Изучение влияния гравитационного воздействия на функционирование сердечно-сосудистой системы тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат физико-математических наук Меняйлова, Мария Анатольевна
- Специальность ВАК РФ05.13.18
- Количество страниц 122
Оглавление диссертации кандидат физико-математических наук Меняйлова, Мария Анатольевна
ВВЕДЕНИЕ
ГЛАВА 1. ФИЗИКО-МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ГЕМОДИНАМИКИ С УЧЕТОМ ГРАВИТАЦИИ
1.1. Формулировка математической модели для одного сосуда в гравитационном поле.
1.2. Характеристическая форма уравнений гемодинамики в инвариантах Римана.
1.3. Уравнение состояния
1.3.1. Первая форма уравнения состояния.
1.3.2. Вторая форма уравнения состояния.
1.3.3. Третья форма уравнения состояния.
1.4. Уравнения гемодинамики на графе сосудов.
1.4.1. Задание граничных условий, имитирующих работу сердца.
1.4.2. Первый модельный граф большого круга кровообращения.
1.4.3. Аналитическое решение в стационарном случае для первого модельного графа сосудов постоянного сечения.
1.4.4. Второй модельный граф большого круга кровообращения.
1.4.5. Пространственные модификации второго модельного графа.
ГЛАВА 2. ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ МОДЕЛИ И ЕЕ ИССЛЕДОВАНИЕ 57 2.1. Разностная аппроксимация с использованием набора осредненных элементов.
2.1.1. Построение разностной схемы.
2.1.2. Консервативность.
2.1.3. Устойчивость.
2.1.4. Порядок аппроксимации разностной схемы.
2.1.5. Теоретическая точность разностной схемы.
2.1.6. Практическая точность разностной схемы.
2.2. Численные алгоритмы решения разностных уравнений.
2.2.1. Итерационный метод 1.
2.2.2. Итерационный метод 2.
2.3. Схема с искусственной вязкостью.
2.3.1. Дифференциальное приближение и свойства разностной схемы.
ГЛАВА 3. ИЗУЧЕНИЕ СИСТЕМЫ КРОВООБРАЩЕНИЯ В УСЛОВИЯХ ГРАВИТАЦИОННЫХ ПЕРЕГРУЗОК
3.1. Постановка задачи.
3.2. Исследование влияния гравитационных перегрузок на течение крови в сосудах первого модельного графа.
3.2.1. Первый модельный граф.
3.2.2. Начальные данные.
3.2.3. Исследование влияния гравитационных перегрузок на течение крови в сосудах первого модельного графа при использовании модели работы сердца без гравитационной регуляции.
3.2.4. Исследование влияния гравитационных перегрузок на течение крови в сосудах первого модельного графа при использовании модели работы сердца с гравитационной регуляцией.
3.2.5. Сравнение расчетов с моделью работы сердца без гравитационной регуляции и моделью работы сердца с гравитационной регуляцией для первого модельного графа.
3.3. Исследование влияния гравитационных перегрузок на течение крови в сосудах второго модельного графа.
3.3.1. Второй модельный граф.
3.3.2. Начальные данные.
3.4. Исследование влияния гравитационных перегрузок на течение крови в сосудах большого круга кровообращения при различных положениях тела.
3.4.1. Пространственные модификации второго модельного графа.
3.4.2. Начальные данные.
3.4.3. Результаты численных экспериментов.
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Математическое моделирование гемодинамики2008 год, доктор физико-математических наук Мухин, Сергей Иванович
Осредненная нелинейная математическая модель гемодинамики на графе сосудов2001 год, кандидат физико-математических наук Буничева, Анна Яковлевна
Линейный анализ распространения пульсовых волн в сердечно-сосудистой системе2008 год, доктор физико-математических наук Соснин, Николай Васильевич
Математическое моделирование церебральной гемодинамики2004 год, кандидат физико-математических наук Лукшин, Василий Андреевич
Исследование эволюции пульсовых волн на графе эластичных сосудов2003 год, кандидат физико-математических наук Ашметков, Игорь Владимирович
Введение диссертации (часть автореферата) на тему «Изучение влияния гравитационного воздействия на функционирование сердечно-сосудистой системы»
Объект исследования и актуальность темы. Диссертация посвящена численному моделированию течения крови в сердечно-сосудистой системе человека при внешних воздействиях, связанных с гравитационными перегрузками. Математическое моделирование системы кровообращения привлекает внимание многих исследователей. Это связано с первостепенностью роли сердечно-сосудистой системы в жизни человека. Кроме того, экспериментальные исследования процессов гемодинамики достаточно трудоемки и дорогостоящи. В этих условиях вычислительный эксперимент становится важным и необходимым инструментом исследования сложных и разнообразных гемо-динамических процессов. Успех численных экспериментов зависит от соответствия математической и вычислительной моделей реальным физическим процессам, протекающим в системе кровообращения человека.
Современное состояние исследований. Начало современным представлениям о сердечно-сосудистой системе человека было положено английским естествоиспытателем и врачом У. Гарвеем [1], открывшим в XVII веке наличие замкнутой системы кровообращения и изложившим это в труде "Анатомическое исследование о движении сердца и крови у животных". В XVIII веке швейцарский математик и физик Д. Бернулли опубликовал работу "Гидродинамика, или Записки о силах и движениях жидкостей", в которой сформулировал основы механики жидкости. Позднее Л. Эйлер в статье "Открытие нового принципа механики" сформулировал в общем виде ньютоновы уравнения движения в неподвижной системе координат и вывел классические уравнения гидродинамики идеальной жидкости. В XIX веке французский физиолог и физик Ж. Пуазейль открыл закон истечения жидкости, устанавливающий, что объем протекающей по трубке жидкости прямо пропорционален давлению и четвертой степени диаметра трубки и обратно пропорционален ее длине. Эти представления характеризуют начальный этап математического описания движения крови.
К середине XX века были сформулированы основные принципы функционирования и регуляции кровообращения, накоплены значительные сведения о физиологических закономерностях течения крови. В этой связи следует отметить работы [2] - [6]. Развитие вычислительной техники обусловило новый этап в математическом моделировании системы кровообращения человека. Систематическое изложение актуальных на тот период проблем и методов математического моделирования гемодинамики содержится, в частности, в работах [7] - [12].
Математическое моделирование сердечно-сосудистой системы является одной из актуальных и значимых проблем. Количество работ в этой области постоянно растет (см., например, работы [17]- [28] и [44]- [47]). К настоящему времени создано большое количество математических моделей системы кровообращения. Моделируются как сердечно-сосудистая система в целом, так и ее отдельные участки. В частности, в работе [10], исследована нелинейная модель гемодинамики, полезная при изучении кровообращения в сложных кровеносных системах, состоящих из большого количества сосудов, тканей, органов и т.д., поскольку одновременное детальное рассмотрение течения в каждом из элементов системы представляется крайне сложным. Следует отметить, что задача построения общей математической модели сердечнососудистой системы на данный момент не решена ввиду чрезвычайной сложности биологической системы, зависящей от большого числа факторов.
Одним из способов классификации математических моделей системы кровообращения является пространственная размерность задачи. Существуют детально проработанные двух- [28] и трехмерные [29] модели отдельных участков системы кровообращения. Недостатком большинства многомерных моделей является большой объем вычислений и сложность применения модели к системе в целом. Для конструктивного описания сердечно-сосудистой системы необходимы упрощения физической модели, основанные на выделении свойств и закономерностей течения крови. Иными словами, модель должна быть достаточно простой в применении, и, в то же время, передавать основные свойства и закономерности реального объекта. Ввиду этого, большое распространение получили модели с одномерной пространственной координатой [19,23,26].
При математическом моделировании системы кровообращения необходимо корректно описать работу сердца как важного ее элемента. Построено и используется большое количество моделей - от имитационных и простейших одномерных до сложнейших трехмерных. Проблема построения таких полноразмерных моделей состоит как в трудности расчета трехмерных гидродинамических процессов в сложной области, так и в необходимости учитывать и воспроизводить разнообразные факторы, влияющие на работу сердца: нервные, гуморальные, рефлекторные и другие механизмы (см. [4,9,12], [14] - [16]). При построении многомерных моделей сердца большую роль играет моделирование сократительной деятельности мышцы сердца. Во многих работах в основу моделей сердца положен закон Старлинга [12,35,37,38], описывающий одну из многих регуляторных особенностей работы сердечной мышцы. Позднее во многих работах сердце представлялось переменными электрическими емкостями. Затем появились работы, в которых учитывались биофизические экспериментальные данные [13].
Отдельно необходимо отметить работу [39], в которой строится модель кровоснабжения миокарда. В ней рассматривается разветвленная сеть артериальных сосудов сердечной мышцы, и течение крови по этим сосудам полагается течением вязкой несжимаемой жидкости по системе гидравлических сопротивлений, причем топология системы, длины и диаметры сосудов соответствуют анатомическим данным.
В настоящее время работы по моделированию сердечно-сосудистой системы проводятся во многих странах мира, идет накопление информации для построения математической модели, отражающей основные физиологические и механические свойства реальной сердечно-сосудистой системы человека. На факультете вычислительной математики и кибернетики МГУ имени М.В. Ломоносова под руководством профессора А.П. Фаворского сформировалось научное направление по математическому моделированию гемодинамики. В течение ряда лет в тесном сотрудничестве с факультетом фундаментальной медицины МГУ ведутся работы по математическому моделированию кровеносной системы человека. В результате этих исследований предложена достаточно эффективная комплексная математическая модель, на базе которой создан программный комплекс CVSS (Cardiovascular System Simulation). С помощью этой системы программ решаются актуальные задачи гемодинамики: математическое моделирование гемодинамики замкнутой системы кровообращения с учетом влияния резистивных сосудов, моделирование регуляционной функции почки, церебрального кровообращения и др. [74].
Новой и актуальной проблемой математического моделирования гемодинамики является получение достоверной физиологической картины функционирования системы кровообращения в условиях гравитационных перегрузок. Этой проблеме и посвящена данная диссертация. Отметим, что математическое моделирование глобального кровотока проведено, в частности, в работе [45], но без специального исследования гравитационных перегрузок. В отсутствие гравитации математическое моделирование сердечно-сосудистой системы уже выходит на стадию верификации с помощью клинических наблюдений [46]. В диссертации, следуя работам [59]- [63] и [68]- [75], для описания всего большого круга кровообращения формулируется нелокальная математическая модель на графе эластичных сосудов с алгебраическими соотношениями в вершинах графа, полученными на основе законов сохранения в квазиодномерном приближении. Сердечно-сосудистой системе ставится в соответствие граф, состоящий из ребер и вершин, и передающий топологию строения системы кровообращения [69,71]. Ребра графа представляют собой магистральные сосуды или совокупность однородных более мелких сосудов. Вершины графа разделяются на внутренние и граничные. Внутренние вершины могут быть двух типов: участки фильтрации крови через ткани или отдельные органы и участки соединения двух и более сосудов. Граничные вершины связаны только с одним ребром и могут использоваться для имитации работы сердца. Работа сердца моделируется заданием краевых условий, например, на входе потока крови в сердце может задаваться давление как функция гравитационной нагрузки, а на выходе потока крови из сердца - периодическая функция, представляющая собой зависимость потока крови от времени. В диссертации для воспроизведения реакции сердца на гравитационную нагрузку модифицирована согласованная модель работы сердца [61]. Здесь рассмотрена замкнутая система кровообращения, что позволяет говорить о физиологически верном перераспределении кровотоков. Для моделирования гравитационного воздействия рассмотрено девять пространственных положений тела человека относительно гравитационного поля. Для этих положений получены распределения основных параметров кровотока. Результаты численного моделирования кровотока в условиях гравитационного воздействия могут найти широкое применение в различных областях. Например, при моделировании любого ускоренного перемещения тела человека, в том числе, для оценки порогов выносливости летчиков-испытателей. Это означает, что выбранная тема является актуальной и практически важной.
Цель и задачи работы. В работе рассматриваются задачи, подчиненные главной цели: развитию методов математического моделирования и программ для компьютерного моделирования сердечно-сосудистой системы человека.
При этом были поставлены следующие задачи:
1. Построение комплексной модели большого круга кровообращения в условиях гравитационных перегрузок. Изучение уравнения состояния, соответствующего свойству сосудов поддерживать дозвуковой характер течения крови в системе. Численное моделирование нагнетательной функции сердца для учета его реакции на гравитационные перегрузки.
2. Разработка и построение серии пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела человека относительно гравитационного поля. Проведение численных экспериментов на графах с учетом механизмов компенсации гравитационной нагрузки.
Научные цели диссертации включают разработку методов решения нелинейных дифференциальных уравнений гемодинамики, пополнение компьютерного кода СУБЭ новыми функциональными возможностями, проведение расчетных исследований системы кровообращения с моделями-имитаторами работы сердца человека под воздействием гравитации.
Методика исследований. В задаче численного моделирования сердечно-сосудистой системы используется значительный арсенал методов вычислительной математики. Применяются математические методы на основе численного решения нелинейной системы нестационарных дифференциальных уравнений в частных производных. Используются неявные разностные схемы, численно решаются дискретные уравнения. Сходимость и порядок погрешности разностных аппроксимаций исследуются с помощью разложения в ряд Тейлора, устойчивость - с помощью метода гармоник.
Научная новизна работы. Диссертационная работа содержит решение актуальной научной проблемы создания средств математического моделирования движения крови с имитацией работы сердца и компенсирующих элементов в условиях гравитационных перегрузок. В диссертации развита вычислительная модель, алгоритмы и программы для исследования гемодинамики, протестированы средства математического моделирования в широком диапазоне параметров. С помощью расчетных исследований показано, что комплексная модель сердечно-сосудистой системы с имитацией работы сердца правильно отражает основные гемодинамические процессы в условиях гравитационных перегрузок.
Основными новыми элементами в диссертации являются следующие.
1. Рассмотрено и исследовано семейство уравнений состояния, отвечающих свойству сосудов поддерживать дозвуковой характер течения крови с учетом гравитационного воздействия.
2. Предложена и исследована модель работы сердца с гравитационной регуляцией, поддерживающая кровенаполнение сердца в условиях гравитационных перегрузок.
3. Разработана и построена серия пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела относительно гравитационного поля.
4. На основе построенной модели работы сердца с гравитационной регуляцией проведены расчетные исследования в зависимости от положения человека при различных значениях гравитационной нагрузки. Установлено существенное влияние положения человека на нормальное функционирование сердечно-сосудистой системы.
Значимость работы. Показана возможность моделирования упруго-механических свойств сосудов с помощью выбора уравнения состояния. Предложена модель работы сердца с гравитационной регуляцией, которая может быть использована для построения модели полнофункциональной сердечно-сосудистой системы. Проведенные расчетные исследования на серии пространственно-согласованных графов подтверждают существенное влияние положения человека на нормальное функционирование сердечнососудистой системы. Практическая ценность работы обусловлена возможностью использовать разработанный математический аппарат для исследования особенностей кровотока в условиях многократных гравитационных перегрузок.
Обоснованность и достоверность результатов основаны на применении хорошо зарекомендовавших себя вычислительных методов и известной методики гемодинамического моделирования. Точность разработанных методов проверялась на решении задач-тестов с известными решениями, а также средствами внутреннего контроля. Достоверность принципиальных результатов контролировалась обсуждениями с учеными-физиологами, решения подвергались тщательному качественному анализу. Многовариантные расчеты подтверждают работоспособность данной численной модели и ее возможность служить инструментом исследования сложных гемодинамических процессов.
Апробация работы. Результаты работы докладывались на различных конференциях и семинарах, в том числе на:
- VI Научной конференции «Тихоновские чтения», 24-27 октября 2006 г., Москва, МГУ имени М.В. Ломоносова;
- International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2006), Crete, Greece, 15-19 September, 2006;
- International Conference on Advanced Computational Methods in Engineering, Liege, Belgium, 2008.
Реализация и внедрение результатов работы. Работа выполнялась в рамках научных планов МГУ имени М.В. Ломоносова, поддерживалась грантами Российского фонда фундаментальных исследований. Результаты использовались для развития модели сердечно-сосудистой системы в сотрудничестве с факультетом фундаментальной медицины МГУ.
Публикации. По теме диссертации опубликованы 3 работы, из них одна статья в журнале, рекомендованном ВАК РФ для опубликования научных результатов диссертаций.
Список основных публикаций автора по теме диссертации
Статьи в рецензируемых журналах, рекомендованных ВАК.
1. Мухин С.И., Меняйлова М.А., Соснин Н.В., Фаворский А.П. Аналитическое исследование стационарных гемодинамических течений в эластичной трубке с учетом трения // Дифференциальные уравнения. - 2007. Т. 43. № 7.
- с. 987-991.
2. Буничева А.Я., Меняйлова М.А., Мухин С.И., Соснин Н.В., Фаворский А.П. Исследование влияния гравитационных перегрузок на параметры кровотока в сосудах большого круга кровообращения // Математическое моделирование. - 2012. Т. 24. № 7. - с. 67-82.
Статьи в трудах российских и зарубежных конференций.
1. Favorskii А.P., Menyailova М.А. Construction of Conservative Discrete Scheme for Hemodynamic Equations // Extended Abstracts of International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2006) - Weinheim, Germany: WILEY-VCH Verlag, 2006. - P. 121-124.
2. Меняйлова M.A., Фаворский А.П. Построение консервативной разностной схемы для уравнений гемодинамики // Тихоновские чтения: Научная конференция, МГУ имени М.В. Ломоносова, 24-27 октября 2006 г. Тезисы докладов.
- М: МАКС Пресс, 2006.
3. Favorskii А.P., Menyailova М.А. Investigation of Gravity Overloads Effect on Hemodynamic Flows in Vessels of Model Graph // Proceedings of Fourth International Conference on Advanced Computational Methods in Engineering. -Liege, Belgium, 2008.
Структура и объем работы. Диссертация состоит из введения, 3 глав, заключения и списка цитируемой литературы. Диссертация содержит 122 страницы, в общей сложности 38 рисунков и 7 таблиц. Список цитируемой литературы содержит 75 наименований.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Математические модели некоторых механизмов регуляции гемодинамики2007 год, кандидат физико-математических наук Соколова, Татьяна Владимировна
Математическое моделирование движения жидкости по системе эластичных сосудов2002 год, кандидат физико-математических наук Хруленко, Александр Борисович
Численное моделирование кровотока при наличии сосудистых имплантатов или патологий2013 год, кандидат физико-математических наук Добросердова, Татьяна Константиновна
Кинетический подход к решению задач гемодинамики2000 год, кандидат физико-математических наук Гаврилюк, Кирилл Валентинович
Биомеханическое моделирование кровеносных сосудов с учетом мышечной активности стенок2013 год, кандидат физико-математических наук Доль, Александр Викторович
Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Меняйлова, Мария Анатольевна
ЗАКЛЮЧЕНИЕ
В данной работе представлены математическая модель и вычислительная технология для моделирования сердечно-сосудистой системы в условиях гравитационных перегрузок. В качестве основных результатов можно указать следующие.
1. Рассмотрено и исследовано семейство уравнений состояния, отвечающих свойству сосудов поддерживать дозвуковой характер течения крови в сосуде с учетом гравитационного воздействия.
2. Предложена и исследована модель работы сердца с гравитационной регуляцией, поддерживающая кровенаполнение сердца в условиях гравитационных перегрузок.
3. Разработана и построена серия пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела относительно гравитационного поля.
4. На основе построенной усовершенствованной модели работы сердца проведены расчетные исследования и составлена таблица физиологических параметров в зависимости от положения человека при различных значениях гравитационной нагрузки. Установлено существенное влияние положения человека на нормальное функционирование сердечнососудистой системы.
Средствами внутреннего контроля показана работоспособность численной модели системы кровообращения в условиях гравитационных перегрузок и ее возможность служить инструментом исследования кровенаполнения сердца и головного мозга. Обоснованность и достоверность результатов основаны на применении хорошо зарекомендовавшей себя иерархической нелокальной модели течения крови в сети сосудов, образующих замкнутую сердечнососудистую систему.
Список литературы диссертационного исследования кандидат физико-математических наук Меняйлова, Мария Анатольевна, 2012 год
1. Гарвей В. Анатомическое исследование о движении сердца и крови у животных. - M.-JL: Госиздат, 1927. - 113 с.
2. Coleman T.G., Granger Н. J., Guyton А.С. Whole-Body Circulatory Autoregulation and Hypertension // Circulation Research, 1971. Vol. 28, № 5. P. 76-87.
3. Guyton A.C., Coleman T.G., Grander H.J. Circulation: overall regulation // Ann. Rev Physiol. 1972. Vol. 34. - P. 13-44.
4. Caro C.G., Pedley T.J., Schroter R.S., Seed W.A. The mechanics of the circulation. New-York - Toronto: Oxford University Press, 1978. - 527 p.
5. Cancelli C., Pedley T.J. A separated-flow model for collapsible-tube oscillation // J. Fluid Mech. 1985. Vol. 157. - P. 375-404.
6. Педли Т. Гидродинамика крупных кровеносных сосудов. М.: Мир, 1983.- 400 с.
7. Noordergraaf A. Development of an analog computer for the human systemic circulatory system // Circulatory Analog Computers. Amsterdam, Holland: North Holland. 1963. - P. 29-44.
8. Womersly J.R. Oscillatory motion of a viscous liquid in thin-walled elastic tube. 1. The linear approximation for long waves // Phil. Mag. 1955. Vol. 46. No. 373. - P. 199-221.
9. Гидродинамика кровообращения / ред. Регирер С.А. М.: Мир, 1971. -270 с.
10. Регирер С.А. Лекции по биологической механике. М.: Изд-во МГУ, 1980.- 144 с.
11. Левтов В.А., Регирер С.А., Шадрина Н.Х. Реология крови. М.: Медицина, 1982, 270 с.
12. Л ищу к В. А. Математическая теория кровообращения. М.: Медицина, 1991, 128 с.
13. Лищук В.А. Математические модели сердечно-сосудистой системы // Итоги науки и техники. Бионика, биокибернетика, биоинженерия. М.: ВИНИТИ, 1990. Т. 7.
14. Yuan-Cheng Fung. Mathematical representation of the mechanical properties of the heart muscle // Journal of Biomechanics. 1970. Vol. 3. No. 4. - P. 381-404.
15. Peskin C. S., McQueen D. M. A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid // Journal of Computational Physics. 1989. Vol. 81. No. 2. - P. 372-405.
16. McQueen D. M., Peskin C. S. A three-dimensional computational method for blood flow in the heart. II. Contractile fibers // Journal of Computational Physics. 1989. Vol. 82. No. 2. - P. 289-297.
17. Leaning M.S., Pullen H.E., Carson E.R., Finkelshtein L. Modelling a complex biological system: the human cardiovascular system. 1. Methodology and model description // Trans, of the Inst, of M. and C. 1993. Vol. 5. No. 2. -P. 71-86.
18. Formaggia L., Quarteroni A., Veneziani A. The circulatory system: from case studies to mathematical modeling // Complex Systems in Biomedicine.- Milan: Springer Verlag, 2006. P. 243-287.
19. Formaggia L., Lamponi D. and Quarteroni A. One dimensional models for blood flow in arteries // Journal of Engineering Mathematics. 2003. No. 47.- P. 251-276.
20. Canic S. Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties // Comput. Visual. Sci. 2002. No. 4. - P. 147-155.
21. Taylor C.A., Hughes T.J.R., Zarins C.K. Finite Element Modelling of Blood Flow in Arteries // Comput. Methods Appl. Mech. Engrg. 1998. Vol. 158. P. 155-196.
22. Zacek M., Krauset E. Numerical simulation of blood flow in human cardiovascular system //J. Biomechanics. 1996. Vol. 29. No. 1. - P. 1320.
23. De Parter L., Van den Berg J.M. An electrical analogue of the entire human circulation system // Med. Electronics and Biol. Eng. 1964. No. 2. - P. 161-166.
24. Beneken I.E.W., De Wit B. A physical approach to hemodynamic aspects of the human cardiovascular system // Physical bases of circulatory transport: Regulation and exchange. Philadelphia, 1967. p. 46-67.
25. Berger S.A. Flow in large blood vessel. Fluid dynamics in biology // Proc. of AMS-IMS-SIAM summer research Conf. Contemporary Math. 1991. Vol. 141. - P. 479-518.
26. Olsen J.H., Shapiro A.N. Large amplitude unsteady flow in liquid-filled elastic tubes // J. Fluid Mech. 1967. Vol. 29. No. 3. - P. 513-538.
27. Chakravarty S., Mandal P.H. A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosisn subjected to body acceleration // Math. Comput. Modelling. 1996. Vol. 24. No. 1. - P. 43-58.
28. Perktold K., Resell M., Peter R.O. Three-Dimensional Numerical Analysis of pulsatile Flow and Wall Shear Stress in Carotid Artery Bifurcation //J. Biomechanics. 1991. Vol. 24. No 6. - P. 409-420.
29. Tichner E.G., Sacks A.H. A theory for the static elastic behavior of blood vessels // Biorheology. 1967. Vol. 4. No. 4. - P. 151-168.
30. Greenfield J.C., Patel D.J. Relation between pressure and diameter in ascending aorta of man // Circulation Res. 1962. Vol. 10. No. 5. - P. 778-781.
31. Гродинз Ф. Теория регулирования и биологические системы. М.: Мир, 1966. - 254 с.
32. Конради Г.П. Регуляция сосудистого тонуса. J1.: Наука, 1973. - 328 с.
33. Рашмер Р. Динамика сердечно-сосудистой системы. М.: Медицина, 1982. - 440 с.
34. Шмидт Р., Тевс Г. Физиология человека. Т.2. М.: Мир, 2005. - 314 с.
35. Шмидт Р., Тевс Г. Физиология человека. Т.З. М.: Мир, 2005. - 228 с.
36. Фолков В., Нил Э. Кровообращение. М.: Медицина, 1981. - 600 с.
37. Ткаченко Б.И. Физиология кровообращения: Регуляция кровообращения. JL: Медицина, 1986. 640 с.
38. Савенков И.В. О нестационарных осесимметричных течениях в трубках с упругими стенками // ЖВМиМФ. 1996. Т. 36. № 2. с. 147-164.
39. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М., Наука, 1988. - 733 с.
40. Рождественский Б.Л., Яненко H.H. Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Наука, 1968. - 592 с.
41. Шокин Ю.М., Яненко H.H. Метод дифференциального приближения. Применение в газовой динамике. Нов.: Изд-во СО РАН, 1985. - 364 с.
42. Холодов A.C. Некоторые динамические модели внешнего дыхания и кровообращения с учетом их связности и переноса веществ // Компьютерные модели и прогресс медицины. М.: Наука, 2001. - с. 127-163.
43. Симаков С.С., Холодов A.C., Евдокимов A.B. Методы расчета глобального кровотока в организме человека с использованием гетерогенных вычислительных моделей // Медицина в зеркале информатики. М.: Наука, 2008. - с. 145-170.
44. Фролов C.B., Маковеев С.H., Газизова Д.Ш., Лищук В.А. Модель сердечно-сосудистой системы, ориентированная на современную интенсивную терапию // Вестник ТГТУ. 2008. Т. 14. № 4. - с. 892-902.
45. Розанов В.В., Руденко О.В., Сысоев H.H. Нелинейнык пульсовые волны в эластичных трубках с переменным сечением и изменяющимися упругими свойствами. Физическая гидродинамика. Препринт физического факультета МГУ, выпуск 9. 1998. № 12. - 22 с.
46. Ткаченко Б.И. Венозное кровообращение. Л.: Медицина, 1979. - 224 с.
47. Сапин М.Р., Билич Г.Л. Анатомия человека, кн. 2. М.: Оникс: Альянс - В, 1999. - 432 с.
48. Дородницын A.A. Об одном методе численного решения некоторых нелинейных задач аэрогидродинамики // Тр. III Всесоюз. Матем. Съезда, 1956. Т. 3, М.: изд-во АН СССР. с. 447-453.
49. Тихонов А.Н., Самарский A.A. Уравнения математической физики. М.: Наука, 1977. - 735 с.
50. Самарский A.A. Теория разностных схем. М.: Наука, 1977. - 616 с.
51. Самарский A.A., Попов Ю.П. Разностные методы решения задач газовой динамики. М.: Наука, 1992. - 382 с.
52. Самарский A.A., Гулин A.B. Численные методы. М.: Наука, 1989. - 432 с.
53. Лелюк В.Г., Лелюк С.Э. Ультразвуковая ангиология. М.: Реальное Время, 2003. - 324 с.
54. Пуриня Б. А., Касьянов В.А. Биомеханика крупных кровеносных сосудов человека. Рига: Зинатне, 1980. - 260 с.
55. Чиркин A.A., Окороков А.Н., Гончарик И.И. Диагностический справочник терапевта. Минск: Беларусь, 1992, 688 с.
56. Кровообращение мозга и свойства крупных артерий в норме и патологии / ред. Блюгер А.Ф., Валтнерис А.Д. Рига, 1976. - 138 с.
57. Абакумов М.В., Гаврилюк К.В., Есикова Н.В., Кошелев В.В., Лукшин A.B., Мухин С.И., Соснин Н.В., Тишкин В.Ф., Фаворский А.П. Математическая модель гемодинамики сердечно-сосудистой системы // Дифференциальные уравнения. 1997. Т. 33. № 7. - с. 892-898.
58. Лукшин В.А., Мухин С.И., Соколова Т.В., Соснин Н.В., Фаворский А.П. Математическое моделирование церебральной гемодинамики в квазипериодическом режиме. Препринт М.: МАКС Пресс, 2003. - 20 с.
59. Кошелев В.В., Мухин С.И., Соколова Т.В., Соснин Н.В., Фаворский А.П. Математическое моделирование гемодинамики сердечно-сосудистой системы с учетом влияния нейрорегуляции // Математическое моделирование. 2007. Т. 19. № 3. - с. 15-28.
60. Абакумов М.В., Есикова Н.Б., Мухин С.И., Соснин Н.В., Тишкин В.Ф., Фаворский А.П. Разностная схема решения задач гемодинамики на графе. Препринт М.: Диалог-МГУ, 1998. - 17 с.
61. Ашметков И.В., Мухин С.И., Соснин Н.В., Фаворский А.П., Хруленко A.B. Частные решения уравнений гемодинамики. Препринт М.: Диалог-МГУ, 1999. - 43 с.
62. Ашметков И.В., Мухин С.И., Соснин Н.В., Фаворский А.П. Решение общей задачи для ЛГД уравнений на одном сосуде. Препринт М.: МАКС Пресс, 2001. - 22 с.
63. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Осредненная нелинейная модель гемодинамики в одном сосуде. Препринт М.: МАКС Пресс, 2000. - 21 с.
64. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Осредненная нелинейная модель гемодинамики на графе сосудов // Дифференциальные уравнения. 2001. Т. 37. № 7. - с. 905-912.
65. Буничева А.Я., Лукшин В.А., Мухин С.И., Соснин Н.В., Фаворский А.П. Численное исследование гемодинамики большого круга кровообращения. Препринт М.: МАКС Пресс, 2001. - 21 с.
66. Буничева А.Я., Лукшин В.А., Мухин С.И., Соснин Н.В., Фаворский А.П. Квазистационарная модель кровообращения при гравитационных перегрузках. Препринт М.: МАКС Пресс, 2002. - 19 с.
67. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Исследование эволюции параметров течения в системе кровообращения под воздействием гравитационных нагрузок. Препринт М.: МАКС Пресс, 2003. -18 с.
68. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Численное исследование гемодинамики замкнутой системы кровообращения. Препринт М.: МАКС Пресс, 2007. - 18 с.
69. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П., Хруленко А.Б. Математическое моделирование некоторых прикладных задач гемодинамики // Прикладная математика и информатика. М.: МАКС Пресс. 2001. №9. - с. 91-132.
70. Кошелев В.В., Мухин С.И., Соснин Н.В., Фаворский А.П. Математические модели квази-одномерной гемодинамики. Методическое пособие. -М.: МАКС Пресс, 2010. 116 с.
71. Мухин С.И., Соснин Н.В., Фаворский А.П., Хруленко A.B. Линейный анализ волн давления и скорости в системе эластичных сосудов. Препринт М.: МАКС Пресс, 2001. - 40 с.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.