Контактные задачи и задачи механики разрушения для преднапряжённых упругих тел тема диссертации и автореферата по ВАК РФ 01.02.04, кандидат физико-математических наук Костырева, Лилия Александровна

  • Костырева, Лилия Александровна
  • кандидат физико-математических науккандидат физико-математических наук
  • 2011, Москва
  • Специальность ВАК РФ01.02.04
  • Количество страниц 125
Костырева, Лилия Александровна. Контактные задачи и задачи механики разрушения для преднапряжённых упругих тел: дис. кандидат физико-математических наук: 01.02.04 - Механика деформируемого твердого тела. Москва. 2011. 125 с.

Оглавление диссертации кандидат физико-математических наук Костырева, Лилия Александровна

Введение.

Глава 1. Основные положения линеаризованной теории упругости.

1.1 Основные соотношения нелинейной теории упругости.

1.2 Линеаризация соотношений теории упругости для тел с начальными напряжениями.

Глава 2. Контактные задачи для предварительно напряженного упругого слоя.

2.1 Контактная задача для предварительно напряженного сжимаемого упругого слоя, лежащего без трения на жестком основании.

2.1.1 Постановка задачи.

2.1.2 Сведение задачи к интегральному уравнению.

2.1.3 Асимптотическое решение при большой относительной толщине слоя

2.1.4 Асимптотическое решение при малой относительной толщине слоя.

2.1.5 Приближенное численное решение по методу Мультоппы-Каландии.

2.2 Контактная задача для предварительно напряженного сжимаемого упругого слоя с закрепленной нижней гранью.

2.2.1 Сведение задачи к интегральному уравнению.

2.2.2 Асимптотическое решение при большой относительной толщине слоя

2.2.3 Асимптотическое решение при малой относительной толщине слоя.

2.2.4 Приближенное численное решение по методу Мультоппы-Каландии.

2.3 Контактная задача для предварительно напряженного несжимаемого упругого слоя, лежащего без трения на жестком основании.

2.3.1 Постановка задачи.

2.3.2 Сведение задачи к интегральному уравнению.

2.3.3 Асимптотическое решение при большой относительной толщине слоя

2.3.4 Асимптотическое решение при малой относительной толщине слоя.

2.3.5 Приближенное численное решение по методу Мультоппы-Каландии.

2.4 Контактная задача для предварительно напряженного несжимаемого упругого слоя с закрепленной нижней гранью.

2.4.1 Сведение задачи к интегральному уравнению.

2.4.2 Асимптотическое решение при большой относительной толщине слоя

2.4.3 Приближенное численное решение по методу Мультоппы-Каландии.

Глава 3. Задачи механики разрушения для предварительно напряженного упругого слоя.

3.1 Задача о трещине для сжимаемого упругого слоя с начальными напряжениями с шарнирно опертыми гранями.

3.1.1 Постановка задачи.

3.1.2 Сведение задачи к интегральному уравнению.

3.1.3 Асимптотическое решение при большой относительной толщине слоя

3.1.4 Асимптотическое решение при малой относительной толщине слоя.

3.1.5 Модифицированный метод Мультоппа-Каландии.

3.2 Задача о трещине для сжимаемого упругого слоя с начальными напряжениями со свободными гранями.

3.2.1 Постановка задачи.

3.2.2 Сведение задачи к интегральному уравнению.

3.2.3 Асимптотическое решение при большой относительной толщине слоя

3.2.4 Асимптотическое решение при малой относительной толщине слоя.

3.2.5 Модифицированный метод Мультоппа-Каландии.

3.3 Задача о трещине для сжимаемого упругого слоя с начальными напряжениями с жестко закрепленными гранями.

3.3.1 Постановка задачи.

3.3.2 Сведение задачи к интегральному уравнению.

3.3.3 Асимптотические решения при большой относительной толщине слоя

3.3.4 Асимптотическое решение при малой относительной толщине слоя.

3.3.5 Модифицированный метод Мультоппа-Каландии.

3.4 Продольная трещина в предварительно напряженном несжимаемом упругом слое с шарнирно опертыми гранями.

3.4.1 Постановка задачи.

3.4.2 Сведение задачи к интегральному уравнению.

3.4.3 Асимптотические решения при большой относительной толщине слоя

3.4.4 Асимптотическое решение при малой относительной толщине слоя.

3.4.5 Модифицированный метод Мультоппа-Каландии.

3.5 Продольная трещина в предварительно напряженном несжимаемом упругом слое со свободными гранями.

3.5.1 Постановка задачи.

3.5.2 Сведение задачи к интегральному уравнению.

3.5.3 Асимптотические решения при большой относительной толщине слоя

3.5.4 Асимптотическое решение при малой относительной толщине слоя.

3.5.5 Модифицированный метод Мультоппа-Кал андии.

Рекомендованный список диссертаций по специальности «Механика деформируемого твердого тела», 01.02.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Контактные задачи и задачи механики разрушения для преднапряжённых упругих тел»

Во всех реальных конструкциях и деталях машин практически всегда существуют начальные или остаточные напряжения. Причины их возникновения могут быть совершенно различными. Зачастую начальные напряжения в деталях и конструкциях создаются специально при их изготовлении или сборке. Также они могут появляться в процессе эксплуатации как под влиянием механических факторов, таких как необратимые пластические деформации, так и по причинам, носящим немеханический характер (локальное изменение агрегатного состояния, физико-химические процессы и структурные изменения в материале). Наконец, начальные напряжения могут быть обусловлены постоянным действием массовых (например, гравитационных) сил.

Наличие начальных напряжений сказывается на всем напряженно деформированном состоянии тел, поэтому может влиять на прочность конструкций, приводить к внутренней потере устойчивости, способствовать локальному разрушению материала и пр. Учет остаточных напряжений при расчете элементов конструкций, машин и сооружений позволит при их создании более эффективно учесть прочностные ресурсы материалов путем правильной оценки запасов прочности и существенно понизить их материалоемкость, сохраняя нужные функциональные характеристики в целом.

Более полное представление о влиянии начальных напряжений и важности их учета можно почерпнуть из источников [60-63].

В настоящее время в технике для улучшения прочностных свойств деталей, возможности их использования в условиях повышенных температур или в присутствии агрессивных сред широко применяются различные покрытия. Поскольку такие детали зачастую являются ответственными элементами конструкций, чье разрушение может привести к катастрофическим последствиям, необходима их регулярная диагностика. В теоретическом плане эта проблема может быть сведена к рассмотрению задач о предварительно напряженном бесконечном слое со смешанными граничными условиями.

Аналогичные задачи могут возникать и при расчете тяжелых фундаментных плит и строительных перекрытий, находящихся в поле действия гравитационных сил [29].

Характерной особенностью таких задач является то, что в математическом плане они в основном являются задачами со смешанными граничными условиями (контактными задачами) для сжимаемых и несжимаемых тел при однородных начальных состояниях и, как правило, сводятся к решению интегральных уравнений.

Основополагающими в теории смешанных задач были исследования Г. Герца [3, 4], Я. Буссинеска [1], С. А. Чаплыгина [101]. В дальнейшем развивались методы их решения, основанные на теории функций комплексного переменного, разработанные Н. И. Мусхелишвили и его последователями. Эти методы базируются на использовании конформных отображений и теории сингулярных интегральных уравнений. Результаты работ этого периода освещены в монографиях Н. И. Мусхелишвили [78], И. Я. Штаермана [105], Л. А. Галина [45], А. И. Лурье [75], И. Снеддона [90], С. Г. Михлина [76], В. И. Довноровича [66], Я. С. Уфлянда [91]. Подробные обзоры проведены Д. И. Шерманом [103, 104], Н. А. Кильчевским и Э. Н. Костюком [70].

Более активные исследования задач механики со смешанными граничными условиями приходятся на вторую половину прошедшего столетия. В этот период развиваются несколько основных направлений. В одном из них задача сводится к парным или тройным функциональным уравнениям (рядам, интегральным уравнениям), которые затем преобразуются к интегральному уравнению Фредгольма П рода. К этому направлению можно отнести работы Н. Н. Лебедева, Я. С. Уфлянда, И. И. Воровича, Ю. А. Устинова и др.

Второе, развиваемое Н. X. Арутюняном, Б. Л. Абрамяном, А. А. Баблояном, С. М. Мхитаряном, Г. М. Валовым и др., характеризуется непосредственным сведением краевых задач к некоторой бесконечной системе линейных алгебраических уравнений. ^

Исследователи третьего направления (А. И. Лурье, П. И. Клубин, Г. Я. Попов, Н. А. Ростовцев, В. М. Александров и др.) сводят задачу к бесконечной системе линейных алгебраических уравнений путем разложения решения в ряд по специальным системам ортогональных полиномов.

Еще одно направление основано на идее коллокации (И. Я. Штаерман,

A. И. Каландия, И. И. Ворович, В. М. Александров, В. В. Копасенко,

B. М. Фридман, В. С. Чернина и др.) В этом случае искомые величины обычно аппроксимируются конечным набором параметров, которые определяются из известных требований, накладываемых граничными условиями.

Часть исследований, проведенных по первому направлению, изложена в монографии Я. С. Уфлянда [91]. Обзоры работ по всем четырем направлениям были даны Б. Л. Абрамяном и А. Я. Александровым [8], Б. Л. Абрамяном [7].

Дальнейшее развитие теории задач со смешанными граничными условиями происходило по пути усложнения как рассматриваемых областей (полоса, слой, клин, цилиндр, тела конечных размеров) [15], так и свойств исследуемых материалов (анизотропия, вязкоупругость, пластичность). В отдельные области можно выделить исследования по трибологии (Горячева И. Г., Коваленко Е. В.) и динамические задачи (Горшков А. Г., Тарлаковский Д. В.). Наконец, постоянное повышение требований к точности расчета конструкций привело к необходимости учета начальных (остаточных) напряжений в телах. Наиболее полное представление о результатах работ последнего периода по проблемам смешанных (контактных) задач можно получить из обзорного труда [40].

Исследования влияния начальных (остаточных) напряжений стали активно проводиться в нашей стране и за рубежом лишь в конце XX столетия. Необходимо отметить, что в общем случае, строгая постановка таких задач требует привлечения аппарата нелинейной теории упругости [74, 80], что сильно затрудняет построение аналитических решений. Однако, при условии больших начальных напряжений (деформаций) можно ограничиться рассмотрением линеаризованной теории упругости [55, 63].

Первые работы по контактным задачам для преднапряженных тел посвящены взаимодействию упругих тел с жесткими штампами для классических областей типа полуплоскости и полупространства. Причем рассматриваются либо упругие потенциалы конкретной довольно простой формы (Трелоара, Муни и др.) [95], либо задача ставится в общем виде для сжимаемых и несжимаемых тел с потенциалом произвольной структуры [34, 35].

Изучение более сложных задач стало возможно благодаря развитию подходов к исследованию смешанных краевых задач теории упругости и методов решения интегральных уравнений. Одним из наиболее эффективных подходов для материалов с произвольным видом упругого потенциала и однородной начальной деформацией является подход, предложенный А. Н. Гузем [50, 51, 53]. Он основан на использовании теории функций комплексного переменного для плоских задач [50, 51] и теории потенциала (интегральных преобразований, интегральных уравнений) для пространственных задач. Этот подход был развит в работах А. Н. Гузя, С. Ю. Бабича, Ю. П. Глухова, В. И. Кнюха, В. М. Назаренко, В. Б. Рудницкого и др. [32-36, 49-51, 53, 54, 64]

Не менее эффективным оказался подход, основанный на асимптотических методах решения интегральных уравнений, используемый в настоящей работе. Асимптотический метод, позднее названный «методом больших Л» был предложен для решения смешанных задач теории упругости в работах И. И. Воровича, Ю. А. Устинова [42].

В дальнейшем «метод больших Л» применялся в широком круге плоских и пространственных контактных задач и задач механики разрушения.

В работе [11] В.М.Александровым была построена логарифмически-степенная асимптотика, позволившая использовать данный метод для целого круга новых задач. Сюда можно отнести смешанные задачи, изложенные в работах [9,15-18, 24, 25, 72, 73, 84].

Поскольку по своей природе «метод больших Л» имеет ограниченную область применимости, возникла необходимость построения другого асимптотического метода, позволяющего находить решения интегральных уравнений для малых значений определяющего параметра. Он получил название «метода малых Л». Такое построение было дано В. М. Александровым [11] и несколько позже Койтером [6]. В его основе лежит метод Винера-Хопфа [79] и идея приближенной факторизации Койтера [5]. Данный метод получил широкое применение. Изложение этих методов применительно к полосе и слою можно найти в [9, 15-19, 31, 40, 41].

При помощи этих методов удалось решить ряд новых задач. Общая постановка плоских контактных задач для полупространства и слоя из несжимаемого материала, подверженных одновременному действию сил тяжести и однородных начальных напряжений, ориентированных вдоль границы, предложена в работе В. М. Александрова и Н. X. Арутюняна [12]. В ней проведен анализ поверхностной устойчивости среды и влияния начальных напряжений на контактную жесткость. Решения аналогичных задач для потенциалов конкретной структуры представлены в [13, 14, 44, 43, 21, 22, 85, 86, 28].

Контактные задачи для преднапряженных полуплоскости и полосы из сжимаемого материала были рассмотрены в [68, 24, 26, 87-89].

Изучению контактного взаимодействия штампов (бандажа) с предварительно нагруженным телом (цилиндром) конечных размеров посвящен ряд работ Л. М. Филипповой, А. Н. Цветкова, М. И. Чебакова [98-100].

Влияние начальных напряжений на контактное взаимодействие тел с учетом износа исследовалось в [93].

К исследованиям по контактному взаимодействию упругих тел тесно примыкают задачи теории трещин. Они относятся к теории механики разрушений, основы которой были заложены в работах А. Гриффитса [2]. На протяжении многих лет разрабатывались различные подходы к решению задач механики разрушений: использующие теорию функции комплексного переменного (Н. И. Мусхелишвили); привлекающие теорию упруго-пластических деформаций; основанные на различных феноменологических гипотезах. К наиболее важным работам по механике разрушения можно отнести исследования Г. П. Черепанова [102], В. 3. Партона, Е. М. Морозова [83], В. 3. Партона [82], В. В. Панасюка [81], Б. Билби, Дж. Эшелби [39], Г. И. Баренблатга [37], Дж. Гудьера [48] и В. Д. Клюшникова [71]. По своей природе задачи теории трещин являются задачами со смешанными граничными условиями, поэтому богатейшие средства, развитые в механике контактных взаимодействий, с успехом применяются и в этой области механики сплошных сред.

Различные аспекты влияния начальной деформации на напряженно-деформированное состояние тела, ослабленного трещиной, рассматривались в [30, 28, 69, 67, 92, 96, 97, 17, 25, 26, 27]. Большой цикл работ в этих направлениях выполнили А. Н. Гузь [52, 53, 56, 57, 58, 59] и его ученики В. И. Кнюх, В. М. Назаренко [64] и др.

Надо отметить, что в этих работах задача сводилась к решению интегральных уравнений с нерегулярными разностными ядрами. Структура этих уравнений совпадала со структурой соответствующих уравнений классической теории упругости. Однако символы ядер уравнений существенным образом зависели от параметров начального нагружения. И, как следствие, при стыковке решений, построенных при помощи методов «больших» и «малых Я», величина определяющего параметра Л*, при которой стыкуются эти методы, также сильно зависела от начального состояния материала.

Наиболее полное представление о последних исследованиях в области контактных взаимодействий тел с начальными напряжениями можно получить из обзорной статьи Т. И. Белянковой, Л. М. Филипповой [38]. Широкому кругу вопросов механики преднапряженных деформируемых тел посвящена многотомная монография А. Н. Гузя, включающая в себя теорию контактных взаимодействий [65], исследования по механике разрушений [53, 52] и устойчивости тел с остаточными напряжениями [62], динамические задачи [60, 61].

В настоящей работе рассматривается круг плоских задач для упругого преднапряженного слоя из сжимаемого и несжимаемого материалов с упругими потенциалами конкретного вида (потенциал гармонического типа для с сжимаемого материала и потенциал Муни для несжимаемого). Исследуются вопросы контактного взаимодействия слоя с жесткими штампами и задачи о поведении слоя при наличии ослабляющих трещин.

Целью настоящей работы является изучение влияния начальных напряжений на напряженно-деформированное состояние упругого слоя, охватывающее физически корректные постановки соответствующих задач следующих типов: а) контактная задача для слоя, закрепленного по нижней грани; б) контактная задача для слоя, опирающегося без трения на жесткое основание; в) задача о продольной трещине в слое с жестко закрепленными гранями; г) задача о продольной трещине со скользящей заделкой граней; д) задача о продольной трещине со свободными гранями.

В качестве основного результата необходимо получить зависимости некоторых интегральных характеристик, таких как контактное давление и коэффициент интенсивности напряжений в вершине трещины, от параметров, характеризующих начальное состояние среды.

Похожие диссертационные работы по специальности «Механика деформируемого твердого тела», 01.02.04 шифр ВАК

Заключение диссертации по теме «Механика деформируемого твердого тела», Костырева, Лилия Александровна

Заключение

В работе изучены плоские задачи для упругого преднапряженного слоя из сжимаемого и несжимаемого материалов с упругими потенциалами конкретного вида (потенциал гармонического типа для сжимаемого материала и потенциал Муни для несжимаемого), включающие в себя постановки следующих типов: а) контактная задача для слоя, закрепленного по нижней грани; б) контактная задача для слоя, опирающегося без трения на жесткое основание; в) задача о продольной трещине в слое с жестко закрепленными гранями; г) задача о продольной трещине со скользящей заделкой граней; д) задача о продольной трещине со свободными гранями.

Изучен характер особенности вблизи точек смены граничных условий. Построены аналитические асимптотические решения для ранее не исследованных задач по методу больших и малых Я. Для промежуточных значений относительных толщин получены приближенные численные решения при помощи модифицированного метода Мультоппа-Каландии.

Решен ряд конкретных примеров в случае различных значений параметров начального нагружения, позволяющий получить представление об общем характере зависимости напряженно-деформированного состояния от начального нагружения.

Числовые значения таких безразмерных интегральных характеристик, как контактное давление и коэффициент интенсивности напряжений в вершине трещины, представлены на графиках и сведены в таблицы (см. Приложение)

Анализируя численные результаты, можно сделать вывод, что для контактных задач наличие начальных растягивающих напряжений приводит к снижению контактных давлений, обеспечивающих внедрение штампа на заданную глубину, и, наоборот, начальное сжатие слоя приводит к их увеличению.

В случае слоя с закрепленными гранями, ослабленного продольной трещиной, начальные напряжения приводят к росту концентраций напряжений вблизи кончика трещины. Тогда как характер распределения напряжений в слое со свободными гранями совершенно иной. Здесь предварительное растяжение приводит к снижению коэффициентов интенсивности напряжений.

Необходимо отметить, что для сжимаемого и несжимаемаого материалов не наблюдается принципиальных различий в характере зависимости напряженно-деформированного состояния от начального нагружения.

Список литературы диссертационного исследования кандидат физико-математических наук Костырева, Лилия Александровна, 2011 год

1. Boussinesque J., Applications des potentiels à l'étude de l'équilibre et du mouvement de solides élastiques. Paris, 1885.

2. Griffith A. A. The phenomenon of rupture and flow in solids, Phil. Trans. Roy. Soc. A221. 1920, pp. 163-198.

3. Hertz H., Gesammelts Werks; 1 1, 1895.

4. Hertz H., Über die Beruhrung fester elastischer Korper. Journal fur die reine und angewandte Mathematik, Grelle, 92, 1882.

5. Koiter W. T. Approximate solution of Wiener-Xopf type integral equations. With applications Koninkl. Ned. Akad. Wetenschap. Proc. 1954.

6. Koiter W. T. Solution of some élasticité problems by asymptotic methods. В сб. «Приложение теории функций в механике сплошной среды». Т. 1. Наука. 1965.

7. Абрамян Б. Л. Контактные (смешанные) задачи теории упругости // МТТ. 1969. № 4.

8. Абрамян Б. Л., Александров А. Я. Осесимметричная задача теории упругости // НИИМАШ. Москва. 1969.

9. Александров В. М. Асимптотическое решение плоской контактной задачи для упругой полосы из несжимаемого материала. Сб. «Проблемы механики». М.: Физматлит. 2003. 230 с.

10. Александров В. М., К решению некоторых смешанных задач теории упругости // ПММ, 1963, т. 27, вып. 5.

11. Александров В. М. Осесимметричная задача о действии кольцевого штампа на упругое полупространство // МТТ. 1967. № 4.

12. Александров В. М., АрутюнянН. X. Контактные задачи для преднапряженных деформируемых тел // Прикл. мех. 1984. Т. 20. № 3. С. 916.

13. Александров В. М, Брудный С. Р. Две задачи со смешанными граничными условиями для несжимаемого изотропного гиперупругого материала // ПММ. 1982. Т. 46. Вып. 4. С. 700-704.

14. Александров В. М, Воротынцева И. В. Осесимметричные контактные задачи для преднапряженных деформируемых тел // ПМТФ. 1990. №3. С. 146-153.

15. Александров В. М., Коваленко Е. В. Задачи механики сплошных сред со смешанными граничными условиями. М.: Наука, 1986. 334 с.

16. Александров В. М., Костырева Л. А. Плоская контактная задача для преднапряженного несжимаемого упругого слоя // ПММ, 2009. Т. 73. Вып. 6. С. 977-982.

17. Александров В. М., Костырева Л. А. Продольная трещина в преднапряженном несжимаемом упругом слое с шарнирно опертыми гранями // Сб. «Упругость и неупругость». М.: Издательство Московского университета, 2011. С.287-291.

18. Александров В. М., Кудиш И. И. Асимптотические методы в задаче Гриффитса // ПММ. 1989. Т. 53, вып. 4.

19. Александров В. М., Мхитарян С. М. Контактные задачи для тел с тонкими покрытиями и прослойками. М.: Наука. Гл. ред. физ.-мат. лит. 1983. 488 с.

20. Александров В. М., Пожарский Д. А. Неклассические пространственные задачи механики контактных взаимодействий упругих тел. М.: Изд-во «Факториал». 1998. 228 с.

21. Александров В. М, ПорошинВ. С. Контактная задача для предварительно напряженного физически нелинейного упругого слоя // Изв. Ан СССР. МТТ. 1984. № 6. С. 79-85.

22. Александров В. М, ПорошинВ. С. Контактная задача для преднапряженного физически нелинейного упругого слоя, имеющего постоянный коэффициент Пуассона // Трение и износ. 1991. Т. 12. №4. С. 604-609.

23. Александров В. М., Ромалис Б. Л. Контактные задачи в машиностроении. М.: Машиностроение, 1986. 174 с.

24. Александров В. М., Серов М. В. Плоская контактная задача для преднапряженного упругого слоя // Экологический вестник научных центров ЧЭС, 2006, №1,с. 7-14.

25. Александров В. М., Серов М. В. Преднапряженный упругий слой с защемленными гранями, ослабленный продольной трещиной // Известия ВУЗов. Северо-Кавказский регион, 2006, № 1, с. 27-30.

26. Александров В. М., Сметанин Б. И. Продольная трещина в преднапряженном тонком упругом слое со свободными границами // ПММ. 2005. Т. 69. Вып. 1. С. 150-159.

27. Александров В. М., Сметанин Б. И., Соболь Б. В. Тонкие концентраторы напряжений в упругих телах. М.: Наука, 1993. 224 с.

28. Александров В. М., Соболь В. В. Равновесие предварительно напряженного упругого тела, ослабленного плоской эллиптической трещиной // ПММ. 1985. Т. 49. Вып. 2. С. 348-352.

29. Александров В. М, Филиппова Л. М. Контактная задача для тяжелой полуплоскости // ПММ. 1980. Т. 44. Вып. 3. С. 483-489.

30. Александров В. М., Филиппова Л. М. Прямолинейная трещина в предварительно напряженном упругом теле // Изв. АН СССР. МТТ, 1984. №84.

31. Александров В. М., ЧебаковМ. И. Аналитические методы в контактных задачах теории упругости. М.: Физматлит, 2004. 304 с.

32. Бабич С. Ю. Контактная задача теории упругости для слоя с начальными напряжениями // Прикл. механика. 1984. Т. 20. № 6. С. 34-40.

33. Бабич С. Ю. О контактных задачах для предварительно напряженной полуплоскости с учетом сил трения // Докл. АН УССР. Сер. А. 1980. № 2. С. 21-24,

34. Бабич С. Ю., Гузь А. Н. Общая пространственная статическая контактная задача для предварительно напряженного упругого полупространства // ПММ. 1985. Т. 49. Вып. 3. С. 438-444.

35. Бабич С. Ю., Гузь А. Н. Пространственные контактные задачи для упругого полупространства с начальными напряжениями // Докл. АН УССР. Сер. А. 1981. №9. С. 35-39,

36. Бабич С. Ю., Рудницкий В. Б. Некоторые плоские контактные задачи предварительно напряженного слоя // Прикл. механика. 1989. Т. 25. № 1. С. 93-100.

37. БаренблаттГ. И. Математическая теория равновесных трещин, образующихся при хрупком разрушении // ПМТФ, 1961. № 4.

38. Белянкова Т. И., Филиппова Л. М. Статические контактные задачи для тел с начальными напряжениями // Сб. «Механика контактных взаимодействий» М.: Физматлит, 2001. С.233-242.

39. Билби Б., Эшелби Дж. Дислокации и теория разрушения // Разрушение. М.: Мир, 1973. Т. 1.

40. Ворович И. И., Александров В. М. Механика контактных взаимодействий. М.: Физматлит, 2001. 672 с.

41. Ворович И. И., Александров В. М., Бабешко В. А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974, 456 с.

42. Ворович И. И., Устинов Ю. А., О давлении штампа на слой конечной толщины //ПММ. 1959. Т. 23, вып. 3.

43. Воротынцева И. В. Плоские контактные задачи для физически нелинейной преднапряженной упругой среды //ПММ. 1986. Т. 22. Вып. 4. С. 657-662.

44. Галин Л. А. Контактные задачи теории упругости. М.: Гостехиздат, 1953.

45. Галин Л. А. Развитие теории контактных задач в СССР. М.: Наука, 1976. 493 с.

46. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971. 1108 с.

47. Гудьер Дж. Математическая теория равновесных трещин // Разрушение. М.:Мир, 1975. Т. 2.

48. Гузъ А. Н. К теории контактных задач для упругих несжимаемых тел с начальными напряжениями // Докл. АН УССР. Сер. А. 1980. № 7. С. 42-45.

49. Гузь А. Н. Комплексные потенциалы плоской линеаризованной задачи теории упругости (сжимаемые тела) // Прикл. механика. 1980. Т. 16. № 5. С. 72-83.

50. Гузь А. Н. Комплексные потенциалы плоской линеаризованной задачи теории упругости (несжимаемые тела) // Прикл. механика. 1980. Т. 16. № 6. С. 64-70.

51. Гузь А. Н. Механика разрушения композитных материалов при сжатии. Киев: Наукова думка, 1990.

52. Гузь А. Н. Механика хрупкого разрушения материалов с начальными напряжениями. Киев: Наукова думка, 1983. 296 с.

53. Гузь А. Н. О контактных задачах для упругих сжимаемых тел с начальными напряжениями // Докл. АН УССР. Сер. А. 1980. № 6. С. 48-52.

54. Гузь А. Н. О линеаризованных задачах теории упругости // Прикл. механика. 1970. Т. 6, № 2. С. 43.

55. Гузь А. Н. О порядке особенности в кончике трещины в материалах с начальными напряжениями // Докл. АН СССР. 1986. 289, № 2. - С. 310 -312.

56. Гузь А. Н. Об исследовании внутренней неустойчивости деформируемых тел // Прикл. механика. 1987. Т. 23, № 2. С. 24 38.

57. Гузь А. Н. Теория трещин в телах с начальными напряжениями (высокоэластичные материалы) // Прикл. математика. 1951. Т. 17, № 2. С. 11-21.

58. Гузь А. Н. Теория трещин в упругих телах с начальными напряжениями (постановка задач, трещины отрыва) // Прикл. мех. 1980. Т. 16. № 12. С. 3-14.

59. Гузь А. Н. Упругие волны в телах с начальными напряжениями. Т. 1. Общие вопросы. Киев: Наук, думка. 1986. 280 с.

60. Гузь А. Н. Упругие волны в телах с начальными напряжениями. Т. 2. Закономерности распространения. Киев: Наук, думка. 1986. 536 с.

61. Гузь А. Н. Устойчивость трехмерных деформируемых тел. Киев: Наук, думка. 1971.276 с.

62. Гузь А. Н., Рудницкий В. Б. Основы контактного взаимодействия упругих тел с начальными (остаточными) напряжениями. Хмельницкий. 2006. 710 с.

63. Гузь А. Н., Кнюх В. И., Назаренко В. М. Пространственная осесимметричная задача о разрушении материала с двумя дискообразными трещинами при сжатии вдоль трещин // Прикл. механика. 1984. Т. 20. № 11. С. 3-20.

64. Гузь А. Н., Рудницкий В. Б. Основы теории контактного взаимодействия упругих тел с начальными (остаточными) напряжениями. Хмельницкий, 2006. 710 с.

65. ДовноровичВ. И. Пространственные контактные задачи теории упругости. Изд-во БГУ, Минск, 1959.

66. Зеленцов В. Б., Пузанов Ю. Е. Об эффективном методе решения интегральных уравнений задач теории трещин // Изв. СКНЦ ВШ. Естеств. науки. 1989. № 3. С. 16-32.

67. Зеленцов В. Б., Филиппова JI. М. Контактные задачи для предварительно напряженных полуплоскости и полосы // Изв. АН СССР. МТТ. 1989. №2. С. 73-76.

68. Зеленцов В. Б., Филиппова JI. М. Трещина на границе раздела предварительно напряженных упругих сред // ПММ. 1989. Т. 53. Вып. 5. С. 830-836.

69. Кильчевский Н. А., Костюк Э. И. О развитии в XX веке теории контактных взаимодействий между твердыми телами. ПМ, 1966, т. 2.

70. Клюшников В. Д. Физико-математические основы прочности и пластичности. М.: Изд-во МГУ. 1994. 189 с.

71. Костырева JI. А. Плоская контактная задача и задача о трещине для преднапряженного упругого слоя // Экологический вестник научных центров ЧЭС, 2009, № 3, с. 56-63.

72. Костырева Л. А. Продольная трещина в преднапряженном физически нелинейном упругом слое со свободными гранями // ПММ. 2009. Т. 74. Вып. 6. С. 1068-1072.

73. Лурье А. И. Нелинейная теория упругости. Наука, 1980.

74. Лурье А. И. Пространственные задачи теории упругости. М.: Гостехиздат, 1955. 491 с.

75. Михлин С. Г. Интегральные уравнения. Гостехиздат, 1949.

76. Морозов Н. Ф. Математические вопросы теории трещин. М.: Наука, 1984.

77. Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. Физматгиз, 1966.

78. Нобл Б. Метод Винера-Хопфа. М.: ИЛ, 1962. 280 с.

79. Новацкий В. Теория упругости. М.: Мир, 1975.

80. ПанасюкВ. В. Предельное равновесие хрупких тел с трещинами. Киев: Наукова думка, 1968.

81. Партон В. 3. Механика разрушения. М.: Физматлит. 1990. 239 с.

82. Партон В. 3., Морозов Е. М. Механика упругопластического разрушения. М.: ФМЛ. 1985. 505 с.

83. Попов Г. Я. Концентрация упругих напряжений возле штампов, разрезов, тонких включений и подкреплений. М.: Наука, 1982. 344 с.

84. ПорошинВ. С. Вдавливание штампа в преднапряженный физически нелинейный упругий слой // Изв. АН АрмССР. Механика. 1986. Т. 39. № 2.• С. 24-30.

85. Порошин В. С. О контактной задаче для сжимаемых упругопластических тел // Трение и износ. 1986. Т. 7. № 6. С. 1123-1127.

86. Рудницкий В. Б. Влияние начальных напряжений в слое на контактное давление при взаимодействии с цилиндрическим штампом // Прикл. механика. 1987. Т. 23. № 8. С. 11-19.

87. Рудницкий В. Б. Контактное взаимодействие предварительно напряженного слоя с двумя упругими штампами // Докл. АН УССР. Сер. А. 1987. №2. С. 56-61.

88. Рудницкий В. Б. Решение контактной задачи для предварительно напряженного слоя и штампа // Прикл. механика. 1987. Т. 23. № 3. С. 14-21.

89. Снеддон И. Преобразования Фурье. ИЛ, 1955.

90. УфляндЯ. С. Интегральные преобразования в задачах теории упругости. Л.: Наука, 1967.

91. Филиппова Л. М. О влиянии начальных напряжений на раскрытие круговой трещины // ПММ. 1983. Т. 47. Вып. 2. С. 286-290.

92. Филиппова Л. М. Осесимметричная контактная задача для предварительно напряженного упругого тела при наличии износа // Изв. СКНЦ ВШ. Естеств. науки. 1992. № 1-2. С. 31-35.

93. Филиппова Л. М. Плоская контактная задача для предварительно напряженного упругого тела // Изв. АН СССР. МТТ, 1973. № 3.

94. Филиппова Л. М. Пространственная контактная задача для предварительно напряженного упругого тела // ПММ. 1978. Т. 42. Вып. 6. С. 1080-1084.

95. Филиппова Л. М. Распределение напряжений вблизи кромки трещины в предварительно напряженном упругом теле // ПММ. 1986. Т. 50. Вып. 2. С. 320-327.

96. Филиппова Л. М. Устойчивость сжатого упругого слоя, ослабленного круговой трещиной // ПММ. 1988. Т. 52. Вып. 2. С. 327-330.

97. Филиппова Л. М., Цветков А. Н., ЧебаковМ. И. Взаимодействие жесткого бандажа с предварительно напряженным упругим цилиндром // Изв. АН СССР. МТТ. 1991. № 5. С. 51-56.

98. Филиппова Л. М., Цветков А. Н., Чебаков М. И. Плоская контактная задача для предварительно напряженного состояния тела прямоугольного сечения //Прикл. мех. 1990. Т. 26. № 12. С. 81-89.

99. Филиппова Л. М., ЧебаковМ. И. Контактная задача для предварительно напряженного конечного цилиндра // Изв. АН СССР. МТТ. 1988. № 2. С. 62-69.

100. Чаплыгин С. А. Давление жесткого штампа на упругое основание. Собрание сочинений, т. 3, Гостехиздат, 1950.

101. Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974.

102. Шерман Д. И. Метод интегральных уравнений в плоских пространственных задачах статической теории упругости. Труды Всесоюзного съезда по теоретической и прикладной механике. Наука, 1962.

103. Шерман Д. И. Основные плоские контактные задачи (смешанные задачи) статической теории упругости. В сб. «Механика в СССР за 30 лет». Гостехиздат, 1950.

104. Штаерман И. Я. Контактная задача теории упругости. М.: Гостехиздат, 1949. 270 с.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.