Кинетические модели излучения разреженной и плотной плазмы тема диссертации и автореферата по ВАК РФ 01.04.08, кандидат физико-математических наук Левашова, Мария Германовна
- Специальность ВАК РФ01.04.08
- Количество страниц 95
Оглавление диссертации кандидат физико-математических наук Левашова, Мария Германовна
ВВЕДЕНИЕ
Глава I. Универсальная двумерная кинетическая модель заселения
Ридберговских атомных состояний
1.1. Формирование радиационно-столкновительного каскада
1.2. Отличие двумерной кинетики от одномерной
1.3. Кинетическая модель радиационного-столкновительного каскада
1.4. Квазиклассические вероятности радиационных переходов
1.5. Классический оператор столкновений
Глава II. Расчеты населенностей атомных состояний для различных источников заселения (селективном, фоторекомбинационном, трехчастичном)
2.1. Численное решение для селективного (дельта-функционного) источника
2.2. Трехчастичный источник заселения
2.3. Фоторекомбинационный источник заселения
2.4. Сравнение с одномерными кинетическими моделями
2.5. Интенсивности ридберговских линий
Глава III. Расчеты излучательной способности оболочки и испарения мишеней в плазменном фокусе
3.1. Формулировка проблемы
3.2. Анализ кинетических моделей для излучения оптически плотной плазмы
3.3. Расчеты излучательной способности оболочки плазменного фокуса ^
Рекомендованный список диссертаций по специальности «Физика плазмы», 01.04.08 шифр ВАК
Атомная спектроскопия плазмы во внешних электромагнитных полях2005 год, кандидат физико-математических наук Шуваев, Дмитрий Александрович
Процессы столкновения с участием ридберговских атомов и уширение спектральных линий1998 год, доктор физико-математических наук Лебедев, Владимир Сергеевич
Фотоионизация и столкновительная ионизация ридберговских атомов в поле теплового излучения2008 год, кандидат физико-математических наук Бетеров, Илья Игоревич
Радиационная кинетика и нелокальный перенос энергии в высокотемпературной плазме2009 год, доктор физико-математических наук Кукушкин, Александр Борисович
Излучательная динамика атомных систем1999 год, доктор физико-математических наук Безуглов, Николай Николаевич
Введение диссертации (часть автореферата) на тему «Кинетические модели излучения разреженной и плотной плазмы»
В диссертации рассматриваются кинетические модели излучения разреженной и плотной плазмы. В кинетических моделях разреженной плазмы I рассматриваются высоковозбужденные (ридберговские) атомные состояния в оптически прозрачной плазме, рассчитывается' детальное распределение населенностей атомных состояний и интенсивности отдельных радиационных переходов, которые могут использоваться для диагностики плазмы. Для кинетических моделей излучения плотной плазмы актуальными являются расчеты суммарных радиационных потерь энергии. Здесь, как правило, необходимо учитывать возможность запирания излучения. В частности, такая модель может использоваться для плазмы оболочек пинча и плазменного фокуса.
Остановимся подробнее на характеристике проблем, актуальных для обеих указанных задач.
Астрофизические объекты. Наибольшее внимание в работе уделяется первой из указанных задач, которая связана с интерпретацией спектральных линий, отвечающих переходам между ридберговскими состояниями атомов и ионов в космической и лабораторной плазме. В космосе такие спектральные линии наблюдаются в околозвездных оболочках, планетарных туманностях, плотных и разреженных областях ионизованного водорода (НИ), областях ионизованнного углерода (CII), межзвездной среде [1-15]. В лабораторной плазме такие линии могут наблюдаться в токамаках, стеллараторах, накопительных кольцах, при испарении мишеней лазером и др. [16-39].
Линии в видимом свете из планетарных туманностей, излучаемые при переходах с атомных уровней с главными квантовыми числами п > 10 наблюдались уже давно. Интерес к ридберговским линиям возрос после открытия рекомбинационных радиолиний [1-15]. Название последних связано с рекомбинационными механизмами заселения высоковозбужденных атомных состояний в космическом пространстве, причем значения главных квантовых чисел уровней п достигают нескольких сотен, а излучаемые при переходах спектральные линии приходятся на радио диапазон. Первые рекомбинационные радиолинии были обнаружены в апреле 1964 г. с помощью аппаратуры, установленной на 22-метровом радиотелескопе Физического института в Пущино: Сороченко и Бородзич в спектре туманности Омега обнаружили радиолинию водорода «9) -> що (Н90а) [2]. Почти одновременно с группой Физического института в мае и июле 1964 г. группа Пулковской обсерватории зарегистрировала линию возбужденного водорода пюз -> пш (HI04а) [3]. Эти радиолинии излучаются возбужденными уровнями атомов водорода с главными квантовыми числами п = 91 и п = 105, соответственно. В июле 1965 г., с помощью 43-метрового телескопа, Хоглунд и Мецгер обнаружили линию Н109а [4]. В дальнейшем были обнаружены линии HI56а, HI58а в туманностях Омега и W51 [5], линии возбужденного гелия (Не156а, Не157а, Не159а ) в туманности Омега [6] и углерода (С 109а) в туманностях NGC 2025 и 1С 1795 [7]. Линии углерода с наиболее высокими на сегодняшний день уровнями переходов (С764а -С768а) были найдены в Харькове на радиотелескопе УТР-2 в направлении на Кассиопею А [8]. В настоящее время экспериментальные исследования космического пространства вплотную подошли к наблюдениям атомов с уровнями возбуждения, близкими к предельным [8-12] (см. ниже). Последние измерения таких спектров для водорода были выполнены сравнительно недавно [13,14]. Обсуждение этих результатов содержится в работах [15].
Атом, как квантовая система, может существовать в условиях межзвездной среды до уровней возбуждения п ~ 1000. При этом его размеры в соответствии с моделью Бора достигают примерно 0,1 мм. Причиной, ограничивающей существование еще более высоковозбужденных атомов, является нетепловое радиоизлучение Галактики [1]. Излучаемые (поглощаемые) такими гигантскими атомами спектральные линии можно наблюдать на Земле в широком диапазоне радиоволн от миллиметровых до декаметровых. Поскольку межзвездные атомы чувствительны к изменениям плотности газа и температуры, рекомбинационные радиолинии дают нам важную информацию о состоянии окружающего космического пространства.
Теперь обсудим аналогичные задачи в лабораторной плазме.
Термоядерные установки с магнитным удержанием. В последнее время широкое распространение получили спектроскопические методы диагностики плазмы, связанные с наблюдениями радиационных переходов между высоковозбужденными атомными состояниями примесных ионов в условиях плазмы термоядерных установок с магнитным удержанием [16-19]. Основным механизмом заселения высоковозбужденных состояний в такой плазме является перезарядка примесных ионов на нейтральных атомах. Это относится как к пристеночной плазме, где присутствие медленных нейтралов обусловлено взаимодействием плазмы со стенкой, так и к центральной области плазмы, где характерно наличие быстрых нейтральных атомов, вводимых пучком для ее нагрева. Преимущество наблюдения спектральных линий, вызванных переходами между высоковозбужденными атомными состояниями примесных ионов, связано с тем, что их излучение находится в практически удобном для наблюдения спектральном диапазоне видимого света. in •>
Для типичных плотностей магнитно удерживаемой плазмы (10 см"
15 3
10 см") перезарядка с возбужденных состояний атомов водорода (дейтерия) играет большую роль, т.к. сечение перезарядки сгс~я4 [20]. Наиболее вероятное главное квантовое число иу иона-акцептора, заселяющееся при перезарядке, определяется по формуле [21]: где и,- - главное квантовое число атома-донора, Z, - эффективный заряд ионов плазмы, Zp - заряд иона-акцептора. Из этой формулы видно, что для примесей тяжелых ионов в процессе перезарядки заселяются высоковозбужденные состояния. При этом заселение высоковозбужденных состояний иона может происходить не только из основного состояния атома-донора, но и из его возбужденных состояний, присутствующих в плазме. Например, для перезарядки полностью ионизованного иона железа (Zp = 26) на возбужденном водороде при и,- = 5 при перезарядке заселяется уровень nj ~ 70.
Основной линией для диагностики плазмы токамаков является линия дейтерия Da. В спектральных профилях Da содержится информация о распределении излучающих атомов по скоростям, а их полная интенсивность отражает процессы рециклинга дейтерия [22]. Наблюдения вблизи поверхности эргодического дивертора токамака Tore Supra показало, что при большом содержании гелия вблизи линии Da присутствуют линии водородоподобного иона гелия (Не+), соответствующие переходам между состояниями с высокими главными квантовыми числами {п = 5 —> п = 4}, {п = 7 —> п = 4}, {п = 9 —> п = 4}, заселяющимися в процессе перезарядки ионов гелия на нейтральном водороде. Наряду с этими линиями наблюдается целая серия переходов из высоковозбужденных состояний. Например, в диверторной плазме токамака JET наблюдается бальмеровская серия линий дейтерия Dn -D15 [23].
Для диагностики транспорта частиц в центральной области плазмы стелларатора был разработан метод инжектирования пеллет диагностируемых частиц в плазму, нагреваемую пучком нейтрального водорода [24-27]. Пеллеты инжектируются в ограниченную область плазмы, где частицы пеллеты ионизуются и нагреваются тепловыми электронами и ионами. Диагностируемые частицы сначала движутся вдоль силовых линий магнитного поля, затем они заполняют магнитные поверхности и диффундируют радиально наружу (или в некоторых случаях внутрь из-за т.н. пинч-эффекта частиц). Такое движение диагностируемых частиц может быть детектировано с помощью спектроскопии перезарядки (charge exchange recombination spectroscopy). Таким образом, локальные транспортные характеристики диагностируемых частиц измеряются по интенсивности излучаемых линий, возникающих в процессе перезарядки ионизованных частиц примесей на атомах водорода из инжектируемого пучка.
Такая методика применялась на стеллараторах CHS и LHD [26]. Пеллета с ядром LiH инжектировалась в плазму стелларатора CHS, нагреваемую инжекцией пучка нейтрального водорода. При перезарядке иона Li+3 на нейтральном водороде образовывается высоковозбужденный ион Li+2 (5g), излучающий в видимом диапазоне:
Li+3 + Н0 -> Li+2(5g-4f) + ЕГ + /zv (Я = 449.9 нм) Накопительные кольца. В экспериментах на накопительных кольцах таких как TSR, ESR и CRYRING падающий пучок ионов сопрягается с холодным магнитно-ведомым пучком электронов в электронном охладителе (cooler). Типичная энергия ионов по отношению к электронам чрезвычайно мала - порядка долей миллиэлектрон-вольта. В этих условиях большинство захваченных электронов рекомбинируют на уровни с очень высокими главными квантовыми числами, п ~ 1000 [28-32]. В эксперименте на установке ESR в институте GSI (Дармштадг, Германия), проводившемся на голых ядрах урана (U92+) [29,30], наблюдался бальмеровский спектр, который удалось частично воспроизвести в теоретических расчетах, учитывающих радиационные каскады с уровней вплоть до п — 120. В этом эксперименте наблюдалась радиационная рекомбинация на L-оболочку с разделением на подуровни тонкой структуры j = 1/2 и 3/2. Эту часть спектра не удалось полностью воспроизвести в численных расчетах ввиду необходимости учета большего числа уровней.
В экспериментах на установке ATRAP в CERN были обнаружены уровни возбужденного антиводорода с п >50 при 4К [33]. Отметим также, что заселение ридберговских состояний реализуется также в экзотических атомах, например, антипротонных атомах [34].
Лазерная плазма. Холодная ридберговская плазма, где одновременно существуют ионы, электроны и высоковозбужденные ридберговские атомы, была получена прямым лазерным возбуждением [35] и при ионизации атомов [36], первоначально полученных при сверхнизких температурах.
Отметим также важность образования ридберговских состояний в экспериментах, направленных на создание т.н. ридберговской материи [37-39].
Таким образом, проблема определения заселенностей высоковозбужденных (ридберговских) атомных состояний в плазме представляет значительный интерес для широкого круга проблем как в астрофизических объектах, так и для лабораторной плазме.
О состоянии кинетической теории для ридберговских состояний. Большинство теоретических подходов к описанию ридберговских состояний основано на одномерных моделях их заселения, учитывающих только переходы с изменением энергии (главного квантового числа п) в предположении простого, статвесового заселения по орбитальным моментам I [40-42]. Однако в ряде задач оказывается существенным неравновесность распределения электронов по /. Например, в экспериментах на накопительных кольцах и лазерной плазме первоначально заселяются в основном ридберговские уровни с о
I ~ п-1 [28,43], обладающими большим временем жизни t ~ п I относительно спонтанного радиационного распада. Затем штарковское перемешивание и соударения с медленными ионами приводят к перераспределению по орбитальным моментам в сторону меньших /, где скорость радиационного распада в ~ п2 раз больше. Таким образом, при описании ультрахолодной плазмы должна учитываться кинетика как по главным, так и по орбитальным квантовым числам.
Нередко кинетику по главным и орбитальным квантовым числам можно рассматривать раздельно. Такие кинетические модели как по главному п, так и обритальному / квантовым числам были построены Бейгманом [44].
Численные расчеты двумерных каскадов, учитывающие распределение как по главным п, так и по орбитальным / квантовым числам проводились Пенжелли [45] и Саммерсом [46]: численно решалась система квантово-механических уравнений баланса населенностей атомных уровней, определяемых радиационными переходами между ними. Саммерс учитывал также и столкновительные переходы.
Переход к двумерной кинетике (по п и Г) усложняет задачу вследствие резкого увеличения числа атомных переходов, участвующих в радиационностолкновительном каскаде. При п » 1 система квантово-механических кинетических уравнений для населенностей атомных уровней становится слишком сложной для численного решения, поскольку число матричных элементов становится порядка п4, вместо п для одномерных радиационно-столкновительных моделей. При таком подходе приходится прибегать к той или иной процедуре приближенного учета состояний с большими п, что приводит к падению точности расчетов с ростом п и /.
С другой стороны для высоковозбужденных состояний вероятности переходов хорошо описываются в рамках квази-классического приближения, и задача сводится только к одному кинетическому дифференциальному уравнению в пространстве энергии и орбитального момента, что дает возможность избежать трудоемких вычислений и выявить параметры задачи, позволяющие сделать ее универсальной. Поэтому квази-классический подход оказывается намного предпочтительнее.
Общий метод классического описания радиационного каскада между ридберговскими атомными состояниями с учетом кулоновских столкновений атомного электрона с частицами плазмы был впервые предложен Беляевым и Будкером [47]. Такой подход тесно связан с классической картиной движения высоковозбужденного атомного электрона в «/-пространстве путем постепенной потери энергии (.Е = -1/2п ) и орбитального момента (М= ft(/+l/2)) со скоростью, определяемой классическими величинами [48] и отвечает уравнению непрерывности в фазовом пространстве для функции распределения связанного атомного электрона по уровням J[E,М). При этом заселение атомных уровней происходит внешним источником в виде трехчастичной (столкновительной) рекомбинации, что эквивалентно заданию соответствующих граничных условий на границе с непрерывным энергетическим спектром.
В действительности радиационно-столкновительный поток формируется в основном в области малых орбитальных моментов, где классическая модель непрерывного течения по атомным уровням уже не работает.
Кроме того, для определения реальной функции распределения необходимо учесть фоторекомбинационный (т.е. радиационный) внешний источник заселения состояний, который вносит вклад того же порядка, что и упомянутый выше столкновительный каскад из континуума. Включение фоторекомбинационного источника приводит к резкой селективности заселения атомных состояний по орбитальному квантовому числу I и как раз в области столь малых /, что классическая модель там уже неприменима.
Двумерный радиационный каскад для стационарного случая без учета столкновений был аналитически описан Кукушкиным и Лисицей [49] как для классического, так и для квазиклассического случаев. Был продемонстрирован формальный переход от квантового к классическому кинетическому уравнению при h —» 0 и соответствующий переход для функции Грина этих уравнений.
Вринсеану и Фланнери [43] предложили симметричную форму для скоростей радиационных переходов относительно начального и конечного состояний для не слишком малого отношения Ип и показали, что квантовая функция распределения для стационарного случая для радиационного каскада от точечного источника заселения атомных состояний «сконцентрирована» вблизи классической траектории радиационного каскада.
Радиационные потери в плазменном фокусе. Перейдем ко второй задаче, состоящей в расчете мощности (суммарных по частоте излучения) радиационных потерь энергии оптически плотной плазмой. Такой расчет необходим для определения роли радиационных потерь токонесущей плазменной оболочкой на установках типа плазменный фокус (ПФ) в экспериментах по воздействию этой, токовой оболочки на мишени, находящиеся в конденсированном состоянии вещества. Такого рода эксперименты с различными типами мишени являются одним из интенсивно развиваемых направлений в исследованиях физики плазменного фокуса (см. обзор [50]). Они стимулированы предшествующим исследованиями возможности использования установок типа ПФ для сжатия плазмообразующих мишеней токовой плазменной оболочкой и магнитным полем плазменного фокуса [51-59]. В условиях большой длительности стадии радиального сжатия токовой оболочки на установке ПФ-3 (установка филипповского типа с диаметром анода 0.92 м, [53]) мишень "видит" оболочку в течение ~ 10 мкс. При значительных потоках излучения это может приводить к предварительному прогреву мишени, расположенной на оси, и ускорению перехода вещества мишени из первоначально конденсированного состояния в газовое и далее в плазменное. В случае использования тяжелого сильноизлучающего газа можно ожидать, что фазовое состояние мишени значительно изменится еще до непосредственного контакта с токовой оболочкой. Это позволяет управлять условием так называемого холодного старта, который характерен для экспериментов, где накопленная в разрядной камере магнитная энергия прикладывается к "неподготовленной", холодной нагрузке (например, в ПФ с мейзеровской геометрией разрядной камеры [51] или в экспериментах на быстрых Z-пинчах [60]). Если в последнем случае в экспериментах с многопроволочными лайнерами показано, что «холодный старт» не только не ухудшает процесс сжатия, но и, напротив, способствует достижению экстремальных параметров плазмы и излучений благодаря обнаруженному процессу «затянутого плазмообразования», то в случае, например, пенных лайнеров «холодный старт» может оказать существенное влияние на развитие магнитогидродинамических неустойчивостей. Особое значение предварительный нагрев может иметь в экспериментах, в которых качестве нагрузки используется мелкодисперсная пыль [52, 54]. В частности, недавние эксперименты показали, что в разрядах с пылью формируются пинчи, более стабильные относительно МГД неустойчивостей [59].
Возможность испарения мишени излучением токовой оболочки подтверждается экспериментальными данными: СФР-граммы разрядов показывают, что размер мишени из агар-агара («пенного лайнера») увеличивается еще до подхода плазменной оболочки к мишени. Такие свидетельства, хотя и косвенные в силу трудности диагностики, есть и для пылевой мишени [61,62]. Оценка сверху (в предположении излучательной способности токовой оболочкой ПФ как черного тела) величины потока излучения на мишень из оболочки, проведенная в [59], показала возможную значимость воздействия излучения на мишень и, соответственно, необходимость его детальных расчетов. Такой расчет требует индивидуального учета запирания излучения в каждой сильноизлучающей спектральной линии, поскольку интересующие нас значения оптической толщины токовой оболочки ПФ не столь велики, чтобы имело место перекрытие соседних спектральных линий и, соответственно, сформировался «чернотельный» спектр во всем спектральном диапазоне, существенном для радиационных потерь. Пели и содержание диссертации. В настоящей диссертации ставятся следующие цели:
1. Разработка универсальной двумерной квази-классической кинетической модели радиационно-столкновительного каскада для водородоподобных систем в плазме.
2. Расчеты насел енностей высоковозбужденных атомных состояний водородоподобных систем для различных внешних источников заселения атомных состояний;
3. Расчет интенсивностей спектральных линий в условиях астрофизической и лабораторной плазмы на основе найденных заселенностей;
4. Расчеты излучательной способности оболочки и возможность испарения мишеней в плазменном фокусе.
Диссертация состоит из введения, трех глав, заключения и списка литературы.
Похожие диссертационные работы по специальности «Физика плазмы», 01.04.08 шифр ВАК
Расчет и моделирование К-спектров многозарядных ионов для диагностики горячей плазмы и верификация атомных данных по спектрам токамака TEXTOR2003 год, кандидат физико-математических наук Горяев, Фарид Фагимович
Столкновительно-излучательные процессы в спектроскопии плазмы2006 год, кандидат физико-математических наук Демченко, Григорий Викторович
Эффекты резонансного лазерного воздействия на газовые, плазменные и дисперсные среды2012 год, доктор физико-математических наук Гаврилюк, Анатолий Петрович
Моделирование и оптимизация процессов радиационного воздействия на газы и металлы2004 год, доктор физико-математических наук Шкедов, Иван Максимович
Поляризационные и интерференционные эффекты в излучательных процессах2000 год, доктор физико-математических наук Астапенко, Валерий Александрович
Заключение диссертации по теме «Физика плазмы», Левашова, Мария Германовна
ЗАКЛЮЧЕНИЕ
1. Развита двумерная квазиклассическая модель радиационно-столкновительного каскада в высоковозбужденных (водородоподобных) атомах и ионах в плазме. Модель обобщает классическую теорию С.Т. Беляева и Г.И. Будкера на случай квантовых скачков при радиационных переходах. Универсальность кинетики ридберговских состояний позволяет использовать развитую модель для описания атомных спектров в широком диапазоне изменения параметров плазмы.
2. Проведены расчеты заселенностей высоковозбужденных состояний атомов и ионов для селективного (дельта-функционного), трехчастичного и фоторекомбинационного источников заселения.
3. Исследованы эффекты неравновесности в заселении по орбитальному квантовому числу / при трехчастичном и фоторекомбинационном источниках заселения ридберговских состояний в астрофизической плазме, отвечающей условиям наблюдения рекомбинационных линий. Проведено сравнение с одномерными расчетами путем усреднения по /, обнаруживающее характерный минимум заселенностей, обусловленный конкуренцией столкновительного и радиационного заселения состояний. Глубина этого минимума в двумерной модели оказывается заметно большей по сравнению с одномерными моделями.
4. На основе найденных населенностей рассчитаны интенсивности спектральных линий в диапазоне частот переходов, соответствующих определенному спектральному интервалу наблюдений, которые позволяют судить о степени неравновесности заселенностей ридберговских атомов в астрофизической плазме.
5. Рассчитаны интегральные по времени потоки излучения на мишень на оси плазменного фокуса (ПФ) от токовой оболочки ПФ на стадии ее движения к оси. Показана существенная зависимость этих потоков от сорта рабочего газа, что позволяет влиять на фазовое состояние мишени и динамику пинча подбором рабочего газа и материала мишени с требуемыми теплофизическими свойствами.
6. Показано, что излучения низкотемпературной токовой оболочки ПФ до ее прихода на ось может быть достаточно для испарения пылевой мишени (напр., излучения неоновой плазмы 10-15 эВ достаточно для испарения пылинок AI2O3 радиусом 10-20 мкм).
Благодарности
Автор выражает глубокую благодарность научному руководителю B.C. Лисице, В.И. Краузу за консультации по проблемам плазменного фокуса, М.Б. Кадомцеву и А.Б. Кукушкину за обсуждение теоретических проблем, рассмотренных в диссертации.
Работа выполнена при поддержке грантов РФФИ 06-02-16614-а и 06-0217398, контракта с Роснаукой № 02.513.11.3310, гранта фундаментальных исследований № 20 РНЦ КИ, гранта Президента РФ № НШ-9878.2006.2 для поддержки ведущих научных школ РФ.
Список литературы диссертационного исследования кандидат физико-математических наук Левашова, Мария Германовна, 2008 год
1. Р.Л. Сороченко, М.А. Гордон, Рекомбинационные радиолинии, Физматлит, Москва (2003).
2. R.L.Sorochenko, E.V.Borodzich, Trans. IAU, 1966, XIIB, 360 (Paper presented at the XII Gen. Assembly IAU, Hamburg, 1964).
3. A.F.Dravskich, Z.V.Dravskich, V.A.Kolbasov, Trans. IAU, XIIB, 360 (Paper presented at the XII Gen. Assembly IAU, Hamburg, 1964)
4. B. Hoglund, P.G. Mezger, Science, 150, 339 (1965).
5. E.E. Lilley, D.H. Menzel, H. Penfield, B. Zuckerman, Nature, 209,468 (1966).
6. A.E. Lilley, P. Palmer, H. Penfield, B. Zuckerman, Nature, 211, 174 (1966).
7. P. Palmer, B. Zuckerman, H. Penfield, A.E. Lilley, P.G. Mezger, Nature, 215, 40 (1967).
8. Konovalenko A. A. — In: M. A. Gordon and R. L. Sorochenko (eds), Radio Recombination Lines: 25 Years of Investigation, IAU Colloquium 125, Kluwer Academic Publishers, Dordrecht, p. 175.
9. J.L.Casse, P.A.Shaver, Astr.Ap. 61, 805 (1977).
10. A.A.Konovalenko, L.G.Sodin, Nature 283, 360 (1979); Nature 294, 135 (1981).
11. D.H.Blake, R.M.Crutcher, M.D.Watson, Nature 287, 707 (1980).
12. V.V. Kitaev, G.T. Smirnov, R.L. Sorochenko, E.E. Lekht, Turkish J. Physics, 18, 908 (1994)
13. M. B. Bell, L.W. Avery, E.R. Seaquist, J.P. Valiee, Public. Astron. Soc. of the Pacific 112, 1236, (2000).
14. H. R. Griem, Astroph.J 620, L-133 (2005).
15. E. Oks, Astrophys. J. 609, L-25 (2004).
16. Engelhardt W., in Proceedings of the Course Diagnostics for Fusion Reactor Conditions, Varenna, Italy, 1982, Vol. 1, p. 11 (Commission of the European Communities, Directorate General XII-Fusion Programme EUR 8351-1 EN).
17. Pasini D., Mattioli M., Edwards A. W., Giannella R., Gill R. D., Hawkes N. C., Magyar G., Saoutic В., Wang Z. and Zasche D., Nucl. Fusion, 30 (1990) 2049.
18. Hulse R. A., Nucl. Technol./Fusion, 3 (1983) 259.
19. JI.A. Буреева, B.C. Лисица, Д.А. Петров, Д.А. Шуваев, Ф. Розми, Р. Штамм, ФИЗИКА ПЛАЗМЫ, 29, №10 (2003) с. 1-11.
20. F. В. Rosmej, R. Stamm and V. S. Lisitsa, Europhys. Lett., 73 (3), pp. 342-348 (2006)
21. Cornelius K. R., Wojtkowski K. and Olson R. E., J. Phys. B, 33 (2000) 2017
22. Guirlet R., Koubiti M., Escarguel A. et al, Plasma Phys. Control. Fusion., 43, 177 (2001)
23. M.Koubiti et al, Journal of Quantitative Spectroscopy & Radiative Transfer 81, 265 (2003)
24. Sudo S, J. Plasma Fusion Res. 69, 1349 (1993)
25. Sudo S et al., Plasma Phys. Control. Fusion 45, 1127 (2003)
26. Sudo S et al., Plasma Phys. Control. Fusion 44, 129 (2002)
27. К Khlopenkov and S Sudo, Plasma Phys. Control. Fusion 43, 1547 (2001)
28. M. Horndl, S. Yoshida, A. Wolf, G. Gwinner, M. Seliger, J. Burgdorfer, Phys. Rev. A, 74 052712 (2006).
29. W. Shi et al.,Eur. Phys. J. D 15, 145(154 (2001)
30. R. Reuschl et al., Radiation Physics and Chemistry 75 (2006) 1740-1743
31. G. Gwinner et al., Phys. Rev. Lett. 84, 4822 (2000).
32. A. Hoffknecht et al., Phys. Rev. A 63, 012702 (2001)
33. G. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002)
34. Л.И. Меньшиков, P. Ландуа, УФН173, 233 (2003)
35. M.P. Robinson et al., Phys. Rev. Lett. 85, 4466 (2000)
36. T.C. Killian et al., Phys. Rev. Lett. 86, 3759 (2001)
37. E.A. Manykin, M.I. Ozhovan, and P.P. Poluektov, J Moscow Phys. Soc. 8, 19 (1998).
38. Э. А. Маныкин, VI. И. Ожован, П. П. Полуэктов, Химическая физика 19(7), 87 (1999); Е. A. Manykin, M.I. Ozhovan, and P.P. Poluektov, Chem. Phys. Reports 18, 1353 (2000).
39. Г.Э. Норманн, Письма ЖЭТФ, 73, 13 (2001)
40. JI.A. Вайнштейн, И.И. Собельман, Е.А. Юков, Возбуждение атомов и уширение спектральных линий, Наука, Москва (1979).
41. JI.M. Биберман, B.C. Воробьев, И.Т. Якубов. Кинетика неравновесной низкотемпературной плазмы, Наука, Москва (1982).
42. V. .S.Strelnitski, V.O.Ponomarev, H.A.Smith, Astroph.J. 470,1118 (1996).
43. M.R. Flannery, D. Vrinceanu, Phys. Rev. A 68 030502(R) (2003).
44. I.L. Beigman, Analytical methods for highly excited level populations in hot plasma, Astroph. Space Phys. 11, 1 (2001), p.1-101.
45. R.M. Pendelly, Mon. Not. R. Astron. Soc. 127, 145 (1964)
46. H.P. Summers, Mon. Not. R. Astron. Soc. 178, 101 (1977)
47. C.T. Беляев, Г.И. Будкер, Многоквантовая рекомбинация в ионизованных газах, в сб.: Физика плазмы и проблема управляемых термоядерных реакций, под ред. М.А. Леонтовича, Изд. АН СССР 3, 41 (1957), с.41.
48. Л.Д. Ландау, Е.М. Лифшиц, Теория поля, Наука, Москва (1974).
49. А.Б. Кукушкин, B.C. Лисица, ЖЭТФ 88, 1570 (1985).
50. Krauz V.I. // Plasma Phys. Control. Fusion 48, 2006. B221-B229.
51. Scholz M., Karpinski L., Stepniewski W. et al., Physics Letters. A., 1999. V. 262. P. 453.
52. Krauz V.I., Myalton V.V., Khautiev E.Yu. et al., PLASMA-2001, International Symposium: Research and Applications of Plasmas, Warsaw, Poland, 19-21 September, 2001, http://www.ifpilm.waw.p1/Plasma2001/#topic3
53. Myalton V.V., Krauz V.I., Khautiev E.Yu. et al., PLASMA-2001, International Symposium: Research and Applications of Plasmas, Warsaw, Poland, 19-21 September, 2001, http://www.ifpilm.waw.p1/Plasma2001/#topic8
54. Fortov V.E., Karakin M.A., Khautiev E.Yu. et al., Dense Z-pinches, 5th Int. Conf, on Z-pinches, Albuquerque, New Mexico, 23-28 June 2002, Editors J.Davids, Ch.Deeney and N.R.Pereira, Melville, New York, 2002. ACP. V. 651. P. 37-42.
55. Karakin M.A., Khautiev E.Yu, Krauz V.I. et al., Czhechoslovak Journal of
56. Phys., 2002. Vol. 52. Suppl. D. P. 255-263.
57. Kubes P., Kravarik J., Klir D. et al, Czechoslovak Journal of Physics. 2004. 54, Suppl. C. P. 285-290.
58. Krauz V.I., Karakin M.A., Khautiev E.Yu. et al., Plasma 2005, editors Sadowski M.J., Dudeck M., Hartfus H.-J. and Pawelec E., AIP Conference Proceeding, Melville, New York, 2006. V. 812. P. 43-50.
59. Виноградов В.П., Каракин M.A., Крауз M.A. и др., Физика плазмы, 2006, Т. 32, № 8. С. 699-713.
60. Александров В.В., Грабовский Е.В., Зурин М.В. и др., ЖЭТФ, 2004. Т. 126, вып. 6(12). С. 1317-1343.
61. M.G. Levashova, V. S. Lisitsa, Classical Radiative-Collisional Kinetics of Rydberg Atomic States, AIP Conf. Proc. 874, 145 (2006).
62. M.G. Levashova, V.S. Lisitsa. Quasiclassical kinetics of highly excited atomic states population in laboratory and astrophysical plasmas. Proc. 13th Int. Congress on Plasma Physics, Kiev, May 22-26, 2006, C151p.
63. М.Б. Кадомцев, М.Г. Левашова, B.C. Лисица, Универсальная двумерная кинетика заселенностей ридберговских атомов в плазме. Письма в ЖЭТФ, 85, 599 (2007).
64. М.В. Kadomtsev, M.G. Levashova, V.S. Lisitsa, Radiative-Collisional Kineticsof Rydberg Atomic States in Astrophysical Plasmas, Proc. 34th EPS Conference on Plasma Physics and Controlled Fusion, Warsaw, July 02-06, 2007, ECA Vol.3 IF, P-4.130.
65. V.I.Krauz, M.G. Levashova, V.S. Lisitsa, Effect of Plasma Focus Sheath Radiation on Target Evaporation, Proc. 34th EPS Conference on Plasma Physics and Controlled Fusion, Warsaw, July 02-06, 2007, ECA Vol.3 IF, P-4.131.
66. М.Б. Кадомцев, М.Г. Левашова, B.C. Лисица, Квазиклассическая теория радиационно-столкновителъного каскада в ридберговском атоме, ЖЭТФ, 133, 735 (2008)
67. M.G. Levashova, J. Phys. В: At. Mol. Opt. Phys., 41, 035701 (2008)
68. Л.А. Буреева, B.C. Лисица, Возмущенный атом, ИздАт, Москва (1997).
69. MJ. Seaton, Mon. Not R. Astron. Soc., 119, 90 (1959)
70. С.П. Гореславский, Н.Б. Делоне, В.П. Крайнов, ЖЭТФ, 82, 1789 (1982); ЖЭТФ, 87, 1164(1984).
71. Р.А. Ганцев, Н.Ф. Казакова, В.П. Крайнов, в сб.: Химия плазмы, под ред. Б.М. Смирнова, Энергоатомиздат, Москва (1985), Т.12, с.96.
72. V.I. Kogan, А.В. Kukushkin, V.S. Lisitsa, Phys. Rep. 213, 1 (1992).
73. J. Adams, "Multigrid Software for Elliptic Partial Differential Equations: MUDPACK," NCAR Technical Note-357+STR, Feb. 1991, 51 pp.
74. Л.Д. Ландау, E.M. Лифшиц, Квантовая механика. Наука, Москва (1974).
75. Л.М. Биберман, ЖЭТФ, 17, 416 (1947)
76. Т. Holstein, Phys. Rev. 72, #12, 1212 (1947); 82, #12, 1159 (1951)
77. В.А. Абрамов, В.И. Коган, B.C. Лисица, Перенос излучения в плазме, Вопросы теории плазмы, Энергоиздат, Москва, вып. 12, с.114 (1982)
78. B.C. Лисица, В.И. Коган, Атомные процессы в плазме. «Физика плазмы. Т.З», Итоги науки и техники ВИНИТИ АН СССР. М., 1982, стр.41
79. Я.Б. Зельдович, Ю.П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений, М. Наука, 1966
80. D.E. Post, R.V. Jensen, С.В. Tarter et al., Steady-state radiative cooling rates for low-density, high-temperature plasmas. Atomic data and nuclear data tables, 20,941977, р.435-436.
81. NIST Atomic Spectra Database, http://physics.nist.gov/PhysRefflata/ASD/index.html
82. Филиппов H.B, Обзор экспериментальных работ, выполненных в ИАЭ им, И.В. Курчатова, по исследованию плазменного фокуса, Физика плазмы, 1983. Т. 9. вып. I. С. 25-44.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.