К теории вязкостного сопротивления и термофореза сферической аэрозольной частицы в разреженном газе при произвольных числах Кнудсена тема диссертации и автореферата по ВАК РФ 01.04.15, кандидат физико-математических наук Береснев, Сергей Анатольевич

  • Береснев, Сергей Анатольевич
  • кандидат физико-математических науккандидат физико-математических наук
  • 1984, Свердловск
  • Специальность ВАК РФ01.04.15
  • Количество страниц 191
Береснев, Сергей Анатольевич. К теории вязкостного сопротивления и термофореза сферической аэрозольной частицы в разреженном газе при произвольных числах Кнудсена: дис. кандидат физико-математических наук: 01.04.15 - Молекулярная физика. Свердловск. 1984. 191 с.

Оглавление диссертации кандидат физико-математических наук Береснев, Сергей Анатольевич

ВВЕДЕНИЕ.

1. МАТЕМАТИЧЕСКИЕ МЕТОДЫ В МИКРОФИЗИКЕ АЭРОЗОЛЕЙ

1.1. Основные положения динамики а эродисперсных систем

1.2. Модельные кинетические уравнения

1.3. Модельные граничные условия

1.4. Интегралъно-моментный метод решения кинетического уравнения.

2. ДВИЖЕНИЕ ЛЕТУЧЕЙ ЧАСТИЦЫ В СОБСТВЕННОМ НАСЫЩЕННОМ

ПАРЕ.

2.1. Обзор теоретических и экспериментальных работ

2.2. Постановка задачи

2.3. Движение летучей частицы в вязком со скольжением режиме.

2.4. Движение летучей частицы в свободномолекулярном режиме.

2.5. Постановка задачи о движении летучей частицы при произвольных числах Кнудсена. Основные уравнения

2.6. Метод решения системы интегральных уравнений

2.7. Обсуждение результатов

3. ТЕРМ0Ф0РЕЗ СФЕРИЧЕСКОЙ АЭРОЗОЛЬНОЙ ЧАСТИЦЫ

3.1. Обзор теоретических и экспериментальных работ.

3.2. Термодиффузиофорез летучей сферической частицы в свободномолекулярном режиме

3.3. Постановка задачи о термофорезе сферической частицы при произвольных числах Кнудсена. Основные уравнения

ЪЛ. Метод решения системы интегральных уравнений

3.5. Обсуждение результатов

3.5.1. Термофоретическое движение в вязком со скольжением режиме

3.5.2. Термофоретическое движение в промежу -точном и свободномолекулярном режимах

3.5.3. Сравнение с экспериментальными данными

Рекомендованный список диссертаций по специальности «Молекулярная физика», 01.04.15 шифр ВАК

Введение диссертации (часть автореферата) на тему «К теории вязкостного сопротивления и термофореза сферической аэрозольной частицы в разреженном газе при произвольных числах Кнудсена»

Зародившееся б начале 20-го века научное направление, связанное с изучением систем частиц, взвешенных в атмосфере -аэрозолей, в настоящее время превратилось в самостоятельную дис -циплину - физику аэрозолей, тесно связанную со многими естест -веннонаучными направлениями [I] .

Одни проблемы физики аэрозолей стали уже достаточно традиционными, другие были поставлены на повестку дня последними десятилетиями.

По степени значимости эти проблемы условно можно подразделить на следующие. Во-первых, это глобальная проблема борьбы с загрязнениями воздушной среды аэрозолями как искусственного,так и естественного происхождения [2]. Во-вторых, многочисленные технологические приложения требуют сведений о поведении дисперсных сред в различных условиях. Такие проблемы актуальны для хи -мической промышленности, для всевозможных технологий, использующих процессы воспламенения и горения жидкого и твердого топлива, при очистке больших объемов промышленных газов от дисперсной фракции и для других отраслей [3].

В-третьих, следует отметить многочисленные аспекты физики атмосферы (оптика атмосферы [4], физика облаков [5] и др.;, для которых проблемы поведения аэродисперсных систем являются определяющими. Новые направления в этой области были инициированы лазерным мониторингом атмосферы [6}. В-четвертых, вопросы поведения частиц во внешних полях в условиях высокого вакуума ока -зались принципиальными и в такой области, как астрофизика [7].

В настоящее время принято выделять в физике аэрозолей два основных взаимосвязанных направления - макрофизику и микрофизику аэрозолей [3].

Под макрофизикой аэрозолей, согласно [3], понимается изуче -ние кооперативных, коллективных свойств аэродисперсных систем. Основные направления исследований в этой области - это коллективное образование аэрозолей, оптическая прозрачность аэрозольных сред, процессы фильтрации, динамика аэрозольных полей (т.е. динамическое поведение аэродислерсных систем в турбулентных потоках, акустических, электрических и других полях).

Явления, включающие процессы образования, движения и взаимодействия одной или двух (или, в более общем случав, небольшого числа) аэрозольных частиц с газовой фазой, составляют предмет микрофизики аэрозолей.

В свою очередь, в микрофизике аэрозолей определяющим направлением является изучение процессов переноса массы, импульса и энергии от газовой фазы к взвешенной одиночной частице. Конкретно это процессы испарения и конденсации, движения .частицы в изотермическом потоке газа, движения в полях градиентов температуры и концентрации (термо- и"диффузиофорез), в поле электромагнитного излучения (фотофорез) и другие [8] .

К настоящему времени достигнут значительный прогресс в изучении этих явлений, позволивший развить многие важные практиче -ские приложения (например, теорию термодиффузиофоретического осаждения аэрозолей [8]). Однако большинство теоретических рас -смотрений подобных явлений не свободно и от ряда ограничений. В частности, за исключением работ' [9-14] , анализировались лишь предельные по числу Кнудсена (/Г/г = ¿¡Ц0 * ГД0 ^ - средняя длина свободного пробега молекул газа, - радиус частицы) случаи процессов переноса массы, импульса и энергии к аэрозоль ной частице. При малых значениях числа Ки , когда поведение газа близко к континуальному, использовались методы гидрогазодииа -мики со скольжением, а при Кп»1 ^так называемый свободномолеку-лярный режим) непосредственно вычислялись все необходимые макро -параметры [8]. Промежуточный по числу Кнудсена режим, представляющий наибольший практический интерес, приближенно описывался лишь на основе эвристических или эмпирических соображений.

Строгий подход к граничным задачам кинетической теории газов основывается, как известно [153 > на решении уравнения Больцмана (или модельных кинетических уравнений) с соответствующими начальными и граничными условиями для функции распределения. Однако существенная сложность такого подхода до сих пор не позволила создать законченной теории для описания процессов переноса к аэро -зольной частице.

В диссертационной работе представлены результаты теоретического исследования некоторых частных задач процессов переноса к одиночной аэрозольной частице (вычисление изотермической силы сопротивления летучей частицы, расчет термофоретической силы и скорости движения твердой аэрозольной -частицы). При решении указан -ных задач использовались модельные кинетические уравнения с над -лежащими граничными условиями для описания взаимодействия газ -поверхность частицы.

В первой главе обсуждается возможность кинетического подхода к проблемам микрофизики аэрозолей. Приводятся основные положения динамики аэродисперсных систем, рассматривается модель одиночной частицы, взвешенной в бесконечном объеме газа, записываются мо -дельные кинетические уравнения и граничные условия к ним, кратко описывается интегрально-моментный метод решения кинетического уравнения.

Во второй главе представлены результаты решения задачи о силе сопротивления летучей аэрозольной частицы, обтекаемой потоком ее собственного пара. Критически анализируются известные теоретические и экспериментальные результаты, обсуждаются физически важные аспекты постановки задачи. Отдельно изложены результаты решения задачи в случаях свободномолекулярного и вязкого со скольже -нием режимов движения. При этом обсуждается вопрос о тепловой поляризации поверхности частицы, обусловленной изотермическим потоком тепла в газе. Далее проводится постановка задачи для произ -вольных чисел Кнудсена, обсуждается вариационный метод решения системы интегрально-моментных уравнений. Приведены результаты чис-ленногорасчетасилы сопротивления летучей частицы как функции числа Кнудсена, коэффициентов испарения (конденсации; и аккомодации тангенциального импульса. Обсуждается влияние летучести и неполной аккомодации импульса на силу сопротивления, проведено сравнение с известными теоретическими и экспериментальными данными. Из сопоставления рассчитанных значений силы сопротивления с экспериментом извлекаются значения коэффициентов аккомодации тангенциального импульса для конкретных пар вещество частицы - газ.

В третьей главе представлены результаты решения задачи о тер-мофорезе твердой аэрозольной частицы. Проведен обзор теоретических и экспериментальных работ, обсуждены физически важные вопросы постановки задачи. Отдельно представлены результаты решения задачи о термодиффузиофорезе летучей частицы в условиях свободно-молекулярного режима, проведены оценки влияния внутренних степе -ней свободы многоатомных молекул на термофоретические силу и скорость в случае К. Далее проводится постановка задачи о термофорезе для произвольных чисел Кнудсена, приведены основные уравнения, обсуждается метод решения. Путем асимптотического разложения полученного решения при Ки«1 отдельно рассчитаны значения термофоретической силы в вязком со скольжением режиме. Приведены результаты расчетов термофоретической силы и скорости при произвольных числах Кнудсена. Обсуждается эффект отрицательного термофореза, анализируется влияние коэффициентов аккомода -ции энергии и тангенциального импульса на характеристики движе -ния. Проведено сравнение с известными экспериментальными и теоре^ тическими данными.

Похожие диссертационные работы по специальности «Молекулярная физика», 01.04.15 шифр ВАК

Заключение диссертации по теме «Молекулярная физика», Береснев, Сергей Анатольевич

Основные результаты диссертационной работы опубликованы в работах:

X. Береенев С.А., Черняк В.Г., Суетин П.Е. Термодиффузиофо-рез мелких частиц при наличии фазового перехода. - В кн.: Тезисы докл.У1 Всесоюзн.конф.по динамике разреж.газов. Новосибирск,1979, с.Х53.

2. Береенев С.А., Черняк В.Г., Суетин П.Е. Термодиффузио-форез мелких аэрозольных частиц при фазовых переходах на их поверхности. - Коллоидный ж., 1980, т.42, № 3, с.439-444.

3. Береснев С.А., Черняк В.Г., Суетин П.Е. Термофорез сферической частицы в многоатомном газе в свободномолекулярном режиме.

- В кн.: Материалы У1 Всес.конф.по тепломассообмену. Минск,1980» т.9, с.156-159.

4. Береснев С.А., Черняк В.Г., Суетин П.Е. Термофорез сферической частицы в многоатомном газе в свободномолекулярном режиме.

- Изв.АН СССР. Мех.жидк. и газа, 1981, № 5, с.184-186.

5. Вегезпеу S.A., Chernjak V.G., Suetin P.E. Motion of a spherical particle in its own saturated vapour at arbitrary Knudsen numbers. - In: 13 th International Symposium on Rarefied Gas Dynamics. Book of Abstracts. Novosibirsk: Institute of Thermophysics, 1982, v.2, p.312-313.

6. Береснев С.А., Черняк В.Г. 0 влиянии теплопроводности и аккомодационных свойств сферической частицы на ее движение в однородно нагретом газе. - Инж.-физ.ж., 1983, т.44, № I, с.142-143 (Рукоп.деп. в ВИНИТИ 12.08.82 № 4473-82 Деп.- II е.).

7. Береснев С.А., Черняк В.Г., Суетин П.Е. Движение сфери -ческой частицы в собственном насыщенном паре при произвольных числах Кнудсена. - Докл. АН СССР, 1983, т.268, № 3, с.588-591.

8. Береснев С.А., Черняк В.Г., Суетин П.Е. Сила сопротивления летучей сферической частицы, движущейся в собственном насы -щенном паре. - Теплофиз.высоких темп., 1983, т.21, № 6, с.1145--1X53.

9. Береснев С.А., Черняк В.Г. Термофорез сферической частицы при малых числах Кнудсена. - Деп.ВИНИТИ № 4960-83 Деп.- 27 с.

Результаты диссертационной работы докладывались на УХ Всесоюзной конференции по динамике разреженных газов, г.Новосибирск, 1979 г.; на УП Всесоюзной конференции по динамике разреженных газов и молекулярной газовой динамике, г.Северодонецк, 1980 г.; на

У1 Всесоюзной конференции по теплообмену, г.Минск, 1980 г.; на ХШ Международном симпозиуме по динамике разреженного газа, г.Новосибирск, 1982 г.

Автор выражает искреннюю благодарность научному руководителю, профессору Суетину П.Е., и научному консультанту, доценту Черняку В.Г., за основные направляющие идеи и постоянную помощь при выполнении работы. Автор также благодарит А.Е.Маргилевского за эффективную поддержку при выполнении численных расчетов.

Список литературы диссертационного исследования кандидат физико-математических наук Береснев, Сергей Анатольевич, 1984 год

1. ГРИН X., ЛЕЙН В. Аэрозоли - пыли, дымы и туманы.-Л.: Химия,1972. 426 с.

2. ДЕТРИ 1. Атмосфера должна быть чистой. М.: Прогресс, 1973.384 с.3#Aerosol Microphysics 1. Particle Interaction / Ed. W.H.Marlew,- Berlin: Springer-Verlag, 1980. 160 p.

3. МАК-КАРТНИ Э. Оптика атмосферы. M.: Мир, 1979. - 423 с.

4. РОДЖЕРС P.P. Краткий курс физики облаков. Л.: Гидрометеоиздат, 1979. 231 с.

5. ВОЖОВИЦКИЙ О.А., СЕДУНОВ Ю.С., СЕМЕНОВ Л.П. Распространениеинтенсивного лазерного излучения в облаках. Л.: Гидрометео-издат, 1982. - 312 с.

6. СПИТЦЕР Л. Физические процессы в межзвездной среде. М.: Мир,1981. 351 с.

7. АН СССР. Мех.жидк.и газа, 1976, № 5, с.178-182. 12. ХЛОПКОВ Ю.М. Сопротивление сферы в потоке разреженного газамалой скорости. Уч.зап.ЦАГИ, 1975, т.6, вып.5, с.124-127.

8. SONE Y*, AOKI K. A similarity solution of the linearized

9. Boltzmann equation with application to thermophoresis of a spherical particle. -J.Mecanique Ther. Applique, 1983» v.2, N 1, p.3-12.

10. LEA K.C., LOYALKA S.K. Motion of a sphere in a rarefied gas.- Phys* Fluids, 1982, v.25, N 9, p.1550-1557.

11. ЧЕРЧИНЬЯНИ К. Теория и приложения уравнения Больцмана. М.:1. Мир, 1978. 496 с.

12. ФУКС Н.А. Механика аэрозолей. М.: Изд-во АН СССР, 1955.352 с.

13. ФУКС Н.А., СУТУГИН А.Г. Высокодисперсные аэрозоли/Итоги науки.

14. Серия химия. Физ.химия. М.: Изд-во ВИНИТИ, 1969. - 84 с.

15. Aerosol Science / Ed. C.Ii.Davies. New York: Academic Press,1966. 46О p.

16. BROCK J.R. The kinetics of ultrafine particles. In: Aerosol

17. Microphysics 1. Particle Interaction/3Ed. W.H.Marlow. -Berlin: Springer-Verlag, 1980, p.15-59.

18. БАЛЕСКУ P. Равновесия и неравновесная статистическая механика.

19. М.: Мир, 1978, т.2. 400 с.

20. ЧЕПМЕН С., КАУЛЙНГ Т. Математическая теория неоднородных газов.1. М.: ИЛ, I960. 510 с.

21. КОГАН М.Н. Динамика разреженного газа. М.: Наука, 1967.440 с.

22. ЧЕРЧИНЬЯНИ К. Математические методы в кинетической теории га•Зов. М.: Мир, 1973. - 248 с.

23. ХЛОПКОВ Ю.И., ШАХОВ Е.М. Кинетические модели и их роль в исследовании течений разреженного газа. В кн.: Численные методы в динамике разреженных газов, вып.З. - М.: ВЦ АН СССР, 1977, с.37-80.

24. BHATNAGAR P.L., GROSS E.P., KROOK M.A model for collision processes in gases, Phys, Rev., 1954, v.94, N 3, p.511-525.

25. WELANDER P. On the temperature jump in a rarefied gas. Arkivfor Fysik, 1954, B.7, H.5, s.507. 27# GROSS E«P., JACKSON E„A. Kinetic models and the linearized

26. Boltzmann equation. Phys. Fluids, 1959, v.2, N 4, p.432-441.

27. HOLWAY L.H. New statistical models for kinetic theory: methodof construction. Phys. Fluids, 1966, v.9, N 9, p,1658-1673.

28. ШАХОВ E.M. Метод исследования движений разреженного газа. М.:1. М.: Наука, 1974. 208 с.

29. МАРЧУК Г.И. Методы расчета ядерных реакторов. М.: Госатомиздат,1. X96I. 667 с.

30. SONE Y*, AOKI K. Forces on a spherical particle in a slightlyrarefied gas. In: Rarefied gas dynamics, ed.J.L, Potter. New York: Academic Press, 1977» v. 1,'p.417-433.

31. SONE Y. , AOKI K. Slightly rarefied gas flow over a specularlyreflecting body. Phys. Fluids, 1977, v.20, N 4, p.571-576.

32. AOKI К., INAMURO Т., ONI SHI Y. Slightly rarefied gas flow overa body with small accommodating coefficient. J. Phys. Soc.Japan, 1979, v.47, H 2, p.663-671.

33. ГАЖИН B.C., КОГАН M.H., ФРИДЛЕНДЕР О.Г. Обтекание сильно нагретой сферы потоком газа при малых числах Рейнольдса.-Прикл.матем. и мех., 1972, т.36, № 5, с.880-885.

34. КОГАН М.Н., ГАЖИН B.C., ФРИДЛЕНДЕР О.Г. О напряжениях, возникающих в газах вследствие неоднородности температуры и концентрации. Новые типы свободной конвекции. Усп.физ.наук, 1976, т.119, вып.1, c.III-125.

35. БОРИЕ А.Ю., ФРИДЛЕНДЕР О.Г. Медленные течения газа около сильно нагретой или охлажденной сферы. Изв.АН СССР, Мех.жидк. и газа, 1981, № 6, с.170-175.

36. LIU V.C., PANG S.C., JBW H. Sphere drag in flow of almost-free molecules. Phys. Fluids, 1965, v.8, N 5, p.788-796.

37. WILLIS D»P« Sphere drag at high Knudsen number and low Machnumber, Phys. Fluids, 1966, v.9, N 12, p.2522-2524.

38. ШЛШИ M. , WEBER S. Luftwiderstand gegen die langsame Bewegung in Gasen. Z. Phys., 1911, B.32, s.981-994.

39. MILLIM R*A. The isolation of air ion, a precision measurement of its charge, and the correction of Stokes' law« Phys. Rev., 1911» v.32, N 4, p.349-397.

40. ALIEN H.D., RAABE O.G. lie-evaluation of Millikan's oil dropdata for the motion of small particles in air. J. Aerosol Sci., 1982, v.13, N 6, p.537-547.

41. ФУКС H.A., СТЕЧКИНА И.Б. Сопротивление газообразной среды движению частиц с размером, сравнимым со средней длиной свободного пути газовых молекул. Ж.техн.физ., 1963, т.33, № I, с.132-135.

42. SHERMAli F.S* A survey of experimental results and methods forthe transition regime of rarefied gas dynamics. In: Rarefied gas dynamics, ed. J.A. Laurmann. Hew York: Academic Press, 1963, v.2, p.228-260.

43. АШ1Б B.K. , MALINAUSKAS A.P., MASON E.A, Theory of drag on neutral or charged spherical aerosol particles.

44. J. Aerosol Sci., 1972, v.3, p.55-64.

45. PHILLIPS W.F. Drag on a small sphere moving through a gas.

46. Phys. Fluids, 1975, v. 18, N 9, р.1089-Ю93.

47. ХЛОПКОВ Ю.И. 0 броуновском движении в разреженном газе. Докл.

48. АН СССР, 1975, т.222, № 3, с.551-553.55.0NISHI Y. Kinetic theory treatment of motion of a spherical condensed phase in a uniform vapour gas flow. J. Phys. Soc. Japan, 1977, v.43, N 4, p. 1434-1,440.

49. SONE Y., AOKI K. Thermal force and drag on a volatile particles in a slightly rarefied gas. In: Rarefied gas dynamics, ed. R, Camparque. Paris: CEA, 1979, v.2, p.1207-1218,

50. BROCK J»R. Highly nonequilibrium evaporation of moving particles in the transition region of Knudsen number. J* Colloid Interface Sci., 1967, v.24, p.,344-351.

51. MILLIKAU R.A. The general law of fall of a small sphericalbody through a gas and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev., 1923, v.22, N 1, p.1-23.

52. DAVIES C.N. Definitive equations for the fluid resistance ofspheres. Proc. Phys. Soc., 1945, v.57, p.4, N 322,p.259-270.

53. ДЕРЯГИН Б.В., БАКАНОВ С.П. Теория термофореза больших твердыхаэрозольных частиц. Докл.АН СССР, 1962, т.147, № I, с.139-142. .

54. БАКАНОВ С.П., ДЕРЯГИН Б.В., РОЛДУГИН В.И. Термофорез в газах.- Усп.физ.наук, 1979, т.129, вып.2, с.255-278.

55. БАКАНОВ С.П., ВЫСОЦКИЙ В.В. Тепловая поляризация тел в потокеразреженного газа. Коллоид.ж., 1982, т.44, № 6, с.1156--1158.

56. ЛЕВИЧ В.Г. Физико-химическая гидродинамика. И.: ГИФМЛ, 1959.699 с.

57. ВАРГАФТИК Н.Б. Справочник по теплофизическим свойствам газов.и жидкостей. М.: Наука, 1972. - 720 с.

58. ГОНОР А.Л., РИВКИНД В.Я. Динамика капли. В кн.: Итоги наукии техники. Серия механика жидкости и газа. М.: Изд-во ВИНИТИ, 1982, т.17, с.86-159.

59. ЧЕРНЯК В.Г., СУЕТИН П.Е. К задаче о скачках температуры иплотности при испарении и конденсации. Деп.ВИНИТИ Ш 3639-77 Деп.- 13 с.

60. CIPOLLA J.W., LANG Н., LOYALKA S.E. Kinetic theory og condensation and evaporation 2. J. Chera. Phys., 1974, v.61, N 1, p.69-77.

61. КУЧЕРОВ P.Я., РИКЕНГЛАЗ Л.Э. К вопросу об измерении коэффициента аккомодации. Докл.АН СССР, 1960, т.133, № 5, с.1130--1131.

62. ЛАНДАУ Л.Д., ЛИФШИЦ Е.М. Статистическая физика, ч.1. М.:1. Наука, 1976. 584 с.

63. ТИХОНОВ А.Н., САМАРСКИЙ А.А. Уравнения математической физики.- М.: Наука, 1977. -.735 с.

64. ЧИРКИН B.C. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1968. - 484 с. 72. ВАН-ДАЙК М. Методы возмущений в механике жидкостей. М.: Мир, 1967, - 310 с.

65. CERCIGNANI С. Stokes' paradox in kinetic theory. Phys.

66. Fluids, 1968, v.11, N 2, p.303-308.

67. COLE IW. Upper and lower bounds to the low-speed drag anaxisymmetric body in rarefied flow. In: Rarefied gas dynamics, ed. S.Fisher. New York: AIAA, 1981, v.2, p.1007-1022.

68. COLE R.J. Drag of a sphere in low-speed rarefied flowtowards numerical estimates of upper and lower bounds. In: 13 th Rarefied gas dynamics symposium. Book of Abstracts. Novosibirsk: Institute of thermophysics, v.2, p.394-395.

69. СУЕТИН П.Е., ЧЕРНЯК В.Г. О зависимости пуазейлевского скольжения и теплового крипа от закона взаимодействия молекулгаза с граничной поверхностью. Изв.АН СССР. Мех.жидк. и газа, 1977, № 6, с.107-114.

70. SCHMITT К.Н. Untersuchungen an Schwebstoffteilchen im Temperaturfeld. Z. Naturforschg., 1959,B.14a, s.870-881.7g. JACOBSEN S., BROCK J.R. The thermal force on spherical sodium chloride aerosols. J. Colloid Sei., 1965, v.20, p.544-554.

71. ROSENBLATT P., LA MER V. Motion of a particle in a temperature gradient. Phys. Rev., 1946, v.70, N 5-6, p.385-395.oo 2 /1. P -U oz/u .

72. ABRAMOWITZ M. Evaluation of the integral JQ ' du0- J. Math. Phys., 1953, v.32, p.188-192.

73. КОРОБОВ H.M. Теоретикочисловые методы в приближенном анализе.- М.: Физматгиз, 1965. 224 с.

74. BROCK J.R. On radiometer forces. J. Colloid Interface Sei., 1967, v.25, N 4, p.564-567.

75. TALBOT L. Thermophorcsis a review, - In: Rarefied gasdynamics, ed. S. Fisher, v.74.New York: AIAA, 1981, v.1,P.467, 8/j. PUCHS N.A, Thermophore sis of aerosol particles at small

76. Knudsen numbers: theory and experiment. J, Aerosol Sei., 1982, v.13, N 4, p.327-330.

77. SPRINGER G.S. Thermal force on particle in the transition regime. J. Colloid Interface Sei., 1970, v.34, N 2, p.215-220.8g. PHILLIPS W.F. Thermal force on spherical particles in ararefied gas. Phy3. Fluids, 1972, v.15, N 6, p.999-1003.

78. CHA C.Y.f MC COY B.J. Thermal force on aerosol particles,- Phys. Fluids, 1974, v.17, N 4, p.1376-1380.

79. БАКАНОВ С.П., ДЕРЯГИН Б.В. О теории термопреципитации высокодисперсных аэрозольных систем. Коллоид.ж., 1959, т.21, № 4, с.377-384.

80. WALDMANN L. Über die Kraft eines inhomogenen Gases auf kleinesuspendierte Kugeln. Z. Naturforschg,, 1959, B. 14a, s.589-599.

81. ИВЧЕНКО И.Н., flJUMOB Ю.И., РАБИНОВИЧ Я.И. Теоретическое и экспериментальное исследование явления термофореза аэрозольных частиц при больших числах Кнудсена. Ж.физ.химии, 1971, т.45, № 3, с.583-587.

82. EPSTEIN P.S. Zur Theorie des Radiometers. Z. Phys., 1929,

83. B.54, IT 7/8, s.537-563. 9Z}.# BROCK J.R. On the theory of thermal forces acting on aerosol particles. J. Colloid Sei., 1962, v. 17, p.768-780.

84. ИВЧЕНКО И.Н., ЯЛАМОВ Ю.И. Гидродинамический метод расчета скорости термофореза умеренно ^крупных нелетучих частиц. Ж. физ.химии, 1971, т.45, № 3, с.577-582.9ge SONE Y. Flow induced Ъу thermal stresses in rarefied gas«

85. Phys. Fluids, 1972, v.15, N 8, p.1418-1423. 97# SONE Y; , AOKI K, Negative thermophoresis: thermal stress slip flow around a spherical particle in a rarefied gas. In: Rarefied gas dynamics, ed. S. Fisher, v,74. New York: AIaa, 1981, v.1, p.489-503.

86. ГАЛКИН B.C., КОГАН M.H., ФРИДЛЕНДЕР О.Г. Термо- и диффузионно-стрессовые явления. Тр.1У Всесоюзн.конф. по динам, разр.газа и молек.газ.динамике. М.: ЦАГИ, 1977,с.326-332.

87. OSHIMA N. A simple theory of the field equation in the intermediate region of flow« Trans, Jap» Soc.Aeronaut. and Space Sci., 1982 ,v.25, N 68, p„69-79.

88. VESTNER H. , KtJBEL M., WALDMANN L. A higher-«rder hydrodynamics and boundary conditions. Application to the thermal force. Naovo Cimento, 1975, v.25B, N 1, p.405-412.

89. ЯЛАМОВ Ю.И., ГАЙДУКОВ M.H. Два метода построения теории термофореза крупных аэрозольных частиц. Коллоид.ж., 1976, . т.38, № 6, C.II49-II55.

90. БАКАНОВ С.П., РОЛДУГИН В.И. 0 двух методах построения теориитермофореза крупных аэрозольных частиц. Коллоид.ж., 1977, т.39, й 6, с.1027-1038.

91. J 09.GOLDSMITH p., MAY F.G. Diffusiophoresis and thermophoresisin vater vapour systems. In: Aerosol Science, ed. C,N. Davies. New York: Academic Press, .1966, ch. 7, p.163-194.

92. PRODI F. , SANTACHIARA G., PRODI V. Measurements of thermophoresis velocities of aerosol particles in the transition region. J. Aerosol Sci., 1979, v.10, p.421-425,

93. SCHMITT КфН. Modellversuche zur Photophorese in Vakuum.

94. Vakuum-Technik, 1961, b.10, h.8, s.238-242.

95. TONG N,T* Experiment on photophoresis and thermophoresis.- J. Colloid Interface Sci., 1975, v.51, N 1, p.143-151.

96. DAVIS L.A,, ADAIR T.W. Thermal force on a sphere. J. Chem.

97. Phys,, 1975, v»62, N 6, p.2278-2285.

98. SCHADT C.F., CADLE R*D* Thermal.forces on aerosol particlesin a thermal precipitator. J. Colloid Sci., 1957, v.12, p.356-362.

99. ФУКС H.A., ЯНКОВСКИЙ С.С. 0 термофорезе в потоке аэрозоля.

100. Докл.АН СССР, 1958, т.119, № 6, С.П77-П79.

101. ОГГ С., WILSON T.W. Thermal precipitation at reduced gaspressures. J. Colloid Sci.f 1964, v.19, N 6, p.571-577.

102. BAKANOV S,P., DERJAGUIN В. V. Motion of a small particlesin nonuniform gas mixture. Disc, Faraday Soc., 1960, N 30, p.140-148.

103. ЩУКИН E.P., ЯЛАМОВ Ю.И. Теория термо- и диффузиофореза мелких аэрозольных частиц при произвольном характере взаимодействия. Изв.АН СССР. Мех.жидк. и газа, 1972, № 3, с.186-188.

104. ФЕРЦИГЕР Да., КАПЕР Г. Математическая теория процессов переноса в газах. М.: Мир, 1976. - 556 с.

105. ЖДАНОВ В.М. К кинетической теории многоатомного газа. 1ЭТФ,1967, т.53, вып.6, с.2099-2108.

106. АЛИЕВСКИЙ М.Я. К расчету теплопроводности молекулярных газовпо данным ультраакустических измерений. Тепл.высок.темп., 1970, т.8, Ш 2, с.292-295.

107. БОРИСОВ С.Ф., П0Р0ДН0В Б.Т., СУЕТИН П.Е. Экспериментальное исследование течения газов в капиллярах. К.техн.физ., 1972, т.42, № 6, с.1310-13X4.

108. КОЛЕНЧИЦ О.А. Тепловая аккомодация систем газ-твердое тело.- Минск: Наука и техника, 1977. 128 с.

109. МИХЛИН С.Г. Вариационные методы в математической физике.1. М.: Наука, 1970. 512 с.

110. EGLIN J.M. The coefficient of viscosity and slip of CO2 bythe oil drop method and the law of motion of an oil dropin CC>2, 02, He at low pressures. Phys. Rev«, 1923, v.22, N 2, рИб1~170.

111. MATTAUCK J. Eine experimetelle Ermittlung des Widerstandgesetz kleiner Kugeln in Gasen. Z. Phys., 1925» B. 32, N 6, s.439-472.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.