1: 129-135.
293. Ikeda, R., and E. S. Jacobson. 1992. Heterogenity of phenoloxidases in Crypiococcus neoformans. Infect. Immun. 60: 3552-3555.
294. Iwahara, S. 1984. The role of laccase in the enzymic oxidation of a,unsaturated aromatic alcohols. Agric. Biol. Chem. 48, 1: 225-226.
295. Izumi, Y., Furuya, Y., and FI.Yamada. 1990. Purification and properties of pyranose oxidase from basidiomycetous fungus No. 52. Agric. Biol. Chem. 54: 1393-1399.
296. Janse, B. J. H., Gaskell, J., Akhtar, M., and D. Cullen. 1998. Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl.Environ.Microbiol. 64,9:3536-3538.
297. Janse, B. J. H., Gaskell, J., Cullen, D., Zapanta, L., Dougherty, M. J., and M. Tien. 1997. Are bacteria omnipresent on Phanerochaete chrysosporium Burdsall? Appl. Environ. Microbiol. 63, 7: 2913-2914.
298. Janshekar, H., Brown, C., and A. Fiechter. 1981. Determination of biodegraded lignin by ultraviolet spectrophotometry. Anal. Chim. Acta 130: 81-91.
299. Janssen, F. W., and H. W. Ruelius. 1975. Pyranose oxydase from Polyporus obiussus. Meth. Enzymol. 41: 170-173.
300. Jeffries, T. W. 1990. Biodegradation of lignin-carbohydrate complex. Biodegradation. 1: 163-176.
301. Jeffries, T. W., Choi, S., and Т. K. Kirk. 1981. Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl.Environ. Microbiol. 42, 2: 290-296.
302. Jensen, K. A., Evans, К. M. C., Kirk, Т. K., and К. E. Hammel. 1994. Biosynthetic pathway for veratryl alcohol in the ligninolytic fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60, 2: 709-714.
303. Jensen, K. A. JR., Houtman, C. J., Ryan, Z. C., and К. E. Hammel. 2001. Pathways for the extracellular Fenton chemistry in the brown rot basidiomycete Gleophyllum trabeum. Appl. Environ. Microbiol. 67, 6: 2705-2711.
304. Joblin, K. N., and G. E. Naylor. 1989. Fermentation of wood by rumen anaerobic fungi. FEMS Microbiol. Lett. 65: 119-122.
305. Joel, D. M., Marbach, I., and A. M. Mayer. 1978. Laccase in anacardiaceae. Phytochemstry. 17: 796-797.
306. Johannes, C., and A. Majcherczyk. 2000. Laccase activity tests and laccase inhibitors. J. Biotechnol. 78, 2: 193-199.
307. Johannes, C., Majcherczyk, A., and A. Huttermann. 1996. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl. Microbiol. Biotechnol. 46: 313-317.
308. Johansson, Т., and P. O. Nyman. 1987. A manganese(II)-dependent extracellular peroxidase from the white-rot fungus Trametes versicolor. ActaChem.Scand. B41:762-5.
309. Jokela, J., Pellinen, J., and M. Salkinoja-Salonen. 1987. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds. Appl. Environ. Microbiol. 53, 11: 2642-2649.
310. Jonsson, M., Pettersson, E., and B. Reinhammar. 1968. Isoelectric fractionation, analysis, and characterization of ampholines in natural pH gradients. VII. The isoelectric spectra of fungal laccase A and B. Acta Chem. Scand. 22, 7: 2135-2140.
311. Jonsson, L., Karlsson, O., Lundquist, K., and P. O. Nyman. 1989. Trametes versicolor ligninase: isozyme sequence homology and substrate specificity. FEBS Lett. 247, 1: 143-146.
312. Jonsson, L., Sjostrom, K., Haggstrom, I., and P. O. Nyman. 1995. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys. Acta. 1251: 210-215.
313. Joshi, D. K., and M. H. Gold. 1993. Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59, 6: 1779-1785.
314. Joshi, D. К., and M. H. Gold. 1996. Oxidation of dimethoxylated aromatic compounds by lignin peroxidase from Phanerochaete chrysosporium. Eur. J. Biochem. 237: 45-57.
315. Kaal, E. E., de Jong, E., and J. A. Field. 1993. Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. strain BOS55. Appl. Environ. Microbiol. 59, 12: 4013-4036.
316. Kadam, K. L., and S. W. Drew. 1986. Study of biotransformation by Aspergillus fumigatus and white-rot fungi using 14C-labeled and unlabeled Kraft lignins. Biotechnol. Bioengin. 28: 394-404.
317. Kadhim, H., Graham, C., Barrat, P., Evans, C. S., and R. A. Rastall. 1999. Removal of phenolic compounds in water using Coriolus versicolor grown on wheat bran. Enzyme Microb. Technol. 24: 303-307.
318. Kamaya, Y., Nakatsubo, F., ITiguchi, Т., and S. Iwahara. 1981. Degradation of d,l,-syringaresinol, a f3~P' linked lignin model compound, by Fusarium solani M-13-1. Arch. Microbiol. 129: 305-309.
319. Kamoda, S., Terada, Т., and Y. Saburu. 1997. Purification and some properties of lignostilbene-a,/?-dioxygenase isozyme IV from Pseudomonaspaucimobilis TMY1009. Biosci. Biotech. Biochem. 61,9: 1575-1576.
320. Kang, S.-O., Shin, K.-S., Han, Y.-H., Youn, H.-D., and Y. C. Hah. 1993. Purification and characterisation of an extracellular peroxidase from white-rot fungus Pleurotus ostreatus. Biochim. Biophys. Acta. 1163: 158-164.
321. Kantelinen, A., Hattaka, A., and L. Viikari. 1989. Production of lignin peroxidase and laccase by Phlebia radiata. Appl. Microbiol. Biotechnol. 31,3: 234-239.
322. Kantelinen, A., Waldner, R., Niku-Paavola, M.-L., and M. S. A. Leisola. 1988. Comparison of two lignin-degrading fungi: Phlebia radiata and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 28: 193-198.
323. Kaplan, D. C. 1979. Reactivity of different oxidases with lignins and lignin model compounds. Phy to chemistry. 18: 1917-1919.
324. Kaplan, D. L., and R. Hartenstein. 1980. Decomposition of lignin by microorganisms. Soil Biol. Biochem. 12: 65-75.
325. Karavaeva, E. A., Leontievsky, A. A., and L. A. Golovleva. 1995. Manganese-dependent peroxidase from white rot fungus Panus tigrinus 8/18. Materials of EERO
326. Workshop "Enzymatic and Genetic Aspects of Environmental biotechnology", 21-25 of June, 1995, Puchshino, Russia, p. 8.
327. Karhunen, E., Kantelinen, A., and M.-L. Niku-Paavola. 1990a. Mn-dependent peroxidase from the lignin-degrading white-rot fungus Phlebia radiata. Arch. Biochem. Biophys. 279, 1: 25-31.
328. Karhunen, E., Niku-Paavola, M.-L., Viicari, L., Haltia, Т., van der Meer, R. A., and J. A. Duine. 1990b. A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Letters. 267, 1: 6-8.
329. Katayama, Y., Nishikawa, S., Murayama, A., Yamasaki, M., Morochoshi, N., and T. Haraguchi. 1988. The metabolism of biphenyl structures in lignin by the soil bacterium {Pseudomanaspaucimobilis SYK-6). FEBS Lett. 233: 129-133.
330. Kawai, S., Nakagawa, M., and H. Ohashi. 1999b. Aromatic ring cleavage of a non-phenolic /2-0-4 lignin model dimer by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole. FEBS Letters. 446, 2-3: 355-358.
331. Kawai, S., Umezawa, Т., and T. Higuchi. 1986. De novo synthesis of veratryl alchohol by Coriolus versicolor. Wood. Res. 73: 169-179.
332. Kawai, S., Umezawa, Т., and T. Higuchi. 1987.p-Benzoquinone monoketals, novel degradation products of /3-0-4 lignin model compounds by Coriolus versicolor and lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett. 210, 1: 61-65.
333. Kawai, S., Umezawa, Т., and T. Higuchi. 1988. Degradation mechanisms of phenolic (31 lignin substructure model compounds by laccase of Coriolus versicolor. Arch. Biochem. Biophys. 262, 1: 99-110.
334. Kawai, S., Umezawa, Т., and T. Higuchi. 1989. Oxidation of methoxylated benzyl alcohols by laccase of Coriolus versicolor in the presence of syringaldehyde. Wood Research. 1989. 76:10-16.
335. Kay-Shoemake, J. L., and M. E. Watwood. 1996. Limitations of the lignin peroxidase system of the white-rot fungus Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 46: 438-442.
336. Keilin, D., and T. Mann. 1939. Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature (London). 143, 23-25 .
337. Kelley, R. L., and C. A. Reddy. 1986a. Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligniolytic cultures of Phanerochaete chrysosporium. Arch. Microbiol. 144: 248-253.
338. Kelley, R. L., and C. A. Reddy. 1986b. Purification and characterization of glucose oxidase from liginolytic cultures of Phanerochaete chrysosporium. J. Bactetriol. 166, 1: 269-274.
339. Kerem, Z., Friesem, D., and Y. Hadar. 1992. Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58, 4: 1121-1127.
340. Kerem, Z., and Y. Hadar. 1993. Effect of manganese on lignin degradation by Pleurotus ostreatus during solid-state fermentation. Appl. Environ. Microbiol. 59, 12: 4115-4120.
341. Kerem, Z., and Y. Hadar. 1995. Effect of manganese on preferential degradation of lignin by Pleurotus ostreatus during solid-state fermentation. Appl. Environ. Microbiol. 61, 8: 3057-3062.
342. Kerr, T. J., Kerr, R. D., and R. Benner. 1983. Isolation of a bacterium capable of degrading peanut hull lignin. Appl. Eviron. Microbiol. 46: 1201-1206.
343. Kern, H. W. 1984. Bacterial degradation of dehydropolymers of coniferyl alcohol. Arch. Microbiol. 138: 18-25.
344. Kern, H. W., and Т. K. Kirk. 1987. Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99. Appl. Environ. Microbiol. 53. 9: 2242-2246.
345. Kersten, P. 1990. Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc. Natl. Acad. Sci. USA 87, 8: 2936-2940.
346. Kersten, P. J., Kalianraman, В., Hammel, К. E., Reinhammar, В., and Т. K. Kirk. 1990. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J. 268: 475-480.
347. Kersten, P. J., and Т. K. Kirk. 1987. Involvemet of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J. Bacteriol. 169, 5: 2195-2201.
348. Keyser, P., Kirk, Т. K., and J. G. Zeikus. 1978. Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in responce to nitrogen starvation. J. Bacteriol. 135: 790-797.
349. Khindaria, A., Barr, D. P., and S. D. Aust. 1995a. Lignin peroxidases can also oxidize manganese. Biochemistry. 23: 7773-7779.
350. Khindaria, A., Grover, T. A., and S. D. Aust. 1994. Oxalate-dependent reductive activity of manganese peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 314, 2: 301-306.
351. Khindaria, A., Grover, T. A., and S. D. Aust. 1995b. Evidence for formation of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry. 34: 6020-6025.
352. Khindaria, A., Grover, T. A., and S. D. Aust. 1995c. Reductive dehalogenation of aliphatic halocarbons by lignin peroxidase of Phanerochaete chrysosporium. Environ.Sci. Technol. 29: 719-725.
353. Kibblewhite, R. P., Anderson, К. В., and К. K. Y. Wong. 1999. Effects of the laccase-mediator system on the handsheet properties of two high kappa kraft pulps a review. Enzyme Microb. Technol 25, 1-2: 125-131.
354. Kim, S. J., and M. Shoda. 1999. Purification and charectarization of a novel peroxidase from Geotricum candidum Dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 65, 3: 1029-1035.
355. Kimura, Y., Asada, Y., and M. Kuwahara. 1990. Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl. Microbiol. Biotechnol. 32, 4: 436-442.
356. Kimura, Y., Asada, Y., Oka, Т. and M. Kuwahara. 1991. Molecular analysis of a Bjerkandera adusta lignin peroxidase gene. Appl.Microbiol.Biotechnol. 35:510-514.
357. Kirk, Т. K. 1971. Effect of microorganisms on lignin. Ann. Rev. Phytopatol. 9: 185-210.
358. Kirk, Т. K. 1984. Degradation of lignin. In: Microbial degradation of organic compounds. D.T. Gibson, Ed. Marcel Dekker, Inc. New-York and Basel, p. 399-437.
359. Kirk, Т.К. 1987. Lignin-degrading enzymes. Phil.Trans.R.Soc.Lond. A321: 461-474.
360. Kirk, Т. K., Connors, W. J., Bleam, R. D., Hackett, W. F., and J. G. Zeikus. 1975. Preparation and microbial decomposition of synthetic 14C.lignins. Proc. Natl. Acad. Sci. USA. 72, 7: 2215-2519.
361. Kirk, Т. K., Connors, W. J., and J. G. Zeikus. 1976. Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl. Environ. Microbiol. 32: 192-198.
362. Kirk, Т. K., Croan, S., Tien, M., Murtagh, К. E., and R. L. Farrell. 1986a. Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strains. Enzyme Microb.Technol. 8: 27-32.
363. Kirk, Т. K., and R. L. Farrell. 1987. Enzymatic "combustion": the microbial degradation of lignin. Ann. Rev. Microbiol. 1987. 41: 465-505.
364. Kirk, Т. K., Schultz, E., Connors, W. J., Lorens, L. F. and J.G. Zeicus. 1978. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch. Microbiol. 117, 3: 277-285.
365. Kirk, Т. K., Tien, M., Kersten, P. J., Mozuch, M. D., and B. Kalyanaraman. 1986b. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol /?-aryl ether substructure of lignin. Biochem. J. 236: 279-287.
366. Kirkpatrick, N., and J. M. Palmer. 1989. A natural inhibitor of lignin peroxidase activity from Phanerochaete chrysosporium, active at low pLI and inactvated by divalent metal ions. Appl. Microbiol. Biotechnol. 30: 305-311.
367. Kishi, K., Hildebrand, D. P., van Someren, M. K., Gettemy, J., Mauk, A. G., and M. H. Gold. 1997. Site-directed mutations at phenylalanine-190 of manganese peroxidase: effects on stability, function, and coordination. Biochemistry. 36, 14: 4268-4277.
368. Kishi, K„ Someren, M. K., Mayfield, M. В., Sun, J., Loehr, Т. M., and M. Gold. 1996. Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry. 35, 27: 8986-8994.
369. Kleman-Leyer, К. M., and Т. K. Kirk. 1994. Three native cellulose-depolymerizing endoglucanases from solid-substrate cultures of brown rot fungus Meruliporia (Sepula) incrassata. Appl. Environ. Microbiol. 60, 8: 2839-2845.
370. Ко, E.-M., Leem, Y.-E. and H. T. Choi. 2001. Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum. Appl. Microbiol. Biotechnol. 57, 1/2: 98-102.
371. Koduri, R. S., and M. Tien. 1994. Kinetic analysis of lignin peroxidase: explanation for the mediation phenomenon by veratryl alcohol. Biochemistry. 33,14: 4225-4230.
372. Kondo, R., limori, Т., Imamura, H., and Nishida, T. 1990. Polymerization of DHP and depolymerization of DHP-glucoside by lignin oxidizing enzymes. J.Biotechnol.l3:181-8
373. Kondo, R., Harazono, K., and K. Sakai. 1994b. Bleaching of hardwood pulp with manganese peroxidase secreted from Phanerochaete sordida YK-624. Appl. Environ. Microbiol. 60, 12: 4359-4363.
374. Kondo, R., Kurashiki, K., and K. Sakai. 1994a. In vitro bleaching of hardwood Kraft pulp by extracellular enzymes excreted form white rot fungi in a cultivation system using a membrane filter. Appl. Environ. Microbiol. 60, 3: 921-926.
375. Kuan, I.-C., Johnson, K. A., and M. Tien. 1993. Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. J. Biol. Chem. 268, 27: 20064-70.
376. Kuan, I.-C., and M. Tien. 1989. Phosphorilation of lignin peroxidases from Phanerochaete chrysosporium: identification of mannose-6-phosphate. J. Biol. Chem. 264: 20350-20355.
377. Kuan, I.-C., and M. Tien. 1993. Stimulation of Mn peroxidase activity: A possible role for oxalate in lignin biodegradation. Proc.Natl. Acad. Sci. USA. 90: 1242-1246.
378. Kuila, D., Tien, M., Fee, J. A., and M. R. Ondrias. 1985. Resonance Raman spectra of extracellular ligninase: evidence for a heme active site similar to those of peroxidases. Biochemistry. 24: 3394-3397.
379. Kurtz, M. В., and S. Champe. 1982. Purification and characterization of the conidial laccase of Aspergillus nidulans. J. Bacteriol. 151, 3: 1338-1345.
380. Kullman, S. W., and F. Matsumura. 1996. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl. Environ. Microbiol. 62, 2: 593-600.
381. Kulys, J., Krikstopaitis, K., Ebdrup, S., Pedersen, A. H., and P. Schneider. 1996. Kinetic of mediator-dependent pseudocatalytic activity of fungal peroxidases. J. Mol. Catal. B: Enzymatic. 2: 93-101.
382. Kurtz, M. В., and S. Champe. 1982. Purification and characterization of the conidial laccase of Aspergillus nidulans. J. Bacteriol. 151, 3: 1338-1345.
383. Kusters van Someren, M. K.-v., Kishi, K., Lundell, Т., and M. H. Gold. 1995. The manganese binding site of manganese peroxidase: characterization of an Aspl79Asn site-directed mutant protein. Biochemistry. 34, 33: 10620-10627.
384. Kuwahara, M., Glenn, J. К., Morgan, M. A., and M. H. Gold. 1984a. Separation and characterization of two extracellular H2C>2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169, 2: 247-250.
385. Kuwahara, M., Ishida , Y., Maiyagawa, Y., and C. Kawakami. 1984b. Production of extracellular NAD and NADP by a lignin-degrading fungus, Phanerochaete chrysosporium. J. Ferment. Technol. 62: 237-242.
386. Laborde, J. 1896. Sur la casse des vins. C. R. Hebd Seances Acad. Sci. (Paris). 123: 1074-1075.
387. Laborde, J. 1897. Sur Г absorption d' oxygene dans la casse du vin. C. R. Hebd Seances Acad. Sci. (Paris). 125: 248-250.
388. LaFayette, P. R., Eriksson, K.-E. L., and J. F. D. Dean. 1995. Nucleotide sequence of a cDNA clone encoding an acidic laccase from sycamore maple (Acep pseudoplatanus L.). Plant. Physiol. 107: 667-668.
389. Leatham, G. F. 1986. The ligninolytic activities of Lentinus edodes and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 24: 51-58.
390. Leatham, G., and M. A. Stahmann. 1981. Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. J. Gen. Microbiol. 125:147-157.
391. Lee, I.-Y., Jung, K.-H., Lee, C.-H., and Y.-H. Park. 1999. Enhanced production of laccase in Trametes vesicolor by the addition of ethanol. Biotechnol.Lett. 21,11: 965-8.
392. Lee, В., Pometto III, A. L., Fratzke, A., and Т. B. Bailey. 1991. Biodegradation of degradable plastic polyethylene by Phanerochaete chrysosporium and Streptomyces species. Appl. Environ. Microbiol. 57, 3: 678-685.
393. Leisinger, Т., and W. Brunner. 1990. Poorly degradable substrates. In: Biotechnology, H.-J. Rehm and G. Reed, Eds. V. 8. Microbial degradation. Volume editor W. Schonborn. VCH. Chapter 14, F. Lignin and lignosulfonates. p. 495-496.
394. Leisola, M. S. A., and A. Fiechter. 1985. New trends in lignin biodegradation. In: Advances in Biotechnological Processes 5. A. R. Liss, Inc. p. 59-89.
395. Leisola, M. S. A., Kozulic, В., Meussdoerffer, R., and A. Fiechter. 1987. Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J. Biol. Chem. 262, 1: 419-424.
396. Leisola, M. S. A., Schmidt, В., Thanei-Wyss, U., and A. Fiechter. 1985b. Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium. FEBS Lett. 189, 2: 267270.
397. Leisola, M.S.A., Ulmer, D.C, and A. Fiechter. 1984a. Factors affectin lignin degradation in lignocellulose by Phanrochaete chrysosporium. Arch. Microbiol. 137, 2: 171-175.
398. Leitner, C., Vole, J., and D. Haltrich. 2001. Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Appl. Environ. Microbiol. 67, 8: 3636-3644.
399. Leonowicz, A., Trojanowski, J., and B. Orlicz. 1978. Induction of laccase in basidiomycetes: apparent activity of the inducible and constitutive forms of the enzyme with phenolic substrates. Acta Biochim. Pol. 25, 4: 369-378.
400. Leontievsky, A. A., Golovleva, L. A. and A. Xavier. 1995. Mn-dependent peroxidase of the white rot fungus Panus tigrinus 8/18. Materials of "Int. workshop on peroxidase biotechnology and application", 26-30 of June, 1995, Puchshino, Russia, p. 25
401. Lestan, D., Cernilec, M., Strancar, M., and A. Perdih. 1993. Influence of some surfactants and related compounds on ligninolytic activity of Phanerochaete chrysosporium. FEMS Microbiol. Lett. 106: 17-22.
402. Lestan, D., Lestan, M., and A. Perdih. 1994. Physiological aspects of biosynthesis of lignin peroxidase by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60, 2: 606-612.
403. Lestan, D., Strankar, A., and A. Perdih. 1990. Influence of some oils and surfactants on ligninolytic activity, growth and lipid fatty acids of Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 34, 3: 426-428.
404. Lewis, N. G., and E. Yamamoto. 1990. Lignin: occurrence, biogenesis and biodegradation. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 41: 455-496.
405. Li, D., Alic, M., Brown, J. A., and M. H. Gold. 1995. Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl. Environ. Microbiol. 61, 1: 341-345.
406. Li, D., Alic, M., and M. H. Gold. 1994. Nitrogen regulation of lignin peroxidase gene transcription. Appl. Environ. Microbiol. 60, 9: 3447-3449.
407. Libeskind, M., Hocker, H., Wandrey, C., and A. G. Jager. 1990. Strategies for improved lignin peroxidase production in agitated pellet cultures of Phanerochaete chrysosporium and use of a novel induser. FEMS Microbiol. Lett. 71,3: 325-330.
408. Linden, R. M., Schilling, В. C., Germann, U. A., and K. Lerch. 1991. Regulation of laccase synthesis in induced Neurospora crassa cultures. Curr. Genet. 19: 375-381.
409. Linko, S. 1988. Production and characterization of extracellular lignin peroxidase from immobilized Phanerochaete chrysosporium in a 10-1 biorector. Enzyme Microb. Technol. 10, 7: 410-417.
410. Linko, S., and L.-C. Zhong. 1987. Comparison of different methods of immobilization for lignin peroxidase production by Phanerochaete chrysosporium. Biotechnology Techniques. 1, 4: 251-256.
411. Lobarzewski, J. 1985. Properties of hydrogen peroxide and cyanide binding to fungal peroxidase preparation containing phenolic compounds. Bull. Pol. Acad. Sci. Biol. Sci. 33, 12: 99-105.
412. Lobarzewski, J. 1990. The characteristics and functions of the peroxidases from Trametes versicolor in lignin biodegradation. J. Biotechnol. 13: 111-117.
413. Lobarzewski, J., and A. Sikova. 1972. Effect of phenols on the activity of peroxidase in liquid cultures of Inonotus radiatus fungus. Annales Universitats Mariae Curie-Sklodowska. 27, 8: 87-98.
414. Lobarzewski, J., Trojanowski, J., and M. Wojtas-Wasilewska. 1982. The effect of fungal peroxidase on Na-lignosulfonates. Holzforschung. 36, 173-176
415. Lobos, S., Larrian, J., Salas, L., Cullen, D., and R. Vicuna. 1994. Isoenzymes of manganese-dependent peroxidase and laccase produced by lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology. 140, 10: 2691-2698.
416. Loomis, W. D., and J. Battaile. 1966. Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry. 5: 423-438.
417. Lopretti, M. I., Mathias, A. L., and A. E. Rodrigues. 1993. Activity of ligninase peroxidase from Acinelobacter anitratus and the degradation of Pinus pinaster lignin. Proc. Biochem. 28: 543-574.
418. Lowry, О. H., Rosenbrough, N. G., Farr, A. L., Randall, P. J., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 1: 256-268.
419. Lund. M., and C. Felby. 2001. Wet strength improvement of unbleached kraft pulp through laccase catalyzed oxidation. Enzyme Microb. Technol. 28, 9-10: 760-765.
420. Lundell, Т., and A. Hatakka. 1994. Participation of Mn(II) in the catalysis of laccase, manganese peroxidase and lignin peroxidase from Phlebia radiata. FEBS Lett. 348: 291-296.
421. Lundell, Т., Leonowicz, A., Rogalski, J., and A. Hatakka. 1990. Formation and action of lignin-modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid. Appl. Environ. Microbiol. 56, 9: 2623-2629.
422. Lundguist, K., and Т. K. Kirk. 1978. De novo synthesis and decomposition of veratryl alcohol by a lignin-degrading basidiomycete. Phytochemistry. 17, 1676.
423. Lyr. H. 1955. Vorkommen von peroxidase bei holzzerstorenden basidiomyceten. Planta. 46: 408-413.
424. Maccarone, M., Veldink, G. A., and J. F. G. Vliegenthart. 1991. An investigation on the quinoprotein nature of some fungal and plant oxidoreductases. J. Biol. Chem. 266, 31: 21014-21017.
425. Machida, Y., and T. Nakanishi. 1984. Purification and properties of pyranose oxidase from Coriolus versicolor. Agric. Biol. Chem. 48, 10: 2463-2470.
426. Magnuson, T. S., and D. L. Crawford. 1992. Comparison of extracellular peroxidase-and esterase-deficient mutants of Streptomyces viridosporus T7A. Appl. Environ. Microbiol. 58, 3: 1070-1072.
427. Maione, Т. E., Javaherian, К., Belew, M. A., Gomez L. E., and R. L. Farrell. 1987. Lignin enzymic and microbial degradation. E. Odier, Ed. INRA Publications, Paris, 1987, pp. 117-123.
428. Malkin, R., and B. G. Malmstrom. 1970. The state and function of copper in biological systems. In\ Advances in Enzymology. V.33. F. F. Nord, Ed. Interscience Publishers, p. 177-244.
429. Malkin, R., Malmstrom, B. G., and T. Vanngard. 1969. Spectroscopic differentiation of the electron-accepting sites in fungal laccase. Association of a near ultraviolet band with a two electron-accepting unit. Eur. J. Biochem. 10: 324-329.
430. Malmstrom, B. G. 1994. Rack-induced bonding in blue-copper proteins. Eur. J. Biochem. 223: 711-718.
431. Maltseva, О. V., Golovleva, L. A., Leontievsky, A. A., Musilek, V., Nerud, F., and Z. Mishurtsova. 1989. Dynamics of enzymes generating hydrogen peroxide in solid-state fermentation of Panus tigrinus on wheat straw. Folia Microbiol. 34, 3: 261-266.
432. Marbach, I., Harel, E., and A. M. Mayer. 1984. Molecular properties of extracellular Botrytis cinerea laccase. Phytochemistry. 23: 2713-2717.
433. Martinez, А. Т., Barrasa, J. M., Prieto, A., and M. N. Blanco. 1991. Fatty acid composition and taxonomic status of Ganoderma australis from southern Chile. Mycol. Res. 95: 782-784.
434. Martinez, M. J., Munoz, C., Guillen, F., and A. T. Martinez. 1994. Studies of homoveratric acid transformation by the ligninolytic fungus Pleurotus eryngii. Appl. Microbiol. Biotechnol. 41,5: 500-504.
435. Masai, E., Katayanra, Y., Kawai, S., Nishikawa, S., Yamasaki, M., and N. Morohoshi. 1991. Cloning and sequencing of the gene for a Pseudomonas paucimobilis enzyme that cleaves /?-aryl ether. J. Bacteriol. 173, 24: 7950-7955.
436. Masaphy, S., Heins, Y., and D. Levanon. 1996. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonaris and its correlation with oxidation activity. Appl. Environ. Micribiol. 62,10: 3587-3593.
437. Masaphy, S., and D. Levanon. 1992. The effect of lignocellulose on lignocellulolytic activity of Pleurotus pulmanaris in submerged culture. Appl. Microbiol. Biotechnol. 36, 6: 828-832.
438. Mason, M.G., Ball, A.S., Reeder, B.J., Silkstone, G„ Nicholls, P., and M. T. Wilson. 2001. Extracellular heme peroxidases in actinomycetes: a case of mistaken identity. Appl. Environ. Microbiol. 67, 10: 4512-4519.
439. Mason, J. C., Richards, M., Zimmerman, W. and P. Broda. 1988. Identification of extracellular proteins from actinomycetes responsible for solubilisation of lignocellulose. Appl. Microbiol. Biotechnol. 28: 276-280.
440. Matsubara, M„ Suzuki, J., Deguchi, Т., Miura, M., and Y. Kitaoka. 1996. Characterization of manganese peroxidases from the hyperlignolytic fungus IZU-154. Appl. Environ. Microbiol. 62, 11: 4066-4072.
441. Mayer, A. M. 1987. Polyphenol oxidases in plants recent progress. Phytochenristry. 26, 1: 11-20.
442. Mayer, A. M., and E. Harel. 1979. Polyphenol oxidases in plants. Phytochemistry. 18: 193-215.
443. Mayfield, M. В., Godfrey, B. J., and M. H. Gold. 1994a. Characterization of the mnp2 gene encoding manganese peroxidase isozyme 2 from the basidiomycete Phanerochaete chrysosporium. Gene. 142, 2: 231-235.
444. McCarthy, A. J. 1987. Lignocellulose-degrading actinomycetes. FEMS Mivrobiol. Rev. 46: 145-163.
445. McCarthy, A. J., and P. Broda. 1984. Screening for lignin-degrading actinomycetes and characterization of their activity against 14C.lignin-labelled wheat lignocellulose. J. Gen. Microbiol. 130: 2905-2913.
446. McDougall, G. J. 1998. Purification of coniferyl alcohol oxidase from lignifying xylem of Sitka spruce using immobilised metal affinity chromatography. J. Plant. Physiol. 153: 539-544.
447. McDougall, G. J. 2000. A comparison of proteins from the developing xylem of compression and non-compression wood of branches of Sitka spruce (Pice a sitchensis) reveals a differentially expressed laccase. J. Exp. Botany 51, 349: 1395-1401.
448. McDougall, G. J. 2001. Cell-wall proteins from Sitka spruce xylem are selectively insolubilised during formation of dehydrogenation polymers of coniferyl alcohol. Phytochemistry. 57, 2: 157-163.
449. McSweeney, C. S., Dulieu, A., Katayama, Y., and J. B. Lowry. 1994. Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patriciarum. Appl. Environ. Microbiol. 60, 8: 2985-2989.
450. Meadows, K. A., Morie-Bebel, M. M., and D. R. McMillin. 1991. Copper transfer from Rhus vernicifera laccase. J. Inorg. Biochem. 41, 253-260.
451. Mercer, D. K., Iqbal, M., Miller, P. G. G., and A. J. McCarthy. 1996. Screening actinomycetes for extracellular peroxidase activity. Appl. Environ. Microbiol. 62, 6: 2185-2190.
452. Messerschmidt, A. (Ed.) 1997. Multi-Copper Oxidases, World Scientific, Singapore, 408 p.
453. Messerschmidt, A., and R. Huber. 1990. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J. Biochem. 187:341-352.
454. Messerschmidt, A., Landestein, R., Huber, R., Bolognesi, M., Avigiliano, L., Petruzelli, R., Rossi, A., and A. Finazzi-Agro. 1992a. Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J. Mol. Biol. 224,1:179-205.
455. Messerschmidt, A., Luecke, H„ and R. Huber. 1993. J. Mol. Biol. 230:997-1014.
456. Messerschmidt, A., Steigemann, W., Huber, R., Lang, G., and P. M. H. Kroneck. 1992b. X-ray crystallographic characterisation of type-2-depleted ascorbate oxidase from zucchini. Eur. J. Biochem. 209, 2: 597-602.
457. Mester, Т., and J. A. Field. 1998. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isosyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J. Biol. Chem. 273: 15412-15417.
458. Mester, Т., Репа, M., and J. A. Field. 1996. Nutrient regulation of extracellular peroxidases in the white rot fungus, Bjerkandera sp. strain BOS55. Appl. Microbiol. Biotechnol. 44: 778-784.
459. Michel, F. C., JR., Dass, S. В., Grulke, E. A., and C. A. Reddy. 1991. Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of Kraft bleach plant effluent. Appl.Environ.Microbiol. 57, 8: 2368-2375.
460. Miki, K., Renganathan, V., and M. H. Gold. 1986. Mechanism of (3-aryl ether dimeric lignin model compound oxidation by lignin peroxidase of Phanerochaete chrysosporium. Biochemistry. 25: 4790-4796.
461. Miki, K., Renganathan, V., Mayfield M. В., and M. H. Gold. 1987. Aromatic ring cleavage of a /?-biphenyl ether dimer catalyzed by lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett. 210, 2: 199-203.
462. Mikuni, J., and N. Morohoshi. 1997. Cloning and sequencing of a second laccase gene from the white-rot fungus Coriolus versicolor. FEMS Microbiol. Lett. 155, 1: 79-84.
463. Mileski, G. J., Bumpus, J. A., Jurek. M. A., and S. D. Aust. 1988. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 12: 2885-2880.
464. Millis, C. D., Cai, D., Stankovich, M. Т., and M. Tien. 1989. Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry. 28, 21: 8484-8489.
465. Milstein, O., Gersonde, R., Huttermann, A., Chen, M.-J., and J. J. Meister. 1992. Fungal biodegradation of lignopolystyrene graft copolymers. Appl. Environ. Microbiol. 58, 10: 3225-3232.
466. Milstein, O., Nicklas, В., and A. Huttermann. 1989. Oxidation of aromatic compounds in organic solvents with laccase from Trametes versicolor. Appl. Microbiol. Biotechnol. 31, 1: 70-74.
467. Minuth, W., Klischis, M., and K. Esser. 1978. The phenol oxidases of the ascomycete Podospora anserina. Structural differences between laccases of high and low molecular weight. Eur. J. Biochem. 90: 73-82.
468. Mliki, A., and W. Zimmermann. 1992. Purification and characterization of an intracellular peroxidase from Streptomyces cyaneus. Appl. Environ. Microbiol. 58, 3: 916-919.
469. Moen, M. A., and К. E. Hammel. 1994. Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is basis for phenanthrene oxidation by the intact fungus. Appl. Environ. Microbiol. 60, 6: 1956-1961.
470. Momohara, I., Matsumoto, Y., and A. Ishizu. 1990. Involvement of veratryl alcohol and active oxygen species in degradation of a quinone compound by lignin peroxidase. FEBS Lett. 273, 1/2: 159-162.
471. Monties, B. 1994. Chemical assesment of lignin biodegradation some qualitative and quantitative aspects. FEMS Microbiol. Rev. 13, 2/3: 277-284.
472. Morohoshi, N. 1991. Laccase of the ligninolytic fungus Coriolus versicolor. In: Enzymes in biomass conversion, G. F. Leatham and M. E. Hammel, Eds., ASC Symposium Series 460. American Chemical Society, Washington, DC. p. 207-224.
473. Mougin, C., Laugero, C., Asther, M., Dubroca, J., Frasse, P., and M. Asther. 1994. Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60, 2: 705-708.
474. Muheim, A., Leisola, M. S. A., and H. E. Schoemaker. 1990a. Aryl-alcohol oxidase and lignin peroxidase from the white-rot fungus Bjerkandera adusta. J.Biotechnol. 13:159-67
475. Muheum, A., Fiechter, A., Harvey, P. J., and H. E. Schoemaker. 1992. On the mechanism of oxidation of non-phenolic lignin model compounds by the laccase-ABTS couple. Holzforschung. 46: 121-126.
476. Muheim, A., Waldner, R., Leisola, M. S. A., and A. Fiechter. 1990b. An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme Microb. Technol. 12, 3: 204-209.
477. Muheim, A., Waldner, R., Sanglard, D., Reiser, J., Schoemaker, H. E. and M. S. A. Leisola. 1991. Purification and properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Eur. J. Biochem. 195, 2: 369-375.
478. Mustranta, A. 1987. Production of peroxidase by Inonotus weirii. Appl. Microbiol. Biotechnol. 27: 21-26.
479. Nakamura, Т., and Y. Ogura. 1968. Oxidation and reduction of copper proteins: note added to the previous report on the state and activity of copper atoms in copper proteins. J. Biochem. (Tokyo) 64, 2: 267-270.
480. Nakayama, Т., and T. Amachi. 1999. Fungal peroxidase: its structure, function, and application. J. Mol. Catal. B: Enzymatic. 6: 185-198.
481. Nerud, F., and Z. Misurcova. 1989. Production of ligninolytic peroxidases by the white rot fungus Coriolopsis occidentalis. Biotechnol. Lett. 11,6: 427-432.
482. Nerud, F., Zouchova, Z., and Z. Misurcova. 1991. Ligninolytic properties of different white-rot fungi. Biotechnol. Lett. 13, 657-660.
483. Nicole, M., Chamberland, H., Rioux, D., Lecours, N., Rio, В., Geiger, J. P., and G. B. Ouellette. 1993. A cytochemical study of extracellular sheats assotiated with Rigidoporus lignosus during wood desay. Appl. Environ. Microbiol. 59, 8: 2578-2588.
484. Nicole, M., Chamberland, H., Rioux, D., Xixuan, X., Blanchette, R. A., Geiger, J. P., and G. B. Ouellette. 1995. Wood degradation by Phellinus noxius: ultrastructure and cytochemistry. Can. J. Microbiol. 41, 3: 253-265.
485. Nie, G., Reding, N. S., and S. D. Aust. 1998. Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli. Biochem. Biophys. Res. Commun. 249, 1: 146-150.
486. Niku-Paavola, M.-L., Karhunen, E., Kantelinen, A., Viikari, L., Lundell, Т., and A. Hatakka. 1990a. The effect of culture conditions on the production of lignin modifying enzymes by the white rot fungus Phlebia radiata. J. Biotechnol. 13:211-221.
487. Niku-Paavola, M.-L., Karhunen, E., Salola, P., and V. Raunio. 1988. Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem. J. 254: 877-884.
488. Niku-Paavola, M.-L., Raaska, L., and M. Itavaara. 1990b. Detection of white-rot fungi by a non-toxic stain. Mycol. Res. 94, 1: 27-31.
489. Nilsson, Т., Daniel, G., Kirk, Т. K., and J. R. Obst. 1989. Chemistry and microscpoy of wood decay by some higher ascomycetes. Holzforschung. 43: 11-18.
490. Nimz, H. 1974. Beech lignin proposal of a constitutional scheme. Angew. Chem. 86: 336-342.
491. Nishida, A., and K.-E. Eriksson. 1987. Formation, purification and partial characterization of methanol oxidase, a HaCVproducing enzyme in Phanerochaete chrysosporium. Biotechnol. Appl. Biochem. 9: 325-338.
492. Nishimura, I., Okada, K., and Y. Koyama. 1996. Clonong and expression of pyranose oxidase cDNA from Coriolus versicolor in Escherichia coli. J. Biotechnol. 52: 55-61.
493. Nobles, M. K. 1965. Identification of cultures of wood inhabiting hymenomycetes. Can. J. Bot. 254: 877-884.
494. Obst, J. R., and Т. K. Kirk. 1988. Isolation of lignin. In: Methods in Enzymology. S. P. Colowick and N. O. Kaplan, Eds. V.161 Biomass, Part B. Lignin, Pectin, and Chitin. W. A. Wood and S. T. Kellog, Eds. Academic Press, Inc. p. 3-12.
495. Oda, Y., Adachi, K., Aita, I., Ito, M., Aso, Y., and H. Igarashi. 1991. Purification and properties of laccase excreted by Pycnoporus coccineus. Agric. Biol. Chem. 55, 5: 13931395.
496. Odier, E., and C. Rolando. 1985. Catabolism of arylglycerol-/?-aryl ethers lignin model compounds by Pseudomonas cepacia 122. Biochimie. 67: 191-197.
497. Omura, T. 1961. Studies on laccases of lacquer trees. I. Comparison of laccases obtained from Rhus vernicifera and Rhus succedanea. J. Biochem. 50, 3: 264-272.
498. O'Reilly, К. Т., and R. L. Crawford. 1989. Degradation of pentachlorophenol by polyurethane-immobilizad Flavobcicterium cells. Appl.Environ.Microbiol. 55, 9: 2113-8.
499. Orth, А. В., Pease, E. A., and M. Tien. 1994. Properties of lignin-degrading peroxidases and their use on bioremediation. In: Biological degradation and bioremediation of toxic chemicals. G. R. Chandhry, Ed. Chapman and Hall. p. 345-363.
500. Orth, А. В., Royse, D. J. and M. Tien. 1993. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl. Environ. Microbiol. 59, 12: 4017-4023.
501. Otjen, L., and R. A. Blanchette. 1986. A discussion of microstructural changes in wood during decomposition by white rot basidiomycete. Can. J. Bot. 64: 905-911.
502. Pasty, M. В., Pometto III, A. L., Nuti, M. P., and D. L. Crawford. 1990. Lignin-solubilizing activity of actinomycete isolated from termite (Termilidae) gut. Appl. Environ. Microbiol. 56: 2213-2218.
503. Palmer, J. M., Harvey, P. J., and H. E. Shoemaker. 1987. The role of peroxidases, radical cations and oxygen in the degradation of lignin. Phil.Trans.R.Soc.Lond. A321: 495-505.
504. Palmieri, G., Giardina, P., Bianco, C., Scaloni, A., Capasso, A. and G. Sannia. 1997. A novel white laccase from Pleurotus ostreatus. J.Biol.Chem. 272, 50: 31301-31307.
505. Palmieri, G., Giardina,P., Marzullo, L., Desiderio, В., Nitti, G., Cannio, R., and G. Sannia. 1993. Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 39, 4/5: 632-636.
506. Parra, C., Rodriguez, J., Baeza, J., Freer, J., and N. Duran. 1998. Iron-binding catechols oxidating lignin and chlorolignin. Biochem. Biophys. Res. Commun. 251: 399-402.
507. Paszczynski, A., Huynh, V.-B., and R. Crawford. 1985. Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 29: 37-41.
508. Paszczynski, A., Huynh, V.-B., and R. Crawford. 1986. Comparison of ligninase-I and peroxidase M2 from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochim. Biophys. 244, 2: 750-765.
509. Pease, E. A., Andrawis, A., and M. Tien. 1989. Manganese-dependent peroxidase from Phanerochaete chrysosporium. Primary structure deduced from cDNA sequence. J. Biol. Chem. 264, 23: 13531-13535.
510. Pease, E. A. and M. Tien. 1992. Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J. Bacteriol. 174: 3532-3540.
511. Pelmont, J., Barrele, M., Hauteville, M., Gamba, D., Romdhane, M., Dardas, A., and C. Beguin. 1985. A new bacterial dehydrogenase oxidizing the lignin model compound guaiacylglycerol /?-0-4-guaiacyl ether. Biochimie. 67, 9: 973-986.
512. Pelmont, J., Tournesac, C., Mliki, A., Barrele, M., and C. Beguin. 1989. A new bacterial alcohol dehydrogenase active on degraded lignin and sevral low molecular weight aromatic compounds. FEMS Microbiol. Lett. 57: 109-113.
513. Penaloza, W., Molina, M. R., Brenes, R. G., and R. Bressani. 1985. Solid-state fermentation: an alternative to improve the nutritive value of coffee pulp. Appl. Environ. Microbiol. 49, 2: 388-393.
514. Peng, X., Masai, E., Katayama, Y., and M. Fukuda. 1999. Characterization of the mete-cleavage compound hydrolase gene involved in degradation of the lignin-related biphenyl structure by Sphingomonaspaucimobilis SYK-6.
515. Perestelo, F., Falcon, M. A., Perez, M. L., Roig, E. C., and C. F. Martin. 1989. Bioalteration of Kraft pine lignin by Bacillus megaterium isolated from compost piles. J. Ferment. Bioengin. 68, 2: 151-153.
516. Perez, J., and T. W. Jeffries. 1990. Mineralization of 14C-ring-labeled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase. Appl. Environ. Microbiol. 56, 6: 1806-1812.
517. Perez, J., and T. W. Jeffries. 1992. Roles of manganese and organic chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58, 8: 2402-2409.
518. Perez, J., Martinez, J., and T. de laRubia. 1996. Purification and partial characterization of a laccase from the white rot fungus Phanerochaete flavido-alba. Appl. Environ. Microbiol. 62, 11: 4263-4267.
519. Perie, F. H., and M. H. Gold. 1991. Manganese regulation of mandanese peroxidase expression and lignin degradation by the white rot fungus Dichomitus sgualens. Appl. Environ. Microbiol. 57, 8 : 2240-2245.
520. Perie, F. H., Reddy, G. V. В., Blackburn, N. J., and M. H. Gold. 1998. Purification and characterization of laccases from the white-rot basidiomycete Dichomitus sgualens. Arch. Biochim. Biophys. 353, 2: 349-355.
521. Perie, F. H., Sheng, D., and M. H. Gold. 1996. Purification and characterization of two manganese peroxidase isozymes from the white-rot basidiomycete Dichomitus sgualens. Biochim. Biophys. Acta. 1297: 139-148.
522. Perry, C. R., Matcham, S. E., Wood, D. A., and C. F. Thurston. 1993a. The structure of laccase protein and its synthesis by the commertial mushroom Agaricus bisporus. J. Gen. Microbiol. 139: 171-178.
523. Perry, C. R., Smith, M., Britnell, С. H., Wood, D. A., and C. F. Thurston. 1993b. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J. Gen. Microbiol. 139: 1209-1218.
524. Pettersen, R. С. 1984. The chemical composition of wood. Adv.Chem. Ser. 207: 57-126.
525. Philippi, F., 1893. Die Pilze Chiles, soweit dieselben als Nahrungsmittel gebraucht werden. Hedwigia. 32: 115-118.
526. Piontek, K., Glumoff, Т., and K. Winterhaltier. 1993. Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 A resolution. FEBS Lett. 315, 2: 119-124.
527. Polacheck, I., Hearing, V. J., and K. J. Knwon-Chung. 1982. Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J. Bacteriol. 150: 1212-1220.
528. Pometto III, A. L., and D. L. Crowford. 1986b. Effect of pH on lignin and cellulose degradation by Streptomyces viridosporus. Appl.Environm.Microbiol. 52,2:246-250.
529. Pometto III, A. L., Lee, В., and К. E. Johnson. 1992. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl. Environ. Microbiol. 58,2: 731-733.
530. Popp, J. L.,Goulas, P., Вое, J.-F., and Т. K. Kirk. 1990. Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic acid and oxygen. Biochemistry. 29: 10475-10480.
531. Poulos, T. L., Edwards, S. Т., Wariishi, H., and M. H. Gold. 1993. Crystallographic refinement of lignin peroxidase at 2 A. J. Biol. Chem. 268, 6: 4429-4440.
532. Pribnow, D., Mayfield, M. В., Nipper, V. J., Brown, J. A., and M. FI. Gold. 1989. Characterization of a cDNA encoding a managnese peroxidase, from lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 264, 9: 5036-5040.
533. Prouty, A. L. 1990. Bench-scale development and evaluation of a fungal bioreactor for color removal from bleach effluents. Appl. Microbiol. Biotechnol. 32,4: 490-493.
534. Radotic, K., Simic-Krstic, J., Jeremic, M., and M. Trifunovic. 1994. A study of lignin formation at the molecular level by scanning tunneling microscopy. Biophys. J. 66, 6: 1763-1767.
535. Radotic, K., Tasic, M., Jeremic, M., Budimlija, Z., Simic-Krstic, J., Polzovic, A., and Z. Bozovic. 2000. Fractal analysis of STM images of lignin polymer obtained by in vitro synthesis. Gen. Physiol. Biophys. 19, 2: 171-180.
536. Ralph, J. P., and D. E. A. Catcheside. 1999. Transformation of macromolecules from a brown coal by lignin peroxidase. Appl Microbiol Biotechnol. 52, 1: 70-77.
537. Ramachandra, M., Crawford, D. L., and G. Hertel. 1988. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl. Environ. Microbiol. 54, 12: 3057-3063.
538. Ramasamy, K., Kelley, R. L., and C. A. Reddy. 1985. Lack of lignin degradation by glucose oxidase-negative mutants of Phanerochaete chrysosporium. Biochem. Biophys. Res. Coramun. 131, 1 : 436-441.
539. Rappe, C. 1980. Chloroaromatic compounds containing oxygen: phenols, diphenyl ethers, dibenzo-p-dioxins, and dibnezofuran. In: The handbook for environmental chemistry. O. Hutzunger, Ed. Springer-Verlag, Berlin, Germany, p. 157-179.
540. Rayner, A. D. M., and L. Boddy. 1986. Population structure and the infection biology of wood decay in living trees. Advances in Plant Pathology. 5: 119-160.
541. Rayner, A. D. M., and L. Boddy. 1988. Fungal decomposition of wood: its biology and ecology. John Wiley and Sons, Chichester.
542. Reddy, C. A. 1984. Physiology and biochemistry of lignin degradation. In: Current Perspectives in Microbial Ecology. M. J. Klug and C. A. Reddy. Eds. p. 558-571.
543. Reddy, C. A. 1993. An overview of recent advances on the physiology and molecular biology of lignin peroxidases of Phanerochaete chrysosporium. J. Biotechnol. 30, 1: 91107.
544. Reddy, G. V. В., Gelpke, M. D. S., and M. H. Gold. 1998. Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. J. Bacteriology. 180, 19: 5159-5164.
545. Reddy, G. V. В., and M. H. Gold. 2000. Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology. 146: 405-413.
546. Rehman, A. U., and C. F. Thurston. 1992. Purification of laccase I from Armillaria mellea. J. Gen. Microbiol. 138: 1251-1257.
547. Reid, I. D. 1985. Biological delignification of aspen wood by solid-state fermentation with the white-rot fungus Merulius tremellosus. Appl.Environ.Microbiol. 50,1: 133-139.
548. Reid, I. D. 1998. Fate of residual lignin during delignification of Kraft pulp by Trametes versicolor. Appl. Environ. Microbiol.64, 6: 2117-2125.
549. Reid, I.D., and M.G. Paice. 1994. Effect of residual lignin type and amount on bleaching of Kraft pulp by Trametes versicolor. Appl. Environ. Microbiol. 60, 5: 1395-1400.
550. Reid, I. D., and M. G. Paice. 1998. Effect of manganese peroxidase on residual lignin of softwood Kraft pulp. Appl. Environ. Microbiol. 64, 6: 2273-2274.
551. Reinhammar, B. 1970. Purification and properties of laccase and stellacyanin from Rhus vernicifera. Biochim. Biophys. Acta. 205, 1: 35-47.
552. Reinhammar, B. 1984. Laccase. In: Copper proteins and copper enzymes. Ed. by R. Lontie. Vol. 3. Chap. 1 CRC Press, Boca Raton, Florida. P. 1-35.
553. Renganathan, V. and M. H. Gold. 1986. Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry. 25: 1626-1631.
554. Renganathan, V., Miki, K., and M. H. Gold. 1985. Multiple molecular forms of diarylpropane oxygenase, an FhC^-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 241, 1: 304-314.
555. Renganathan, V., Miki, K., and M. H. Gold. 1987. Haloperoxidase reactions catalyzed by lignin peroxidase, an extracellular enzyme from the basidiomycete Phanerochaete chrysosporium. Biochemistry. 26, 16: 5127-5132.
556. Reyes, P., Pickard, M. A., and R. Vazquez-Duhalt. 1999. Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase. Biotechnol. Lett. 21, 10: 875-880.
557. Richardson, A., Duncan, J., and G. J. McDougall. 2000. Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: identification of a conifer laccase. Tree Physiol. 20, 15: 1039-1047.
558. Richardson, A., and G. J. McDoudall. 1997. A laccase-type polyphenol oxidase from lignifying xylem of tobacco. Phytochemistry. 44, 2: 229-235.
559. Richardson, A., and G. J. McDoudall. 1998. Identification and partial purification of an oxidase from lignifying xylem of Leyland cypress (X Cupressocyparis leylandii). Trees. 12: 146-152.
560. Rieble, S., Joshi, D. K., and M. Gold. 1994. Aromatic nitroreductase from the basidiomycete Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 205, 1: 298-304.
561. Rigling, D., and N. K. van Alfen. 1991. Regulation of laccase biosynthesis in the plant-pathogenic fungus Cryptonectriaparasitica by double-stranged RNA. J. Bacteriol. 173, 24: 8000-8003.
562. Rigling, D., and N. K. van Alfen. 1993. Extra- and intracellular laccases of the chestnut blight fungus, Cryptonectria parasitica. Appl. Environ. Microbiol. 59, 11: 3634-3639.
563. Rios, S., and J. Eyzaguirre. 1992. Conditions for selective degradation of lignin by the fungus Ganoderma australis. Appl. Microbiol. Biotechnol. 37, 5: 667-669.
564. Robinson, L. E., and R. L. Crawford. 1978. Degradation of 14C-labelled lignins by Bacillus megaterium. FEMS Microbiol. Lett. 4: 301-302.
565. Robles, A., Lucas, R., de Cienfuegos, G.A., and A. Galvez. 2000. Phenol-oxidase (laccase) activity in strains of the hyphomycete Chalara paradoxa isolated from olive mill wastewater disposal ponds. Enzyme Microb. Technol. 26, 7: 484-490.
566. Roch, P., Buswell, J. A. Cain, R. В., and E. Odier. 1989. Lignin peroxidase production by strains of Phanerochaete chrysosporium grown on glycerol. Appl. Microbiol. Biotechnol. 31, 5/6: 587-591.
567. Rodriguez, A., Carnicero, A., Perestelo, F., de la Fuente G., Milstein, O., and M. A. Falcon. 1994. Effect of Penicillium chrysogenium on lignin transformation. Appl. Environ. Microbiol. 60, 8: 2971-2976.
568. Rogalski, J., Dawidowicz, A., Jozwik, E., and A. Leonowicz. 1999. Immobilization of laccase from Cerrena unicolor on controlled porosity glass. J. Mol. Catal. B: Enzymatic. 6: 29-39.
569. Rothschild, N., Hadar, Y. and C. G. Dosoretz. 1995. Ligninolytic system formation by Phanerochaete chrysosporium in air. Appl. Environ. Microbiol. 61, 5: 1833-1838.
570. Rothschild, N., Hadar, Y., and C. G. Dosoretz. 1997. Lignin peroxidase isozymes from Phanerochaete chrysosporium can be enzymatically dephosphorylated. Appl. Environ. Microbiol. 63, 3: 857-861.
571. Rothschild, N., Levkowitz, A., Hadar, Y., and C. G. Dosoretz. 1999. Manganese deficiency can replace high oxygen levels needed for lignin peroxidase formation by Phanerochaete chrysosporium. 65, 2: 483-488.
572. Roy-Arcand, L., and F. S. Archibald. 1991. Direct dechlorination of chlorphenolic compounds by laccase from Trametes (Coriolus) versicolor. Enzyme Microb. Technol. 13:194-203.
573. Roy, B. P., Dumonceaux, Т., Koukoulas, A. A., and F. S. Archibald. 1996. Purification and characterization of cellobiose dehydrogenases from the white rot fungus Trametes versicolor. Appl. Environ. Microbiol. 62,12: 4417-4427.
574. Royse, D. J. 1992. Recycling of spent shiitake substrate for production of the oyster mushroom, Pleurotus sajor-caju. Appl. Microbiol. Biotechnol. 38, 2: 179-182.
575. Ruel, K., Ambert, K., and J.-P. Joseleau. 1994. Influence of the enzyme equipment of white rot fungi on the patterns of wood degradation. FEMS Microbiol. Rev. 13, 2/3: 241-254.
576. Ruel, K., and J.-P. Joseleau. 1991. Involvement of an extracellular glucan sheath during degradation of Populus wood by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 57,2: 374-384.
577. Ruggiero, P., Sarkar, J. M., and J.-M. Bollag. 1989. Detoxification of 2,4-dichlorophenol by a laccase immobilized on soil or clay. Soil Science. 147, 5: 361-370.
578. Ruiz-Duenas, F. J., Martinez, M. J., and A. T. Martinez. 1999a. Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn2+ and different aromatic substrates. Appl. Environ. Microbiol. 65, 10: 4705-4707.
579. Ruttimann, C., Seelenfreund, D., and R. Vicuna. 1987. Methabolism of low molecular weight lignin-related compounds by Streptomyces viridosporus T7A. Enzyme Microb. Technol. 9: 526-530.
580. Ruttimann, C., Vicuna, R., Mozuch, M. D., and Т. K. Kirk. 1991. Limited bacterial mineralization of fungal degradation intermediated from synthetic lignin. 57, 12: 36523655.
581. Ruttimann, С., Schwember, E., Salas, L., Cullen, D., and R. Vicuna. 1992. Ligninolytic enzymes of the white-rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora. Biotechnol. Appl. Microbiol. 60: 271-277.
582. Ruttimann-Johnson, C., Cullen, D., and R. T. Lamar. 1994. Manganese peroxidases of the white rot fungus Phanerochaete sordida. Appl. Environ. Microbiol. 60, 2: 599-605.
583. Ruttimann-Johnson, C., Salas, L., Vicuna, R., and Т. K. Kirk. 1993. Extracellular enzyme production and synthetic lignin mineralization by Ceriporiopsis subvermispora. Appl. Environ. Micribiol. 59, 6: 1792-1797.
584. Sakakibara, A. 1983. In: Recent advances in lignin biodegradation research. T. Higuchi, H.-m. Chang, and Т. K. Kirk, Eds. UNI Publisher, Tokyo, p. 12-33.
585. Saloheimo, M., Barajas, V., Niku-Paavola, M.-L., and J. K. S. Knowles. 1989. A lignin peroxidase-encoding cDNA from the white rot fungus Phlebia radiata: characterization and expression in Trichoderma reesi. Gene. 85: 343-351.
586. Saloheimo, M., Niku-Paavola, M.-L., and J. K. S. Knowles. 1991. Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J. Gen. Microbiol. 137:1537-1544.
587. Sariaslani, F. S. 1989. Microbial enzymes for oxidation of organic molecules. Crit. Rev. Biotechnol. 9, 3: 171-257.
588. Sariaslani, F. S., Beale, Jr. J. M., and P. Rosazza. 1984. Oxidation of rotenone by Polyporus anceps laccase. J. Natl. Prod. (Lloydia) 47, 4: 692-697.
589. Sarkanen, S., and С. H. Ludwig. 1971. Lignins: Occurences, Formation, Structure and Reactions. Wiley-Interscience, New-York.
590. Sarkanen, S., Rasai, A. R., Piccariello, Т., Yamamoto, E., and N. G. Lewis. 1991. Lignin peroxidase: towards a clarification of its role in vivo. J. Biol. Chem. 266, 6: 3636-3643.
591. Sayadi, S., and R. Ellouz. 1995. Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization olive mill wastewaters. Appl. Environ. Microbiol. 61,3: 1098-1103.
592. Schalch, H„ Gaskell, J., Smith, T. L., and D. Cullen. 1989. Molecular cloning and sequences of lignin peroxidase genes of Phanerochaete chrysosporium. Mol. Cell. Biol. 9, 6: 2743-2747.
593. Scheel, Т., Holker, U., Ludwig, S., and M. Hofer. 1999. Evidence for and expression of a laccase gene in three basidiomycetes degrading humic acids. Appl. Microbiol. Biotechnol. 52: 66-69.
594. Schlosser, D., Fahr, K., Karl, W., and H.-G. Wetzstein. 2000. Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reactions in Gleophyllum striatum. Appl. Environ. Microbiol. 66, 6: 2479-2483.
595. Schmidt, H. W. H., Haemmerli, S. D., Schoemaker, H. E., and M. S. A. Leisola. 1989. Oxidative degradation of 3,4-dimethoxybenzyl alcohol and its methyl ether by the lignin peroxidase of Phanerochaete chrysosporium. Biochemistry. 28, 4: 1776-1783.
596. Schoemaker, H. E., and M. S. A. Leisola. 1990. Degradation of lignin by Phanerochaete chrysosporium. J. Biotechnol. 13: 101-109.
597. Schoemaker, H. E., Lundell, Т. K., Hatakka, A., and K. Piontek. 1994. The oxidation of veratryl alcohol, dimeric lignin models and lignin by lignin peroxidase: the redox cycle revisited. FEMS Microbiol. Rev. 13, 2/3: 321-332.
598. Schreiner, R. P., Stevens, S. E., JR., and M. Tien. 1988. Oxidation of thianthrene by ligninase of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 7: 1858-1860.
599. Seelenfreund, D., and R. Vicuna. 1990. Effect of Streptomyces viridosporus T7A on kraft lignin. J. Ind. Microbiol. 5: 17-24.
600. Seigle-Murandi, F., Guiraud, P., Croize, J., Falsen, E., and K.-E. Eriksson. 1996. Bacteria are omnipresent on Phanerochaete chrysosporium Burdsall. Appl. Environ. Microbiol. 62, 7: 2477-2481.
601. Selvaggini, C., Salmona, M., and L. de Gioia. 1995. Manganese peroxidase from Phanerochaete chrysosporium. A homology-based molecular model. Eur. J. Biochem. 228, 3: 955-961.
602. Sethuraman, A., Akin, D. E., and K.-E. L. Eriksson. 1999. Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus. Appl. Microbiol. Biotechnol. 52: 689-697.
603. Sheng, D., and M. H. Gold. 1997. Haloperoxidase activity of manganese peroxidase from Phanerochaete chrysosporium. Arch. Biochim. Biophys. 345, 1: 126-134.
604. Sheng, D., and M. H. Gold. 1998. Irreversible oxidation of ferricytochrome с by lignin peroxidase. Biochemistry. 37, 7: 2029-2036.
605. Sheng, D. and M. H. Gold. 1999. Oxidative polymerization of ribonuclease A by lignin peroxidase from Phanerochaete chrysosporium. Role of veratryl alcohol on polymer oxidation. Eur. J. Biochem. 259: 626-634.
606. Sheng, D., Joshi, D. K., and M. H. Gold. 1998. Nitration of veratryl alcohol by lignin peroxidase and tetranitromethane. Arch. Biochem. Biophys. 352, 1: 121-129.
607. Shimada, M. 1980. Stereochemical approach to lignin biodegradation. /«:Lignin biodegradataion: microbiology, chemistry and potential applications. Т. K. Kirk, T. Higuchi and H.-M. Chang, Eds. CRC, Boca Raton, FL. p. 195-213.
608. Shimada, M., Ma, D.-B., Akamatsu, Y., and T. Hattori. 1994. A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiol. Rev. 13, 2/3: 285-296.
609. Shimada, M., Nakatsubo, F., Kirk, Т. K., and T. Higuchi. 1981. Biosynthesis of the secondary metabolite veratryl alcohol in relation to lignin degradation in Phanerochaete chrysosporium. Arch. Microbiol. 129: 321-324.
610. Shin, K.-S., Oh, I.-K., and C.-J. Kim. 1997. Production and purification of Remazol Brilliant Blue R peroxidase from culture filtrate of Pleurotus ostreatus. Appl. Environ. Microbiol. 63, 5: 1744-1748.
611. Shuttleworth, K. L., and J. M. Bollag. 1986. Soluble and immobilized laccase as catalysts for the transformation of substitured phenols. Enzyme Microb.Technol.8:171-7.
612. Singh, A., Nilsson, Т., and G. Daniel. 1987. Ultrastructure of the attack of the wood of two high lignin tropical hardwood species, Alstonia scholaris and Homalium foeticum by tunnelling bacteria. J. Inst. Wood. Sci. 11: 26-42.
613. Singh, A., Nilsson, Т., and G. Daniel. 1990. Bacterial attack of Pinus sylvestris wood under near anaerobic conditions. J. Inst. Wood. Sci. 11: 237-249.
614. Sittig, M., 1981. Handbook of toxic and hazardous chemicals. Noyes Publications, Park Ridge, New-York, USA.
615. Slomczynski, D., Nakas, J., and S.W. Tanenbaum. 1995. Production and characterization of laccase from Botrytis cinerea 61-34. Appl. Environ. Micribiol. 61, 3: 907-912.
616. Smith, M., Shnyreva, A., Wood, D. A., and C. F. Thurston. 1998. Tandem organization and highly disparate expression of the two laccase genes led and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology. 144,4: 1063-1069.
617. Smith, Т. L., Schalch, H., Gascell, J., Covert, S., and D. Cullen. 1988. Nucleotide sequence of a ligninase gene from Phanerochaete chrysosporium. Nucl. Acids Res. 16: 1219.
618. Soares, С. H., and N. Duran. 2001. Biodegradation of chlorolignin and lignin-like compounds contained in El-pulp bleaching effluent by fungal treatment. Appl. Biochem. Biotechnol. 95, 2: 135-149.
619. Sollewijn Gelpke, M. D., Lee, J., and M. H. Gold. 2002. Lignin peroxidase oxidation of veratryl alcohol: effects of the mutants H82A, Q222A, W171A, and F267L. Biochemistry. 41, 10: 3498-3506.
620. Sollewijn Gelpke, M. D„ Mayfield-Gambill, M., Cereghino, G. P. L., and M. 11. Gold. 1999a. Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl. Environ. Microbiol. 65, 4: 1670-1674.
621. Sollewijn Gelpke, M. D., Sheng, D., and M. H. Gold. 2000a. Mn" Is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2. Arch. Biochem. Biophys. 381, 1: 16-24.
622. Sollewijn Gelpke, M. D., Youngs, H. L., and M. H. Gold. 2000b. Role of arginine 177 in the Mn11 binding site of manganese peroxidase. Studies with R177D, R177E, R177N and R177Q mutants. Eur. J. Biochem. 267: 7038-7045.
623. Solomon, E. I., and M. D. Lowery. 1993. Electronic structure contributions to function in bioinorganic chemistry. Science. 259: 1575-1581.
624. Sorimachi, K., Niwa, A.,Yamazaki, S., Toda, S., and Y.Yasumura. 1990. Anti-viral activity of water solubilized lignin derivatives in vitro. Agric.Biol.Chem. 54, 5: 1337-9.
625. Sorrell, T.C. 2001. Cryptococcus neoformans var. gattii. Med.Mycol. 39, 2: 155-168.
626. Spadaro, J. Т., Gold, M. H., and V. Renganathan. 1992. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58, 8: 2397-2401.
627. Spiker, J. К., Crawford, D. L., and E. C. Thiel. 1992a. Oxidation of phenolic and non-phenolic substrates by the lignin peroxidase of Streptomyces viridosporus T7A. Appl. Micribiol. Biotechnol. 37, 4: 518-523.
628. Spinnler, H.-E., de Jong, E., Mauvais, G., Semon, E., and J.-L. le Quere. 1994. Production of halogenated compounds by Bjerkandera adusta. Appl. Microbiol. Biotechnol. 42,2/3: 212-221.
629. Srebotnik, E., Jensen, K. A., Jr., and К. E. Hammel. 1994. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc. Natl. Acad. Sci. USA. 91, 26: 12794-12797.
630. Srebotnik, E., and К. E. Hammel. 2000. Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system. J. Biotechnol. 81, 2-3: 179-188.
631. Srebotnik, E., and K. Messner. 1994. A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl. Environ. Microbiol. 60, 4: 1383-1386.
632. Srebotnik, E., Messner, K., and R. Foisner. 1988a. Penetrability of white rot-degraded pine wood by the lignin peroxidase of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 1 1: 26-08-2614.
633. Srebotnik, E., Messner, K., Foisner, K., and B. Pettersson. 1988b. Ultrastructural localization of ligninase of Phanerochaete chrysosporium by immunogold labeling. Curr. Microbiol. 16: 221-227.
634. Srinivasan, C., Souza, Т. M., Boominathan, K., and C.A. Reddy. 1995. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61, 12: 4274-4277.
635. Srivastava, O. P., and R. B. Huystee. 1977. Interaction among phenolics and peroxidase isozymes. Bot. Gaz. 138, 4: 457-464.
636. Steffen, К. Т., Hofrichter, M., and A. Hatakka. 2000. Mineralization of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl. Microbiol. Biotechnol. 54, 6: 819-825.
637. Sterjiades, R., Dean, J. F. D., and K.-E. L. Eriksson. 1992. Laccase from sycamore maple (Acerpseudoplatanum) polymerizes monolygnols. Plant. Physiol. 99, 3: 1162-68.
638. Stoytchev, I., and F. Nerud. 2000. Ligninolytic enzyme complex of Armillaria spp. Folia Microbiol. 45, 3: 248-250.
639. Sundaramoorthy, M., Kishi, K., Gold, M. H., and Poulos, T. L. 1994. Preliminary crystallographic analysis of manganese peroxidase from Phanerochaete chrysosporium. J. Mol. Biol. 238, 5: 845-848.
640. Sundaramoorthy, M., Kishi, К., Gold, M. H., and Poulos, Т. L. 1997. Crystal structures of substrate binding site mutants of manganese peroxidase. J. Biol. Chem. 272, 28: 17574-17580.
641. Swamy, J., and J. A. Ramsay. 1999. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb. Technol. 24: 130-137.
642. Szklarz, G., and A. Leonowicz. 1986. Cooperation between fungal laccases and glucose oxidase in the degradation of lignin derivatives. Phytochemistry. 11: 2534-25-39.
643. Szokolay, A. and A. Madaric. 1969. Eindimensional dunnschicht Chromatographyie chlorierter insectizide auf Fertigplatten mit mehrfacher Eutwicklung. J. Chromatog. 42: 509-519.
644. Tagger, S., Perissol, C., Gil, G., Vogt, G., and J. LePetit. 1998. Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme Microb. Technol. 23, 6: 372-379.
645. Takanahi, N., Hotto, Т., Isiharo, H., Mori, M., Tejimo, S., Bliguy, R., Akasawa, Т., Eudo, S., and Y. Arata. 1986. Xylose-containing common structural unit in N-linked oligosacharides of laccase from sycamore cells. Biochemistry. 25: 388-395.
646. Temp, U., and C. Eggert. 1999. Novel Interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 65, 2: 389-395.
647. Thakker, G. D., Evans, C. S., and К. K. Rao. 1992. Purification and characterization of laccase from Monocillium inclicum Saxena. Appl. Microbiol. Biotechnol. 37, 3: 321-323.
648. Thurston, C. F. 1994. The structure and function of fungal laccases. Microbiology. 140: 19-26.
649. Tien, M. 1987. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. CRC Critical Reviews in Microbiology. 15, 2: 141-168.
650. Tien, M., and Т. К. Kirk. 1983. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science. 221: 661-663.
651. Tien, M., and Т. K. Kirk. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterisation and catalitic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. USA. 81,8: 2280-2284.
652. Tien, M., and Т. K. Kirk. 1988. Lignin peroxidase of Phanerochaete chrysosporium. In: Methods in Enzymology, V.161. Biomass B: Lignin, Pectin, and Chitin. W. A. Wood and S. T. Kellog, Eds. Academic Press, New-York, p. 238-249.
653. Tien, M., Kirk, Т. K., Bull, C., and J. A. Fee. 1986. Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium. J. Biol. Chem. 261, 4: 1687-1693.
654. Tien, M., and C.-P.D. Tu. 1987. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature. 326, 520-523, 742.
655. Tillet, R., and R. L. Walker. 1990. Metabolism of ferulic acid by Penicillium sp. Arch. Microbiol. 154: 206-208.
656. Tissieres, A. 1'948. Reconstruction of laccase from its protein and copper. Nature (London). 162, 340-343.
657. Torzilli, A. P., and G. Andrykovitch. 1986. Degradation of Spartina lignocellulose by individual and mixed cultures of salt-marsh fungi. Can. J. Bot. 64: 2211-2215.
658. Trigo, C., and A. S. Ball. 1994a. Production of extracellular enzymes during the solubilization of straw by Thermomonospora fusca BD25. Appl. Microbiol. Biotechnol. 41, 3: 366-372.
659. Trigo, C., and A. S. Ball. 1994b. Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances? Microbiology. 140, 11: 3145-3152.
660. Trojanowski, J., Haider, K., and V. Sundman. 1977. Decomposition of 14C-labelled lignin and phenols by aNocardia sp. Arch. Microbiol. 114, 2: 149-153.
661. Tsang, L. J., Reid, I. D., and E. C. Coxworth. 1987. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions. Appl. Environ. Microbiol. 53, 6: 1304-1306.
662. Tuor, U., Wariishi, H., Schoemaker, H. E., and M. H. Gold. 1992. Oxidation of phenolic arylglycerol /3-aryl ether lignin model compounds by mandanese peroxidase of an a-carbonyl model compound. Biochemistry. 31, 21: 4986-4995.
663. Tuor, U., Winterhalter, K., and A. Fiechter. 1995. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J.Biotechnol. 41:1-17.
664. Ullah, M. A., Kadhim, H., Rastall, R. A., and C. S. Evans. 2000. Evaluation of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents. Appl. Microbiol. Biotechnol. 54, 6: 832-837.
665. Umezawa, Т., and T. Higuchi. 1986. Aromatic ring cleavage of /Ю-4 lignin model dimers prior demeth(ox)ylation by lignin peroxidase. FEBS Lett. 205, 2: 293-298.
666. Umezawa, Т., and T. Higuchi. 1989a. Cleavages of aromatic ring and (3-0-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett. 242, 2: 325-329.
667. Umezawa, Т., and T. Higuchi. 1989b. Degradation of synthetic lignin, a dehydrogenation polymer, by lignin peroxidase in the presence of veratryl alcohol. Mokuzai Gakkaishi. 35, 11: 1014-1020.
668. Umezawa, Т., Shimada, M., Higuchi, Т., and K. Kusai. 1986. Aromatic ring cleavage of (3-0-4 lignin substructure model compound dimers by lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett. 205, 2: 287-292.
669. Updegraff, D. M. 1969. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32, 3: 420-424.
670. Urzua, U., Larrondo, L. F., Lobos, S., Larrain, J., and R. Vicuna. 1995. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora. FEBS Lett. 371: 132-136.
671. Valli, K„ Brock, B. J., Joshi, D. K., and M. H. Gold. 1992. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58, 1: 221-228.
672. Valli, K., and M. Gold. 1991. Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J. Bacteriol. 173, 1: 345-352.
673. Vares, T. 1996. Ligninoltic enzymes and lignin-degrading activity of taxonomically different white-rot fungi. Ph.D. thesis, University of Helsinki.
674. Vares, Т., Kalsi, M., and A. I. Hatakka. 1995. Lignin peroxidases, manganese peroxidases, and other ligninoly tic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl. Environ. Microbiol. 61,10 : 3515-3520.
675. Vares, Т., Lundell, Т.К., and A. I. Hatakka. 1992. Novel heme-containing enzyme possibly involved in lignin degradation by the white-rot fungus Junghuhnia separabilimci. FEMS Microbol. Lett. 99: 53-58.
676. Vares, Т., Lundell, Т., and A.I. Hatakka. 1993. Production of multiple lignin peroxidases by the white rot fungus Phlebia ochraceofulva. Enzyme Microb. Technol. 15: 664-669.
677. Vares, Т., Niemenmaa, O., and A. Hatakka. 1994. Secretion of ligninolytic enzymes and mineralization of 14C-ring-labelled synthetic lignin by three Phlebia tremellosa strains. Appl. Environ. Microbiol. 60, 2: 569-575.
678. Varma, A., Kolli, В. K., Paul, J., Saxena, S., and H. Konig. 1994. Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol. Rev. 15,1:6-28.
679. Venkatadri, R., and R. L. Irvine. 1990. Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56, 9: 2684-2691.
680. Vicuna, R. 1988. Bacterial degradation of lignin. Enzyme Microb. Technol. 10: 626-655.
681. Vicuna, R., Gonzalez, В., Mozuch, M. D., and Т. K. Kirk. 1987. Metabolism of lignin model compounds of the ary 1 gl у с er о 1 (3- ar у I ether type by Pseudomonas acidovorans D3. Appl. Environ. Microbiol. 53, 11: 2605-2609.
682. Viikari, L., Kantelinen, A., Sundquist, J., and M. Linko. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 13: 335-350.
683. Vole, J., Deisova, N. P., Nerud, F., and V. Musilek. 1985. Glucose-2-oxidase activity in mycelial cultures of basidiomycetes. Folia Microbiol. 30: 141-147.
684. Vyas, B. R. M., and H. P. Molitoris. 1995. Involvement of an extracellular H202-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol Brilliant Blue R. Appl.Environ. Microbiol. 61,11: 3919-3927.
685. Wadekar, R. V., North, M. J., and S. C. Watkinson. 1995. Proteolytic activities in two wood-decaying basidiomycete fungi, Sepula lacrymans and Coriolus versicolor. Microbiolgy. 141,7: 1575-1583.
686. Waldner, R., Leisola, M. S. A., and A. Fiechter. 1988. Comparison of ligninolytic activities of selcted white rot fungi. Appl. Microbiol. Biotechnol. 29: 400-407.
687. Wallace, G., and S. C. Fry. 1999. Action of diverce peroxidases and laccases on six cell wall-related phenolic compounds. Phytochemistry. 52: 769-773.
688. Wang, Z., Chen, Т., Gao, Y., Breuil, C., and Y. Hiratsuka. 1995. Biological degradation of resin acids in wood chips by wood-inhabiting fungi. Appl. Environ. Microbiol. 61, 1: 222-225.
689. Wariishi, H., Akileswaran, L., and M. H. Gold. 1988. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and catalytic cycle. Biochemistry. 27, 14: 5365-5370.
690. Wariishi, H., Dunford, H. В., MacDonald I. D., and M. H. Gold. 1989a. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J. Biol. Chem. 264, 6: 3335-3340.
691. Wariishi, H., and M. H. Gold. 1989. Lignin peroxidase compound III. Formation, inactivation, and conversion to the native enzime. FEBS Lett. 243, 2: 165-168.
692. Wariishi, H., and M. H. Gold. 1990. Lignin peroxidase compound III. Mechanism of formation and decomposition. J. Biol. Chem. 265, 4: 2070-2077.
693. Wariishi, H., Sheng, D., and M. H. Gold. 1994. Oxidation of ferrocytochrome с by lignin peroxidase. Biochemistry. 33: 5545-5552.
694. Wariishi, H., Valli, K., and M. H. Gold. 1989b. Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemistry. 28, 14: 6017-6023.
695. Wariishi, H., Valli, K., and M. H. Gold. 1991. In vitro depolimerization of lignin by manganese peroxidase of Phanerochaete chrysosporoum. Biochem. Biophys. Res. Commun. 176, 1: 269-275.
696. Wariishi, H., Valli, K., Renganathan, V., and M. H. Gold. 1989c. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J. Biol. Chem. 264, 24: 14185-14191.
697. Wariishi, H., Valli, K., and M. H. Gold. 1992. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. Biol. Chem. 267, 33: 23688-23695.
698. Wariishi, H., Valli, K., Renganathan, V., and M. H. Gold. 1989c. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J. Biol. Chem. 264, 24: 14185-14191.
699. Watanabe, Т., and T. Koshijima. 1988. Evidence for an ester linkage between lignin and glucuronic acid in lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 52, 11: 2953-2955.
700. Watanabe, Т., Ohnishi, J., Yamasaki, Y., Kaizu, S., and T. Koshijima. 1989. Binding-site analysis of the ether linkages between lignin and hemicelluloses in lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 52, 11: 2953-2955.
701. Welinder, K. G. 1992. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2: 388-393.
702. Westermark, U., and K.-E. Eriksson. 1974. Cellobiose:quinone oxidoreductase, a new wood-degrading enzyme from white rot fungi. Acta Chem. Scand. B28: 209-214.
703. Whitmore, F. W. 1978a. Lignin-protein complex catalyzed by peroxidase. Plant Sci. Lett. 13: 241-245.
704. Whitmore, F. W. 1978b. Lignin-carbohydrate complex formed in isolated cell walls of callus. Phytochemistry. 17: 421-425.
705. Whitmore, F. W. 1982. Lignin-protein complex in cell walls of Pinus eliotii: amino acid constituents. Phytochemistry. 21, 2: 315-318.
706. Whittaker, M. M., Ekberg, C. A., Peterson, J., Sendova, M. S., Day, E. P., and J. W. Whittaker. 2000. Spectroscpoic and magnetochemical studies on the active site copper complex in galactose oxidase. J. Mol. Catal. B: Enzymatic. 8: 3-15.
707. Whittaker, M. M., Kersten, P. J., Nakamura, N., Sanders-Loehr, J., Schweizer, E. S., and J. W. Whittaker. 1996. Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J. Biol. Chem. 271,2: 681-687.
708. Whittaker, M. M., and J. W. Whittaker. 1988. The active site of galactose oxidase. J. Biol. Chem. 263, 13: 6074-6080.
709. Williamson, P. R. 1994. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J. Bacteriol. 176, 3: 656-664.
710. Wondrack, L, Szanto, M., and W. A. Wood. 1989. Depolymerization of water soluble coal polymer from subbituminous coal and lignite by lignin peroxidase. Appl. Biochem. Biotechnol. 20/21: 765-780.
711. Wood, D. A. 1980. Production, purification and properties of extracellular laccase of Agaricus bisporus. J. Gen. Microbiol. 117, 2: 327-338.
712. Wood, D. A. 1989. Mushroom biotechnology. Int. Industrial Biotechnol. 9: 5-8.
713. Wood, B. J. В., and L. L. Ingraham. 1965. Labelled tyrosinase from labelled susbtrate. Nature. 205, 4968: 291-292.
714. Wood, W. A., and S. T. Kellog (Eds of volume).1988. Methods in Enzymology. S. P. Colowick and N. O. Kaplan, Eds. V.161 Biomass, Part B. Lignin, Pectin, and Chitin. Academic Press Inc. London. 574 p.
715. Wood, J. D., and P. M. Wood. 1992. Evidence that cellobiose:quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochim. Biophys. Acta. 1119, 1: 90-96.
716. Xu, F. 1996. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: con-elation between activity and redox potentials as well as halide inhibition. Biochemistry. 35, 23: 7608-7614.
717. Xu, F. 1997. Effects of redox potentials and hydroxide inhibition on the pH activity profile of fungal laccases. J. Biol. Chem. 272,2: 924-928.
718. Xu, F., Berka, R. M„ Wahleithner, J. A., Nelson, B. A., Shuster, J. R., Brown, S. H., Palmer, A. E., and E. I. Solomon. 1998. Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem. J. 334: 63-70.
719. Xu, F., Palmer, A. E., Yaver, D. S., Berka , R. M., Gambetta, G. A., Brown, S. H., and E. I. Solomon. 1999b. Targeted mutation in a Trametes villosa laccase. Axial pertrubations of the T1 copper. J. Biol. Chem. 274, 18: 12372-12375.
720. Yamada, K., Horiguchi. S., and J. Takahashi. 1965. Studies of the utilization of hydrocarbons by microorganisms. Agric. Biol. Chem. 29, 10: 943-948.
721. Yaropolov, A. I., Skorobogat'ko, О. V., Vartanov, S. S., and S. D. Varfolomeev. 1994. Laccase: properties, catalytic mechanism, and applicability. Appl. Biochem. Biotechnol. 49: 257-280.
722. Yoshida, H. 1883. Chemistry of laquer (urushi).Part I. J.Chem.Soc. 43,472-486.
723. Yoshida, S., Chatani, A., Honda, Y., Watanabe, Т., and M. Kuwahara. 2000. Reactions of manganese-dependent peroxidase from Bjerkandera adusta in aqueous organic media. J. Mol. Catal. B: Enzymatic. 9, 4-6: 173-182.
724. Yoshitake, A., Katayama, Y., Nakamura, M., Kawai, S., and N. Morioshi. 1993. N-linked carbohydrate chains protect laccase III from proteolysis in Coriolus versicolor. J. Gen. Microbiol. 139: 179-185.
725. Young, H. E., and V. P. Guinn. 1966. Chemical elements in complete mature trees of seven species in Maine. TAPPI J. 49: 190-197.
726. Young, M., and C. Steelink. 1973. Peroxidase-catalysed oxidation of naturally-occuring phenols and hardwood lignins. Phytochemistry. 12: 2851-61.
727. Yuongs, H. L., Moenne-Loccoz, P., Loehr, Т. M., and M. H. Gold. 2000. Formation of a bis(histidyl) heme iron complex in manganese peroxidase at high pH and restoration of the native enzyme structure by calcium. Biochemistry. 39:9994-10000.
728. Yuongs, H. L., Sollewijn Gelpke, M. D., Li, D., Sundaramoorthy, M., and M. H. Gold. 2001. The role of Glu39 in Mn11 binding and oxidation by mandanese peroxidase from Phanerochaete chrysosporium. Biochemistry. 40, 7: 2243-2250.
729. Zadrazil, F. 1977. Conversion of straw into feed by basidiomycetes. 1977. Eur. J. Appl. Microbiol. 4: 273-281.
730. Zadrazil, F., Grinberg, J., and A. Gonzalez. 1982. "Palo podrido" decomposed wood used as feed. Eur. J. Biotechnol. 15: 167-171.
731. Zaitsev, G. M., Uotila, J. S., Tsitko, I. V., Lobanok, A. G., and M. S. Salkinoja-Salonen.1995. Utilization of halogenated benzenes, phenols and benzoates by Rhodococcus opacus GM-14. Appl. Environ. Microbiol. 61: 4191-4201.
732. Zaitseva, I., Zaitsev, V., Card, G., Moshkov, К., Bax, В., Ralph, A., and P. Lindley.1996. The X-ray structure of human ceruloplasmin at 3.1 A: nature of the copper centers. JBIC. 1: 15-23.
733. Zhao, J., and H. S. Kwan. 1999. Characterization, molecular cloning, and differential expreassion analysis of laccase genes from the edible mashroom Lentinula edodes. Appl. Environ. Microbiol. 65, 11: 4908-4913.
734. Zhang, F. M., Knapp, J. S., and K. N. Tapley. 1998. Decolorisation of cotton bleaching effluent in a continious fluidized-bed bioreactor using wood rotting fungus. Biotechnol. Lett. 20, 8: 717-724.
735. Zimmerman, W. 1990. Degradation of lignin by bacteria. J. Bacteriol. 13:119-130.
736. Zimmerman, W., Umezawa, Т., Broda, P., and T. Higuchi. 1988b. Degradation of a non-phenolic arylglycerol f3-aryl ether by Streptomyces cyaneus. FEBS Lett. 293, 1: 5-7.
737. Ziomek, E., Kirkpatrick, N., and I. D. Reid. 1991. Effect of polydimethylsiloxane oxygen carriers on the biological bleaching of hardwood kraft pulp by Trametes versicolor. Appl. Microbiol. Biotechnol. 35: 669-673.
738. Ziomek, E., and R. E. Williams. 1989. Modification of lignins by growing cells of the sulfate-reducting anaerobe Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 55, 9: 2262-2266.
739. Zouari, N., Romette, J. J., and D. Thomas. 1987. Purification and properties of two laccase isoenzymes. Appl. Biochem. Biotechnol. 15: 213-225.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.