Квантовые вихри и их массивы в поляритонных конденсатах, сформированных внутри оптических ловушек/Quantum vortices and their arrays in optically trapped polariton condensates тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Ситник Кирилл Александрович
- Специальность ВАК РФ00.00.00
- Количество страниц 132
Оглавление диссертации кандидат наук Ситник Кирилл Александрович
Table of content
Page
Introduction
Chapter 1. Physics of planar microcavities
1.1 Distributed Bragg Reflectors
1.2 Confined light in planar microcavities
1.3 Excitons in quantum wells
1.4 Light-matter strong coupling in planar microcavities
1.5 Bose-Einstein condensation of polaritons
1.5.1 Bose statistics for elementary particles
1.5.2 Critical temperature for Bose condensates. Statistical
approach
1.5.3 Critical temperature for Bose condensates. Quantum mechanical approach
1.5.4 Signatures of microcavity polaritons condensation
1.5.5 Mechanism of microcavity polaritons condensation
1.6 Optically trapped polariton condensates
1.7 Polariton superfluidity
1.8 Vortices in polariton condensates
1.9 Chapter summary
Chapter 2. Experimental methods and techniques
2.1 Interferometry
2.1.1 Introduction to interferometry
2.1.2 Homodyne interferometry with plane reference wave
2.2 Holography
2.2.1 Introduction to holography
2.2.2 Off-axis digital holography for phase and intensity reconstruction
2.2.3 Digital holography with spatial light modulators
2.2.4 Gaussian beam shaping to the ring profile
2.3 Microcavity sample
2.4 Imaging techniques
2.5 Experimental setup
2.6 Chapter summary
Chapter 3. Charge-oscillating vortex cluster
3.1 Vortex clusters
3.2 Observation of trapped polariton condensate with non-trivial
intensity distribution
3.3 Spatial modes detection with homodyne interferometry
3.4 Ince-Gaussian modes
3.5 First order correlations measurements
3.6 Polarization-resolved real-space imaging
3.7 Temporal dynamics of vortex cluster
3.8 Numerical simulation of polariton condensate in the elliptic potential
3.9 Control of topological charge oscillation frequency
3.10 Chapter summary
Chapter 4. Vortex clusters in rotating potentials
4.1 Experimental realization of bichromatic rotating beam
4.2 Formation of the single-charged vortex in the rotation trap
4.3 Formation of the vortex clusters in rotating traps
4.4 Numerical simulation of polariton condensate in rotating potentials
4.5 Vortex number control by excitation power
4.6 Chapter summary
Conclusion
Acknowledgements
Glossary
References
Other author's publication not included in this thesis
List of figures
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Extraordinary optical transmission in holographic and polycrystalline structures/Усиленное оптическое пропускание в голографических и поликристаллических наноструктурах2021 год, кандидат наук Ушков Андрей Александрович
Плазмонные наноструктуры для оптических метаматериалов2022 год, доктор наук Драчев Владимир Прокопьевич
Создание 2D-полупроводниковых структур методом прямого лазерного синтеза (Laser-writing of 2D semiconductors)2025 год, кандидат наук Аверченко Александр Владимирович
Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме2006 год, кандидат физико-математических наук Андерсон Майкл Гордон
Струнное представление и непертурбативные свойства калибровочных теорий1999 год, кандидат физико-математических наук Антонов, Дмитрий Владимирович
Введение диссертации (часть автореферата) на тему «Квантовые вихри и их массивы в поляритонных конденсатах, сформированных внутри оптических ловушек/Quantum vortices and their arrays in optically trapped polariton condensates»
Introduction
In order to solve more and more challenging calculation problems, humanity has been actively developing electronics during the last century. At the same time, the communication lines demanded a higher speed (bandwidth) of information transfer caused by the enormous growth of the number of electronic devices and the necessity to provide stable and fast enough communication between them.
One of the possible ways to increase the communication bandwidth is the utilization of light instead of electrons. The possibility of using optics for communication systems was first demonstrated in 1966 [1]. However, the production of optical fibers at that time was a technologically difficult task. Besides this, compact and powerful coherent light sources were only discovered in 1962 [2]. As a result, the commercial implementation of optical communication lines began only in the 1980s.
Nowadays, a huge amount of information is transmitted via optical communication lines, with bandwidth approaching its limit. Modern solutions to this problem concentrate on the utilization of additional light degrees of freedom. The latter includes the wavelength [3], polarization [4] and the orbital angular momentum (OAM) [5] of light. These features of the transmitted signal allow for multiplexing more channels into one inside the fiber without interference between them. Unlike polarization and wavelength modulation, which are now widely used, the utilization of the OAM degree is still at the level of a promising concept.
A prominent example of a light state, carrying the OAM, is the so-called vortex beam. This state is characterized by a hollow core intensity distribution and quantized OAM. Current interest in vortex beams is caused by their practical applications, such as optical cryptography [6], optical tweezers [7], particle manipulation in 3D [8, 9], DNA structure modification [10], optical microscopy overcoming the Rayleigh resolution limit [11].
The optical beams comprising vortex structures, their combinations, and sophisticated phases are usually called structured light. There are several approaches for the generation of such light states, for example, higher-order modes interference may result in vortex crystal formation [12, 13, 14, 15]. Another widely used approach is the utilisation of conventional phase modulators (spatial light modulators,
phase plates) [16]. All of these methods require lasers as the source of coherent emission. However, optical vortex structures, once created, do not interact with each other due to the non-interacting nature of photons. The coupling between objects with phase dislocations has potential in, for example, analog optical simulation and computing. One of the prospects for the realization of this is the hybridization of light and matter. Such a platform allows one to introduce the interaction between particles, forming the coherent states while preserving optical control.
An example of a macroscopic coherent state with weak interaction between particles is the Bose-Einstein condensate (BEC) of cold atoms [17]. However, even after almost 30 years since the first experimental BEC realization, the precise control of the states is still an extremely challenging task. Hybrid light-matter quasiparticles (exciton-polaritons) [18] are an alternative testbed offering opportunities to control the interaction on the one hand and relative simplicity of state characterization on the other hand.
Polaritons are composite bosons appearing in the strong coupling regime between microcavity photons and matter excitons. They have several unique features such as (1) possibility to interact with each other [19, 20] (2) low effective mass; (3) possibility to form the the macroscopic coherent states, called polariton condensates [18]; (4) condensation could be achieved at several degrees of Kelvins for inorganic materials, and even at room temperatures for organic microcavities [21]; (5) polaritons could be optically controlled by optical methods [22, 23, 24, 25, 26].
Polariton condensates are nice platform for the experimental investigation of superfluidity [27], quantized vortices [28], half-quantized vortices [29]. Furthermore, they could be utilized for engineering the giant vortex states [30], to implement neuromorphic computing [31] and for interacting condensate lattices [23, 32]. The latter are a very prospective platform for the development of simulator calculation approaches. There are numerous works demonstrating possibility to utilize the polariton condensate platform for solving some common numerical problems such as Max-three-cut [33], travelling salesman problem, Ising model [34], XY-Hamilto-nian [35].
Taking into account the fundamental and practical importance of structured light states and their prominent applications, the purpose of this thesis is an experimental and theoretical investigation of the properties of quantum vortices and the mechanisms of their formation in optically trapped exciton-polariton condensates.
In order to accomplish this goal, the tasks of this thesis are the following:
1. Implement the hologram calculation technique, for independent tuning of the parameters of the ring-shaped excitation beam (carrying orbital angular momentum (OAM), beam diameter, and ellipticity). Integrate this technique in the automation software of the experimental setup.
2. Find the parameters of non-resonant optical excitation for observation of vortex cluster formed in optically trapped polariton condensate due to the simultaneous occupation of two trapping potential manifolds.
3. Using interferometric methods, identify the spatial modes that correspond to the trap manifolds occupied by polaritons. Reconstruct the phase and intensity spatial distributions of these modes.
4. Build the experimental setup for the time-delayed interferometry of polariton photoluminescence with its expanded copy. Reconstruct the temporal dynamics of the beatings arising due to the presence of two energy-detuned spatial modes. Investigate the temporal dynamics of vortex clusters formed in optically trapped polariton condensate due to the simultaneous occupation of two trapping potential manifolds by implementing the time-delayed interferometry technique.
5. Find the excitation parameters for the observation of vortices and their clusters in the polariton condensates formed inside the rotating potentials. Implement the technique for synchronous control of the beams intensities that make up the rotating bichromatic beam.
6. Investigate the impact of rotating bichromatic beam parameters on the polariton condensate spectrum, the number of induced vortices, and the direction of their rotation.
Propositions for the defense:
1. Optically trapped polariton condensate occupying two energy levels corresponding to higher-order Ince-Gaussian modes IG^} and IG^l forms the cluster of vortices in the local minima of the polariton density. Energy (frequency) detuning between spatial modes leads to appearance of limit-cycle in the system and results in formation of vortices with periodically flipping topological charges. The charges flipping frequency is equal to the frequency difference between occupied states.
2. The frequency of oscillating topological charges appearing in the optically trapped polariton condensate occupying two energy levels corresponding to higher-order Ince-Gaussian modes IG^i and /G33 can be precisely tuned in the range of « 300 MHz by changing the ellipticity of the optical trap in the range from 0.95 up to 1.02;
3. The number of vortices emerged in the polariton condensate forming inside optically imprinted rotating potential by non-resonant bichromatic beam can be tuned in the range from 1 up to 4 by changing the excitation beam diameter, intensity, and rotation frequency; the number of emerged vortices is equal to the number n of dominantly occupied energy state; the direction of all single-charged vortices is determined and matches to the rotation direction of the externally induced potentials.
Scientific novelty:
1. The first experimental observation of the vortex cluster with periodically flipping topological charges spontaneously formed in the optically trapped polariton condensate occupying two energy levels corresponds to the higher-order Ince-Gaussian spatial modes. Spontaneous occupation of two energy levels leads to formation of cyclic temporal dynamics (limit cycle).
2. First time demonstrated the control on the flipping frequency of topologi-cal charges emerged in the trapped polariton condensate by changing the ellipticity of optically induced trapping potential.
3. The first experimental demonstration of the vortex cluster emergence in the trapped polariton condensate non-resonantly optically excited by bichro-matic rotating dumbbell shaped beam. The number of arising vortices in such system is determined by the energy level occupied by polariton condensate.
4. First time demonstrated the control of total carrying orbital angular momentum by changing the excitation power carrying by bichromatic rotating beam.
The theoretical and practical value of this research is the investigation of the new ways of control of the vorticity and its properties in optically trapped po-lariton condensates. The presented results open new prospective approaches for the fundamental investigation of Bose-Einstein condensation, superfluidity, and other physical phenomena that are accompanied by vorticity emerging. From the other
hand, investigation of vortices being a part of research field of singular optics potentially have some practical applications for optical communication lines, cryptography, optical tweezers etc.
Reliability. The credibility and repeatability of experimentally obtained results rely on well-proven experimental approaches and measurement techniques. The experimental setups are designed with the implementation of high-level modern equipment and components well aligned and set to each other. All experimentally obtained results are in good agreement with the theoretical calculations included in this thesis and with already published results from other scientific groups.
Work approbation. The materials of the work were presented in oral talks and discussed in 4 conferences:
A1. I. Gnusov, S. Harrison, S. Alyatkin, K. Sitnik, J. Topfer, H. Sigurdsson, P. Lagoudakis. "Quantized Vortex formation in the "Rotating bucket" Experiment with Nonlinear Fluids of Light". International Conference on Physics of Light-Matter Coupling in Nanostructures. Colombia, Medellin, 11-16 April 11-16, 2023.
A2. K.A. Sitnik, S.Y. Alyatkin, H. Siggurdson, J.D. Topfer, I.S. Gnusov, P.G. Lagoudakis. "Topological charges oscillations of quantum vortices cluster in optically trapped polariton condensate". All Russian conference with international participation Enysey's photonics. Russia, Krasnoyarsk, 19-23 September 2022.
A3. K.A. Sitnik, S. Alyatkin, J.D.Topfer, I. Gnusov, T. Cookson, H. Sigurdsson, P.G. Lagoudakis. "Temporal dynamics of flipping vortex cluster produced by beating Ince-Gaussian modes in trapped polariton condensate". International conference on laser physics and optics (ICLO). Russia, Saint-Petersburg, 20-24 June 2022.
A4. K.A. Sitnik, S. Alyatkin, H. Sigurdsson, and P. G. Lagoudakis, "Vortex crystals in optically trapped exciton-polariton condensates". International conference Frontiers in Optics and Laser Science (FIOLS). United States, Washington, DC (Online), 1-4 November 2021.
Publications. The results on the thesis topic are presented in 3 peer-reviewed Q1 papers indexed by Web of Science and Scopus data bases and in 1 international conference proceedings:
B1. K.A. Sitnik, I. Gnusov, M. Misko, J. D. Topfer, S. Alyatkin, P.G. Lagoudakis. "Control of the oscillation frequency of a vortex cluster in the trapped polariton condensate". In: Applied Physics Letters 124.20 (May 2024), pp.201102. DOI: 10.1063/5.0199548.
B2. I. Gnusov, S. Harrison, S. Alyatkin, K. Sitnik, H. Sigurdsson, P. G. Lagoudakis. "Vortex clusters in a stirred polariton condensate". In: Physical Review B 109.10 (Mar. 2024), pp.104503. DOI: 10.1103/Phys-RevB.109.104503.
B3. K. A. Sitnik, S. Alyatkin, J. D. Topfer, I. Gnusov, T. Cookson, H. Sigurdsson, P. G. Lagoudakis. "Spontaneous Formation of Time-Periodic Vortex Cluster in Nonlinear Fluids of Light". In: Physical Review Letters 128.23 (June 2022), pp.237402. DOI: 10.1103/PhysRevLett.128.237402.
B4. K. A. Sitnik, S. Alyatkin, H. Sigurdsson, P. G. Lagoudakis. "Vortex crystals in optically trapped exciton-polariton condensates". In: Frontiers in Optics + Laser Science (Nov. 2021), pp.JTh1A.1. DOI: 10.1364/FI0.2021.JTh1A.1. Personal contribution. The author personally took part in design of the experiments, building and alignment of the experimental setups, obtain the experimental results for B1, B3, B4 papers listed above. He takes part in the conducting of the experiments for B2 publication together with his colleague Ivan Gnusov. He provide post analysis for B1, B3, and B4 works. In addition he took part in theoretical calculations for B1 publication. He actively participated in discussion of scientific results, preparation of the manuscripts for all four works listed above.
The structure and volume of the thesis. The dissertation consists of an introduction, 4 chapters, and conclusion. It is written on 132 pages of typewritten text and includes 53 figures. The list of references includes 126 references titles.
Chapter 1 - Physics of planar microcavities contains description of the physical processes taking place inside the planar microcavity with embedded semiconductor quantum well, namely light-matter strong coupling, condensation of polaritons, superfluidity, optical trapping of polaritons and vortex formation;
Chapter 2 - Experimental methods and techniques is devoted to the detailed description of the experimental techniques which were used for obtaining of experimental data for this thesis. Besides, it also includes the de-
scription of calculation techniques that were implemented for the data analysis or beam shaping;
Chapter 3 - Charge-oscillating vortex cluster in this chapter we demonstrate the experimental results demonstrating optically trapped polari-ton condensate spontaneously arising and containing the vortex cluster with periodically flipping topological charges. The demonstrated experimental observations are corroborated by numerical simulations; Chapter 4 - Vortex clusters in optically induced rotational potentials is devoted to the observation of vortex cluster formation in the polariton condensate trapped in the rotating potential induced optically by using rotating bichromatic beam;
Conclusion final summary and discussion of the results of this work, their possible applications and possible ways of further research development.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Исследование плазмонного усиления ультрафиолетовой люминесценции полупроводниковых нанокристаллов оксида цинка в присутствии наночастиц алюминия, синтезированных газофазными методами / Investigation of plasmon-enhanced ultraviolet luminescence of zinc oxide semiconductor nanocrystals in the presence of aluminum nanoparticles synthesized by gas-phase methods2024 год, кандидат наук Мало Дана
Методы обработки, декодирования и интерпретации электрофизиологической активности головного мозга для задач диагностики, нейрореабилитации и терапии нейрокогнитивных расстройств2022 год, доктор наук Осадчий Алексей Евгеньевич
Управление потоками заряда и тепла в наноразмерных квазиодномерных проводниках2022 год, кандидат наук Бубис Антон Владимирович
Исследование методом конфокальной микроскопии компонент трехмерных полимерных микроструктур, изготовленных прямым лазерным письмом2023 год, кандидат наук Матитал Рилонд Паттиа
Динамика переходов коротких и длинных джозефсоновских контактов2012 год, кандидат физико-математических наук Ауджелло Джузеппе
Заключение диссертации по теме «Другие cпециальности», Ситник Кирилл Александрович
Conclusion
Photonics nowadays is blooming, studying not only the fundamental physical problems but aiming for practical applications. The achievements of the last several decades have led to the implementation of photonic devices in both industry (optical communication lines, laser material processing, etc.) and customers segments (quantum dot screens, LIDARs in smartphones, etc.). The integration of photonic technologies for data processing - analogue and neuromorphic computing is currently on the cutting edge of research. This activity now features numerous scientific reports and publications, even the first small scale productions and beta testing. We believe that polariton platform could make a significant contribution to the ongoing investigations and pursuits in this direction. In this thesis, we show that utilization of different trapping techniques allow for driving the condensate into exotic regimes and enables the control of different parameters of emerged vorticity.
To sum up, in Chapter 3 we demonstrate that polariton condensate spontaneously occupying two energy-split higher-order spatial modes demonstrating the limit cycle behavior, which presence was confidently demonstrates by experimental and theoretical approaches. The presence of duty cycle temporally modulates spatial distributions of the polariton density and phase and leads to formation of vortex clusters with topological charges periodically flipping with a GHz speed. Previously, that phenomenon had not been demonstrated in the polariton system, which undoubtedly will lead to new research proposals and possible applications of structured light. Moreover, using the control on ellipticity of optically induced trapping potential, we experimentally demonstrate the possibility of fine-tuning of the frequency topological charges flipping in the range of several hundred MHz. The demonstration of frequency control of topological charge flipping opens new ways for dynamic control of OAM, which previously was considered as a static degree of freedom of light waves.
Unlike the results demonstrated in Chapter 3 which deals with the spontaneous formation of vorticity in polariton condensates, Chapter 4 highlights the phenomenon of externally induced vorticity emergence. Using a bichromatic non-resonant annular rotating beam for optical trapping of polariton condensates, we demonstrate that fine tuning of the trapping parameters, such as the rotation
frequency, excitation power, and trap diameter, allows for the generation of vortex clusters with a controllable number of arising vortices. Moreover, all vortices in every demonstrated configuration co-rotate with the externally induced time periodic potentials. Therefore, the demonstrated trapping technique provides the full control over the arising vortex clusters.
The main results of this work are follows:
1. The first experimental observation of a vortex cluster with periodically oscillating topological charges in the trapped polariton condensate. It is demonstrated that the flipping of topological charges appears due to simultaneous occupation of two energy-detuned trap manifolds that correspond to the higher-order Ince-Gaussian modes IG31 and IG^. The experimentally demonstrated results are corroborated by the numerical simulations based on the 2DGPE equation.
2. The first experimental demonstration of the control of topological charge flipping frequency. It is demonstrated that scanning of the trap ellipticity in the range from 0.95 up to 1.02 allows to tune the topological charge flipping frequency in the range of « 300 MHz.
3. The first experimental observation of the externally induced formation of vortex clusters in the polariton condensate arising in the rotating potential. The control of the emerged vortices number from one up to four is demonstrated.
4. It is demonstrated the regime that allows to switch the polariton condensate between three rotating trap manifolds: 2nd excited, 1st excited and the ground state by tuning only the excitation power. Moreover, switching between energy levels is implemented for tuning the total OAM carried by trapped polariton condensate between 0, 1, and 2.
Список литературы диссертационного исследования кандидат наук Ситник Кирилл Александрович, 2024 год
References
[1] K.C. Kao and G.A. Hockham. "Dielectric-fibre surface waveguides for optical frequencies". In: Proceedings of the Institution of Electrical Engineers 113.7 (July 1966), pp. 1151-1158. DOI: 10.1049/piee.1966.0189.
[2] R. N. Hall et al. "Coherent Light Emission From GaAs Junctions". In: Physical Review Letters 9.9 (Nov. 1962), pp. 366-368. DOI: 10.1103/physrevlett. 9.366.
[3] E. Modiano. "Wavelength-Division Multiplexing Optical Networks". In: Encyclopedia of telecommunications (Apr. 2003), pp. 2838-2846. DOI: 10.1002/ 0471219282.eot214.
[4] Alan She and Federico Capasso. "Parallel Polarization State Generation". In: Scientific Reports 6.1 (May 2016), p. 26019. DOI: 10.1038/srep26019.
[5] N. Bozinovic et al. "Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers". In: Science 340.6140 (June 2013), pp. 1545-1548. DOI: 10.1126/science.1237861.
[6] A. Sit et al. "High-dimensional intracity quantum cryptography with structured photons". In: Optica 4.9 (Aug. 2017), p. 1006. DOI: 10.1364/optica.4. 001006.
[7] A. Ashkin. "Acceleration and Trapping of Particles by Radiation Pressure". In: Physical Review Letters 24.4 (Jan. 1970), pp. 156-159. DOI: 10.1103/ physrevlett.24.156.
[8] M. P. MacDonald et al. "Creation and Manipulation of Three-Dimensional Optically Trapped Structures". In: Science 296.5570 (May 2002), pp. 11011103. DOI: 10.1126/science.1069571.
[9] L. Paterson et al. "Controlled Rotation of Optically Trapped Microscopic Particles". In: Science 292.5518 (May 2001), pp. 912-914. DOI: 10.1126/ science.1058591.
[10] X. Zhuang. "Unraveling DNA Condensation with Optical Tweezers". In: Science 305.5681 (July 2004), pp. 188-190. DOI: 10.1126/science.1100603.
[11] F. Tamburini et al. "Overcoming the Rayleigh Criterion Limit with Optical Vortices". In: Physical Review Letters 97.16 (Oct. 2006), p. 163903. DOI: 10.1103/physrevlett.97.163903.
[12] Shu-Chun Chu et al. "Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation". In: Optics Express 20.7 (Mar. 2012), p. 7128. DOI: 10.1364/oe.20.007128.
[13] Y. Shen et al. "Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser". In: Journal of the Optical Society of America B 35.12 (Nov. 2018), p. 2940. DOI: 10.1364/josab. 35.002940.
[14] M. Brambilla et al. "Transverse laser patterns. I. Phase singularity crystals". In: Physical Review A 43.9 (May 1991), pp. 5090-5113. DOI: 10.1103/ physreva.43.5090.
[15] J. Scheuer and M. Orenstein. "Optical Vortices Crystals: Spontaneous Generation in Nonlinear Semiconductor Microcavities". In: Science 285.5425 (July 1999), pp. 230-233. DOI: 10.1126/science.285.5425.230.
[16] Y. Shen et al. "Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities". In: Light: Science & Applications 8.1 (Oct. 2019), p. 90. DOI: 10.1038/s41377-019-0194-2.
[17] M. H. Anderson et al. "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor". In: Science 269.5221 (July 1995), pp. 198-201. DOI: 10.1126/ science.269.5221.198.
[18] J. Kasprzak et al. "Bose-Einstein condensation of exciton polaritons". In: Nature 443.7110 (Sept. 2006), pp. 409-414. DOI: 10.1038/nature05131.
[19] D. V. Vishnevsky and F. Laussy. "Effective attractive polariton-polariton interaction mediated by an exciton reservoir". In: Physical Review B 90.3 (July 2014), p. 035413. DOI: 10.1103/physrevb.90.035413.
[20] Y. Sun et al. "Direct measurement of polariton-polariton interaction strength". In: Nature Physics 13.9 (June 2017), pp. 870-875. DOI: 10.1038/ nphys4148.
[21] Johannes D. Plumhof et al. "Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer". In: Nature Materials 13.3 (Dec. 2013), pp. 247-252. DOI: 10.1038/nmat3825.
[22] D. Sanvitto et al. "All-optical control of the quantum flow of a polariton condensate". In: Nature Photonics 5.10 (Sept. 2011), pp. 610-614. DOI: 10. 1038/nphoton.2011.211.
[23] S. Alyatkin et al. "Optical Control of Couplings in Polariton Condensate Lattices". In: Physical Review Letters 124.20 (May 2020), p. 207402. DOI: 10.1103/physrevlett.124.207402.
[24] F. Chen et al. "Optically Controlled Femtosecond Polariton Switch at Room Temperature". In: Physical Review Letters 129.5 (July 2022), p. 057402. DOI: 10.1103/physrevlett.129.057402.
[25] L. Pickup et al. "Polariton spin jets through optical control". In: Physical Review B 103.15 (Apr. 2021), p. 155302. DOI: 10.1103/physrevb.103.155302.
[26] H. Ohadi et al. "Nontrivial Phase Coupling in Polariton Multiplets". In: Physical Review X 6.3 (Aug. 2016), p. 031032. DOI: 10.1103/physrevx.6.031032.
[27] A. Amo et al. "Superfluidity of polaritons in semiconductor microcavities". In: Nature Physics 5.11 (Sept. 2009), pp. 805-810. DOI: 10.1038/nphys1364.
[28] K. G. Lagoudakis et al. "Quantized vortices in an exciton-polariton condensate". In: Nature Physics 4.9 (Aug. 2008), pp. 706-710. DOI: 10.1038/ nphys1051.
[29] K. G. Lagoudakis et al. "Observation of Half-Quantum Vortices in an Exci-ton-Polariton Condensate". In: Science 326.5955 (Nov. 2009), pp. 974-976. DOI: 10.1126/science.1177980.
[30] T. Cookson et al. "Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge". In: Nature Communications 12.1 (Apr. 2021), p. 2120. DOI: 10.1038/s41467-021-22121-3.
[31] R. Mirek et al. "Neuromorphic Binarized Polariton Networks". In: Nano Letters 21.9 (Feb. 2021), pp. 3715-3720. DOI: 10.1021/acs.nanolett.0c04696.
[32] S. Alyatkin et al. "Quantum fluids of light in all-optical scatterer lattices". In: Nature Communications 12.1 (Sept. 2021), p. 5571. DOI: 10.1038/s41467-021-25845-4.
[33] S. L. Harrison et al. "Solving the Max-3-Cut Problem with Coherent Networks". In: Physical Review Applied 17.2 (Feb. 2022), p. 024063. DOI: 10. 1103/physrevapplied.17.024063.
[34] K. P. Kalinin et al. "Polaritonic XY-Ising machine". In: Nanophotonics 9.13 (June 2020), pp. 4127-4138. DOI: 10.1515/nanoph-2020-0162.
[35] N. G. Berloff et al. "Realizing the classical XY Hamiltonian in polariton simulators". In: Nature Materials 16.11 (Sept. 2017), pp. 1120-1126. DOI: 10. 1038/nmat4971.
[36] H. Deng, H. Haug, and Y. Yamamoto. "Exciton-polariton Bose-Einstein condensation". In: Reviews of Modern Physics 82.2 (May 2010), pp. 1489-1537. DOI: 10.1103/revmodphys.82.1489.
[37] E. F. Gross. "Optical spectrum of excitons in the crystal lattice". In: Il Nuovo Cimento 3.S4 (Apr. 1956), pp. 672-701. DOI: 10.1007/bf02746069.
[38] C. F. Klingshirn. Semiconductor Optics. Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-28362-8.
[39] B. Munkhbat et al. "Tunable self-assembled Casimir microcavities and polari-tons". In: Nature 597.7875 (Sept. 2021), pp. 214-219. DOI: 10.1038/s41586-021-03826-3.
[40] V. Bose. "Plancks Gesetz und Lichtquantenhypothese". In: Zeitschrift fur Physik 26.1 (Dec. 1924), pp. 178-181. DOI: 10.1007/bf01327326.
[41] A. Einstein. "Quantentheorie des einatomigen idealen Gases". In: Sitzungsberichte der Preussischen Akademie der Wissenschaften (Dec. 1924), pp. 237-244. DOI: 10.1002/3527608958.ch27.
[42] L. D. Landau and E. M. Lifshitz. Statistical Physics, Part 1. Vol. 5. Course of Theoretical Physics. Oxford: Butterworth-Heinemann, 1980. ISBN: 978-0-7506-3372-7.
[43] O. Penrose and L. Onsager. "Bose-Einstein Condensation and Liquid Helium". In: Physical Review 104.3 (Nov. 1956), pp. 576-584. DOI: 10.1103/ physrev.104.576.
[44] C. N. Yang. "Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors". In: Reviews of Modern Physics 34.4 (Oct. 1962), pp. 694-704. DOI: 10.1103/revmodphys.34.694.
[45] T. Guillet and C. Brimont. "Polariton condensates at room temperature". In: Comptes Rendus Physique 17.8 (Oct. 2016), pp. 946-956. DOI: 10.1016/j. crhy.2016.07.002.
[46] A. Das et al. "Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap". In: Proceedings of the National Academy of Sciences 110.8 (Feb. 2013), pp. 27352740. DOI: 10.1073/pnas.1210842110.
[47] R. Su et al. "Observation of exciton polariton condensation in a perovskite lattice at room temperature". In: Nature Physics 16.3 (Jan. 2020), pp. 301306. DOI: 10.1038/s41567-019-0764-5.
[48] K. S. Daskalakis et al. "Nonlinear interactions in an organic polariton condensate". In: Nature Materials 13.3 (Feb. 2014), pp. 271-278. DOI: 10.1038/ nmat3874.
[49] C. P. Dietrich et al. "An exciton-polariton laser based on biologically produced fluorescent protein". In: Science Advances 2.8 (Aug. 2016). DOI: 10. 1126/sciadv.1600666.
[50] N. D. Mermin and H. Wagner. "Absence of Ferromagnetism or Antiferro-magnetism in One- or Two-Dimensional Isotropic Heisenberg Models". In: Physical Review Letters 17.22 (Nov. 1966), pp. 1133-1136. DOI: 10.1103/ physrevlett.17.1133.
[51] P. C. Hohenberg. "Existence of Long-Range Order in One and Two Dimensions". In: Physical Review 158.2 (June 1967), pp. 383-386. DOI: 10.1103/ physrev.158.383.
[52] V. Bagnato and D. Kleppner. "Bose-Einstein condensation in low-dimensional traps". In: Physical Review A 44.11 (Dec. 1991), pp. 7439-7441. DOI: 10.1103/ physreva.44.7439.
[53] F. Tassone et al. "Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons". In: Physical Review B 56.12 (Sept. 1997), pp. 7554-7563. DOI: 10.1103/physrevb.56.7554.
[54] A. I. Tartakovskii et al. "Relaxation bottleneck and its suppression in semiconductor microcavities". In: Physical Review B 62.4 (July 2000), R2283-R2286. DOI: 10.1103/physrevb.62.r2283.
[55] A. V. Kavokin et al. Microcavities. 2nd ed. Series on Semiconductor Science and Technology. London, England: Oxford University Press, May 2017. ISBN: 9780198782995.
[56] P. E. Selbmann et al. "Coupled free-carrier and exciton relaxation in optically excited semiconductors". In: Physical Review B 54.7 (Aug. 1996), pp. 46604673. DOI: 10.1103/physrevb.54.4660.
[57] M. Gurioli et al. "Exciton formation and relaxation in GaAs epilayers". In: Physical Review B 58.20 (Nov. 1998), R13403-R13406. DOI: 10.1103/ physrevb.58.r13403.
[58] T. Lecomte et al. "Optical parametric oscillation in one-dimensional micro-cavities". In: Physical Review B 87.15 (Apr. 2013), p. 155302. DOI: 10.1103/ physrevb.87.155302.
[59] A. Askitopoulos et al. "Polariton condensation in an optically induced two-dimensional potential". In: Physical Review B 88 (4 July 2013), p. 041308. DOI: 10.1103/PhysRevB.88.041308.
[60] M. Gulia et al. "Phonon-assisted exciton formation and relaxation in GaAs". In: Physical Review B 55.24 (1997), pp. 16049-16052. DOI: 10.1103/physrevb. 55.r16049.
[61] E. Kammann et al. "Nonlinear Optical Spin Hall Effect and Long-Range Spin Transport in Polariton Lasers". In: Physical Review Letters 109.3 (July 2012), p. 036404. DOI: 10.1103/physrevlett.109.036404.
[62] I. Gnusov et al. "All-Optical Linear-Polarization Engineering in Single and Coupled Exciton-Polariton Condensates". In: Physical Review Applied 16 (3 Sept. 2021), p. 034014. DOI: 10.1103/PhysRevApplied.16.034014.
[63] I. Gnusov et al. "Quantum vortex formation in the "rotating bucket" experiment with polariton condensates". In: Science Advances 9.4 (Jan. 2023), eadd1299. DOI: 10.1126/sciadv.add1299.
[64] A. Askitopoulos et al. "Giant increase of temporal coherence in optically trapped polariton condensate". In: arXiv (Nov. 2019). DOI: 10.48550/ARXIV. 1911.08981.
[65] K. Orfanakis et al. "Ultralong temporal coherence in optically trapped ex-citon-polariton condensates". In: Physical Review B 103.23 (June 2021), p. 235313. DOI: 10.1103/physrevb.103.235313.
[66] R. Dall et al. "Creation of Orbital Angular Momentum States with Chiral Po-laritonic Lenses". In: Physical Review Letters 113.20 (Nov. 2014), p. 200404. DOI: 10.1103/PhysRevLett.113.200404.
[67] L. D. Landau. "Theory of superfluidity of Helium-II". In: Uspekhi Fizicheskikh Nauk 93.11 (Nov. 1941), pp. 495-520. DOI: 10.3367/ufnr.0093.196711j.0495.
[68] P. Kapitza. "Viscosity of Liquid Helium below the À-Point". In: Nature 141.3558 (Jan. 1938), p. 74. DOI: 10.1038/141074a0.
[69] J. F. Allen and A. D. Misener. " Flow of Liquid Helium-II". In: Nature 141.3558 (Jan. 1938), p. 75. DOI: 10.1038/141075a0.
[70] M. Vladimirova et al. "Polariton-polariton interaction constants in microcav-ities". In: Physical Review B 82.7 (Aug. 2010), p. 075301. DOI: 10.1103/ physrevb.82.075301.
[71] H. Hu, H. Deng, and XJ. Liu. "Polariton-polariton interaction beyond the Born approximation: A toy model study". In: Physical Review A 102.6 (Dec. 2020), p. 063305. DOI: 10.1103/physreva.102.063305.
[72] A. Amo et al. "Collective fluid dynamics of a polariton condensate in a semiconductor microcavity". In: Nature 457.7227 (Jan. 2009), pp. 291-295. DOI: 10.1038/nature07640.
[73] L. Onsager. "Statistical hydrodynamics". In: Il Nuovo Cimento 6.S2 (Mar. 1949), pp. 279-287. DOI: 10.1007/bf02780991.
[74] T. Boulier et al. "Lattices of quantized vortices in polariton superfluids". In: Comptes Rendus Physique 17.8 (Oct. 2016), pp. 893-907. DOI: 10.1016/j. crhy.2016.05.005.
[75] R. E. Packard and T. M. Sanders. "Observations on Single Vortex Lines in Rotating Superfluid Helium". In: Physical Review A 6.2 (Aug. 1972), pp. 799807. DOI: 10.1103/physreva.6.799.
[76] G. A. Williams and R. E. Packard. "Photographs of Quantized Vortex Lines in Rotating He II". In: Physical Review Letters 33.5 (July 1974), pp. 280-283. DOI: 10.1103/physrevlett.33.280.
[77] F. Dalfovo et al. "Theory of Bose-Einstein condensation in trapped gases". In: Reviews of Modern Physics 71.3 (Apr. 1999), pp. 463-512. DOI: 10.1103/ revmodphys.71.463.
[78] A.S. Parkins and D.F. Walls. "The physics of trapped dilute-gas Bose-Einstein condensates". In: Physics Reports 303.1 (Sept. 1998), pp. 180. DOI: 10.1016/s0370-1573(98)00014-3.
[79] M. R. Matthews et al. "Vortices in a Bose-Einstein Condensate". In: Physical Review Letters 83.13 (Sept. 1999), pp. 2498-2501. DOI: 10.1103/physrevlett. 83.2498.
[80] K. W. Madison et al. "Vortices in a stirred Bose-Einstein condensate". In: Journal of Modern Optics 47.14-15 (Nov. 2000), pp. 2715-2723. DOI: 10. 1080/09500340008232191.
[81] K. W. Madison et al. "Stationary States of a Rotating Bose-Einstein Condensate: Routes to Vortex Nucleation". In: Physical Review Letters 86.20 (May 2001), pp. 4443-4446. DOI: 10.1103/physrevlett.86.4443.
[82] J. R. Abo-Shaeer, C. Raman, and W. Ketterle. "Formation and Decay of Vortex Lattices in Bose-Einstein Condensates at Finite Temperatures". In: Physical Review Letters 88.7 (Feb. 2002), p. 070409. DOI: 10.1103/physrevlett.88. 070409.
[83] P. Coullet, L. Gil, and F. Rocca. "Optical vortices". In: Optics Communications 73.5 (Nov. 1989), pp. 403-408. DOI: 10.1016/0030-4018(89)90180-6.
[84] C. Hnatovsky et al. "Materials processing with a tightly focused femtosecond laser vortex pulse". In: Optics Letters 35.20 (Oct. 2010), p. 3417. DOI: 10. 1364/ol.35.003417.
[85] R. Fickler et al. "Quantum entanglement of angular momentum states with quantum numbers up to 10010". In: Proceedings of the National Academy of Sciences 113.48 (Nov. 2016), pp. 13642-13647. DOI: 10 . 1073 / pnas . 1616889113.
[86] R. Zhou et al. "Higher-order valley vortices enabled by synchronized rotation in a photonic crystal". In: Photonics Research 10.5 (Apr. 2022), p. 1244. DOI: 10.1364/prj.452598.
[87] M. V. Berry. "Optical vortices evolving from helicoidal integer and fractional phase steps". In: Journal of Optics A: Pure and Applied Optics 6.2 (Jan. 2004), pp. 259-268. DOI: 10.1088/1464-4258/6/2/018.
[88] X. Ma et al. "Realization of all-optical vortex switching in exciton-polariton condensates". In: Nature Communications 11.1 (Feb. 2020), p. 897. DOI: 10. 1038/s41467-020-14702-5.
[89] T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin. "Generation and Dynamics of Vortex Lattices in Coherent Exciton-Polariton Fields". In: Physical Review Letters 101.18 (Oct. 2008), p. 187401. DOI: 10.1103/PhysRevLett.101.187401.
[90] S. Tolansky. "Application of Interferometry to Biological Microstructures". In: Physics in Medicine and Biology 9.2 (Apr. 1964), pp. 125-142. DOI: 10. 1088/0031-9155/9/2/201.
[91] J. D. Monnier. "Optical interferometry in astronomy". In: Reports on Progress in Physics 66.5 (Apr. 2003), pp. 789-857. DOI: 10.1088/0034-4885/66/5/203.
[92] B. E. A. Saleh and M. C. Teich. Fundamentals of Photonics. John Wiley Sons, Mar. 2007. ISBN: 9780471358329.
[93] D. Gabor. "Microscopy by reconstructed wave-fronts". In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 197.1051 (July 1949), pp. 454-487. DOI: 10.1098/rspa.1949.0075.
[94] Y.N. Denisyuk. "On the reflection of optical properties of an object in a wave field of light scattered by it". In: Doklady Akademii Nauk SSSR 144.6 (July 1962), pp. 1275-1278.
[95] E. N. Leith and J. Upatnieks. "Reconstructed Wavefronts and Communication Theory". In: Journal of the Optical Society of America 52.10 (Oct. 1962), p. 1123. DOI: 10.1364/josa.52.001123.
[96] C. F. Gauss. "Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum, methodo nova tractata". In: Werke. Springer Berlin Heidelberg, 1877, pp. 279-286. DOI: 10.1007/978-3-642-49319-5_8.
[97] J. W. Cooley and J. W. Tukey. "An algorithm for the machine calculation of complex Fourier series". In: Mathematics of Computation 19.90 (Apr. 1965), pp. 297-301. DOI: 10.1090/s0025-5718-1965-0178586-1.
[98] P. Vaity and L. Rusch. "Perfect vortex beam: Fourier transformation of a Bessel beam". In: Optics Letters 40.4 (Feb. 2015), p. 597. DOI: 10.1364/ol. 40.000597.
[99] J. M. Zajac, E. Clarke, and W. Langbein. "Suppression of cross-hatched po-lariton disorder in GaAs/AlAs microcavities by strain compensation". In: Applied Physics Letters 101.4 (July 2012), p. 041114. DOI: 10.1063/1.4739245.
[100] P. Cilibrizzi et al. "Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells". In: Applied Physics Letters 105.19 (Nov. 2014), p. 191118. DOI: 10.1063/1.4901814.
[101] M. R. Dennis, K. O'Holleran, and M. J. Padgett. "Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities". In: Progress in Optics 53 (June 2009), pp. 293-363. DOI: 10.1016/S0079-6638(08)00205-9.
[102] L. Allen et al. "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes". In: Physical Review A 45.11 (June 1992), pp. 8185-8189. DOI: 10.1103/physreva.45.8185.
[103] CW. Qiu and Y. Yang. "Vortex generation reaches a new plateau". In: Science 357.6352 (Aug. 2017), pp. 645-645. DOI: 10.1126/science.aan6359.
[104] R. Panico et al. "Dynamics of a vortex lattice in an expanding polariton quantum fluid". In: Physical Review Letters 127.4 (July 2021), p. 047401. DOI: 10.1103/PhysRevLett.127.047401.
[105] S. Alyatkin et al. "All-optical artificial vortex matter in quantum fluids of light". In: arXiv (July 2022). DOI: 10.48550/ARXIV.2207.01850.
[106] K. A. Sitnik et al. "Spontaneous Formation of Time-Periodic Vortex Cluster in Nonlinear Fluids of Light". In: Physical Review Letters 128.23 (June 2022), p. 237402. DOI: 10.1103/physrevlett.128.237402.
[107] T. Kreis. "Digital holographic interference-phase measurement using the Fourier-transform method". In: Journal of the Optical Society of America A 3.6 (June 1986), p. 847. DOI: 10.1364/josaa.3.000847.
[108] M. Liebling, T. Blu, and M. Unser. "Complex-wave retrieval from a single off-axis hologram". In: Journal of the Optical Society of America A 21.3 (Mar. 2004), p. 367. DOI: doi.org/10.1364/josaa.21.000367.
[109] M. A. Bandres and J. C. Gutierrez-Vega. "Ince-Gaussian modes of the paraxial wave equation and stable resonators". In: Journal of the Optical Society of America A 21.5 (May 2004), p. 873. DOI: 10.1364/josaa.21.000873.
[110] E. L. Ince. "A Linear Differential Equation with Periodic Coefficients". In: Proceedings of the London Mathematical Society s2-23.1 (1925), pp. 56-74. DOI: https://doi.org/10.1112/plms/s2-23.1.56.
[111] A. Askitopoulos et al. "Coherence Revivals of a Spinor Polariton Condensate from Self-induced Larmor Precession". In: arXiv (June 2020). DOI: 10.48550/ ARXIV.2006.01741.
[112] I. Gnusov et al. "All-Optical Linear-Polarization Engineering in Single and Coupled Exciton-Polariton Condensates". In: Physical Review Applied 16.3 (Sept. 2021), p. 034014. DOI: 10.1103/PhysRevApplied.16.034014.
[113] F. Manni et al. "Dissociation dynamics of singly charged vortices into half-quantum vortex pairs". In: Nature Communications 3.1 (Jan. 2012), p. 1309. DOI: 10.1038/ncomms2310.
[114] G. Tosi et al. "Sculpting oscillators with light within a nonlinear quantum fluid". In: Nature Physics 8.3 (Mar. 2012), pp. 190-194. DOI: 10.1038/ nphys2182.
[115] J. D. Topfer et al. "Lotka-Volterra population dynamics in coherent and tunable oscillators of trapped polariton condensates". In: Physical Review B 102.19 (Nov. 2020), p. 195428. DOI: 10.1103/PhysRevB.102.195428.
[116] M. Wouters and I. Carusotto. "Excitations in a Nonequilibrium Bose-Einstein Condensate of Exciton Polaritons". In: Physical Review Letters 99.14 (Oct. 2007), p. 140402. DOI: 10.1103/PhysRevLett.99.140402.
[117] M. A. Bandres and J. C. Gutierrez-Vega. "Ince-Gaussian beams". In: Optics Letters 29.2 (Jan. 2004), p. 144. DOI: 10.1364/ol.29.000144.
[118] I. Gnusov et al. "Optical orientation, polarization pinning, and depolarization dynamics in optically confined polariton condensates". In: Physical Review B 102.12 (Sept. 2020). DOI: 10.1103/physrevb.102.125419.
[119] D. Sanvitto et al. "Persistent currents and quantized vortices in a polariton superfluid". In: Nature Physics 6.7 (July 2010), pp. 527-533. DOI: 10.1038/ nphys1668.
[120] S. Donati et al. "Twist of generalized skyrmions and spin vortices in a polari-ton superfluid". In: Proceedings of the National Academy of Sciences 113.52 (Dec. 2016), pp. 14926-14931. DOI: 10.1073/pnas.1610123114.
[121] L. Dominici et al. "Interactions and scattering of quantum vortices in a po-lariton fluid". In: Nature Communications 9.1 (Apr. 2018), p. 1467. DOI: 10.1038/s41467-018-03736-5.
[122] Y. V. Kartashov and D. A. Zezyulin. "Rotating patterns in polariton condensates in ring-shaped potentials under a bichromatic pump". In: Optics Letters 44.19 (Sept. 2019), p. 4805. DOI: 10.1364/ol.44.004805.
[123] I. Gnusov et al. "Vortex clusters in a stirred polariton condensate". In: Physical Review B 109.10 (Mar. 2024), p. 104503. DOI: 10.1103/physrevb. 109. 104503.
[124] Y. Sun et al. "Stable switching among high-order modes in polariton condensates". In: Physical Review B 97.4 (Jan. 2018), p. 045303. DOI: 10.1103/ PhysRevB.97.045303.
[125] E. Estrecho et al. "Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation". In: Physical Review B 100.3 (July 2019), p. 035306. DOI: 10.1103/physrevb.100. 035306.
[126] M. Wouters, T. C. H. Liew, and V. Savona. "Energy relaxation in one-dimensional polariton condensates". In: Physical Review B 82.24 (Dec. 2010), p. 245315. DOI: 10.1103/physrevb.82.245315.
Other author's publication not included in this thesis
1. S. Alyatkin, H. Sigursson, Y. V. Kartashov, I. Gnusov, K. Sitnik, J. D. Topfer, P. G. Lagoudakis. "All-optical triangular and honeycomb lattices of exciton-polaritons". In: Applied Physics Letters 124.6 (Jan. 2024), p. 062105. DOI: 10.1063/5.0180272.
2. I. Gnusov, S. Harrison, S. Alyatkin, K. Sitnik, J. Topfer, H. Sigurdsson, P. Lagoudakis. "Quantum vortex formation in the "rotating bucket" experiment with polariton condensates". In: Science Advances 9.4 (Jan. 2023). p. eadd1299. DOI: 10.1126/sciadv.add1299.
3. S. Alyatkin, C. Milian, Y. V. Kartashov, K. A. Sitnik, J. D. Topfer, H. Sigurdsson, P. G. Lagoudakis. "All-optical artificial vortex matter in quantum fluids of light". In: arXiv (July 2023). DOI: 10.48550/arXiv.2207.01850.
4. A. A. Mkrtchyan, Y. G. Gladush, M. A. Melkumov, A. M. Khegai, K. A Sitnik, P. G. Lagoudakis, A. G. Nasibulin. "Nd-doped polarization maintaining all-fiber laser with dissipative soliton resonance mode-locking at 905 nm". In: Journal of Lightwave Technology 39.17 (Sep. 2023), pp. 5582-5588. DOI: 10.1109/JLT.2021.3085538.
5. N. G. Ivanov, V. F. Losev, V. E. Prokop'ev, K. A. Sitnik, I. A. Zyatikov, "High time-resolved spectroscopy of filament plasma in air". In: Optics Communications 431 (Mar. 2017), pp. 120-125. DOI: 10.1016/j.optcom.2018.09.007.
6. N. G. Ivanov, V. F. Losev, V. E. Prokop'ev, K. A. Sitnik. "Generation of a highly directional supercontinuum in the visible spectrum range". In: Science Advances 387 (Mar. 2017), pp.322-327. DOI: 10.1016/j.optcom.2016.11.057.
7. N. G. Ivanov, V. F. Losev, V. E. Prokop'ev, K. A. Sitnik. "Superradiance by molecular nitrogen ions in filaments". In: Atmospheric and Oceanic Optics 29. (Jul. 2016), pp.385-389. DOI: 10.1134/S1024856016040072.
8. V. P. Demkin, H Kingma, R. Van De Berg, S. V. Melnichuk, O. V. Demkin, M-S Herards, V. S. Ripenko, K. A. Sitnik. "Determination of the electrophysical parameters of a beam-type high-voltage pulsed discharge
plasma for biomedical research in a highly efficient computing environment". In: Russian Physics Journal 58.5 (Sep. 2015), pp. 740-744. DOI: 10.1007/s11182-015-0560-3.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.