Каталитическое расщепление основного белка миелина антителами тема диссертации и автореферата по ВАК РФ 03.00.04, кандидат химических наук Белогуров, Алексей Анатольевич

  • Белогуров, Алексей Анатольевич
  • кандидат химических науккандидат химических наук
  • 2008, Москва
  • Специальность ВАК РФ03.00.04
  • Количество страниц 121
Белогуров, Алексей Анатольевич. Каталитическое расщепление основного белка миелина антителами: дис. кандидат химических наук: 03.00.04 - Биохимия. Москва. 2008. 121 с.

Оглавление диссертации кандидат химических наук Белогуров, Алексей Анатольевич

оглавление. список сокращений. введение. искусственные каталитические антитела.

АНТИТЕЛА НА АНАЛОГИ ПЕРЕХОДНЫХ СОСТОЯНИЙ РЕАКЦИИ.

ВВЕДЕНИЕ КАТАЛИТИЧЕСКИХ АМИНОКИСЛОТНЫХ ОСТАТКОВ В СВЯЗЫВАЮЩИЙ ЦЕНТР АНТИТЕЛА ПУТЕМ ХИМИЧЕСКОЙ МОДИФИКАЦИИ ИЛИ САЙТ-НАПРАВЛЕННОГО МУТАГЕНЕЗА.

СОЗДАНИЕ АНТИТЕЛ ДЛЯ КАТАЛИЗА ЭНЕРГЕТИЧЕСКИ НЕВЫГОДНЫХ ПРЕВРАЩЕНИЙ.

АНТИИДИОТИПИЧЕСКИЕ АНТИТЕЛА.

ПОЛУЧЕНИЕ АБЗИМОВ ПУТЕМ РЕАКЦИОННОЙ ИММУНИЗАЦИИ.

АБЗИМЫ, СОДЕРЖАЩИЕ КОФАКТОРЫ.

ГРАНИЦЫ ОБЛАСТИ ПРИМЕНЕНИЯ ИНДУЦИРОВАННЫХ АБЗИМОВ. природные каталитические антитела.

КАТАЛИТИЧЕСКИЕ АНТИТЕЛА К ВАЗОАКТИВНОМУ ИНТЕСТИНАЛЬНОМУ ПЕПТИДУ.

КАТАЛИТИЧЕСКИЕ АКТИВНЫЕ ФРАГМЕНТЫ АНТИТЕЛ.

КАТАЛИТИЧЕСКИЕ АНТИТЕЛА К ТИРОГЛОБУЛИНУ.

ПРОТЕОЛИТИЧЕСКИЕ АНТИТЕЛА К ФАКТОРУ VIII СВЕРТЫВАНИЯ КРОВИ.

ДНК-ГИДРОЛИЗУЮЩИЕ АНТИТЕЛА.

КАТАЛИТИЧЕСКИЕ АНТИТЕЛА НЕОБЫЧНОЙ СПЕЦИФИЧНОСТИ.

ПРИРОДНЫЕ КАТАЛИТИЧЕСКИЕ АНТИТЕЛА КАК ЧАСТЬ ИММУННОЙ СИСТЕМЫ.

МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ИССЛЕДОВАНИЯ ПРИРОДНЫХ КАТАЛИТИЧЕСКИХ АНТИТЕЛ. 37 ОКСИДАЗНАЯ АКТИВНОСТЬ ИММУНОГЛОБУЛИНОВ. рассеянный склероз.

ОБЩАЯ ХАРАКТЕРИСТИКА.

Т-КЛЕТОЧНЫЙ ОТВЕТ В ПАТОГЕНЕЗЕ РАССЕЯННОГО СКЛЕРОЗА.

РОЛЬ В-КЛЕТОЧНОГО ЗВЕНА.

РОЛЬ НАТИВНОГО ИММУННОГО ОТВЕТА. ЗНАЧЕНИЕ TLR.

КРОСС-РЕАКТИВНОСТЬ БАКТЕРИАЛЬНЫХ АНТИГЕНОВ КАК ВОЗМОЖНАЯ ПРИЧИНА

ВОЗНИКНОВЕНИЯ ЗАБОЛЕВАНИЯ.

ПОДХОДЫ К ДИАГНОСТИКЕ И ЛЕЧЕНИЮ РАССЕЯННОГО СКЛЕРОЗА. основной белок миелина. строение, свойства, функции.

МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ МИЕЛИНА.

ОСНОВНОЙ БЕЛОК МИЕЛИНА, СТРОЕНИЕ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА. результаты и обсуждение.

ОПРЕДЕЛЕНИЕ САЙТ-СПЕЦИФИЧНОСТИ ГИДРОЛИЗА ОСНОВНОГО БЕЛКА МИЕЛИНА

АУТОАНТИТЕЛАМИ.

ИССЛЕДОВАНИЕ СУБСТРАТНОЙ СПЕЦИФИЧНОСТИ АНТИ-ОБМ АУТОАНТИТЕЛ НА МОДЕЛЬНЫХ

ПЕПТИДАХ.

КИНЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ГИДРОЛИЗА ОБМ И EPEEFRET (ОБМ81-ЮЗ).

Рекомендованный список диссертаций по специальности «Биохимия», 03.00.04 шифр ВАК

Заключение диссертации по теме «Биохимия», Белогуров, Алексей Анатольевич

выводы.

1. Определены шесть основных сайтов протеолиза основного белка миелина (ОБМ) под действием аутоантител, выделенных из сыворотки крови пациентов с PC и мышей линии SJL с индуцированным ЕАЕ. Показано, что расщепление молекулы белка по этим сайтам происходит с примерно равной скоростью. Пять сайтов расположены в иммунодоминантных эпитопах белка, а два из пяти локализованы, кроме того, в районе энцефалитогенного пептида основного белка миелина.

2. Получена эпитопная библиотека рекомбинантных фрагментов ОБМ на основе вектора рЕТ-32Ь-СН(+) для исследования субстратной специфичности выделенных абзимов. Показано, что рекомбинантные белки, содержащие энцефалитогенный пептид ОБМ81"103, обладают субстратными свойствами по отношению к исследованным протеолитическим антителам.

3. Охарактеризованы кинетические параметры гидролиза ОБМ и EPeFRET специфичными аутоантителами, выделенными из сывороток крови пациентов с рассеянным склерозом и модельных мышей линии SJL, развивающих экспериментальный аутоиммунный энцефаломиелит (ЕАЕ).

4. Проанализирована связывающая активность аутоантител человека к эпитопной библиотеке ОБМ. Показана возможность дифференциальной диагностики PC и мимикрирующих нейродегенеративных заболеваний.

Список литературы диссертационного исследования кандидат химических наук Белогуров, Алексей Анатольевич, 2008 год

1. Jenks, W.P., Catalysis in Chemistry and Enzymology. New York: McGraw-Hill., 1969.

2. Raso, V. and B.D. Stollar, The antibody-enzyme analogy. Comparison of enzymes and antibodies specific for phosphopyridoxyltyrosine. Biochemistry, 1975. 14(3): p. 591-9.

3. Kohen, F., et al., Antibody-enhanced hydrolysis of steroid esters. Biochim Biophys Acta, 1980. 629(2): p. 328-37.

4. Kohen, F., et al., Monoclonal immunoglobulin G augments hydrolysis of an ester of the homologous hapten: an esterase-like activity of the antibody-containing site? FEBS Lett, 1980. 111(2): p. 427-31.

5. Kohler, G. and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975. 256(5517): p. 495-7.

6. Pollack, S.J., J.W. Jacobs, and P.G. Schultz, Selective chemical catalysis by an antibody. Science, 1986. 234(4783): p. 1570-3.

7. Tramontano, A., K.D. Janda, and R.A. Lerner, Catalytic antibodies. Science, 1986. 234(4783): p. 1566-70.

8. Shokat, K.M. and P.G. Schultz, Catalytic antibodies. Annu Rev Immunol, 1990. 8: p. 335-63.

9. Schultz, P.G., The interplay between chemistry and biology in the design of enzymatic catalysts. Science, 1988. 240(4851): p. 426-33.

10. Napper, A.D., et al., A stereospecific cyclization catalyzed by an antibody. Science, 1987. 237(4818): p. 1041-3.

11. Hilvert, D., et al., Catalysis of concerted reactions by antibodies: the Claisen rearrangement. Proc Natl Acad Sci USA, 1988. 85(14): p. 4953-5.

12. Jackson D. Y., J.H.W., Sugasawara R., Reich S. H., Bartlett P. A., Schultz P.G., An Antibody-catalyzed Claisen Rearrangement. J. Am. Chem. Soc., 1988. 110: p. 4941-42.

13. Bencovic S. J., N.A.D., Lerner R. A., Catalysis of a Stereospecific Bimolecular Amide Synthesis by an Antibody. Proc. Natl. Acad. Sci. USA., 1988. 85(5355-8).

14. Braisted A. C., S.P.G., An Antibody-catalyzed Bimolecular Diels-Alder Reaction. J. Am. Chem. Soc., 1990. 112: p. 7430-1.

15. Hilvert D., H.K.W., Nared K. D., Auditor M. Т. M., Antibody Catalysis of a Diels-Alder Reaction. J. Am. Chem. Soc., 1989. Ill: p. 9261-9262.

16. Mundorff, E.C., et al., Conformational effects in biological catalysis: an antibody-catalyzed oxy-cope rearrangement. Biochemistry, 2000. 39(4): p. 627-32.

17. Reshetnyak, A.V., et al., Routes to covalent catalysis by reactive selection for nascent protein nucleophiles. J Am Chem Soc, 2007. 129(51): p. 16175-82.

18. Tawfik, D.S., et al., Efficient and selective p-nitrophenyl-ester-hydrolyzing antibodies elicited by a p-nitrobenzyl phosphonate hapten. Eur J Biochem, 1997. 244(2): p. 619-26.

19. Suzuki, H., et al., A catalytic antibody that accelerates the hydrolysis of carbonate esters. Prediction of the binding-site structure of the substrate. J Protein Chem, 1998. 17(3): p. 273-8.

20. Janda, K.D., et al., Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science, 1988. 241(4870): p. 1188-91.

21. Miyashita, H., et al., Prodrug activation via catalytic antibodies. Proc Natl Acad Sci U S A, 1993. 90(11): p. 5337-40.

22. Landry, D.W., et al., Antibody-catalyzed degradation of cocaine. Science, 1993. 259(5103): p. 1899-901.

23. Landry, D.W., Immunotherapy for cocaine addiction. Sci Am, 1997. 276(2): p. 42-5.

24. Mets, В., et al., A catalytic antibody against cocaine prevents cocaine's reinforcing and toxic effects in rats. Proc Natl Acad Sci USA, 1998. 95(17): p. 10176-81.

25. McKenzie, K.M., et al., Identification and characterization of single chain anti-cocaine catalytic antibodies. J Mol Biol, 2007. 365(3): p. 72231.

26. Benkovic, S.J., et al., The enzymic nature of antibody catalysis: development of multistep kinetic processing. Science, 1990. 250(4984): p. 1135-9.

27. Pollack, S J., G.R. Nakayama, and P.G. Schultz, Introduction of nucleophiles and spectroscopic probes into antibody combining sites. Science, 1988. 242(4881): p. 1038-40.

28. Baldwin, E. and P.G. Schultz, Generation of a catalytic antibody by site-directed mutagenesis. Science, 1989. 245(4922): p. 1104-7.

29. Luo, G.M., et al., Generation of selenium-containing abzyme by using chemical mutation. Biochem Biophys Res Commun, 1994.198(3): p. 1240-7.

30. Qi, D.H., et al., Protection of myocardial mitochondria against oxidative damage by selenium-containing abzyme m4G3. Appl Biochem Biotechnol, 1999. 82(3): p. 167-73.

31. Janda, K.D., C.G. Shevlin, and R.A. Lerner, Antibody catalysis of a disfavored chemical transformation. Science, 1993. 259(5094): p. 490-3.

32. Gruber, K., et al., Structural basis for antibody catalysis of a disfavored ring closure reaction. Biochemistry, 1999. 38(22): p. 7062-74.

33. Shabat, D., et al., Antibody catalysis of a reaction otherwise strongly disfavoured in water. Nature, 1995. 374(6518): p. 143-6.

34. Shuster, A.M., et al., Anti-idiotypic and natural catalytically active antibodies. Mol Biol (Mosk), 1991. 25(3): p. 593-602.

35. Bronshtein, I.B., et al., DNA-specific antiidiotypic antibodies in the sera of patients with autoimmune diseases. FEBS Lett, 1992. 314(3): p. 25963.

36. Avalle, В., D. Thomas, and A. Friboulet, Functional mimicry: elicitation of a monoclonal anti-idiotypic antibody hydrolizing beta-lactams. Faseb J, 1998.12(11): p. 1055-60.

37. Izadyar, L., et al., Monoclonal anti-idiotypic antibodies as functional internal images of enzyme active sites: production of a catalytic antibody with a cholinesterase activity. Proc Natl Acad Sci USA, 1993. 90(19): p. 8876-80.

38. Ponomarenko, N.A., et al., Anti-idiotypic antibody mimics proteolytic function of parent antigen. Biochemistry, 2007. 46(50): p. 14598-609.

39. Lerner, R.A. and C.F. Barbas, 3rd, Using the process of reactive immunization to induce catalytic antibodies with complex mechanisms: aldolases. Acta Chem Scand, 1996. 50(8): p. 672-8.

40. Wirsching, P., et al., Reactive immunization. Science, 1995. 270(5243): p. 1775-82.

41. Barbas, C.F., 3rd, et al., Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science, 1997. 278(5346): p. 2085-92.

42. Sinha, S.C., C.F. Barbas, 3rd, and R.A. Lerner, The antibody catalysis route to the total synthesis of epothilones. Proc Natl Acad Sci USA, 1998. 95(25): p. 14603-8.

43. Shabat, D., et al., Multiple event activation of a generic prodrug trigger by antibody catalysis. Proc Natl Acad Sci USA, 1999. 96(12): p. 692530.

44. Shamis, M., H.N. Lode, and D. Shabat, Bioactivation of self-immolative dendritic prodrugs by catalytic antibody 38C2. J Am Chem Soc, 2004. 126(6): p. 1726-31.

45. Sinha, S.C., et al., Prodrugs of dynemicin analogs for selective chemotherapy mediated by an aldolase catalytic Ab. Proc Natl Acad Sci USA, 2004. 101(9): p. 3095-9.

46. Shabat, D., et al., In vivo activity in a catalytic antibody-prodrug system: Antibody catalyzed etoposide prodrug activation for selective chemotherapy. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7528-33.

47. Rader, С., et al., A humanized aldolase antibody for selective chemotherapy and adaptor immunotherapy. J Mol Biol, 2003. 332(4): p. 889-99.

48. Wentworth, P., Jr., et al., A bait and switch hapten strategy generates catalytic antibodies for phosphodiester hydrolysis. Proc Natl Acad Sci U S A, 1998.95(11): p. 5971-5.

49. Iverson, B.L. and R.A. Lerner, Sequence-specific peptide cleavage catalyzed by an antibody. Science, 1989. 243(4895): p. 1184-8.

50. Savitsky, A.P., et al., Kinetics of oxidation of o-dianisidine by hydrogen peroxide in the presence of antibody complexes of iron(III) coproporphyrin. Appl Biochem Biotechnol, 1994. 47(2-3): p. 317-27.

51. Mahy, J.P., et al., Hemoabzymes. Different strategies for obtaining artificial hemoproteins based on antibodies. Appl Biochem Biotechnol, 1998. 75(1): p. 103-27.

52. Hilvert, D., Critical analysis of antibody catalysis. Annu Rev Biochem, 2000. 69: p. 751-93.

53. Stewart, J.D. and S J. Benkovic, Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature, 1995. 375(6530): p. 388-91.

54. Paul, S., et al., Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Science, 1989. 244(4909): p. 1158-62.

55. Paul, S., et al., Site specificity of a catalytic vasoactive intestinal peptide antibody. An inhibitory vasoactive intestinal peptide subsequence distant from the scissilepeptide bond. J Biol Chem, 1990. 265(20): p. 11910-3.

56. Mei, S., et al., Vasoactive intestinal peptide hydrolysis by antibody light chains. J Biol Chem, 1991. 266(24): p. 15571-4.

57. Paul, S., et al., Peptidolytic monoclonal antibody elicited by a neuropeptide. J Biol Chem, 1992. 267(19): p. 13142-5.

58. Gao, Q.S., et al., Molecular cloning of a proteolytic antibody light chain. J Biol Chem, 1994. 269(51): p. 32389-93.

59. Sun, M., et al., Proteolytic activity of an antibody light chain. J Immunol, 1994. 153(11): p. 5121-6.

60. Gao, Q.S., et al., Site-directed mutagenesis of proteolytic antibody light chain. J Mol Biol, 1995. 253(5): p. 658-64.

61. Bangale, Y., et al., Vasoactive intestinal peptide binding autoantibodies in autoimmune humans and mice. Peptides, 2002. 23(12): p. 2251-7.

62. Bangale, Y., et al., VIPase autoantibodies in Fas-defective mice and patients with autoimmune disease. Faseb J, 2003. 17(6): p. 628-35.

63. Paul, S., et al., Natural catalytic antibodies: peptide-hydrolyzing activities ofBence Jones proteins and VL fragment. J Biol Chem, 1995. 270(25): p. 15257-61.

64. Tyutyulkova, S., et al., Efficient vasoactive intestinal polypeptide hydrolyzing autoantibody light chains selected by phage display. Biochim Biophys Acta, 1996. 1316(3): p. 217-23.

65. Li, L., R. Kalaga, and S. Paul, Proteolytic components of serum IgG preparations. Clin Exp Immunol, 2000. 120(2): p. 261-6.

66. Kalaga, R., et al., Unexpected presence ofpolyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis. J Immunol, 1995. 155(5): p. 2695-702.

67. Hifumi, E., et al., Removal of catalytic activity by EDTA from antibody light chain. Biometals, 2000.13(4): p. 289-94.

68. Hifumi, E., Y. Okamoto, and T. Uda, How and why 41S-2 antibody submits acquire the ability to catalyze decomposition of the conserved sequence of gp41 ofHIV-1. Appl Biochem Biotechnol, 2000. 83(1-3): p. 209-19; discussion 219-20, 297-313.

69. Hifumi, E., et al., Targeted destruction of the HIV-1 coat protein gp41 by a catalytic antibody light chain. J Immunol Methods, 2002. 269(1-2): p. 283-98.

70. Mitsuda, Y., et al., Catalytic antibody light chain capable of cleaving a chemokine receptor CCR-5 peptide with a high reaction rate constant. Biotechnol Bioeng, 2004. 86(2): p. 217-25.

71. Hifumi, E., et al., Specific degradation ofH. pylori urease by a catalytic antibody light chain. FEBS J, 2005. 272(17): p. 4497-505.

72. Ohara, K., et al., Improvement of catalytic antibody activity by protease processing. Biochem Biophys Res Commun, 2004. 315(3): p. 612-6.

73. Mitsuda, Y., et al., Investigation of active form of catalytic antibody light chain 41S-2-L. Immunol Lett, 2005. 96(1): p. 63-71.

74. Thiagarajan, P., et al., Monoclonal antibody light chain with prothrombinase activity. Biochemistry, 2000. 39(21): p. 6459-65.

75. Thiagarajan, P. and S. Paul, Prothrombin cleaving antibody light chains. Chem Immunol, 2000. 77: p. 115-29.

76. Paul, S., et al., Characterization of thyroglobulin-directed and polyreactive catalytic antibodies in autoimmune disease. J Immunol, 1997. 159(3): p. 1530-6.

77. Li, L., et al., Catalytic activity of anti-thyroglobulin antibodies. J Immunol, 1995. 154(7): p. 3328-32.

78. Kreuz, W., et al., Epidemiology of inhibitors and current treatment strategies. Haematologica, 2003. 88(6): p. EREP04.

79. Towfighi, F., et al., Comparative measurement of anti-factor VIII antibody by Bethesda assay and ELISA reveals restricted isotype profile and epitope specificity. Acta Haematol, 2005. 114(2): p. 84-90.

80. Lacroix-Desmazes, S., et al., Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat Med, 1999. 5(9): p. 10447.

81. Lacroix-Desmazes, S., et al., The prevalence of proteolytic antibodies against factor VIII in hemophilia A. N Engl J Med, 2002. 346(9): p. 6627.

82. Shuster, A.M., et al., DNA hydrolyzing autoantibodies. Science, 1992. 256(5057): p. 665-7.

83. Gololobov, G.V., et al., DNA-protein complexes. Natural targets for DNA-hydrolyzing antibodies. Appl Biochem Biotechnol, 1994. 47(2-3): p. 305-14; discussion 314-5.

84. Baranovskii, A.G., et al., Catalytic heterogeneity of polyclonal DNA-hydrolyzing antibodies from the sera of patients with multiple sclerosis. Immunol Lett, 2001. 76(3): p. 163-7.

85. Breusov, A.A., et al., Comparison of the Level ofDNA-Hydrolyzing Polyclonal IgG Antibodies in Sera of Patients with Hashimoto's Thyroiditis and Nontoxic Nodal Goiter. Russ J Immunol, 2001. 6(1): p. 17-28.

86. Ponomarenko, N.A., et al., Catalytic antibodies in clinical and experimental pathology: human and mouse models. J Immunol Methods, 2002. 269(1-2): p. 197-211.

87. Gabibov, A.G., et al., DNA-hydrolyzing autoantibodies. Appl Biochem Biotechnol, 1994. 47(2-3): p. 293-302; discussion 303.

88. Gololobov, G.V., et al., Cleavage of supercoiledplasmidDNA by autoantibody Fab fragment: application of the flow linear dichroism technique. Proc Natl Acad Sci USA, 1995. 92(1): p. 254-7.

89. Kozyr, A. V., et al., Novel functional activities of anti-DNA autoantibodies from sera of patients with lymphoproliferative and autoimmune diseases. Appl Biochem Biotechnol, 1998. 75(1): p. 45-61.

90. Gololobov, G.V., et al., DNA hydrolysis by monoclonal anti-ssDNA autoantibody BV 04-01: origins of catalytic activity. Mol Immunol, 1997. 34(15): p. 1083-93.

91. Kit, Y., D.V. Semenov, and G.A. Nevinsky, Phosphorylation of different human milk proteins by human catalytic secretory immunoglobulin A. Biochem Mol Biol Int, 1996. 39(3): p. 521-7.

92. Gorbunov, D.V., et al., Phosphorylation of Minor Lipids of Human Milk Tightly Bound to Secretory Immunoglobulin A. Russ J Immunol, 2000. 5(3): p. 267-278.

93. Buneva, V.N., et al., Catalytic DNA- and RNA-hydrolyzing antibodies from milk of healthy human mothers. Appl Biochem Biotechnol, 1998. 75(1): p. 63-76.

94. Stepaniak, L., Isolation and partial characterization of catalytic antibodies with oligonuclease activity from bovine colostrum. Prep Biochem Biotechnol, 2002. 32(1): p. 17-28.

95. Semenov, D.V., et al., Catalytic nucleotide-hydrolyzing antibodies in milk and serum of clinically healthy human mothers. Med Sci Monit, 2004. 10(2): p. BR23-33.

96. Savel'ev, A.N., et al., Amylolytic activity of IgG and slgA immunoglobulins from human milk. Clin Chim Acta, 2001. 314(1-2): p. 141-52.

97. Janeway, C., Immunobiology : the immune system in health and disease. 5th ed. 2001, Edinburgh. New York: Churchill Livingstone ; Garland, xviii, 732 p.

98. Planque, S., et al., Ontogeny of proteolytic immunity: IgMserine proteases. J Biol Chem, 2004. 279(14): p. 14024-32.

99. Tawfik, D.S., et al., Unexpectedly high occurrence of catalytic antibodies in MRL/lpr and SJL mice immunized with a transition-state analog: is there a linkage to autoimmunity? Proc Natl Acad Sci USA, 1995. 92(6): p. 2145-9.

100. Lacroix-Desmazes, S., et al., High levels of catalytic antibodies correlate with favorable outcome in sepsis. Proc Natl Acad Sci USA, 2005. 102(11): p. 4109-13.

101. Rangan, S.K., et al., Degradation of beta-amyloid by proteolytic antibody light chains. Biochemistry, 2003. 42(48): p. 14328-34.

102. Polosukhina, D.I., et al., Hydrolysis of myelin basic protein by polyclonal catalytic IgGs from the sera of patients with multiple sclerosis. J Cell Mol Med, 2004. 8(3): p. 359-68.

103. Wentworth, P., Jr., et al., Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science, 2002. 298(5601): p. 2195-9.

104. Nieva, J. and P. Wentworth, Jr., The antibody-catalyzed water oxidation pathway—a new chemical arm to immune defense? Trends Biochem Sci, 2004. 29(5): p. 274-8.

105. Zhu, X., et al., Probing the antibody-catalyzed water-oxidation pathway at atomic resolution. Proc Natl Acad Sci USA, 2004. 101(8): p. 224752.

106. Paul, W.E., Fundamental immunology. 5th ed. 2003, Philadelphia, Penn. ; London: Lippincott Williams & Wilkins. xxi, 1701.

107. Sospedra, M. and R. Martin, Immunology of multiple sclerosis * Annu Rev Immunol, 2005. 23: p. 683-747.

108. Madaio, M.P., В cells and autoantibodies in the pathogenesis of lupus nephritis. Immunol Res, 1998. 17(1-2): p. 123-32.

109. Katz-Levy, Y., et al., Endogenous presentation of self myelin epitopes by CNS-resident APCs in Theiler's virus-infected mice. J Clin Invest, 1999. 104(5): p. 599-610.

110. Ota, K., et al., T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature, 1990. 346(6280): p. 183-7.

111. Wekerle, H. and R. Hohlfeld, Molecular mimicry in multiple sclerosis. N Engl J Med, 2003. 349(2): p. 185-6.

112. Li, Y., et al., Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J, 2005. 24(17): p. 2968-79.

113. Hori, S., et al., Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc Natl Acad Sci USA, 2002. 99(12): p. 8213-8.

114. Astier, A.L., et al., Alterations in CD46-mediated Trl regulatory T cells in patients with multiple sclerosis. J Clin Invest, 2006. 116(12): p. 32527.

115. Zhang, X., et al., IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int Immunol, 2004. 16(2): p. 249-56.

116. Colombo, M., et al., Accumulation of clonally related В lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol, 2000. 164(5): p. 2782-9.

117. Reindl, M., et al., Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain, 1999. 122 ( Pt 11): p. 2047-56.

118. Kuhle, J., et al., Antimyelin antibodies in clinically isolated syndromes correlate with inflammation in MRI and CSF. J Neurol, 2007. 254(2): p. 160-8.

119. Baranzini, S.E., et al., В cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol, 1999.163(9): p. 5133-44.

120. McFarland, H.F., The В cell—old player, new position on the team. N Engl J Med, 2008. 358(7): p. 664-5.

121. Gerritse, K., et al., The involvement of specific anti myelin basic protein antibody-forming cells in multiple sclerosis immunopathology. J Neuroimmunol, 1994. 49(1-2): p. 153-9.

122. Egg, R., et al., Anti-MOG andanti-MBP antibody subclasses in multiple sclerosis. Mult Scler, 2001. 7(5): p. 285-9.

123. Berger, Т., et al., Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med, 2003. 349(2): p. 139-45.

124. Lyons, J.A., et al., В cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenie peptide. Eur J Immunol, 1999. 29(11): p. 3432-9.

125. Antel, J.P. and A. Bar-Or, Do myelin-directed antibodies predict multiple sclerosis? N Engl J Med, 2003. 349(2): p. 107-9.

126. Warren, K.G. and I. Catz, Administration of myelin basic protein synthetic peptides to multiple sclerosis patients. J Neurol Sci, 1995. 133(1-2): p. 85-94.

127. Warren, K.G. and I. Catz, The effect of intrathecal MBP synthetic peptides containing epitope P85 VVHFFKNIVTP96 on free anti-MBP levels in acute relapsing multiple sclerosis. J Neurol Sci, 1997. 148(1): p. 67-78.

128. Bischof, F., et al., A structurally available encephalitogenic epitope of myelin oligodendrocyte glycoprotein specifically induces a diversified pathogenic autoimmune response. J Immunol, 2004. 173(1): p. 600-6.

129. Marta, M., et al., Unexpected regulatory roles ofTLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur J Immunol, 2008. 38(2): p. 565-75.

130. Wucherpfennig, K.W. and J.L. Strominger, Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell, 1995. 80(5): p. 695-705.

131. Lang, H.L., et al., A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol, 2002. 3(10): p. 940-3.

132. Li, Y., et al., Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. J Mol Biol, 2000. 304(2): p. 177-88.

133. Olson, J.K., T.N. Eagar, and S.D. Miller, Functional activation of myelin-specific T cells by virus-induced molecular mimicry. J Immunol, 2002. 169(5): p. 2719-26.

134. Stern, J.N., et al., Amelioration of proteolipidprotein 139-151-induced encephalomyelitis in SJL mice by modified amino acid copolymers and their mechanisms. Proc Natl Acad Sci USA, 2004. 101(32): p. 11743-8.

135. Hafler, D.A., Multiple sclerosis. J Clin Invest, 2004. 113(6): p. 788-94.

136. Ransohoff, R.M., Natalizumab for multiple sclerosis. N Engl J Med, 2007. 356(25): p. 2622-9.

137. Arkfeld, D.G., The potential utility of В cell-directed biologic therapy in autoimmune diseases. Rheumatol Int, 2008. 28(3): p. 205-15.

138. Hauser, S.L., et al., B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med, 2008. 358(7): p. 676-88.

139. Nachreiner, Т., et al., Depletion of autoreactive B-lymphocytes by a recombinant myelin oligodendrocyte glycoprotein-based immunotoxin. J Neuroimmunol, 2008.

140. Xu, L.Y., et al., Suppression of ongoing experimental allergic encephalomyelitis (EAE) in Lewis rats: synergistic effects of myelin basic protein (MBP) peptide 68-86 and IL-4. Clin Exp Immunol, 2000. 120(3): p. 526-31.

141. Bar-Or, A., et al., Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol, 2007. 64(10): p. 1407-15.

142. Kuhle, J., et al., Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med, 2007. 356(4): p. 371-8.

143. O'Connor, K.C., et al., Myelin basic protein-reactive autoantibodies in the serum and cerebrospinal fluid of multiple sclerosis patients are characterized by low-affinity interactions. J Neuroimmunol, 2003.136(1-2): p. 140-8.

144. Chamczuk, A.J., et al., A rapid ELISA-based serum assay for myelin basic protein in multiple sclerosis. J Immunol Methods, 2002. 262(1-2): p. 21-7.

145. Чехонин, В.П., et al., Основной белок миелина. Строение, свойства, функции, роль в диагностике дшшелинизирующих заболеваний. Вопросы медецинской химии, 2000. 6: р. 10-27.

146. Beniac, D.R., et al., Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J Struct Biol, 2000. 129(1): p. 80-95.

147. Riederer, В., et al., The effect of age on the microheterogeneous pattern of human myelin basic protein. Gerontology, 1984. 30(4): p. 234-9.

148. Zand, R., et al., Determination of the sites ofposttranslational modifications in the charge isomers of bovine myelin basic protein by capillary electrophoresis-mass spectroscopy. Biochemistry, 1998. 37(8): p. 2441-9.

149. Amur, S.G., G. Shanker, and R.A. Pieringer, Regulation of myelin basic protein (arginine) methyltransferase by thyroid hormone in myelinogenic cultures of cells dissociated from embryonic mouse brain. J Neurochem, 1984. 43(2): p. 494-8.

150. Musse, A. A., J.M. Boggs, and G. Harauz, Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc Natl Acad Sci USA, 2006.103(12): p. 4422-7.

151. Husted, C., Structural insight into the role of myelin basic protein in multiple sclerosis. Proc Natl Acad Sci USA, 2006. 103(12): p. 4339-40.

152. Pritzker, L.B., et al., Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry, 2000. 39(18): p. 5374-81.

153. D'Souza, C.A. and M.A. Moscarello, Differences in susceptibility of MBP charge isomers to digestion by stromelysin-1 (MMP-3) and release of an immunodominant epitope. Neurochem Res, 2006. 31(8): p. 1045-54.

154. Medveczky, P., et al., Myelin basic protein, an autoantigen in multiple sclerosis, is selectively processed by human trypsin 4. FEBS Lett, 2006. 580(2): p. 545-52.

155. D'Souza, С. A., et al., Autocatalytic cleavage of myelin basic protein: an alternative to molecular mimicry. Biochemistry, 2005. 44(38): p. 12905

156. Libich, D.S., et al., Myelin basic protein has multiple calmodulin-binding sites. Biochem Biophys Res Commun, 2003. 308(2): p. 313-9.

157. Hafler, D.A., et al., Multiple sclerosis. Immunol Rev, 2005. 204: p. 20831.

158. Kishimoto, A., et al., Studies on the phosphorylation of myelin basic protein by protein kinase С and adenosine 3': 5'-monophosphate-dependentprotein kinase. JBiolChem, 1985. 260(23): p. 12492-9.

159. Poser, C.M. and V.V. Brinar, Diagnostic criteria for multiple sclerosis. Clin Neurol Neurosurg, 2001. 103(1): p. 1-11.

160. Current protocols on CD. cited; computer laser optical discs.

161. Coligan, J.E. and National Institutes of Health (U.S.), Current protocols in immunology. 1992, New York: Greene Pub. Associates and Wiley-Interscience. 5 v. (loose-leaf).

162. Ponomarenko, N.A., et al., Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen. Proc Natl Acad Sci U S A, 2006. 103(2): p. 281-6.

163. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-5.

164. Wisdom, G.B., Molecular weight determinations usingpolyacrylamide gel electrophoresis with tris-tricine buffers. Methods Mol Biol, 1997. 73: p. 97-100.

165. Lee, S.Y. and S. Rasheed, A simple procedure for maximum yield of13.high-qualityplasmidDNA. Biotechniques, 1990. 9(6

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.