Изучение свойств ДНК-метилтрансфераз системы рестрикции-модификации BstF5I из Bacillus stearothermophilus F5 тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат биологических наук Голикова, Лариса Николаевна

  • Голикова, Лариса Николаевна
  • кандидат биологических науккандидат биологических наук
  • 2003, Кольцово
  • Специальность ВАК РФ03.00.03
  • Количество страниц 125
Голикова, Лариса Николаевна. Изучение свойств ДНК-метилтрансфераз системы рестрикции-модификации BstF5I из Bacillus stearothermophilus F5: дис. кандидат биологических наук: 03.00.03 - Молекулярная биология. Кольцово. 2003. 125 с.

Оглавление диссертации кандидат биологических наук Голикова, Лариса Николаевна

ОГЛАВЛЕНИЕ.

ПРИНЯТЫЕ СОКРАЩЕНИЯ.

1. ВВЕДЕНИЕ.

2. ДНК-МЕТИЛ Т РАН СФЕР АЗЫ БАКТЕРИАЛЬНЫХ СИСТЕМ

РЕСТРИКЦИИ-МОДИФИКАЦИИ (ОБЗОР ЛИТЕРАТУРЫ).

2.1. РАСПРОСТРАНЕНИЕ СИСТЕМ РЕСТРИКЦИИ-МОДИФИКАЦИИ

И ДНК-МЕТИЛТРАНСФЕРАЗ В ПРИРОДЕ.

2.2. КЛАССИФИКАЦИЯ РМ СИСТЕМ.

2.2.1. РМ системы I типа.

2.2.2. РМ системы II типа.

2.2.3. РМ системы III типа.

2.2.4. РМ системы IV типа.

2.2.5. Одиночные ДНК-метилтрансферазы и эндонуклеазы рестрикции.

2.3. ФУНКЦИИ ФЕРМЕНТОВ БАКТЕРИАЛЬНЫХ РМ СИСТЕМ.

2.3.1. Обеспечение защитной функции. Рестрикция и антирестрикция.

2.3.2. Участие ДНК-метилтрансфераз в репарации и репликации.

2.3.3. Другие функции.

2.4. ОПЕРОНЫ РМ СИСТЕМ.

2.4.1. Расположение генов в оперонах РМ систем.

2.4.2. Регуляция активности ферментов РМ систем II типа С-белками.

2.5. КЛАССИФИКАЦИЯ И СТРУКТУРА ДНК-МЕТИЛТРАНСФЕРАЗ.

2.5.1. Классификация ДНК-метилтрансфераз.

2.5.2. Пространственная структура ДНК-метилтрансфераз.

2.5.2.1. AdoMet-связывающий домен.

2.5.2.2. Каталитический домен.

2.5.2.3. TRD - домен.

2.6. СПЕЦИФИЧНОСТЬ ДНК-МЕТИЛТРАНСФЕРАЗ.

2.6.1. Модификация неканонических сайтов ДНК-метилтрансферазами.

2.6.2. Метилирование ДНК-метилтрансферазами одноцепочечных субстратов

2.6.3. Оптимальные условия функционирования ДНК-метилтрансфераз.

2.7. МЕХАНИЗМЫ РЕАКЦИЙ МЕТИЛИРОВАНИЯ ДНК.

2.7.1. Метилирование экзоциклических аминогрупп аденина и цитозина.

2.7.2. Метилирование эндоциклического С5 атома цитозина.

2.7.3. Кинетические свойства ДНК-метилтрансфераз.

3. МАТЕРИАЛЫ И МЕТОДЫ.

3.1. МАТЕРИАЛЫ.

3.2. МЕТОДЫ.

3.2.1. Трансформация компетентных клеток плазмидной ДНК.

3.2.2. Выделение плазмидной ДНК.

3.2.3. Метод селективной супрессии полимеразной цепной реакции.

3.2.4. Определение нуклеотидных последовательностей.

3.2.5. Определение оптимальных условий метилирования ДНК-субстратов метилтрансферазами РМ системы &S/F5I.

3.2.6. Определение стационарных кинетических параметров реакций, катализируемых ДНК-метилтрансферазами.

3.2.7. Компьютерный анализ последовательностей ДНК и белков.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ.

4.1. ОПРЕДЕЛЕНИЕ ПОЛНОЙ НУКЛЕОТИДНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ОПЕРОНА РМ СИСТЕМЫ Bst¥5l.

4.1.1. Клонирование гена &S7F5IM-3.

4.1.2. Определение четвертой открытой рамки трансляции.

4.1.3. Клонирование гена fo/F5IM-4.

4.1.4. Клонирование гена &sfF5IR.

4.1.5. Расположение генов в опероне РМ системы BstFSl на секвенированном участке бактериальной хромосомы.

4.2. ЭКСПРЕССИЯ ГЕНОВ ДНК-МЕТИЛТРАНСФЕРАЗ РМ СИСТЕМЫ Bst¥5\ В КЛЕТКАХ E.coli.

4.3. АНАЛИЗ ПЕРВИЧНЫХ СТРУКТУР ДНК-МЕТИЛТРАНСФЕРАЗ.

4.3.1. ДНК-метилтрансфераза MJ?s/F5I-3.

4.3.2. ДНК-метилтрансфераза M.ifr/F5I-4.

4.4. ИЗУЧЕНИЕ БИОХИМИЧЕСКИХ СВОЙСТВ ДНК-МЕТИЛТРАНСФЕРАЗ.

4.4.1. Определение цепи, модифицируемой M.Bst¥5\-3.

4.4.2. Определение цепи, модифицируемой M.Z?s/F5I-2 и M.#s/F5I-4.

4.4.3. Сравнение субстратной специфичности ДНК-метилтрансфераз.

4.4.4. Зависимость активности ферментов от температуры.

4.4.5. Зависимость активности ферментов от величины рН.

4.4.6. Зависимость активности ферментов от концентраций ионов Na+ и К+

4.5. КИНЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДНК-МЕТИЛТРАНСФЕРАЗ.

4.5.1. Определение стационарных кинетических параметров реакций, катализируемых ДНК-метилтрансферазами на полимерной ДНК.

4.5.2. Определение стационарных кинетических параметров реакций, катализируемых ДНК-метилтрансферазами на олигонуклеотидных дуплексах.

4.5.3. Сравнение кинетических характеристик гомологичных ДНК-метилтрансфераз РМ систем Z?s/F5I и FokI.

5. ВЫВОДЫ.

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Изучение свойств ДНК-метилтрансфераз системы рестрикции-модификации BstF5I из Bacillus stearothermophilus F5»

Ферментативное метилирование ДНК, осуществляемое сайт-специфическими ДНК-метилтрансферазами (в дальнейшем ДНК-метилазами или просто метилазами) является одной из наиболее интересных и актуальных проблем молекулярной биологии. За последнее время установлена важная роль этой модификации для регуляции экспрессии генов, процессов репликации и репарации в прокариотических и эукариотиоческих организмах, однако детальный механизм участия ДНК-метилаз в этих процессах мало изучен.

Более того, последние работы по определению первичной структуры ДНК целого ряда микроорганизмов выявили наличие в бактериальных клетках не одной (как ранее предполагалось), а целого набора генов ДНК-метилтрансфераз, что поднимает вопрос о роли такого каскада метилаз для функционирования клетки.

Большинство метилаз является составной частью так называемой сайт-специфической системы рестрикции-модификации (РМ системы) бактериальных клеток, обозначаемых по видовому названию микроорганизмов и состоящих, как правило, из эндонуклеазы рестрикции и ДНК-метилтрансферазы, узнающих одну и ту же последовательность нуклеотидов. Ранее было показано, что РМ система 5sfF5I из Bacillus stearothermophilus F5 имеет сайт узнавания 5'-GGATG-3', аналогичный сайту узнавания хорошо известной РМ системы Fokl из штамма Flavobacterium okeanokoites. Однако эндонуклеаза рестрикции &S/F5I расщепляет ДНК иначе, чем Fokl, а оперон РМ системы i?sfF5I, в отличие от РМ системы Fokl, содержит, как минимум, три ДНК-метилтрансферазы. Такая множественность ДНК-метилтрансфераз с одинаковой субстратной специфичностью была обнаружена впервые, так как РМ системы, имеющие более двух ДНК-метилтрансфераз, до настоящего времени не описаны в литературе.

Целью данной работы явилось дальнейшее изучение РМ системы включая установление структуры всего оперона РМ системы и сравнительное исследование свойств выявленных ДНК-метилтрансфераз.

В задачи настоящего исследования входило:

- Определение структуры оперона уникальной системы рестрикции-модификации Z?s/F5I и установление полной нуклеотидной последовательности генов ДНК-метилтрансфераз и эндонуклеазы рестрикции, входящих в эту систему.

- Экспрессия генов ДНК-метилтрансфераз системы рестрикции-модификации #s7F5I в клетках E.coli.

- Установление субстратной специфичности всех ДНК- метилтрансфераз системы рестрикции-модификации Z?sJF5I.

- Определение оптимальных условий функционирования ДНК-метилтрансфераз системы рестрикции-модификации £s/F5I.

- Сравнительное изучение кинетических свойств новых ферментов -ДНК-метилтрансфераз системы рестрикции-модификации &s/F5I.

Похожие диссертационные работы по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Голикова, Лариса Николаевна

5. ВЫВОДЫ

1. Определена полная нуклеотидная последовательность оперона системы рестрикции-модификации i?s?F5I из термофильного микроорганизма Bacillus stearothermophilus F5, ферменты которой узнают последовательность ДНК 5'-GGATG-3 '/5 -САТСС-3'.

2. Впервые показано существование уникальной системы рестрикции-модификации, в состав оперона которой входят четыре гена ДНК-метилтрансфераз и ген эндонуклеазы рестрикции.

3. Показано, что система рестрикции-модификации Z&/F5I включает две пары ДНК-метилтрансфераз с одинаковой субстратной специфичностью: M.itoF5I-l и M.Bst¥5l-3, модифицирующие последовательность 5 -GGATG-3'; и M.&S/F5I-2 и M.itoF5I-4, модифицирующие последовательность 5-САТСС-3'.

4. Гены всех четырех ДНК-метилтрансфераз системы рестрикции-модификации i?stF5I клонированы в экспрессирующие конструкции на основе термоиндуцибельного вектора pJW2 и показан синтез соответствующих ДНК-метилтрансфераз в клетках Е. coli.

5. Установлено, что ОРТ-1 для метилазы M.i?s?F5I-l содержит два стартовых кодона, однако функционально активный белок синтезируется только со второго ATG-кодона.

6. Определены оптимальные условия функционирования всех ДНК-метилтрансфераз системы рестрикции-модификации BstF5I: температура, величина рН, концентрации ионов Na+ и К+.

7. Проведено сравнительное изучение кинетических параметров реакций, катализируемых ДНК-метилтрансферазами системы рестрикции-модификации BstFSL Для всех ферментов определены константы Михаэлиса - KmsAM и -^чпднкэ каталитические константы кслЬ константы специфичности для SAM и ДНК.

Список литературы диссертационного исследования кандидат биологических наук Голикова, Лариса Николаевна, 2003 год

1. Wilson G.G., Murray N.E. Restriction and modification systems // Annu. Rev. Genet. 1991. V. 25. P. 585-627.

2. Wilson G.G. Organization of restriction-modification systems // Nucleic Acids Res. 1991. V. 19. No. 10. P. 2539-2566.

3. Hale W.B., van der Woude M.W., Braaten B.A., Low D.A. Regulation of uropathogenic Escherichia coli adhesin expression by DNA methylation // Mol. Genet. Metab. 1998. V. 65. No. 3. P. 191-196.

4. Jeltsch A. Circular permutations in the molecular evolution of DNAmethyltransferases // J. Mol. Evol. 1999. V. 49. No. 1. P. 161-164.

5. Jeltsch A., Pingoud A. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems // J. Mol. Evol. 1996. V. 42. No. 2. P. 91-96.

6. Heitman J. On the origins, structures and functions of restriction-modification enzymes // Genet. Eng. 1993. V. 15. P. 57-108.

7. Matveyev A.V., Young K.T., Meng A., Elhai J. DNA methyltransferases of the cyanobacterium Anabaena PCC 7120 // Nucleic Acids Res. 2001. V. 29. No. 7.$ P. 1491-1506.

8. Palmer B.R., Marinus M.G. The dam and dcm strains of Escherichia coli~a review//Gene. 1994. V. 143. No. l.P. 1-12.

9. Herman J.G., Modrich P. Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme // J. Biol. Chem. 1982. V. 257. No. 5. P. 2605-2612.

10. Eberhard J., Oza J., Reich N.O. Cloning, sequence analysis and heterologous expression of the DNA adenine-(N(6)) methyltransferase from the human pathogen Actinobacillus actinomycetemcomitans II FEMS Microbiol. Lett. 2001. V. 195. No. 2. P. 223-229.

11. Torreblanca J., Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium and a novel dam- regulated locus // Genetics. 1996. V. 144. No. 1. P. 15-26.

12. May B.J., Zhang Q., Li L.L., Paustian M.L., Whittam T.S., Kapur V. Complete genomic sequence of Pasteurella multocida, Pm70 // Proc. Natl. Acad. Sci. U. S. A. 2001. V. 98. No. 6. P. 3460-3465.

13. Miner Z., Hattman S. Molecular cloning, sequencing, and mapping of the bacteriophage T2 dam gene // J. Bacteriol. 1988. V. 170. No. 11. P. 5177-5184.

14. Trautner T.A., Pawiek В., Behrens В., Willert J. Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases // EMBO J. 1996. V. 15. No. 6. P. 1434-1442.

15. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B.C., Herrmann R. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae II Nucleic Acids Res. 1996. V. 24. No. 22. P. 4420-4449.

16. Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleischmann R.D., Bult C.J., Kerlavage A.R., Sutton G., Kelley J.M., . The minimal gene complement of Mycoplasma genitalium II Science. 1995. V. 270. No. 5235. P. 397-403.

17. Zhang Y., Nelson M., Nietfeldt J., Xia Y., Burbank D., Ropp S., Van Etten J.L. Chlorella virus NY-2A encodes at least 12 DNA endonuclease/methyltransferase genes // Virology. 1998. V. 240. No. 2. P. 366375.

18. Vertino P.M. Eukaryotic DNA Methyltransferases // In: S-adenosylmethionine-dependent methyltransferases: structures and functions / Eds. Cheng X., Blumenthal R.M. Singapore: World Scientific, 1999. P. 341-372.

19. Bickle T.A., Kruger D.H. Biology of DNA restriction // Microbiol. Rev. 1993. V. 57. No. 2. P. 434-450.

20. Roberts R.J., Macelis D. REBASE-restriction enzymes and methylases // Nucleic Acids Res. 1998. V. 26. No. 1. P. 338-350.

21. Roberts R.J., Belfort M., Bestor Т.Н. et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes // Nucleic Acids Res. 2003. V. 31. No. 7. P. 1805-18012.

22. Mernagh D.R., Taylor I.A., Kneale G.G. Interaction of the type I methyltransferase M.EcoR\24l with modified DNA substrates: sequence discrimination and base flipping // Biochem. J. 1998. V. 336. No. 3. P. 719-725.

23. Smith M.A., Read C.M., Kneale G.G. Domain structure and subunit interactions in the type I DNA methyltransferase M.iscoR124I // J. Mol. Biol. 2001. V. 314. No. 1. P. 41-50.

24. Janscak P., Dryden D.T., Firman K. Analysis of the subunit assembly of the typeIC restriction-modification enzyme EcoR\24\ II Nucleic Acids Res. 1998. V. 26. No. 19. P. 4439-4445.

25. Powell L.M., Dryden D.T., Willcock D.F., Pain R.H., Murray N.E. DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine // J. Mol. Biol. 1993. V. 234. No. 1. P. 60-71.

26. Kan N.C., Lautenberger J.A., Edgell M.H., Hutchison C.A., III. The nucleotide sequence recognized by the Escherichia coli K12 restriction and modification enzymes // J. Mol. Biol. 1979. V. 130. No. 2. P. 191-209.

27. Zinkevich V.E., Zograf I., Taniashin V.I. Genes of DNA methylase EcoK: their cloning and expression // Dokl. Akad. Nauk SSSR. 1984. V. 279. No. 6. P. 1493-1496.

28. Rao D.N., Page M.G., Bickle T.A. Cloning, overexpression and the catalytic propeties of the £coP15I modification methylase from Escherichia coli II J. Mol. Biol. 1989. V. 209. No. 4. P. 599-606.

29. Bitinaite J., Wah D.A., Aggarwal A.K., Schildkraut I. Fo/d dimerization is required for DNA cleavage // Proc. Natl. Acad. Sci. U. S. A. 1998. V. 95. No. 18. P. 10570-10575.

30. Dryden D.T. Bacterial DNA Methyltransferases // In: S-adenosylmethionine-dependent methyltransferases: structures and functions / Eds. Cheng X., Blumenthal R.M. Singapore: World Scientific, 1999. P. 283-340.

31. Cheng X., Kumar S., Klimasauskas S., Roberts R.J. Crystal structure of the Hhal DNA methytransferase // Cold Spring Harbor Symp. Quant. Biol. 1993. V. 58. P. 331-338.

32. Ueno Т., Ito H., Kimizuka F., Kotani H., Nakajima K. Gene structure and expression of the Mbol restriction-modification system // Nucleic Acids Res. 1993. V. 21.No. 10. P. 2309-2313.

33. Szybalski W., Kim S.C., Hasan N., Podhajska A.J. Class-IIS restriction enzymes a review // Gene. 1991. V. 100. P. 13-26.

34. Vanamee E.S., Santagata S., Aggarwal A.K. FokI requires two specific DNA sites for cleavage // J. Mol. Biol. 2001. V. 309. No. 1. P. 69-78.

35. Kita K., Kotani H., Sugisaki H., Takanami M. The Fokl restriction-modification system. I. Organization and nucleotide sequences of the restriction and modification genes //J. Biol. Chem. 1989. V. 264. No. 10. P. 5751-5756.

36. Kita K., Suisha M., Kotani H., Yanase H., Kato N. Cloning and sequence analysis of the Stsl restriction-modification gene: presence of homology to Fok I restriction-modification enzymes // Nucleic Acids Res. 1992. V. 20. No. 16. P. 4167-4172.

37. Lacks S., Greenberg B. A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA // J. Biol. Chem. 1975. V. 250. No. 11. P. 4060-4066.

38. Janulaitis A., Marcinkeviciene L.Y., Petrusyte M.P. A specific endonuclease from Caulobacter fusiformis that cleaves only methylated DNA. // Dokl. Akad. Nauk SSSR. 1982. V. 262. P. 241-244.

39. Kong H., Roemer S.E., Waite-Rees P.A., Benner J.S., Wilson G.G., Nwankwo D.O. Characterization of Bcgl, a new kind of restriction-modification system // J. Biol. Chem. 1994. V. 269. No. 1. P. 683-690.

40. Vitor J.M., Morgan R.D. Two novel restriction endonucleases from Campylobacter jejuni // Gene. 1995. V. 157. No. 1-2. P. 109-110.

41. Piekarowicz A., Golaszewska M., Sunday A.O., Siwinska M., Stein D.C. The HaeYV restriction modification system of Haemophilus aegyptius is encoded by a single polypeptide // J. Mol. Biol. 1999. V. 293. No. 5. P. 1055-1065.

42. Degtyarev S.K., Rechkunova N.I., Zernov Y.P., Dedkov V.S., Chizikov V.E., Van Calligan M., Williams R., Murray E. Bsp24l, a new unusual restriction endonuclease//Gene. 1993. V. 131. No. 1. P. 93-95.

43. Vitkute J., Maneliene Z., Petrusyte M., Janulaitis A. Bpll, a new Z?cgl-like restriction endonuclease, which recognizes a symmetric sequence // Nucleic Acids Res. 1997. V. 25. No. 22. P. 4444-4446.

44. Абдурашитов M.A., Беличенко О.А., Шевченко А.В., Дегтярев С.Х. N.Z?s^SE сайт-специфическая никаза из Bacillus stearothermophilus SE-589 // Молекулярная биология. 1996. Т. 30. №. 6. С. 1261-1267.

45. Xu Y., Lunnen K.D., Kong Н. Engineering a nicking endonuclease N./1/wI by domain swapping // Proc. Natl. Acad. Sci. U. S. A. 2001. V. 98. No. 23. P. 12990-12995.

46. Higgins L.S., Besnier C., Kong H. The nicking endonuclease N.ZforNBI is closely related to type lis restriction endonucleases Mly\ and Pie I // Nucleic Acids Res. 2001. V. 29. No. 12. P. 2492-2501.

47. Morgan R.D., Calvet C., Demeter M., Agra R., Kong H. Characterization of the specific DNA nicking activity of restriction endonuclease N.2?,s£NBI // Biol. Chem. 2000. V. 381. No. 11. P. 1123-1125.

48. Железная Jl.А., Перевязова T.A., Железнякова E.H., Матвиенко Н.И. Некоторые свойства сайт-специфической никазы N.Z?.s/?D6I и возможность ее применения в гибридизационном анализе ДНК // Биохимия. 2002. Т. 67. №. 4. С. 595-600.

49. Bujnicki J.M. Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons // Acta Biochim. Pol. 2001. V. 48. No. 4. P. 935-967.

50. Degtyarev S.K., Rechkunova N.I., Kolyhalov A.A., Dedkov V.S., Zhilkin P.A. II-Q restriction endonucleases new class of type II enzymes // Nucleic Acids Res. 1990. V. 18. No. 19. P. 5807-5810.

51. Дегтярев C.X., Жилкин П.А., Приходько Г.Г., Репин В.Е., Речкунова Н.И. Определение субстратной специфичности рестриктазы BpuXQil с необычным сайтом узнавания. // 1989 Т. 23. С. 11051-1056.

52. Stankevicius К., Lubys A., Timinskas A., Vaitkevicius D., Janulaitis А. Cloning and analysis of the four genes coding for Bpu\Q\ restriction- modification enzymes // Nucleic Acids Res. 1998. V. 26. No. 4. P. 1084-1091.

53. Hsieh P.C., Xiao J.P., O'loane D., Xu S.Y. Cloning, expression, and purification of a thermostable nonhomodimeric restriction enzyme, BslI // J. Bacteriol. 2000. V. 182. No. 4. P. 949-955.

54. Degtyarev S.K., Belichenko O.A., Lebedeva N.A., Dedkov V.S., Abdurashitov M.A. Btrl, a novel restriction endonuclease, recognises the non-palindromic sequence 5'-CACGTC(-3/-3)-3* // Nucleic Acids Res. 2000. V. 28. No. 11. P. E56

55. Kruger D.H., Barcak G.J., Reuter M., Smith H.O. ЕсоШ\ can be activated to cleave refractory DNA recognition sites // Nucleic Acids Res. 1988. V. 16. No. 9. P. 3997-4008.

56. Huai Q., Colandene J.D., Chen Y., Luo F., Zhao Y., Topal M.D., Ke H. Crystal structure of Nael-ш evolutionary bridge between DNA endonuclease and topoisomerase//EMBO J. 2000. V. 19. No. 12. P. 3110-3118.

57. Deibert M., Grazulis S., Sasnauskas G., Siksnys V., Huber R. Structure of the tetrameric restriction endonuclease NgoMlW in complex with cleaved DNA // Nat. Struct. Biol. 2000. V. 7. No. 9. P. 792-799.

58. Bilcock D.T., Halford S.E. DNA restriction dependent on two recognition sites: activities of the Sfil restriction-modification system in Escherichia coli II Mol. Microbiol. 1999. V. 31. No. 4. P. 1243-1254.

59. Janulaitis A., Petrusyte M., Maneliene Z., Klimasauskas S., Butkus V. Purification and properties of the EcoSll restriction endonuclease and methylase -prototypes of a new class (type IV) // Nucleic Acids Res. 1992. V. 20. No. 22. P. 6043-6049.

60. Petrusyte M., Bitinaite J., Menkevicius S., Klimasauskas S., Butkus V., Janulaitis A. Restriction endonucleases of new type // Gene. 1989. V. 74. No. 1. P. 89-91.

61. Janulaitis A., Vaisvila R., Timinskas A., Klimasauskas S., Butkus V. Cloning and sequence analysis of the genes coding for EcoSll type IV restriction-modification enzymes 11 Nucleic Acids Res. 1992. V. 20. No. 22. P. 6051-6056.

62. Miyahara M., Nakajima K., Shimada Т., Mise K. Restriction endonuclease PshAl from Plesiomonas shigelloides with the novel recognition site 5'-GACNN/NNGTC//Gene. 1990. V. 87. No. l.P. 119-122.

63. Mernagh D., Marks P., Kneale G. Ahdl, a new class of restriction-modification system? // Biochem. Soc. Trans. 1999. 27: A126.

64. Shaw P.С., Мок Y.K. Xcml as a universal restriction enzyme for single-stranded DNA // Gene. 1993. V. 133. No. 1. P. 85-89.

65. Dryden D.T., Murray N.E., Rao D.N. Nucleoside triphosphate-dependent restriction enzymes // Nucleic Acids Res. 2001. V. 29. No. 18. P. 3728-3741.

66. Piekarowicz A. Preferential cleavage by restriction endonuclease Hinflll II ActaBiochim. Pol. 1984. V. 31. No. 4. P. 453-464.

67. Reddy Y.V., Rao D.N. Binding of EcoV\5\ DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence // J. Mol. Biol. 2000. V. 298. No. 4. P. 597-610.

68. Rao D.N., Saha S., Krishnamurthy V. ATP-dependent restriction enzymes // Prog. Nucleic Acid Res. Mol. Biol. 2000. V. 64. P. 1-63.

69. De Backer O., Colson C. Two-step cloning and expression in Escherichia coli of the DNA restriction-modification system iStyLTI of Salmonella typhimurium II J. Bacteriol. 1991. V. 173. No. 3. P. 1321-1327.

70. Krishnamurthy V., Rao D.N. Interaction of EcoVX modification methylase with S-adenosyl-L-methionine: a UV-crosslinking study // Biochem. Mol. Biol. Intl. 1994. V. 32. P. 623-632.

71. Kauc L., Piekarowicz A. Purification and properties of a new restriction endonuclease from Haemophilus influenzae Rf// Eur. J. Biochem. 1978. V. 92. No. 2. P. 417-426.

72. Meisel A., Mackeldanz P., Bickle T.A., Kruger D.H., Schroeder C. Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis // EMBO J. 1995. V. 14. No. 12. P. 2958-2966.

73. Meisel A., Bickle T.A., Kruger D.H., Schroeder C. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage // Nature. 1992. V. 355. No. 6359. P. 467-469.

74. Stewart F.J., Raleigh E.A. Dependence of McrBC cleavage on distance between recognition elements // Biol. Chem. 1998. V. 379. No. 4-5. P. 611-616.

75. Panne D., Raleigh E.A., Bickle T.A. The McrBC endonuclease translocates DNA in a reaction dependent on GTP hydrolysis // J. Mol. Biol. 1999. V. 290. No. 1. P. 49-60.

76. Kruger Т., Wild C., Noyer-Weidner M. McrB: a prokaryotic protein specifically recognizing DNA containing modified cytosine residues // EMBO J. 1995. V. 14. No. 11. P. 2661-2669.

77. Dila D., Sutherland E., Moran L., Slatko В., Raleigh E.A. Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12 // J. Bacteriol. 1990. V. 172. No. 9. P. 4888-4900.

78. Revel H.R. Restriction of nonglucosylated T-even bacteriophage: properties of permissive mutants of Escherichia coli В and K12 // Virology. 1967. V. 31. No. 4. P. 688-701.

79. Janosi L., Yonemitsu H., Hong H., Kaji A. Molecular cloning and expression of a novel hydroxymethylcytosine- specific restriction enzyme (PvuRts 11) modulated by glucosylation of DNA // J. Mol. Biol. 1994. V. 242. No. 1. P. 45-61.

80. Schlagman S.L., Hattman S. Molecular cloning of a functional dam+ gene coding for phage T4 DNA adenine methylase // Gene. 1983. V. 22. No. 2-3. P. 139-156.

81. Behrens В., Noyer-Weidner M., Pawlek В., Lauster R., Balganesh T.S., Trautner T.A. Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages // EMBO J. 1987. V. 6. No. 4. P. 1137-1142.

82. Jurica M.S., Stoddard B.L. Homing endonucleases: structure, function and evolution // Cell Mol. Life Sci. 1999. V. 55. No. 10. P. 1304-1326.

83. Gimble F.S. Invasion of a multitude of genetic niches by mobile endonuclease genes // FEMS Microbiol. Lett. 2000. V. 185. No. 2. P. 99-107.

84. Belfort M., Perlman P.S. Mechanisms of intron mobility // J. Biol. Chem. 1995. V. 270. No. 51. P. 30237-30240.

85. Webb J.L., King G., Ternent D., Titheradge A.J., Murray N.E. Restriction by EcoKl is enhanced by co-operative interactions between target sequences and is dependent on DEAD box motifs // EMBO J. 1996. V. 15. No. 8. P. 2003-2009.

86. Modrich P. Methyl-directed DNA mismatch correction // J. Biol. Chem. 1989. V. 264. No. 12. P. 6597-6600.

87. Polaczek P., Kwan K., Liberies D.A., Campbell J.L. Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli// Mol. Microbiol. 1997. V. 26. No. 2. P. 261-275.

88. Campbell J.L., Kleckner N. E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork // Cell. 1990. V. 62. No. 5. P. 967-979.

89. Sternberg N., Coulby J. Cleavage of the bacteriophage PI packaging site (рас) is regulated by adenine methylation // Proc. Natl. Acad. Sci. U. S. A. 1990. V. 87. No. 20. P. 8070-8074.

90. Heithoff D.M., Sinsheimer R.L., Low D.A., Mahan M.J. An essential role for DNA adenine methylation in bacterial virulence // Science. 1999. V. 284. No. 5416. P. 967-970.

91. Goldman S., Navon Y., Fish F. Phase variation in Bordetella pertussis is accompanied by changes in DNA modification // Microb. Pathog. 1987. V. 2. No. 5. P. 327-338.

92. Wahnon D.C., Shier V.K., Benkovic S.J. Mechanism-based inhibition of an essential bacterial adenine DNA methyltransferase: rationally designed antibiotics // J. Am. Chem. Soc. 2001. V. 123. No. 5. P. 976-977.

93. Yoder J.A., Walsh C.P., Bestor Т.Н. Cytosine methylation and the ecology of intragenomic parasites // Trends Genet. 1997. V. 13. No. 8. P. 335-340.

94. Walsh C.P., Chaillet J.R., Bestor Т.Н. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation // Nat. Genet. 1998. V. 20. No. 2. P. 116-117.

95. Heidmann S., Seifert W., Kessler C., Domdey H. Cloning, characterization and heterologous expression of the Smal restriction-modification system // Nucleic Acids Res. 1989. V. 17. No. 23. P. 9783-9796.

96. Calvin K., Blumenthal R.M. Characterization of pPvul, the autonomous plasmid from Proteus vulgaris that carries the genes of the PvuW restriction-modification system // Gene. 1995. V. 157. No. 1-2. P. 73-79.

97. O'Sullivan D.J., Zagula К., Klaenhammer T.R. In vivo restriction by Llal is encoded by three genes, arranged in an operon with //alM, on the conjugative Lactococcus plasmid pTR2030 // J. Bacteriol. 1995. V. 177. No. l.P. 134-143.

98. Hadi S.M., Bachi В., Iida S., Bickle T.A. DNA restriction—modification enzymes of phage PI and plasmid pl5B. Subunit functions and structural homologies//J. Mol. Biol. 1983. V. 165. No. 1. P. 19-34.

99. Tao Т., Bourne J.C., Blumenthal R.M. A family of regulatory genes associated with type II restriction- modification systems // J. Bacteriol. 1991. V. 173. No. 4. P. 1367-1375.

100. Lindroth A.M., Cao X., Jackson J.P., Zilberman D., McCallum C.M., Henikoff S., Jacobsen S.E. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation // Science. 2001. V. 292. No. 5524. P. 20772080.

101. Vijesurier R.M., Carlock L., Blumenthal R.M., Dunbar J.C. Role and mechanism of action of C. PvuW, a regulatory protein conserved among restriction-modification systems // J. Bacteriol. 2000. V. 182. No. 2. P. 477-487.

102. Vasquez C.C., Saavedra C.P., Pichuantes S.E. Nucleotide sequence of the gene encoding the itoLVI DNA methyltransferase: comparison with other amino-DNA methyltransferases // Curr. Microbiol. 2000. V. 40. No. 2. P. 114-118.

103. Sohail A., Ives C.L., Brooks J.E. Purification and characterization of С.ВатШ, a regulator of the ВатШ restriction-modification system // Gene. 1995. V. 157. No. 1-2. P. 227-228.

104. Dubey А.К., Roberts R.J. Sequence specific DNA binding by the Mspl DNA methyltransferase // Nucleic Acids Res. 1992. V. 20. No. 12. P. 3167-3173.

105. Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R.J., Wilson G.G. The DNA (cytosine-5) methyltransferases // Nucleic Acids Res. 1994. V. 22. No. l.P. 1-10.

106. Schluckebier G., O'Gara M., Saenger W., Cheng X. Universal catalytic domain structure of AdoMet-dependent methyltransferases // J. Mol. Biol. 1995. V. 247. No. l.P. 16-20.

107. Malone Th., Blumenthal R.M., Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes // J. Mol. Biol. 1995. V. 253. No. 4. P. 618-632.

108. Posfai J., Bhagwat A.S., Posfai G., Roberts R.J. Predictive motifs derived from cytosine methyltransferases // Nucleic Acids Res. 1989. V. 17. No. 7. P. 2421-2435.

109. Bujnicki J.M. Sequence permutations in the molecular evolution of DNA methyltransferases // BMC. Evol. Biol. 2002. V. 2:3.

110. Timinskas A., Butkus V., Janulaitis A. Sequence motifs characteristic for DNA cytosine-N4. and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases // Gene. 1995. V. 157. No. 1-2. P. 3-11.

111. Cheng X., Kumar S., Posfai J., Pflugrath J.W., Roberts R.J. Crystal structure of the Hha\ DNA methyltransferase complexed with S-adenosyl- L-methionine // Cell. 1993. V. 74. No. 2. P. 299

112. Klimasauskas S., Kumar S., Roberts R.J., Cheng X. Hha\ methyltransferase flips its target base out of the DNA helix // Cell. 1994. V. 76. No. 2. P. 357-369.

113. O'Gara M., Zhang X., Roberts R.J., Cheng X. Structure of a binary complex of Hhal methyltransferase with S-adenosyl-L-methionine formed in the presence of a short non-specific DNA oligonucleotide // J. Mol. Biol. 1999. V. 287. No. 2. P. 201-209.

114. Reinisch K.M., Chen L., Verdine G.L., Lipscomb W.N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing // Cell. 1995. V. 82. No. 1. P. 143-153.

115. Schluckebier G., Kozak M., Bleimling N., Weinhold E., Saenger W. Differential binding of S-adenosylmethionine, S-adenosylhomocysteine and sinefungin to the adenine-specific DNA methyltransferase M.Taql // J. Mol. Biol.1997. V. 265. No. 1. P. 56-67.

116. Gong W., O'Gara M., Blumenthal R.M., Cheng X. Structure of Pvull DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment//Nucleic Acids Res. 1997. V. 25. No. 14. P. 2702-2715.

117. Jost J.P., Oakeley E.J., Schwarz S. In: S-adenosylmethionine-dependent methyltransferases: structures and functions / Eds. Cheng X., Blumenthal R.M. Singapore: World Scientific, 1999. P. 373

118. Vidgren J., Svensson L.A., Liljas A. Crystal structure of catechol O-methyltransferase//Nature. 1994. V. 368. P. 354

119. Fu Z., Hu Y., Konishi K., Takata Y., Ogawa H., Gomi Т., Fujioka M., Takusagawa F. Crystal structure of glycine N-methyltransferase from rat liver // Biochemistry. 1996. V. 35. P. 11985

120. Djordjevic S., Stock A.M. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine // Structure. 1997. V. 5. No. 4. P. 545-558.

121. Hodel A.E., Gershon P.D., Quiocho F.A. Structural basis for sequence-nonspecific recognition of 5-capped mRNA by a cap-modifying enzyme // Mol. Cell. 1998. V. 1. No. 3. P. 443-447.

122. Carugo O., Argos P. NADP-dependent enzymes. II: Evolution of the mono-and dinucleotide binding domains // Proteins. 1997. V. 28. No. 1. P. 29-40.

123. Kossykh V.G., Schlagman S.L., Hattman S. Studies on the function of conserved sequence motifs in the T4 Dam-N6- adenine. and ZscoRII [C5-cytosine] DNA methyltransferases // Gene. 1995. V. 157. No. 1-2. P. 125-126.

124. Ahmad I., Rao D.N. Functional analysis of conserved motifs in Eco?\5\ DNA methyltransferase // J. Mol. Biol. 1996. V. 259. No. 2. P. 229-240.

125. Jeltsch A., Roth M., Friedrich T. Mutational analysis of target base flipping by the £coRV adenine-N6 DNA methyltransferase // J. Mol. Biol. 1999. V. 285. No. 3. P. 1121-1130.

126. Friedrich Т., Roth M., Helm-Kruse S., Jeltsch A. Functional mapping of the EcoRV DNA methyltransferase by random mutagenesis and screening for catalytically inactive mutants // Biol. Chem. 1998. V. 379. No. 4-5. P. 475-480.

127. Bergerat A., Guschlbauer W. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli II Nucleic Acids Res. 1990. V. 18. No. 15. P. 4369-4375.

128. Adams G.M., Blumenthal R.M. The PvuW DNA (cytosine-N4)-methyltransferase comprises two trypsin-defined domains, each of which binds a molecule of S- adenosyl-L-methionine // Biochemistry. 1997. V. 36. No. 27. P. 8284-8292.

129. Bergerat A., Guschlbauer W., Fazakerley G.V. Allosteric and catalytic binding of S-adenosylmethionine to Escherichia coli DNA adenine methyltransferase monitored by 3H NMR // Proc. Natl. Acad. Sci. 1991. V. 88. No. 15. P. 6394-6397.

130. Sugisaki H., Kita К., Takanami M. The Fokl restriction modification system II. Presence of two domains in Fokl methylase responsible for modification of different DNA strands // J. Biol. Chem. 1989. V. 264. No. 10. P. 5757-5761.

131. Kossykh V.G., Schlagman S.L., Hattman S.M. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-N6-adenine.-methyltransferase is important for S-adenosyl-L-methionine binding // Nucleic Acids Res. 1993. V. 21. No. 20. P. 4659-4662.

132. Guyot J.В., Grassi J., Hahn U., Guschlbauer W. The role of the preserved sequences of Dam methylase // Nucleic Acids Res. 1993. V. 21. No. 14. P. 31833190.

133. Willcock D.F., Dryden D.T., Murray N.E. A mutational analysis of the two motifs common to adenine methyltransferases // EMBO J. 1994. V. 13. No. 16. P. 3902-3908.

134. Fuller-Pace F.V., Murray N.E. Two DNA recognition domains of the specificity polypeptides of a family of type I restriction enzymes // Proc. Natl. Acad. Sci. U. S. A. 1986. V. 83. No. 24. P. 9368-9372.

135. Mi S., Roberts R.J. How M.Msp I and M.Hpall decide which base to methylate // Nucleic Acids Res. 1992. V. 20. No. 18. P. 4811-4816.

136. Pradhan S., Roberts R.J. Hybrid mouse-prokaryotic DNA (cytosine-5) methyltransferases retain the specificity of the parental C-terminal domain // EMBO J. 2000. V. 19. No. 9. P. 2103-2114.

137. Gubler M., Braguglia D., Meyer J., Piekarowicz A., Bickle T.A. Recombination of constant and variable modules alters DNA sequence recognition by type 1С restriction-modification enzymes // EMBO J. 1992. V. 11. No. 1. P. 233-240.

138. Cheng X., Blumenthal R.M. Finding a basis for flipping bases // Structure. 1996. V. 4. No. 6. P. 639-645.

139. Szegedi S.S., Gumport R.I. DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant Rsrl N6-adenine. DNA methyltransferases // Nucleic Acids Res. 2000. V. 28. No. 20. P. 3972-3981.

140. Bujnicki J., Radlinska M. Molecular evolution of DNA-(cytosine-N4) methyltransferases: evidence for their polyphyletic origin // Nucleic Acids Res. 1999. V. 27. No. 22. P. 4501-4509.

141. Radlinska M., Bujnicki J.M. Cloning of enterohemorrhagic Escherichia coli phage VT-2 dam methyltransferase // Acta Microbiol. Pol. 2001. V. 50. No. 2. P. 161-167.

142. Woodbury C.P., Jr., Hagenbuchle O., von Hippel P.H. DNA site recognition and reduced specificity of the EcoRl endonuclease // J. Biol. Chem. 1980. V. 255. No. 23. P. 11534-11548.

143. Woodbury C.P., Jr., Downey R.L., von Hippel P.H. DNA site recognition and overmethylation by the EcoRl methylase // J. Biol. Chem. 1980. V. 255. No. 23. P. 11526-11533.

144. Reich N.O., Olsen C., Osti F., Murphy J. In vitro specificity of EcoRl DNA methyltransferase // J. Biol. Chem. 1992. V. 267. No. 22. P. 15802-15807.

145. Heitman J., Model P. Site-specific methylases induce the SOS DNA repair response in Escherichia coli II J. Bacteriol. 1987. V. 169. No. 7. P. 3243-3250.

146. Ginetti F., Perego M., Albertini A.M., Galizzi A. Bacillus subtilis mutS mutL operon: identification, nucleotide sequence and mutagenesis // Microbiology. 1996. V. 142 ( Pt 8). P. 2021-2029.

147. Smith D.W., Crowder S.W., Reich N.O. In vivo specificity of ЕсоШ DNA methyltransferase //Nucleic Acids Res. 1992. V. 20. No. 22. P. 6091-6096.

148. Bandaru В., Gopal J., Bhagwat A.S. Overproduction of DNA cytosine methyltransferases causes methylation and С —> T mutations at non-canonical sites // J. Biol. Chem. 1996. V. 271. No. 13. P. 7851 -7859.

149. Cohen H.M., Tawfik D.S., Griffiths A.D. Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase // Nucleic Acids Res. 2002. V. 30. No. 17. P. 3880-3885.

150. Friedrich Т., Fatemi M., Gowher H., Leismann O., Jeltsch A. Specificity of DNA binding and methylation by the M.Fofcl DNA methyltransferase // Biochim. Biophys. Acta. 2000. V. 1480. No. 1-2. P. 145-159.

151. Kossykh V.G., Schlagman S.L., Hattman S.M. Phage T4 DNA N6-adenine.-methyltransferase. Overexpression, purification and characterization // J. Biol. Chem. 1995. V. 270. No. 24. P. 14389-14393.

152. Minko I., Hattman S., Lloyd R.S., Kossykh V. Methylation by a mutant T2 DNA N(6)-adenine. methyltransferase expands the usage of RecA-assisted endonuclease (RARE) cleavage // Nucleic Acids Res. 2001. V. 29. No. 7. P. 14841490.

153. Jeltsch A., Christ F., Fatemi M., Roth M. On the substrate specificity of DNA methyltransferases //J. Biol. Chem. 1999. V. 274. No. 28. P. 19538-19544.

154. Roth M., Jeltsch A. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design // Nucleic Acids Res. 2001. V. 29.No. 15. P. 3137-3144.

155. Cerritelli S., Springhorn S.S., Lacks S.A. DpnA, a methylase for single-strand DNA in the Dpnll restriction system, and its biological function // Proc. Natl. Acad. Sci. 1989. V. 86. No. 23. P. 9223-9227.

156. Merkiene E., Vilkaitis G., Klimasauskas S. A pair of single-strand and double-strand DNA cytosine-N4 methyltransferases from Bacillus centrosporus II Biol. Chem. 1998. V. 379. P. 569-571.

157. Allan B.W., Garcia R.A., Maegley K., Mort J., Wong D., Lindstrom W.M., Beechem J.M., Reich N.O. DNA bending by EcoRl DNA methyltransferase accelerates base flipping but compromises specificity // J. Biol. Chem. 1999. V. 274. No. 27. P. 19269-19275.

158. Slatko B.E., Croft R., Moran L.S., Wilson G.G. Cloning and analysis of the Hae III and Haell methyltransferase genes 11 Gene. 1988. V. 74. No. 1. P. 45-50.

159. Rina M., Bouriotis V. Cloning, purification and characterization of the BseCI DNA methyltransferase from Bacillus stearothermophilus II Gene. 1993. V. 133. No. 1. P. 91-94.

160. Bhattacharya S.K., Dubey A.K. Kinetic mechanism of cytosine DNA methyltransferase Mspl И J. Biol. Chem. 1999. V. 274. No. 21. P. 14743-14749.

161. Yoon H., Suh H., Kim K., Han M.H., Yoo O.J. The specificity fnd catalytic properties of Alui methylase. II Korean Biochem. 2002. V. 18. No. 1985. P. 88-93.

162. Malygin E.G., Ovechkina L.G., Zinoviev V.V., Lindstrom W.M., Reich N.O. DNA-(N4-cytosine)-methyltransferase from Bacillus amyloliquefaciens: kinetic and substrate-binding properties // Mol. Biol. (Mosk). 2001. V. 35. No. 1. P. 35-44.

163. Gunthert U., Jentsch S., Freund M. Restriction and modification in Bacillus subtilis: two DNA methyltransferases with BsuRI specificity // J. Biol. Chem. 1981. V. 256. No. 17. P. 9346-9351.

164. Goedecke K., Pignot M., Goody R.S., Scheidig A.J., Weinhold E. Structure of the N6-adenine DNA methyltransferase MTaql in complex with DNA and a cofactor analog II Nat. Struct. Biol. 2001. V. 8. No. 2. P. 121-125.

165. Schluckebier G., Labahn J., Granzin J., Saenger W. M.Taql: possible catalysis via cation-pi interactions in N-specific DNA methyltransferases // Biol. Chem. 1998. V. 379. No. 4-5. P. 389-400.

166. Pogolotti A.L., Ono A., Subramaniam R., Santi D.V. On the mechanism of DNA adenine methylase // J. Biol. Chem. 1988. V. 263. No. 16. P. 7461-7464.

167. Blumenthal R.M., Cheng X. A Taq attack displaces bases // Nat. Struct. Biol. 2001. V. 8. No. 2. P. 101-103.

168. Klimasauskas S., Roberts R.J. M.Hhal binds tightly to substrates containing mismatches at the target base // Nucleic Acids Res. 1995. V. 23. No. 8. P. 13881395.

169. Yang A.S., Shen J.C., Zingg J.M., Mi S., Jones P.A. Hhal and Hpall DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair // Nucleic Acids Res. 1995. V. 23. No. 8. P. 1380-1387.

170. Allan B.W., Beechem J.M., Lindstrom W.M., Reich N.O. Direct real time observation of base flipping by the Eco RI DNA methyltransferase // J. Biol. Chem. 1998. V. 273. No. 4. P. 2368-2373.

171. Holz В., Klimasauskas S., Serva S., Weinhold E. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases // Nucleic Acids Res. 1998. V. 26. No. 4. P. 1076-1083.

172. Szegedi S.S., Reich N.O., Gumport R.I. Substrate binding in vitro and kinetics of Rsrl N6-adenine. DNA methyltransferase // Nucleic Acids Res. 2000. V. 28. No. 20. P. 3962-3971.

173. Hosfield D.J., Guan Y., Haas B.J., Cunningham R.P., Tainer J.A. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis // Cell. 1999. V. 98. No. 3. P. 397-408.

174. Slupphaug G., Mol C.D., Kavli В., Arvai A.S., Krokan H.E., Tainer J.A. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA // Nature. 1996. V. 384. No. 6604. P. 87-92.

175. Roberts R.J. On base flipping//Cell. 1995. V. 82. No. 1. P. 9-12.

176. Chen L., MacMillan A.M., Chang W., Ezaz-Nikpay K., Lane W.S., Verdine G.L. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase // Biochemistry. 1991. V. 30. No. 46. P. 11018-11025.

177. Verdine G.L. The flip side of DNA methylation // Cell. 1994. V. 76. No. 2. P. 197-200.

178. Santi D.V., Norment A., Garrett C.E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine // Proc. Natl. Acad. Sci. 1984. V. 81. No. 22. P. 6993-6997.

179. Friedman S., Ansari N. Binding of the ^coRII methyltransferase to 5-fluorocytosine containing DNA. Isolation of a bound peptide // Nucleic Acids Res.1992. V. 20. No. 12. P. 3241-3248.

180. Chen L., MacMillan A.M., Verdine G.L. Mutational separation of DNA binding from catalysis in DNA cytosine methyltransferase // J. Am. Chem. Soc.1993. V. 115. P. 5318-5319.

181. Renbaum P., Razin A. Interaction of M.SssI and M.Hhal with single-base mismatched oligodeoxynucleotide duplexes // Gene. 1995. V. 157. No. 1-2. P. 177179.

182. Dubey A.K., Bhattacharya S.K. Angle and locus of the bend induced by the Mspl DNA methyltransferase in a sequence-specific complex with DNA // Nucleic Acids Res. 1997. V. 25. No. 10. P. 2025-2029.

183. Cal S., Connolly B.A. The Eco RV modification methylase causes considerable bending of DNA upon binding to its recognition sequence GATATC //J. Biol. Chem. 1996. V. 271. No. 2. P. 1008-1015.

184. Garcia R.A., Bustamante C.J., Reich N.O. Sequence-specific recognition by cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA // Proc. Natl. Acad. Sci. 1996. V. 93. No. 15. P. 7618-7622.

185. Lindstrom W.M., Flynn J., Reich N.O. Reconciling structure and function in Hha\ DNA cytosine-C-5 methyltransferase // J. Biol. Chem. 2000. V. 275. No. 7. P. 4912-4919.

186. Szczelkun M.D., Connolly B.A. Sequence-specific binding of DNA by the EcoRV restriction and modification enzymes with nucleic acid and cofactor analogues // Biochemistry. 1995. V. 34. No. 34. P. 10724-10733.

187. Greene P.H., Poonian M.S., Nussbaum A.L., Tobias L., Garfin D.E., Boyer H.W., Goodman H.M. Restriction and modification of a self-complementary octanucleotide containing the EcoRI substrate // J. Mol. Biol. 1975. V. 99. No. 2. P. 237-261.

188. Kaszubska W., Webb H.K., Gumport R.I. Purification and characterization of the M.Tfarl DNA methyltransferase from Escherichia coli II Gene. 1992. V. 118. No. 1. P. 5-11.

189. Kossykh V.G., Schlagman S.L., Hattman S. Comparative studies of the phage T2 and T4 DNA (N6- adenine)me thy transferases: amino acid changes that affect catalytic activity // J. Bacteriol. 1997. V. 179. No. 10. P. 3239-3243.

190. Nardone G., George J., Chirikjian J.G. Differences in the kinetic properties of ВатШ endonuclease and methylase with linear DNA substrates // J. Biol. Chem. 1986. V. 261. No. 26. P. 12128-12133.

191. Kang Y.K., Lee H.B., Noh M.J., Cho N.Y., Yoo O.J. Different effects of base analog substitutions in ВатШ restriction site on recognition by ВатШ endonuclease and itowHImethylase // Biochem. Biophys. Res. Commun. 1995. V. 206. No. 3. P. 997-1002.

192. Thielking V., Dubois S., Eritja R., Guschlbauer W. Dam methyltransferase from Escherichia coli: Kinetic studies using modified DNA oligomers: nonmethylated substrates // Biol. Chem. 1997. V. 378. No. 5. P. 407-415.

193. Marzabal S., Dubois S., Thielking V., Cano A., Eritja R., Guschlbauer W. Dam methylase from Escherichia coli: kinetic studies using modified oligomers: hemimethylated substrates // Nucleic Acids Res. 1995. V. 23. No. 18. P. 36483655.

194. Szilak L., Der A., Deak F., Venetianer P. Kinetic characterization of the Ecal methyltransferase// Eur. J. Biochem. 1993. V. 218. No. 2. P. 727-733.

195. Winter M. Investigation of de novo methylation activity in mutants of the EcoKl methyltransferase. University of Edinburgh; 1998.

196. Ahmad I., Rao D.N. Interaction of £coP15I DNA methyltransferase with oligonucleotides containing the asymmetric sequence 5'-CAGCAG-3' // J. Mol. Biol. 1994. V. 242. No. 4. P. 378-388.

197. Rubin R.A., Modrich P. ЕсоШ methylase. Physical and catalytic properties of the homogeneous enzyme // J. Biol. Chem. 1977. V. 252. No. 20. P. 7265-7272.

198. Kossykh V.G., Schlagman S.L., Hattman S. Function of Pro-185 in the ProCys of conserved motif IV in the iscoRII cytosine-C5.-DNA methyltransferase // FEBS Lett. 1995. V. 370. No. 1-2. P. 75-77.

199. Wolcke J. University Dortmund, Germany; 1998.

200. Reich N.O., Danzitz M.J.J. Non-additivity of sequence-specific enzyme-DNA interactions in the ЕсоШ. DNA methyltransferase // Nucleic Acids Res. 1991. V. 19. No. 23. P. 6587-6594.

201. Jeltsch A., Friedrich Т., Roth M. Kinetics of methylation and binding of DNA by the £coRV adenine-N6 methyltransferase // J. Mol. Biol. 1998. V. 275. No. 5. P. 747-758.

202. Lee K.F., Liaw Y.-C., Shaw P.C. Overproduction, purification, and characterization of М.ЯсоНКЗП, a bacterial methyltransferase with two polypeptides // Biochem. J. 1996. V. 314. No. 1. P. 321-326.

203. Kaczorowski Т., Sektas M., Skowron P., Podhajska A.J. The Fokl methyltransferase from Flavobacterium okeanokoites. Purification and characterization of the enzyme and its truncated derivatives // Mol. Biotechnol. 1999. V. 13. No. l.P. 1-15.

204. Pradhan S., Bacolla A., Wells R.D., Roberts R.J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation // J. Biol. Chem. 1999. V. 274. No. 46. P. 33002-33010.

205. Glickman J.F., Flynn J., Reich N.O. Purification and characterization of recombinant baculovirus-expressed mouse DNA methyltransferase // Biochem. Biophys. Res. Commun. 1997. V. 230. No. 2. P. 280-284.

206. Vilkaitis G., Merkiene E., Serva S., Weinhold E., Klimasauskas S. The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hha\ methyltransferase // J. Biol. Chem. 2001. V. 276. No. 24. P. 20924-20934.

207. Schluckebier G., Labahn J., Granzin J., Schildkraut I., Saenger W. A model for DNA binding and enzyme action derived from crystallographic studies of the Taql N6-adenine-methyltransferase // Gene. 1995. V. 157. No. 1-2. P. 131-134.

208. Reich N.O., Mashhoon N. Kinetic mechanism of the £<%>RI DNA methyltranserase // Biochemistry. 1991. V. 30. No. 11. P. 2933-2939.

209. Surby M.A., Reich N.O. Contribution of facilitated diffusion and processive catalysis to enzyme efficiency: implications for the ZscoRI restriction-modification system // Biochemistry. 1996. V. 35. No. 7. P. 2201-2208.

210. Gabbara S., Sheluho D., Bhagwat A.S. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active// Biochemistry. 1995. V. 34. No. 27. P. 8914-8923.

211. Boye E., Marinus M.G., Lobner-Olesen A. Quantitation of Dam methyltransferase in Escherichia coli Hi. Bacteriol. 1992. V. 174. No. 5. P. 16821685.

212. Kelleher J.E., Raleigh E.A. Response to UV damage by four Escherichia coli K-12 restriction systems // J. Bacteriol. 1994. V. 176. No. 19. P. 5888-5896.

213. Zhang W., Bond J.P., Anderson C.F., Lohman T.M., Record M.T., Jr. Large electrostatic differences in the binding thermodynamics of a cationic peptide to oligomeric and polymeric DNA // Proc. Natl. Acad. Sci. U. S. A. 1996. V. 93. No. 6. P. 2511-2516.

214. Neidhardt F.C., Ingraham J.L., Schaechter M. Physiology of the bacterial cell: a molecular approach. // Sinauer Associates Inc. Mass., 1990.

215. Ханаан Д. Методы трансформации E.coli. II Клонирование ДНК. Методы./ Под ред. Д.Гловера. М. Мир. 1988. С. 140-173.

216. Харди К.Г. Методы клонирования в бациллах. // Клонирование ДНК. Методы./ Под ред. Д.Гловера. М. Мир. 1988. С. 230-249.

217. Siebert P.D., Chenchik A., Kellogg D.E., Lukyanov К.А., Lukyanov S.A. An improved PCR method for walking in uncloned genomic DNA // Nucleic Acids Res. 1995. V. 23. No. 6. P. 1087-1088.

218. Chenchik A., Diachenco L., Siebert P.D., Lukyanov S.A., Lukyanov K.A., Gurskaya N.G., Tarabykin V.S., Sverdlov E.D. Method for supression DNA fragments amplification during PCR. No. 5,565,340. 2002. Date Filed : 1996.

219. Maxam A.M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages // Methods Enzymol. 1980. V. 65. No. 1. P. 499-560.

220. Maxam A.M., Gilbert W. A new method for sequencing DNA // Proc. Natl. Acad. Sci. U. S. A. 1977. V. 74. No. 2. P. 560-564.

221. Degtyarev S.K., Netesova N.A., Abdurashitov M.A., Shevchenko A.V. Primary structure and strand specificity of itoF5I-l DNA methyltransferase which recognizes 5'-GGATG-3' // Gene. 1997. V. 187. P. 217-219.

222. Whitehead P.R., Brown N.L. A simple and rapid method for screening bacteria for type II restriction endonucleases: enzymes in Aphanothece halophytica //Arch. Microbiol. 1985. V. 141. No. 1. P. 70-74.

223. Белавин П.А., Дедков B.C., Дегтярев С.Х. Метод определения эндонуклеаз рестрикции в колониях бактерий. // Прикл. Биохим. Микробиол. 1988. Т. 24. С. 121-124.

224. Posfai G., Szybalski W. A simple method for locating methylated bases in DNA, as applied to detect asymmetric methylation by M.FoklA II Gene. 1988. V. 69. No. 1. P. 147-151.

225. Корниш-Боуден Э. Основы ферментативной кинетики. М., Мир: 1979. Р. 145.

226. Фершт Э. Структура и механизм действия ферментов. М., Мир: 1980. Р. 167.

227. New England Biolabs. Catalog and Technical Reference 2002-03.

228. Abdurashitov M.A., Kileva E.V., Shinkarenko N.M., Shevchenko A.V., Dedkov V.S., Degtyarev S.K. 55-/F5I, an unusual isoschizomer of Fokl II Gene. 1996. V. 172. P. 49-51.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.