Клинические и генетические аспекты индивидуальной чувствительности к действию статинов у больных ишемической болезнью сердца с высоким риском развития неблагоприятных исходов тема диссертации и автореферата по ВАК РФ 14.01.05, кандидат медицинских наук Королева, Ольга Сергеевна

  • Королева, Ольга Сергеевна
  • кандидат медицинских науккандидат медицинских наук
  • 2011, Москва
  • Специальность ВАК РФ14.01.05
  • Количество страниц 158
Королева, Ольга Сергеевна. Клинические и генетические аспекты индивидуальной чувствительности к действию статинов у больных ишемической болезнью сердца с высоким риском развития неблагоприятных исходов: дис. кандидат медицинских наук: 14.01.05 - Кардиология. Москва. 2011. 158 с.

Оглавление диссертации кандидат медицинских наук Королева, Ольга Сергеевна

СПИСОК СОКРАЩЕНИЙ

ВВЕДЕНИЕ

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Роль статинов в профилактике и лечении сердечно-сосудистых заболеваний

1.2. Фармакогенетические исследования статинов

1.2.1. Фармакогенетические исследования метаболизма статинов

1.2.2. Фармакогенетические исследования метаболизма липидов

1.2.3. Фармакогенетические исследования нелипидных эффектов статинов

ГЛАВА 2. ХАРАКТЕРИСТИКА БОЛЬНЫХ И МЕТОДЫ 42 ИССЛЕДОВАНИЯ

2.1. Протокол исследования

2.1.1. Изучение риска развития неблагоприятных исходов у больных перенесших обострение ИБС

2.1.2. Фармакогенетическое исследование статинов

2.2. Клиническая характеристика обследованных групп больных

2.3. Определения

2.4. Методы обследования

2.4.1. Эхокадиографическое обследование

2.4.2. Цветное дуплексное сканирование экстракраниальных отделов брахиоцефальных артерий

2.4.3. Исследование крови

2.4.3.1. Биохимическое исследование крови

2.4.3.2. Исследование полиморфизма генов

2.5. Статистическая обработка результатов

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1. Прогностическое влияние полиморфного маркера Trp719Arg гена KIF6 на риск развития неблагоприятных исходов у больных, перенесших обострение ИБС

3.2. Фармакогенетическое исследование статинов

3.2.1. Индивидуальная чувствительность к аторвастатину 10 и

80 мг/сут

3.2.1.1. Генетические аспекты индивидуальной чувствительности к аторвастатину

3.2.2. Индивидуальная чувствительность к симвастатину мг/сут

3.2.2.1. Генетические аспекты индивидуальной чувствительности к симвастатину

ГЛАВА 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

ВЫВОДЫ

Рекомендованный список диссертаций по специальности «Кардиология», 14.01.05 шифр ВАК

Введение диссертации (часть автореферата) на тему «Клинические и генетические аспекты индивидуальной чувствительности к действию статинов у больных ишемической болезнью сердца с высоким риском развития неблагоприятных исходов»

Сердечно-сосудистые заболевания (ССЗ) из года в год сохраняют лидирующую позицию среди причин смертности и инвалидизации во всем мире и имеют тенденцию к «омоложению». По данным Всемирной организации здравоохранения продолжительность жизни на 50% определяется наличием именно ССЗ. В основном это касается заболеваний, связанных общим патогенетическим механизмом — атеросклерозом. По данным патологоанатомических исследований за последнюю четверть XX века среди мужчин одного возраста распространенность и выраженность атеросклероза увеличилась [14]. В структуре смертности от ССЗ на долю осложнений ишемической болезни сердца (ИБС) приходитея 46,8 % [27]. В России смертность от ССЗ намного выше чем в развитых странах, в то время как разработка и внедрение профилактических программ существенно отстает [28].

На распространенность и скорость прогрессирования атеросклеротического поражения, а также на частоту развития осложнений оказывают влияние не только «классические» факторы риска (ФР), такие как мужской пол, возраст, раннее развитие ИБС у ближайших родственников, сахарный диабет (СД), артериальная гипертензия (АГ), курение, ожирение, нарушения липидного обмена, инсулинорезистентность, тромбогенные факторы и гиподинамия, но и еще целый ряд факторов, которые труднее выявляются и коррегируются. Это медиаторы воспаления, компоненты системы метаболизма липидов, маркеры повреждения миокарда и многие другие. Следует отметить, что количество выявляемых ФР неуклонно растет. Большинство из них взаимосвязаны и часто потенцируют влияние друг друга, усугубляя риск неблагоприятного исхода (НИ).

Риск развития осложнений существенно повышается у больных, перенесших обострение ИБС, особенно с манифестацией в раннем возрасте [4]. Важным направлением исследований является поиск факторов, способных прогнозировать течение заболевания. Разработано множество шкал, позволяющих предсказывать НИ после эпизода обострения ИБС. Однако ни одна из этих моделей не является универсальной, а большая их часть разработана с учетом зарубежных стандартов ведения больных [3] и пока не ясно, можно ли их переносить на российскую группу больных из-за разного этнического состава, стандартов диагностики и лечения [40, 41].

Широко обсуждается возможность включения в стратификационные шкалы генетических факторов, так как именно они более чем на 50% определяют риск развития ССЗ [8, 25], при этом их роль в оценке риска у больных с ИБС изучена недостаточно [7]. Методы генетического типирования становятся все более доступными в клинической практике [231], что позволяет оценить генетический риск развития заболевания и выработать новые подходы к индивидуализации терапии. Известно, что генетические факторы наиболее значимы у больных с ранним развитием ССЗ, и их роль активно изучается преимущественно в этой группе. Сформирован подход к выделению так называемых генов-кандидатов, то есть генов, продукты экспрессии которых (ферменты, гормоны, рецепторы, структурные или транспортные белки) прямо или косвенно участвуют в развитии ССЗ, определяют течение болезни или влияют на индивидуальный ответ на то или иное лекарство.

Использование методов генетического тестирования наиболее актуально для индивидуализации лечения больных. Фармакогенетические закономерности выявлены в действии большого числа лекарств, в том числе статинов.

Перспективным является изучение роли суперсемейства универсальных моторных белков - кинезинов в процессах атерогенеза. В общегеномных исследованиях ассоциаций (С\УА8) была обнаружена взаимосвязь полиморфизма гена кинезина 6 (К1Гб) с развитием ИБС и инфаркта миокарда (ИМ). Однако наиболее интересными являются данные, касающиеся влияния полиморфизма гена К1Р6 на эффективность статинов.

Статины относятся к группе препаратов, которые показаны достаточно большому количеству людей, и сейчас представляют собой нечто большее, чем просто препараты, снижающие уровень липидов в крови. Польза от их применения неоспорима и позволяет снизить сердечно-сосудистую смертность на 30%. Однако известно, что статины, снижая риск неблагоприятных последствий атеросклероза, не предотвращают их полностью и эффективны далеко не у всех больных. Наибольший интерес представляет изучение причин, по которым разные эффекты статинов по-разному проявляются в популяции.

Доказано, что на вариабельность результатов любой лекарственной терапии влияет целый ряд факторов, однако основное влияние приходится на генетические особенности индивидов (50-90%). Исследование ассоциации генетического полиморфизма с эффективностью медикаментозной терапии -один из путей индивидуализации подхода к подбору терапии [281].

В результате фармакогенетических исследований статинов выявлен ряд генов, мутации в которых приводят к изменению фармакологического ответа. Тем не менее, поиск новых генетических маркеров индивидуальной чувствительности к действию статинов сегодня перспективен и актуален. А идея "персонализированной медицины" является долгожданным воплощением врачебного идеала "лечить не болезнь, а больного", когда диагностика и лечение могли бы полностью учитывать генетическую индивидуальность.

ЦЕЛЬ ИССЛЕДОВАНИЯ

Изучение индивидуальной чувствительности к действию статинов у больных ишемической болезнью сердца с высоким риском развития неблагоприятных исходов с использованием клинических, лабораторных и генетических параметров.

ЗАДАЧИ ИССЛЕДОВАНИЯ

1. Оценить частоту встречаемости генотипов полиморфного маркера Тгр719А^ гена К1Г6 и его прогностическое влияние на развитие неблагоприятных исходов у больных, перенесших обострение ИБС в зависимости от применения статинов.

2. Оценить вариабельность гиполипидемического и нелипидного действия аторвастатина в дозе 10 и 80 мг у больных с ранним развитием ИБС и ее ассоциацию с клиническими, лабораторными и генетическими параметрами.

3. Оценить вариабельность гиполипидемического и нелигтидного действия симвастатина в дозе 40 мг у больных с ранним развитием ИБС и ее ассоциацию с клиническими, лабораторными и генетическими параметрами.

НАУЧНАЯ НОВИЗНА РАБОТЫ

В работе впервые изучена частота встречаемости генотипов полиморфного маркера Тгр719А^ гена К1Г6 в российской группе больных ИБС. В результате проспективного пятилетнего наблюдения выявлена независимая ассоциация генотипа А^А^ с развитием неблагоприятных исходов у женщин с манифестацией ИБС преимущественно в раннем возрасте. Статины более значимо улучшают прогноз у этой категории больных.

Определены клинические, лабораторные и генетические особенности, связанные с вариабельностью действия аторвастатина и симвастатина у больных ИБС с высоким риском развития неблагоприятных исходов. Впервые обнаружено, что гиполипидемическое и нелипидное действие аторвастатина более выражено у носителей генотипа ТгрТгр полиморфного маркера Тгр719Агена К1Р6, генотипа АЛ полиморфного маркера А(-290)0 гена СУРЗА4, генотипа ММ полиморфного маркера Ме1455Ткг гена СУРЗА4, генотипа СО полиморфного маркера С6986А гена СУРЗА5 и генотипа СС полиморфного маркера С(-1947)А гена НМССШ.

Впервые выявлено, что гиполипидемическое действие симвастатина более выражено у носителей аллеля Т полиморфного маркера Ме1455ТИг гена СУРЗА4, аллеля А полиморфного маркера 06986А гена СУРЗА5, аллеля (7 полиморфного маркера А(-290)С и аллеля А полиморфного маркера 06986А гена СУРЗА5. Генотип (7(7 полиморфного маркера С(-198)А гена РОВТ! отражает противоположное влияние симвастатина на липиды крови и нелипидные показатели.

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ

Обоснована необходимость генетического тестирования больных, перенесших обострения ИБС для более точного прогнозирования развития неблагоприятных исходов. Определение генотипа ArgArg полиморфного маркера Тгр719Arg гена KIF6 позволяет выделить группу лиц с максимальным риском развития неблагоприятных исходов и с наиболее высокой эффективностью терапии статинами.

Определение генотипов полиморфных маркеров генов системы метаболизма статинов и кинезина 6 позволяет выделить группу больных в большей мере чувствительных к терапии аторвастатином и симвастатином.

Аторвастатин вызывает более значимое повышение anoAl у носителей генотипа ТгрТгр полиморфного маркера Trp719Arg гена KIF6, генотипа ММ полиморфного маркера Met455Thr гена CYP3A4 и генотипа АА полиморфного маркера A(-290)G гена CYP3A4; более значимое снижение ТГ у носителей генотипа GG полиморфного маркера G6986A гена CYP3A5 и более значимое снижение МДА у носителей генотипа СС полиморфного маркера С(-1947)А гена HMGCR1.

Симвастатин вызывает более значимое снижение ОХС у носителей аллеля Т полиморфного маркера Met455Thr гена CYP3A4; ОХС и ЛНП - у носителей аллеля А полиморфного маркера G6986A гена CYP3A5; ТГ - у носителей аллеля G полиморфного маркера A(-290)G и аллеля А полиморфного маркера G6986A гена CYP3A5. Генотип GG полиморфного маркера G(-198)A гена FDFT1 ассоциирован с менее значимым снижением ТГ, менее значимым повышением anoAl, но более значимым снижением МДА.

Выявление указанных генетических особенностей позволяет индивидуализировать подбор статинов и их доз для повышения терапевтического эффекта. предрасположенность, во время как у пожилых больных преобладает влияние средовых факторов, вероятно изменяющееся на протяжении жизни. Эпидемиологические исследования демонстрируют значительные различия в профилях риска у молодых больных по сравнению с более пожилыми больными. Известно, что почти у половины пациентов клиническая манифестация ИБС происходит до 65 лет, у более 5% больных возраст начала заболевания не превышает 40 лет [2, 4, 342] и за последнее время наметилась четкая тенденция к «омоложению» ИБС. Доказано, что семейный анамнез по раннему развитию ИБС у родственников первой степени родства является установленным фактором риска ИБС. В Шведском исследовании с участием 21000 близнецов, родившихся между 1886 и 1925 годами, было обнаружено, что среди близнецов мужского пола относительный риск смерти от ИБС, если один из них умер от ИБС в возрасте моложе 55 лет, составил 8.1 для монозиготных и 3.8 гетерозиготных близнецов [211]. Половые различия также имеют большое значение в развитии ИБС и являются важным прогностическим фактором [57, 220, 277]. По данным японских исследователей, 82,3% фатальных ИМ приходится на долю мужчин и только 17,7% - на долю женщин.

Связь генетических факторов с ранним развитием ИБС сегодня активно изучается [7, 9, 17, 26, 29, 32, 71, 123, 171, 347]. Существует 2 основных типа исследований, изучающих связь между полиморфизмом генов и заболеванием — это анализ сцепления и ассоциативные исследования. Анализ сцепления исследует косегрегацию полиморфных маркеров с наследуемостью заболевания в семьях, он успешно применяется при выявлении моногенных заболеваний. Однако этот метод является очень трудоемким и крайне сложен при исследовании полигенных заболеваний. Ассоциативные исследования являются альтернативным методом анализа генетически сложных заболеваний, обычно используется подход с использованием генов-кандидатов. На основании известных патофизиологических характеристик заболевания, делаются предположения о генах, которые могут быть вовлечены в его патогенез. Этот подход является более направленным, чем анализ сцепления, но ограничивается недостатком знаний о механизмах заболевания и таким образом может приводить к выпадению из анализа многих важных генов. Кроме того, анализ сцепления проводится в отдельных семьях, а генетическая ассоциация представляет собой популяционный феномен и данный подход является более перспективным при изучении ИБС [342].

В качестве генов-кандидатов развития атеросклероза и его последствий в настоящее время рассматривается более 500 генов. Данные целого ряда исследований позволяют говорить об ассоциации некоторых полиморфных маркеров генов, кодирующих компоненты системы метаболизма липидов [19, 20, 35] и факторы системы гемостаза [9, 13, 16, 18, 31, 32] с развитием НИ у больных ИБС. Однако результаты этих исследований нередко противоречивы, в связи с чем, актуален поиск новых, универсальных генетических маркеров, позволяющих боле точно оценить прогноз у больных с высоким риском развития НИ с учетом расовых и половых различий.

Знание генетических факторов, предрасполагающих к развитию заболевания и его осложнений, имеет важное прогностическое значение и может использоваться до появления каких-либо клинических или биохимических симптомов болезни с целью выделения особой группы больных для более пристального наблюдения и более «агрессивного» лечения.

Похожие диссертационные работы по специальности «Кардиология», 14.01.05 шифр ВАК

Заключение диссертации по теме «Кардиология», Королева, Ольга Сергеевна

ВЫВОДЫ

1. Частота генотипов полиморфного маркера Trp719Arg гена KIF6 в российской группе больных ИБС сопоставима с европейской популяцией. У больных с наиболее высоким риском развития неблагоприятных исходов после эпизода обострения ИБС (у женщин с манифестацией заболевания до 55 лет) генотип ArgArg ассоциируется с наихудшим прогнозом, который существенно улучшается при применении статинов именно в этой группе.

2. Гиполипидемическое и нелипидное действие аторвастатина в дозе 10 и 80 мг/сут отличается большой вариабельностью. На изменение уровня ЛВП на фоне минимальной дозы влияет курение, а на уровень ТГ - исходный уровень мочевой кислоты; на фоне максимальной дозы клинические и лабораторные ассоциации утрачиваются.

3. Действие аторвастатина зависит от генетических особенностей, при этом генотип ТгрТгр полиморфного маркера Trp719Arg гена KIF6, генотип ММ полиморфного маркера Met455Thr гена CYP3A4 и генотип АА полиморфного маркера A(-290JG гена CYP3A4 ассоциированы с более значимым повышением anoAl; генотип GG полиморфного маркера G6986A гена CYP3A5 - с более значимым снижением ТГ, а генотип СС полиморфного маркера С(-1947)А гена HMGCR1 - с более значимым снижением МДА.

4. Гиполипидемическое и нелипидное действие симвастатина демонстрирует выраженную вариабельность. На ранних сроках терапии на изменение уровня МДА влияет курение, а на уровень Лл-СРБ - отягощенная наследственность по раннему развитию ИБС; через 42 дня лечения данные факторы утрачивают свое влияние.

5. Действие симвастатииа обусловлено полиморфизмом генов системы метаболизма статинов, при этом наличие в генотипе аллеля Т полиморфного маркера Ме1455Ткг гена СУРЗА4 ассоциировано с более значимым снижением ОХС, аллеля А полиморфного маркера С6986А гена СУРЗА5 - с более значимым снижением ОХС и ЛНП; аллеля О полиморфного маркера А (-290) О и аллеля А полиморфного маркера С6986А гена СУРЗА5 - с более значимым снижением ТГ. Генотип ОО полиморфного маркера 0(-198)А гена РИРТ! ассоциирован с менее значимым снижением ТГ, менее значимым повышением апоА1, но более значимым снижением МДА.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

1. Больным, перенесшим обострение ИБС, показано определение генотипов полиморфного маркера Тгр719Агена ШРб. Наличие генотипа А^А^ у женщин с манифестацией ИБС в возрасте до 55 лет выделяет группу больных с максимальным риском развития неблагоприятных исходов, нуждающихся в более углубленном обследовании, проведении лечебно-профилактических мероприятий и является дополнительным основанием для назначения статинов с целью снижения частоты развития этих исходов.

2. Выявление генотипа ТгрТгр полиморфного маркера Тгр719Аг^ гена К1Р6, генотипа ММ полиморфного маркера Met455Thr гена СУРЗА4, генотипа АА полиморфного маркера А(-290)0 гена СУРЗА4, генотипа С/б полиморфного маркера 06986А гена СУРЗА5 и генотипа СС полиморфного маркера С(-1947)А гена НМОСЯ! позволяет отобрать больных, у которых аторвастатин более эффективен по влиянию на липиды крови и нелипидные показатели.

3. Выявление аллеля Г полиморфного маркера Ме1455Ткт гена СУРЗА4, аллеля полиморфного маркера А (-290) О, аллеля А полиморфного маркера 06986А гена СУРЗА5 и аллеля А полиморфного маркера 0(-198)А гена РОРТ] позволяет выделить группу больных, у которых симвастатин более эффективен по влиянию на липиды крови и нелипидные показатели.

Список литературы диссертационного исследования кандидат медицинских наук Королева, Ольга Сергеевна, 2011 год

1. Аверков О.В., Качалков Д.В., Грацианский H.A., Затейщиков Д.А., Логутов Ю.А. Нестабильная стенокардия: связь данных обследования при поступлении с исходами в период госпитализации. Значение показателей гемостаза. Кардиология, 1994; 7:11-20.

2. Алмазов В.А., Беркович O.A., Ситникова М.Ю. и др. Эндотелиальная дисфункция у больных с дебютом ишемической болезни сердца в разном возрасте // Кардиология. 2001. №5.

3. Аронов Д.А. Первичная и вторичная профилактика сердечнососудистых заболеваний интерполяция на Россию. Сердце; 2002: № 3: 109-112.

4. Аронов Д.М. Социальные аспекты атеросклероза и методы его лечения //Русский медицинский журнал. 2000; 8(7):27б-283.

5. Аронов Д.М., Николаева Л.Ф., Михеева Т.Г., Мучник И.В., Новиков С.Г. Прогнозирование летальных исходов в отдаленном периоде после инфаркта миокарда// Терапевтический архив. 1989; 61(9):49-52.

6. Бабак О.Я., Кравченко H.A., Виноградова C.B. Генетические аспекты фармакотерапии при сердечно-сосудистой патологии // Укр. терапевт, журн. 2006; 2:92-99.

7. Беркович O.A., Баженова Е.А., Волкова Е.В. и др. I/D полиморфизм гена ангиотензинпревращающего фермента у мужчин, перенесших инфаркт миокарда в молодом возрасте. Российский физиологический журнал им. И.М.Сеченова. 2001; Т.87: N5: 642-648.

8. Данковцева E.H., Затейщиков Д.А., Чудакова Д.А. и др. Ассоциация генов факторов гемостаза с ранним развитием ишемической болезни сердца иманифестацией инфаркта миокарда в молодом возрасте. Кардиология. 2005 ;№ 12:17-24.

9. Дриницина С., Затейщиков Д. Антиоксидантные свойства статинов. Кардиология 2005;4:65-72.

10. Дриницина С., Торховская Т., Азизова О. и др. Взаимосвязь между окислительной устойчивостью и холестерин-акцепторной способностью липопротеинов высокой плотности у больных ишемической болезнью сердца. Кардиология 2004;5:36-39.

11. Дупляков Д.В., Емельяненко В.М., Сысуенкова Е.В., Светлакова Л.П., Го лева C.B. Прогнозирование течения стабильной ишемической болезни сердца с помощью стресс-эхокардиографии с велоэргометрией. Кардиология 2004;10:19-25.

12. Жданов B.C., Стернби Н.Г., Галахов И.Е., Вихерт A.M., Душкова Я. Особенности эволюции атеросклероза за 25-летний период у мужчин с различными темпами развития атеросклероза в пяти европейских городах// Кардиология.-2001.-Т.41.-№7:-С.4-8.

13. Затейщиков Д.А., Чудакова Д.А., Данковцева E.H. и др. Полиморфные маркеры С(-426)Т гена F5 и С(-677) гена MTHFR ассоциированы с ранним развитием инфаркта миокарда. // Кардиоваскулярная терапия и профилактика, 2005; 4(Прил4):123.

14. Затейщиков Д.А., Селезнева Н.Д., Минушкина Л.О. и др. Полиморфный маркер 4G(-675)5G гена ингибитора активатора плазминогена 1 типа и система гемостаза у больных ишемической болезнью сердца // Тромбозы, кровоточивость и болезни сосудов. 2002; 2:27-32.

15. Затейщиков Д.А., Чумакова О.С., Затейщикова A.A. и др. Генетические предикторы неблагоприятного течения заболевания у больных ишемической болезнью высокого риска по данным 2-летнего наблюдения. Кардиология, 2004, №12, с. 16-22.

16. Ивлева А .Я. Фармако-экономические обоснования применения липидснижающих средств//Кардиология. 1998; 38(4):4-7.

17. Короткова A.A., Титов В.Н., Староверов И.И. Прогностическая роль кардиоспецифичного тропонина I у больных с острым коронарным синдромом без подъема сегмента ST// Кардиология. 2002; 42(4): 19-22.

18. Кравченко H.A., Ярмыш Н.В. Биохимические и молекулярно-генетические механизмы регуляции синтеза оксида азота эндотелиальной NO-синтазой в норме и при сердечно-сосудистой патологии // Укр. терапевт, журн. 2007; 1:82-89.

19. Лоллини В. А., Пилант А.П., Халед Шумари. Постинфарктное ремоделирование сердца, диагностические критерии и их прогностическое значение. Новости лучевой диагностики 2000 2, приложение: 69-70.

20. Малыгина H.A., Костомарова И.В., Серова Л.Д. О генетическойпредрасположенности к ишемической болезни сердца у больных пожилого и старческого возраста. Тезисы докладов VII Российского национального конгресса «Человек и лекарство»; М.,2000: С.6.

21. Носиков В.В., Затейщиков Д.А., Никитин А.Г. и др. Генетические основы наследственной предрасположенности к ишемической болезни сердца. Анализ ассоциации генов GNB3, NOS3 и AT2R1 // Кардиоваскулярная терапия и профилактика. 2004; 3(4):355.

22. Оганов Р.Г., Калинина A.M., Поздняков Ю.М. Профилактическая кардиология: Руководство для врачей. М., 2007. 213 с.

23. Оганов Р.Г., Масленникова Г.Я. Сердечно-сосудистые заболевания в Российской Федерации во второй половине XX столетия: тенденции, возможные причины, перспективы// Кардиология. 2000; 40(6):4-8.

24. Савченкова А., Дудник JL, Соловьева Н., Азизова О. Кинетические закономерности медь-индуцированного окисления липидов и сыворотки крови. Биомед. химия 2003;6:576-587.

25. Селезнева Н.Д., Затейщиков Д.А., Сидоренко Б.А. Полиморфизм генов тканевого активатора плазминогеан и ингибитора тканевого активатора плазминогена 1 типа: возможная связь с атеросклерозом и его осложнениями//Кардиология. 2003; 43(8):60-67.

26. Сыркин А., Азизова О., Дриницина С., Соловьева Н., и др. Связь междутяжестью стенокардии, ее стабильностью и уровнем окислительной модификации липидов у больных ишемической болезнью сердца. Тер. Архив. 2001;9:38-42.

27. Торховская Т., Иванова JL, Азизова О., Дриницина С. и др. Способ оценки холестерин-акцепторной емкости липопротеинов высокой плотности плазмы крови. Биомедицинская химия 2004; 6:615-620.

28. Чумакова О.С., Якунина Н.Ю., Затейщиков Д.А. и др. Ассоциация полиморфных маркеров генов PONI и PON2 с уровнем липидов крови у больных ишемической болезнью сердца // Кардиоваскулярная терапия и профилактика. 2004; 3(4):529-530.

29. Швец О.И., Мазур H.A. Сердечный тропонин I у больных с нестабильной стенокардией, сравнение с данными, полученными при инфаркте миокарда без зубца Q// Кардиология. 1999; 39(11):38-41.

30. Швец О.И., Мазур H.A., Танхилевич Б.М. Сердечный тропонин I у больных инфарктом миокарда, динамика его содержания в крови и связь с объемами некроза//Кардиология. 1999; 39(9):53-56.

31. Явелов И.С., Грацианский H.A. Российский регистр острых коронарных синдромов: лечение и исходы в стационаре при остром коронарном синдроме без подъемов сегмента ST. Кардиология. 2003; 12:16-29.

32. Явелов И.С., Грацианский H.A. Российский регистр острых коронарныхсиндромов: лечение и исходы в стационаре при остром коронарном синдроме с подъемами сегмента ST. Кардиология. 2004; 4:4-13.

33. Янчайтите Л., Растяните Д. Прогноз у больных, перенесших инфаркт миокарда с зубцом Q нижней или передней локализации. Кардиология, 2007;8:36-39.

34. Abifadel M.; Varret M.; Rabes J. P. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet 2003; 34, 154-156.

35. Albert C.M.; Ma J.; Rifai N. et al. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 2002; 105, 2595-2599.

36. Alzahrani S., Dzimiri N. The Role of the CYP3A4 Gene Variants in Lipid-Lowering Efficacy of Simvastatin Therapy Arterioscler Thromb Vase Biol 2007; 27; e35-el37.

37. Amar J., Chamontin В., Ferriéres J. et al. Hypertension control at hospital discharge after acute coronary event: influence on cardiovascular prognosis—the PREVENIR study. Heart. 2002 December; 88(6): 587-591.

38. Ameyaw M.M.; Regateiro F.; Li T. et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001; 11, 217- 221.

39. Antonicelli R, Olivieri F, Bonafe M. et al. The interleukin-6 G174C promoter polymorphism is associated with a higher risk of death after an acute coronary syndrome in male elderly patients II Int. J. Cardiol. 2005; 103(3):266-71.

40. Arazi S.S.; Genvigir F.D.; Willrich M.A. et al. Atorvastatin effects on SREBPla and SCAP gene expression in mononuclear cells and its relation with lowering-lipids response. Clin. Chim. Acta 2008; 393(2), 119-124.

41. Argmann C., Edwards J., Sawyez C. et al. Regulation of macrophage cholesterol efflux through hydroxymethylglutaryl-CoA reductase inhibition: a role for RlioA in ABCA1-mediated cholesterol efflux. J Biol Chem. 2005; 280(10):2212-2221.

42. Ariyarajah V., Malinski M., Zieroth S. et al. Risk stratification for recurrent heart failure in patients post-myocardial infarction with electrocardiographic and echocardiographic left atrial abnormality. Am J Cardiol. 2008; 101(10):1373-8.

43. Assimes T.L., Ho'lm H., Kathiresan S. et al. Lack of Association Between the Trp719Arg Polymorphism in Kinesin-Like Protein-6 and Coronary Artery Disease in 19 Case-Control Studies J Am Coll Cardiol 2010;56:1552-63.

44. Ballantyne C, Herd J, Stein E et al. Apolipoprotein E genotypes and response of plasma lipids and progression-regression of coronary atherosclerosis to lipid-lowering therapy In Process Citation. J Am Coll Cardiol 2000; 36:1572-1578.

45. Balram C.; Zhou Q.; Cheung Y. B. and Lee E. J. CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur. J. Clin Pharmacol 2003; 59, 123-126.

46. Barret-Connor E. Sex differences in coronary heart disease—why are women so superior/ Circulation 1997; 95:252-64.

47. Basso F, Lowe GD, Rumley A et.al. Interleuldn-6 -174G>C polymorphism and risk of coronary heart disease in West of Scotland coronary prevention study (WOSCOPS). Arterioscler Thromb Vase Biol 2002; 22(4):599-604.

48. Bercovich D.; Friedlander Y.; Korem S. et al. The association of common SNPs and haplotypes in the CETP and MDR1 genes with lipids response to fluvastatin in familial hypercholesterolemia. Atherosclerosis 2006; 185, 97-107.

49. Berge K.E.; Ose L., Leren T.P. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler. Thromb. Vase. Biol 2006; 26, 1094-1100.

50. Bergland L, Wiklund O, Eggertsen G et al. Apolipoprotein E phenotypes in familial hypercholesterolaemia: importance for expression of disease and response to therapy. J Intern Med 1993; 233:173-178.

51. Berk-Planken I.L, Hoogerbrugge N., Stolk R.P. et al. Atorvastatin dose-dependently decreases hepatic lipase activity in type 2 diabetes. Effect of sex and the LIPC promoter variant // Diabetes Care. 2003. Vol. 26. P. 427-432.

52. Bertz R.J. and Granneman G.R. Use of in, vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. // Clin. Pharmacokinet. 1997.V.32(3):210-258.

53. Blankenberg S; Rupprecht H; Bickel C. et al. Common genetic variation of the cholesteryl ester transfer protein gene strongly predicts future cardiovascular death in patients with coronary artery disease. J. Am. Coll. Cardiol 2003; 41, 1983-9.

54. Boekholdt S.; Kuivenhoven J.; Hovingh G. et al. CETP gene variation: relation to lipid parameters and cardiovascular risk. Curr.Opin.Lipidol 2004; 15, 393-8.

55. Boersma E., Pieper K. S., Steyerberg E.W. et al. Predictors of Outcome in Patients With Acute Coronary Syndromes Without Persistent ST-Segment Elevation Results From an International Trial of 9461 Patients. Circulation. 2000;101:2557-2567.

56. Bologo C, Baetta R, Bellosta S et al. Safety considerations for statins, Curr Opin Lipidol 2002;13:637-644.

57. Bray P.F., Cannon C.P., Goldschmidt-Clermont P. et al. The platelet PI (A2) and angiotensin-converting enzyme (ACE) D allele polymorphisms and the risk ofrecurrent events after acute myocardial infarction. Am J Cardiol. 2001; 88:347-52.

58. Brown C., Windass A., Bleasby K., Lauffart B. Rosuvastatin is a high affinity substrate of hepatic organic anion transporter OATP-C. Atheroscl 2001; 90:174.

59. Bruce C, Sharp DS, Tall AR. Relationship of HDL and coronary heart disease to a common amino acid polymorphism in the cholesteryl-ester transfer protein in men with and without hypertrigliceridemia. J Lipid Res 1998; 39:1071-1078.

60. Cambien F., Niret L. Genetics of Cardiovascular Diseases. From Single Mutations to the Whole Genome Circulation. 2007; 116:1714.

61. Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol. Ther 2006; 112, 457-473.

62. Ceriello A. Acute hyperglycaemia: a "new" risk factor during myocardial infarction. Eur Heart J 26:328-331, 2005.

63. Chasman D.I.; Posada D.; Subrahmanyan L. et al. Pharmacogenetic Study of Statin Therapy and Cholesterol Reduction JAMA. 2004; 291:2821-2827

64. Chasman D. I.; Posada D.; Subrahmanyan L. et al. Pharmacogenetic study of statin therapy and cholesterol reduction. World J. Gastroenterol 2004; 291, 2821-7.

65. Chazov E., Tertov V., Orekhov A. et al. Ahterogenicity of blood serum from patients with coronary heart disease. Lancet 1986; 2:595-598.

66. Choi J.; Lee M.; Cho J. et al. Influence of OATP1B1 genotype on the pharmacokinetics of rosuvastatin in Koreans. Clin. Pharm. Ther 2008; 83:251-7.

67. Choudhuri S. and Klaassen C. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol 2006; 25, 231-259.

68. Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar? Pharmacol Ther 1998; 80:1-34.

69. Chung J.Y.; Cho J.Y.; Yu K.S. et al. Effect of OATP1B1 (SLCOIB1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther 2005; 78, 342-350.

70. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. National Institutes of Health, 1998

71. Collinson P.O., Gaynor G.H., Gaze D.C. Cardiac troponin I measurement using the ACS: 180 to predict four-year cardiac event rate. Ann Clin Biochem. 2008, 45(2): 184-8.

72. Corsini A, Bellosta S, Baetta R et al. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 1999; 84:413-428.

73. Couvert P, Giral P, Dejager S et al. Association between a frequent allele of the gene encoding OATP1B1 and enhanced LDL-lowering response to fluvastatin therapy. Pharmacogenomics 2008; 9, 1217-1227.

74. Am. Coll. Cardiol 2004; 43, 854-857.

75. De Jong F.A.; Marsh S.; Mathijssen R.H. et al. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin. Cancer Res 2004; 10, 5889-5894.

76. De Lemos J.A., Morrow D.A., Bentley J.H. et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med 2001;345:1014-21.

77. De Maat MP, Jukema JW, Ye S et al. Effect of the stromelysin-1 promoter on efficacy of pravastatin in coronary atherosclerosis and restenosis. Am J Cardiol. 1999; 83:852-6.

78. Dedoussis G.V.; Schmidt H. and Genschel J. LDL-receptor mutations in Europe. Hum. Mutat 2004; 24, 443-459.

79. Deeb SS, Peng R. The C-514T polymorphism in the human hepatic lipase gene promoter diminishes its activity. J Lipid Res 2000; 41:155-158.

80. Deng J.; Song I.; Shin H. et al. The effect of SLC01B1*15 on the disposition of pravastatin and pravastatin is substrate dependent: the contribution of transporting activity changes by SLCOIBI :;:15. Pharm.Gen. 2008; 18, 424-433.

81. Desai A., Verma S., Mitchison T.J. et al. Kin I kinesins are microtubule-destabilizing enzymes. Cell. 1999; 96(l):69-78.

82. Diet and Lifestyle recommendations revision 2006.

83. Dimitroulakos J, Yeger H. HMG-CoA reductase mediates the biological affects of retinoic acid on human neurublastona cells: lovastatin specifically targets P-glycoprotein-expressing cells. Nat Med 1996; 2:326-33.

84. Downs JR, Clearfield M, Weis S et al. Primary prevention of acute coronary events with lovastatine in men and women with average cholesterol levels. Results of AFCAPS/TexCAPS. JAMA 1998; 279:1615-1622.

85. Edwards PA, Ericsson J. Sterols and isiprenoids: signaling molecules derived from the biosynthetic pethvay. Annu Rev Biochem 1999; 68:157-85.

86. Elrayess M.A., Webb K.E., Flavell D.M. et al. A novel functional polymorphism in the PECAM-1 gene (53G>A) is associated with progression of atherosclerosis in the LOCAT and REGRESS studies // Atherosclerosis. 2003. Vol.l68(l):131-138.

87. Endow S.A. Microtubule motors in spindle and chromosome motility. Eur. J. Biochem. 1999; 262(1): 12-18.

88. Evans WE, McLeod HL. Pharmacogenomics drug disposition, drug targets, and side effects. N Engl J Med 2003;348:538-49

89. Fan R., Zhang B., Kuroki S. et al. Pitavastatin, a Potent Hydroxymethylglutaryl Coenzyme a Reductase Inhibitor, Increases Cholesterol 7-Hydroxylase gene Expression in HepG2 Cells. Circ J 2004; 68:1061-1066

90. Fiegenbaum M, da Silveira FR, Van der Sand CR et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 2005; 78: 551-558.

91. Fiegenbaum M., Silveira F.R., Van der Sand C.R. et al. Determinants of variable response to simvastatin treatment: the role of common variants of SCAP, SREBF-la and SREBF-2 genes // Pharmacogenomics J. 2005. Vol.5(6):359-364.

92. Fisher E, Scharnagl H, Hoffmann MM et al. Mutations in the apolipoprotein (apo) B-100 receptor-binding region: detection of apo B-100 (Arg3500- ->Trp) associated with two new haplotypes and evidence that apo B-100 (Glu3405-

93. Gln) diminishes receptor-mediated uptake of LDL. J Clin Chem 1999; 45(7): 1026-1038.

94. Fox K., Cokkinos D., Deckers J. et al. On behalf of the ENACT (European Network for Acute Coronary Treatment) investigators The ENACT study: a pan-European survey of acute coronary syndromes. Eur Heart J 2000; 21: 1440-1449.

95. Fransis G.A. HDL oxidation; in vitro susceptibility and potential in vivo consequences. Biochim Biophys. Acta 2000; 1483:217-35.

96. Freeman DG, Wilson V, McMahon AD et al. Polymorphism of the cholesteryl-ester transfer protein (CETP) gene predicts cardiovascular events in the West of Scotlands Coronary Prevention Study (WOSCOPS) Atherosclerosis 2000; 15: 91.

97. Fried L.P., Borhani N.O., Enright P. et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol. 1991; 1:263-276.

98. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18:499-502

99. Fuhrman B., Koren L.,.Volcova N. et al. Atorvastatin therapy in hypercholesterolemic patients supresses cellular uptake of oxidized-LDL by differentiating monocytes. Atherosclerosis 2002; 164:179-185.

100. Fujino H.; Yamada I.; Shimada S. et al. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: human UDP-glucuronosyltransferase enzymes involved in lactonization. Xenobiotica 2003; 33, 27-41.

101. Gale C.P., Manda S.O., Weston C.F. et al. Evaluation of risk scores for risk stratification of acute coronary syndromes in the Myocardial Infarction National Audit Project (MINAP) database. Heart. 2009 Mar; 95(3):221-7.

102. Gao Y.; Zhang L.R. and Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin. Eur. J. Clin. Pharmacol 2008; 64(9), 877-882.

103. Gardemann A, Fink M, Strieker J et al. ACE I/D gene polymorphism: presence of the ACE D allele increased the risk of coronary artery disease in younger individuals. Atherosclerosis 1998; 139:153-159.

104. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661-78.

105. Gho M., McDonald K., Ganetzky B. et al. Effects of ldnesin mutations on neuronal functions. Science. 1992; 258(5080): 313-316.

106. Goncealves P.A., Ferreira J., Aguiar C., Seabra-Gomes R. TIMI, PURSUIT, and GRACE risk scores: sustained prognostic value and interaction with revascularization inNSTE-ACS. European Heart Journal (2005) 26, 865-872.

107. Granger C.B., Goldberg R.J., Dabbous O. et al. Predictors of hospital mortality in the Global Registery of Acute Coronary Events. Arch Intern Med 2003; 163: 2345-2353.

108. Grundy S. M., Cleeman J.I., Merz C.N.B. et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines // Circulation 2004; 110:227-239.

109. Gudbjartsson DF, Bjornsdottir US, Halapi E, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 2009; 41:342-7.

110. Guengerich F.P. Cytochrome P450, drugs, and- diseases. // Mol. Interv. 2003. V.3(4): 194-204.

111. Guidelines Committee. 2007 European Society of Cardiology guidelines on cardiovascular disease prevention in clinical practice, European J of cardiovascular prevention and rehabilitation 2007; 4 (Suppl.2)

112. Guidelines Committee. 2007 European Society of Cardiology guidelines for the management of arterial hypertension, European Heart J 2007; 28: 1462-1536

113. Guo X., Feng J., Guo H. The predictive value of the bedside troponin T test for patients with acute chest pain. Exp Clin Cardiol. 2006; 11(4):298-301.

114. Hagberg JM, Willing KR, Ferrell RE. APO E gene and gene-enveronment effects on plasma lipoprotein lipid levels. Physiol Genomics 2000; 4:101-108.

115. Hasegawa M.; Kusuhara H.; Sugiyama D. et al. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J. Pharmacol. Exp. Ther 2002; 300, 746-753.

116. Heart Protection Study Collaborative Group MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebocontrolled trial. Lancet 2002; 360:7-22.

117. Http://www.outcomes-umassmed.org/grace/.

118. Heinrich J, Balleisen L, Schulte II et al. Fibronogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 1994; 14:54-59.

119. Helgadottir A, Thorleifsson G, Magnusson KP et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneuiysm. Nat Genet 2008; 40:217—24.

120. Hill SA, McQueen MJ. Reverse cholesterol transport — a review of the process and its clinical implications. Clin Biochem 1997; 30:517-525.

121. Hirano M.; Maeda K.; Hayashi H. et al. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J. Pharmacol. Exp. Ther 2005; 314, 876-882.

122. Hirano M.; Maeda K.; Matsushima S. et al. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol. Pharmacol 2005; 68, 800-807.

123. Hirokawa N, Noda Y. Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics Physiol. Rev. 2008; 88:10891118.

124. Hirokawa N., Noda Y., Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 1998; 10(1): 60-73.

125. Hirokawa N., Sato-Yoshitake S., Kobayashi R., et al. Kinesin associates with anterogradely transported membranous organelles in vivo. J. Cell Biol. 1991; 114(2):295-302.

126. Ho R.H.; Choi L.; Lee W. et al. Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet. Genomics 2007, 17, 647-656.

127. Ho R.H.; Tirona R.G.; Leake B.F. et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006, 130, 1793-1806.

128. Hollenbeck P.J., Swanson J.A. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature. 1990; 346(6287): 864-866.

129. Holmberg M, Sandberg C, Nygren P, Larsson R. Effects of lovastatin on a human myeloma cell line: increased sensitivity of a multidrug-resistant subline that expresses the 170 kDa P-glycoprotein. Anticancer Drugs 1994; 5:598-600.

130. Home BD, Muhlestein JB, Carlquist JF at al. Statin therapy, lipid levels, C-reactive protein and the survival of patients with angiographically severe coronary artery disease. J Am Coll Cardiol. 2000; 36 (6):1774-1780.

131. Hu M., Mak V.W.L., Chu T.T.W, et al. Pharmacogenetics of HMG-CoA Reductase Inhibitors: Optimizing the Prevention of Coronary Heart Disease Current Pharmacogenomics and Personalized Medicine, 2009, 7(1), 1-26

132. Huang L.; Wang Y., Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab. Dispos 2006; 34, 738-742.

133. Humphries S.E.; Yiannakouris N., Talmud P.J. Cardiovascular disease risk prediction using genetic information (gene scores): is it really informative? Curr. Opin. Lipidol 2008; 19, 128-132.

134. Hustert E., Zibat A., Presecan-Siedel E. et al. Natural-protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. // Drug Metab. Dispos. 2001. V. 29. - N 11. - P. 1454-1459.

135. Huyett A., Kahana J., Silver P., et al. Microtubule density controlled by antagonistic kinesin motors. J. Cell Sei. 1998; 111:295-301.

136. Iakoubova O.A., Tong C.H., Chokkalingam A.P. et al. Asp92Asn polymorphism in the myeloid IgA Fc receptor is associated with myocardial infarction in two disparate populations: CARE and WOSCOPS. Arterioscler Thromb Vase Biol. 2006; 26:2763- 2768.

137. Ieiri I.; Suwannakul S.; Maeda K. et al. SLCOIBI (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles andpharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol.Ther. 2007; 82, 541-547.

138. Jada S.R.; Xiaochen S.; Yan L.Y. et al. Pharmacogenetics of SLC01B1: haplotypes, htSNPs and hepatic expression in three distinct Asian populations. Eur. J. Clin. Pharmacol 2007; 63, 555-563.

139. Jang Y.; Kim O.Y.; Hyun Y.J. et al. Interleukin-6-572C>G polymorphism-association with inflammatory variables in Korean men with coronary artery disease. Transl. Res. 2008, 151, 154-161.

140. Jarvik G.P., Goode E.L., Austin M.A. et al. Evidence that the apolipoprotein EOgenotype effects on lipid levels can change with age in males: a longitudinal analysis. Am J Hum Genet 1997; 61:171-81.

141. Jialal I., Devaraj S., Venugopal S.K. C-reactive protein: rise marker or mediator in atherothrombosis? Hypertension. 2004; 44 (1):6-11.

142. Jukema JW, Boven van AJ, Groenemeijer B et al. The Asp9Asn mutation in the lopoprotein lipase gene is associated with increased progression of coronary atherosclerosis. Circulation 1996; 94:1913-1918.

143. Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol 2004; 93: 104-107

144. Kajinami K.; Brousseau M.E.; Ordovas J.M. and Schaefer E.J. Polymorphismsin the multidrug resistance-1 (MDR1) gene influence the response to atorvastatin treatment in a gender-specific manner. Am. J. Cardiol 2004; 93, 1046-1050.

145. Kajinami K.; Brousseau M.E.; Ordovas J.M., Schaefer E.J. A promoter polymorphism in cholesterol 7alpha-hydroxylase interacts with apolipoprotein E genotype in the LDL-lowering response to atorvastatin. Atherosclerosis 2005; 180, 407-415.

146. Kajinami K, Okabayashi M et al. Statin pharmacogenomics: what have we learned, and what remains unanswered? Curr. Opin. Lipidol 2005; 16, 606-613.

147. Kajinami K.; Takekoshi N.; Brousseau M.E. and Schaefer E.J. Pharmacogenetics of HMG-CoA reductase inhibitors: exploring the potential for genotype-based individualization of coronary heart disease management. Atherosclerosis 2004; 177, 219-234.

148. Kannel WB, Wolf PA, Castelli WP, D'gostino RB. Fibronogen and risk of cardiovascular disease. The Framingham study. JAMA 1987; 258:1183-1186.

149. Karayan L.; Qiu S.; Betard C. et al. Response to HMG CoA reductase inhibitors in heterozygous familial hypercholesterolemia due to the 10-kb deletion of the LDL receptor gene. Arterioscler. Thromb 1994; 14, 1258-1263.

150. Kathiresan S, Voight BF, Purcell S, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009; 41:334-41.

151. Kathiresan S.; Melander O.; Guiducci C. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet 2008; 40, 189-197.

152. ICim K.A., Park P.W., Lee O.J. et al. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J. Clin. Pharmacol 2007; 47, 87-93

153. King J.Y., Ferrara R., Tabibiazar R. et al. Pathway analysis of coronary atherosclerosis Physiol Genomics 2005; 23:103-118.

154. Kirchheiner J.; ICudlicz D.; Meisel C. et al. Influence of CYP2C9polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin. Pharmacol. Ther2003; 74, 186-194.

155. Kivistö KT, Niemi M, Schaeffeler E et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics. 2004 Aug; 14(8):523-5.

156. Kivisto K. T. and Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm. Res 2007; 24, 239-247.

157. Kniff de P, Stalenhoel AF, Mol MJ et al. Influense of apo E polymorphism on the response to simvastatin treatment in patients with heterozygous familial hypercholesterolaemia. Atherosclerosis 1990; 83:89-97.

158. Kolars JC, Lown KS, Schmiedlin-Ren P et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4:247-59.

159. Konig J., Seithel A., Gradhand U., Fromm M.F. Pharmaco-genomics of human OATP transporters // Naunyn Schmiedebergs Arch. Pharmacol. 2006. Vol. 372(6):432-443.

160. Kooner J.S.; Chambers J.C.; Aguilar-Saliñas C.A. et al. Genome- wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat. Genet 2008; 40, 149-151.

161. Krauss R.M., Mangravite L.M., Smith J.D. et al. Variation in the 3-Hydroxyl-3-Methylglutaryl Coenzyme A Reductase Gene Is Associated With Racial Differences in Low-Density Lipoprotein Cholesterol Response to Simvastatin

162. Treatment Circulation. 2008; 117: 1537-1544

163. Krishnamurthy P. and Schuetz J.D. Role of ABCG2/BCRP in biology and medicine. Annu. Rev. Pharmacol. Toxicol 2006; 46, 381- 410.

164. Kroetz D.L.; Pauli-Magnus C.; Hodges L.M. et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003; 13, 481-494.

165. Kuivenhoven JA, Jukema JW, Zwinderman AH et al. The role of a common variant of the cholesterol ester transfer protein gene in the progression of coronary atherosclerosis. N Engl J Med 1998; 338:86-93

166. Kunnas T., Lehtimaki T, Laaksonen R. et al. Endothelial nitric oxide synthase genotype modulates the improvement of coronary blood flow by pravastatin: a placebo-controlled PET study // J. Mol. Med. 2002. Vol. 80(12):802-807.

167. Lafont F., Burkhardt J.K., Simons K. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature. 1994; 372(6508):801-803.

168. Lahoz C, Pena R, Mostaza J et al. Apo Al promoter polymorphism influences . basal HDL-cholesterol and its response to pravastatin therapy. Atherosclerosis 2003; 168:289-295.

169. Laufs U, La Fata V, Plutzky J, Liao J. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998; 97:1129 -1135.

170. Ledmyr H., McMahon A.D., Ehrenborg E. et al. The microsomal triglyceride transfer protein gene-493T variant lowers cholesterol but increases the risk of coronary heart disease // Circulation. 2004. - Vol. 109, № 19. - P. 2279-2284.

171. Lee E.; Ryan S.; Birmingham B. et al. Rosuvastatin pharmacokinetics andpharmacogenetics in white and Asian subjects residing in the same environment. Clin. Pharmacol. Ther 2005; 78, 330-341.

172. Link E.; Parish S.; Armitage J. et al. SLCOIBI variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med 2008; 359, 789-799.

173. Lippincott"Schwartz J., Cole N. et al. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. Cell Biol. 1995;128(3): 293-306.

174. Mackenzie P.I.; Bock K.W.; Burchell B. et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet. Genomics 2005; 15, 677-685.

175. Mackness M.I., Harty D., Bhatnagar D. et al. Serum paraoxonase activity in familial hypercholesterolemia and insulin-dependent diabetes mellitus. Atherosclerosis. 1991; 86:193-199.

176. Mailly F, Tugrul Y, Revmer PW et al. A common variant in the gene for lipoprotein lipase (Asp9—>Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Atheroscler Thromb Vase Biol 1995; 15: 468-678.

177. Marenberg ME, Risch N, Berkman LF, et al. Genetic susceptibility to death from coronary heart disease in a study of twins // N Engl J Med. 1994. №330. P.1041-1046.

178. Marshall A. Getting the right drug into the right patient. Nat Biotechnol 1997; 15: 1249-52.

179. Marzolini C.; Paus E.; Buclin T. and Kim R.B. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin. Pharmacol. Ther 2004; 75, 13-33.

180. McCaskie P.A.; Beilby J.P.; Chapman C.M. et al. Cholesteryl ester transfer protein gene haplotypes, plasma high-density lipoprotein levels and the risk of coronary heart disease. Hum. Genet 2007; 121, 401-411.

181. McPherson R, Pertsemlidis A et al. A common allele on chromosome 9 associated with coronaiy heart disease. Science 2007; 316:1488 -91.

182. Medina M.W., Gao F., Ruan W. et al. Alternative Splicing of 3-Hydroxy-3

183. Methylglutaryl Coenzyme A Reductase Is Associated With Plasma Low-Density Lipoprotein Cholesterol Response to Simvastatin Circulation. 2008; 118:355-362.

184. Mega J.L., Morrow D.A., Brown A. et al. Identification of Genetic Variants Associated With Response to Statin Therapy Arterioscler Thromb Vase Biol. 2009;29:1310-1315.

185. Miettinen TA, Gylling H, Strandberg F, Sarna S. Baseline serum cholestanol as predictor of recurrent coronary events in subgroup of Scandinavian Simvastatine Survival Study. Finnish 4S Investigates. BMJ 1998; 316:1127-1130.

186. Morrison A.C., Bare L.A., Chambless L.E. et al. Prediction of coronary heart disease risk using a genetic risk score: the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2007; 166:28-35.

187. Mwinyi J.; Kopke K.; Schaefer M. et al. Comparison of SLCOIBI sequence variability among German, Turkish, and African populations. Eur. J. Clin. Pharmacol, 2008; 64, 257-266.

188. Nagassaki S.; Sertorio J.T.; Metzger I.F. et al. eNOS gene T-786C polymorphism modulates atorvastatin-induced increase in blood nitrite. Free Radic. Biol. Med 2006; 41, 1044-1049.

189. Nakata T., Hirokawa N.J. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. Cell Biol. 1995; 131(4):1039-1053.

190. Nelson DR, Kamataki T, Waxman DJ et al. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12:1-51.

191. Niemi M.; Arnold K.A.; Backman J.T. et al. Association of genetic polymorphism in ABCC2 with hepatic multidrug resistance-associated protein 2expression and pravastatin pharmacokinetics. Pharmacogenet. Genomics 2006; 16, 801-808.

192. Niemi M.; Neuvonen P.J.; Hofmann U. et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLC01B1 (encoding OATP1B1) haplotype *17. Pharmacogenet. Genomics 2005; 15, 303-309.

193. Nishizato Y.; Ieiri I.; Suzuki H. et al. Polymorphisms of OATPC (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther 2003; 73, 554-565.

194. Nissen S. Effect of Very High-Intensity Statin Therapy on regression of Coronary Atherosclerosis. The ASTEROID Trial // JAMA, 2006; 295.

195. Nissen SE, Tuzcu EM, Brown BG, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial // JAMA. 2004; 291:1071-1080.

196. O'Dell S.D., Humphries S.E., Day I.N. Rapid methods for population-scale analysis for gene polymorphisms: the ACE gene as an example. Br Heart J., 1995; 73; №4: 368-371.

197. Ohman E.M., Armstrong P.W., Christenson R.H. et al. The GUSTO-IIa investigators. Cardiac troponin T levels for risk stratification in acute myocardial ischemia// N Engl J Med.-1996.-Vol.335.-№ 18.-P. 1333-1341.

198. Omland T., Persson A., O'Brien L.N.R. et al. N-Terminal Pro-B-Type Natriuretic Peptide and Long-Term Mortality in Acute Coronary Syndromes. Circulation. 2002; 106:2913-2918.

199. Oranje W.A., Sels J.P., Rondas-Co Ibers G.J. et al. Effect of atorvastatin on LDL oxidation and antioxidants in normocholesterolemic type 2 diabetic patients. Clin Chim Acta. 2001 Sep 25; 311(2):91-4.

200. Orem C., Orem A., Uydu H. et al. The effect of lipid-lowering therapy on low-density lipoprotein auto-antibodies: relationship with low density lipoprotein oxidation and plasma total antioxidant ststus. Coron Artery Dis 2002; 13:65-71.

201. Ozaki IC, Sato H, Inoue K, et al. SNPs in BRAP associated with risk of myocardial infarction in Asian populations. Nat Genet 2009; 41: 329-33.

202. Park JE, Kim KB, Bae SIC et al. Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica 2008; 38: 1240-1251.

203. Pasanen M.K.; Backman J.T.; Neuvonen P.J. and Nierni M. Frequencies of single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide 1B1 SLCOIBI gene in a Finnish population. Eur. J. Clin. Pharmacol 2006; 62, 409-415.

204. Pasanen M.K.; Fredrikson H.; Neuvonen P.J. and Niemi M. Different effects of SLCOIBI polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther 2007; 82, 726-733.

205. Pasanen M.K.; Neuvonen M.; Neuvonen P.J. and Niemi M. SLCOIBI polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics 2006; 16, 873-889.

206. Pedro-Botel J., Schaefer E.J., Bakker-Arkema R.G. et al. Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a genger specific manner. Atherosclerosis 2001; 158:18-193.

207. Pena R.; Lahoz C.; Mostaza J.M. et al. Effect of apoE genotype on the hypolipidaemic response to pravastatin in an outpatient setting. J. Intern. Med 2002; 251,518-525.

208. Pfohl M., Koch M., Enderle M.D. et al. Paraoxonase 192 Gln/Arg gene polymorphism, coronary artery disease, and myocardial infarction in type 2 diabetes. Diabetes. 1999; 192:48:623-627.

209. Pignoli P, Tremoli E, Poli A. et al. Intimal plus media tickness of the arterial wall: a direct measurement with ultrasound imaging//Circulation.l986; 74:13991406.

210. Pocathikorn A, Granath B, Thirty E et al. Influence of exonic polymorphisms in the gene for LDL receptor-related protein (LRP) on risk of coronary artery disease. Atherosclerosis 2003; 168:115-121.

211. Prevention of cardiovascular events and death with pravastatine in patient with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998;339:1349-1357.

212. Prueksaritanont T, Gorham LM, Ma B. et al. In vivo metabolism ofsimvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. DrugMetab Dispos 1997; 25:1191-1199.

213. Prueksaritanont T, Ma B, Yu N. The human hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, and not CYP2D6. .Br J Clin Pharmacol 2003; 56:120-124.

214. Prueksaritanont T.; Subramanian R.; Fang X. et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab. Dispos 2002; 30, 505-512.

215. Prueksaritanont T.; Zhao J.J.; Ma B. et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J. Pharmacol. Exp. Ther 2002; 301:1042-1051.

216. Puccetti L.; Pasqui A.L.; Bruni F. et al. Lectin-like oxidized-LDL receptor-1 (LOX-1) polymorphisms influence cardiovascular events rate during statin treatment. Int. J. Cardiol. 2007, 119, 41-47.

217. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis // BMJ 2003 Jun 28; 326(7404): 1423.

218. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the 4S Study. Lancet 1994; 344:383-1389.

219. Remmler C. and Cascorbi I. Pharmacogenomics in acute coronary syndrome. Expert Opin. Pharmacother. 2008, 9, 363-376.

220. Ridker P.M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol 2007; 49, 2129-2138.

221. Ridker P.M. and Cook N.R. Biomarkers for prediction of cardiovascular events. N. Engl. J. Med 2007; 356, 1472-1473.

222. Rodriguez-Antona C., Jande M., Rane A. et al. Identification and phenotype characterization of two CYP3A haplotypes causing different enzymatic capacity in fetal livers. // Clin. Pharmacol. Ther. -2005. V. 77. N 4. - P. 259-270.

223. Roses AD. Pharmacogenetics. Hum Mol Genet 2001; 10: 2261-7.

224. Sabatine M.S.; Ploughman L.; Simonsen K.L. et al. Association between ADAMTS1 matrix metalloproteinase gene variation, coronary heart disease, and benefit of statin therapy. Arterioscler.Thromb. Vase. Biol 2008; 28, 562-567.

225. Sadee W. Genomics and drugs: finding the optimal drug for the right patient. PharmRes 1998; 15:959-963.

226. Sadee W. Pharmacogenomics. BMJ 1999; 319:1286.

227. Samani N.J., Erdmann J., Hall A.S. et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007; 357:443-453.

228. Sander S. Genomic medicine and the future of health care. Science 2000; 287:1977-1978.

229. Sandhu M.S.; Waterworth D.M.; Debenham S.L. et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet 2008; 371, 483-491.

230. Sanghera D., Saha N., Aston C.E., Kamboh M.I. Genetic polymorphism of paraoxonase and the risk of coronary heart disease. Arterioscler Thromb Vase Biol. 1997; 17:1067-1073

231. Sardo M.A., Campo S., Bonaiuto M. et al. Antioxidant effect of atorvastatin is independent of PON1 gene T (-107)C, Q192R and L55M polymorphisms in hypercholesterolaemic patients // Curr. Med. Res. Opin. 2005. Vol. 21(5):777-784.

232. Saunders W., Lengyel V., Hoyt M.A. Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. Mol. Biol. Cell. 1998; 8:1025-1033.

233. Schaefer EL, Lamon-Fava S, Johnson S et al. Effects of genger and menopausal status on the association of apolipoprotein E phenotype with plasma lipoprotein levels. Results from the Framingham Study. Atheroscler Thromb 1994; 14:1105-1113.

234. Schmitz G, Drobnik W. Pharmacogenomics and pharmacogenetics of cholesterol-lowering therapy. Clin Chem Lab Med 2003; 41(4):581-589.

235. Schmitz G. and Langmann T. Pharmacogenomics of holesterollowering therapy. Vascul. Pharmacol 2006; 44, 75-89.

236. Schwartz G.G., Olsson A.G. The case for intensive statin therapy after acute coronary syndromes Am J Cardiol. 2005; 96:45F-53F.

237. Schwartz G.L., Turner S.T. Pharmacogenetics of Antihypertensive Drug Responses. Pharmacogenomics 2004; 4: 151-160.

238. Seiler S., Kirchner J., Horn C. et al. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat Cell Biol. 2000; 2:333-338.

239. Sharp D.J., Rogers G. C., Scholey J.M. Microtubule motors in mitosis. Nature. 2000; 407:41-47.

240. Shepherd J., Cobbe S.M., Ford E. et al. Prevention of coronary heart disease with pravastatine in men with hypercholesterolemia. N Engl J Med 1995; 333:1301-1307.

241. Shepherd J., Blauw G.J., Murphy M.B. et al. Pravastatin in the elderlyindividuals at risk of vascular disease (PROSPER): a randomized controlled trial // Lancet 2002. Vol. 360. P. 1623-1630.

242. Shiffman D., Chasman D.J., Zee R.Y. et al. A kinesin family member 6 variant is associated with coronary heart disease in the Women's Health Study. J Am Coll Cardiol. 2008;51:444-448.

243. Shiffman D., O'Meara E.S., Bare L.A. at al. Association of Gene Variants With Incident Myocardial Infarction in the Cardiovascular Health Study. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008; 28:173.

244. Shin M.J., Cho E.Y., Jang Y. et al. Beneficial effect of simvastatin on DNA damage in 242T allele of the NADPH oxidase p22phox in hypercholesterolemic patients // Clin. Chim. Acta. 2005. - Vol. 360, № 1-2. - P. 46-51.

245. Siest G.; Marteau J.B.; Maunius S. et al. Pharmacogenomics and cardiovascular drugs: need for integrated biological system with phenotypes and proteomic markers. Eur. J. Pharmacol 2005; 527, 1-22.

246. Sim S.C. Genetically determined inerindividual variation in CYP dependent drug metabolism: volecular basis and clinical implications. // Karolinska Instituted Stockholm, 2007.

247. Simon JA, Lin F, Hulley SB et al. The Cholesterol and Pharmacogenomics. Phenotypic predictors of response to simvastatin therapy among African-Americans and Caucasians: the Cholesterol and Pharmacogenetics (CAP) Study. Am J Cardiol. 2006; 97:843- 850.

248. Singer J.B.; Holdaas H.; Jardine A.G. et al. Genetic analysis of fluvastatin response and dyslipidemia in renal transplant recipients. J. Lipid Res 2007; 48, 2072-2078.

249. Souza-Costa D.C.; Sandrim V.C.; Lopes L.F. et al. Anti-inflammatory effects of atorvastatin: modulation by the T-786C polymorphism in the endothelial nitric oxide synthase gene. Atherosclerosis 2007; 193, 438-444.

250. Staessen JA, Wang JG, Petrov G et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular renal risk. J Hypertens 1997; 15:1579-1592.

251. Standards of Medical Care in Diabetes—2010. American diabetes association. Diabetes Care 2010;33, Suppll

252. Stevens J., Hines R., Gu C. et al. Developmental Expression of the Major Human Hepatic CYP3A- Enzymes. // J. Pharm. Exp. Ther. 2003; 307:573-582.

253. Stewart A., Dandona S., Chen Li at al. Kinesin Family Member 6 Variant Trp719Arg Does Not Associate With Angiographically Defined Coronary Artery Disease in the Ottawa Heart Genomics Study. J Am Coll Cardiol. 2009; 53:4711472.

254. Su A.I., Cook M.P., Ching K.A. et al. Large-scale analysis of the human and mouse transcriptomes Proc Natl Acad Sci USA. 2002; 99:4465-4470.

255. Tachibana-Iimori R.; Tabara Y.; Kusuhara H. et al. Effect of genetic polymorphism of OATP-C (SLCOIBI) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab. Pharmacokinet 2004; 19, 375-380.

256. Takahashi-Yasuno A., Masuzaki A., Miyawaki T. et.al. Leptin receptor polymorphism is associated with serum lipid levels and impairment of cholesterol lowering effect by simvastatin in Japanese men. Diabetes Res Clin Pract. 2003; 62(3): 169-75.

257. Tanaka Y., Kanai Y., Okada Y. et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 1998; 93(7):1147-1158.

258. Tavintharan S.; Lim S.C.; Chan Y.H. and Sum C.F. Apolipoprotein E genotype affects the response to lipid-lowering therapy in Chinese patients with type 2 diabetes mellitus. Diabetes Obes. Metab 2007; 9, 81-86.

259. Tell G, Fried L, Hermanson B. et al. Recruitment of adults 65 years and older as participants in the Cardiovascular Health Study. Ann Epidem. 1993; 3:358-366.

260. The 1996 report of a World Health Organization expert committee on hypertension control. J Hypertens. 1996 Aug; 14(8):929-33.

261. THE ARIC INVESTIGATORS. THE ATHEROSCLEROSIS RISK IN COMMUNIT (ARIC) STUDY: DESIGN AND OBJECTWES. American Journal of Epidemiology. 1989; 129(4):687-702.

262. Thompson J.F., Hyde C.L., Wood L.S. et al. Comprehensive Whole-Genome and Candidate Gene Analysis for Response to Statin Therapy in the Treating to New Targets (TNT) CohortCirc Cardiovasc Genet. 2009; 2:173-181.

263. Thompson J.; Man M.; Johnson K. et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J 2005; 5, 352-358.

264. Tomas M., Senti M., Garcia-Faria F. et al. Effect of Simvastatin Therapy on Paraoxonase Activity and Related Lipoproteins in Familial Hypercholesterolemic Patients Arteriosclerosis, Thrombosis, and Vascular Biology. 2000; 20:2113-2118.

265. Topol E., Damani S. The KIF6 Collapse. J Am Coll Cardiol. 2010, Vol. 56(19): 1564-1566

266. Tregouet DA, Konig IR, Erdmann J, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet 2009; 41:283-5.

267. Trinca M., Dionsio P., Arajo F.V. et al. Unstable angina: individualized stratification and prognosis// Rev Port Cardiol.-2000.-Vol.l9.-№5.-P.567-578.

268. Tsai M.Y.; Johnson C.; Kao W.H. et al. Cholesteryl ester transfer protein genetic polymorphisms, HDL cholesterol, and subclinical cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2008; 200(2), 359-367.

269. Tukey R., Strassburg C. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev.Pharmacol. Tox. 2000; 40, 581-616.

270. Tybjaerg-Hansen A, Steffensen R, Meinertz H et al. Association of mutations in the apolipoprotein B gene with hypercholesterolemia and the risk of ischemic heart disease. N Engl J Med 1998; 338(22):1577-1584.

271. Tybjaerg-Hansen A. Rare and common mutations in hyperlipidemia and atherosclerosis. With special reference to familial defective apolipoprotein B-100. J Scand J Clin Lab Invest 1995; 220:57-76.

272. Undas A., Wiek I., Stepien E. et al. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care. 2008 Aug; 31 (8): 1590-5.

273. Vale R.D., Fletterick R.J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 1997; 13:745-777.

274. Van Ganse E, Laforest L, Alemao E et al. Lipid-modifying therapy and attainment of cholesterol goals in Europe: the Return on Expenditure Achieved for Lipid Therapy (REALITY) study. Curr Med Res Opin. 2005; 21 (9): 1389-1399.

275. Van Miltenburg-van Zijl A.J., Simoons M.L., Veerhoek J.R., Bossuyt P.M. Incidence and follow-up of Braunwald subgroups in unstable angina pectoris// J Am Coll Cardiol.-1995.-Vol.25.-№6.-P. 1286-1292.

276. Vecchione C., Brandes R.P. Withdrawal of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors elicits oxidative stress and induces endothelialdysfunction in mice. Circ Res. 2002; 91:173-179.

277. Vesell ES. Therapeutic lessons from pharmacogenetics. Ann Intern Med 1997; 126:653-656.

278. Voora D., Shah S.H., Reed C.R. et al. Pharmacogenetic Predictors of Statin-Mediated Low-Density Lipoprotein Cholesterol Reduction and Dose Response Circ Cardiovasc Genet. 2008; 1:100-106.

279. Wang A., Yu B.N., Luo C.H. et al. Ilell8Val genetic polymorphism of CYP3A4 and its effects on lipid-lowering efficacy of simvastatin in Chinese hyperlipidemic patients.// Eur J Clin Pharmacol. 2005 Feb; 60(12):843-8.

280. Wang D, Guo Y, Wrighton SA et al. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs The Pharmacogenomics Journal (2010), 1-13.

281. Wang D., Sadee W. Searching for polymorphisms that affect gene expressionand mRNA processing: example ABCB1 (MDR1). Aaps. J 2006; 8, E515-E520.

282. Wassmann S., Laufs U., Baumer A.T. et al. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholes-terolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001; 37:1450-7.

283. Wassmann S., Laufs U., Muller K. et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vase Biol 2002; 22:300-5.

284. Wilke RA, Moore JLI, Burmester JK. Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet Genomics. 2005 Jun; 15(6):415-21.

285. Willer C.; Sanna S.; Jackson A. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet 2008, 40, 161-169.

286. Willrich MA, Hirata MH, Genvigir FD et al. CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin Chim Acta 2008; 398: 15-20.

287. Willrich MA, Hirata MH, Hirata RD. Statin regulation of CYP3A4 and CYP3A5 expression.Pharmacogenomics. 2009 Jun; 10(6): 1017-24.

288. Winkelmann B., Hager J., Kraus W. et al. Genetics of coronary heart disease: Current knowledge and research principles // Am Heart J.- 2000.-Vol.l40.-№4.

289. Wolfrum S., Jensen K., Liao J. Endothelium-Dependent Effects of Statins. Arterioscler Thromb Vase Biol. 2003; 23:729-736.

290. Yan A.T., Yan R.T., Tan M. et al. Risk scores for risk stratification in acutecoronary syndromes: useful but simpler is not necessarily better. Eur Heart J. 2007 May; 28(9): 1072-8. Epub 2007 Apr 16.

291. Zambon A, Deeb SS, Brown BG et al. Common hepatic lipase gene promoter variant determines clinical response to intensive lipid-lowering treatment. Circulation 2001; 103:792-798.

292. Zambon A., Hokanson J., Brown B., Brunzell J. Evidence for a new pathophysiological mevhanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density // Circulation. 1999. Vol. 99:1959-1964.

293. Zateyshchikov D.A., Dankovtseva E.N., Nikitin A.G. et al. Genetic predisposition to early onset of coronary artery disease in Russian patients. Atherosclerosis 2006 V.7 Is3 (Suppl) p. 131

294. Zhang F, Casey P. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65:241-69.

295. Zhang W.; Chen B.; Özdemir V. et al. SLCOIBI 521T~>C functionalgenetic polymorphism and lipid-lowering efficacy of multiple-dose pravastatin in Chinese coronary heart disease patients. Br. J. Clin.Pharmacol 2007; 64, 346-352.

296. Zhang W., Yu B., He Y. et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin. Chim. Acta 2006; 373, 99-103.

297. Zito F., Lowe G., Rumley A. et al. Association of the factor XII. 46C>T polymorphism with risk of coronary heart disease (CHD) in the WOSCOPS study. Atherosclerosis 2002 Nov; 165(l):153-8.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.