Изучение олигосахаридной специфичности нейраминидазы вируса гриппа тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат биологических наук Штыря, Юлия Александровна

  • Штыря, Юлия Александровна
  • кандидат биологических науккандидат биологических наук
  • 2009, Москва
  • Специальность ВАК РФ03.00.03
  • Количество страниц 143
Штыря, Юлия Александровна. Изучение олигосахаридной специфичности нейраминидазы вируса гриппа: дис. кандидат биологических наук: 03.00.03 - Молекулярная биология. Москва. 2009. 143 с.

Оглавление диссертации кандидат биологических наук Штыря, Юлия Александровна

Список использованных сокращений

1. ВВЕДЕНИЕ

2. ОБЗОР ЛИТЕРАТУРЫ 9 2.1 .Вирус гриппа

2.2.Классификация нейраминидаз

2.3.Структура нейраминидаз

2.3.1. Цитоплазматический участок

2.3.2. Трансмембранный домен

2.3.3. Стебель

2.3.4. Голова

2.3.5. Гликозилирование

2.4.Строение каталитического центра

2.5.Механизм реакции

2.6.Ингибиторы нейраминидаз

2.6.1. Мутации в NA, отвечающие за устойчивость вирусов к ингибиторам NA

2.6.2. Мутации в НА, возникающие под действием ингибиторов NA

2.6.3. Современная ситуация с возникновением резистентных штаммов вируса гриппа

2.7.Определение активности и специфичности нейраминидазы вируса гриппа

2.7.1. Определение активности

2.7.2. Изучение субстратной специфичности

2.7.3. Известные литературные данные об олигосахаридной специфичности NA вирусов гриппа

2.8.Корреляция активностей гемагглютинина и нейраминидазы

2.8.1. Восстановление функционального баланса вреассортантных вариантах 53 2.9. Восстановление функционального баланса при дефектах вируса гриппа

3. МАТЕРИАЛЫ И МЕТОДЫ

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 70 4.1.Метод определения активности и специфичности нейраминидаз с помощью BODIPY-меченых олигосахаридов

4.2.Определение активности NA вируса гриппа

4.3.Влияние вирусных белков на действие нейраминидазы

4.3.1. Удаление NA с вирусной частицы. Сравнение свободной и вирус-связанной нейраминидазы

4.3.2. Изменние типа гемагглютинина и М-белка

4.4.Влияние хранения вакцинных штаммов вируса гриппа на профиль специфичности NA

4.5.Восстановление функционального баланса HA-NA в реассортантных вирусах

4.6. Субстратная специфичность вирусных реассортантов подтипа H5N

4.7. Субстратная специфичность NA вирусов подтипа H9N

4.8.Роль а.к. остатков 258, 275, 331, 339, 367, 370, 400 и 431 в функционировании нейраминидазы N

4.9.Специфичность исследованных вирусов гриппа: общие закономерности

4.10. Вирусы, устойчивые к тамифлю

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Изучение олигосахаридной специфичности нейраминидазы вируса гриппа»

На поверхности вируса гриппа находятся два гликопротеина, гемагглютинин (НА) и нейраминидаза (NA), которые узнают сиалированные углеводные цепи клетки-мишени. Функции этих белков противоположны друг другу: НА связывается с сиалированными рецепторами, a NA отщепляет терминальную сиаловую кислоту с углеводных цепей, то есть разрушает рецептор. Важным условием эффективной репликации вируса гриппа является оптимальное соотношение активностей НА и NA.Известно, что NA необходима вирусу гриппа на стадии отпочковывания созревших вирусных частиц от клеточной поверхности (Wagner el al., 2002).Кроме того, есть экспериментальные доказательства необходимости NA на начальном этапе инфекционного цикла вируса гриппа (Matrosovich et al., 2004).Нейраминидаза вируса гриппа является одной из наиболее охарактеризованных сиалидаз: известна пространственная структура NA нескольких подтипов вируса гриппа А, а также нейраминидазы единственного подтипа вируса гриппа В. Предложен механизм действия фермента (Janakiraman et al., 1994). Много сведений накоплено о структурных особенностях и выявлены общие тенденции эволюции NA вирусов различной природы (Colman et al., 1993).Несмотря на повышенный интерес к NA, ее функциональная активность исследована мало, а специфичность остается практически неизученной. В частности, опубликовано всего несколько работ, в которых была осуществлена попытка определения олигосахаридной специфичности NA. Отсутствие данных связано как с трудоемкостью существующих методов, так и с недоступностью сиалированных олигосахаридов. Без знания субстратной специфичности NA по отношению к природным сиалоолигосахаридам невозможны ни определение роли отдельных участков полипептидной цепи в функционировании NA, ни мониторинг возникновения и распространения новых штаммов вируса гриппа, в частности вирусов, устойчивых к лекарствам-ингибиторам NA, ни понимание механизмов лекарственной устойчивости вирусов гриппа.Цели и задачи исследования.Целью данной кандидатской диссертации являлась разработка нового высокочувствительного метода определения активности и исследования субстратной специфичности NA вируса гриппа, и его применение для изучения олигосахаридной специфичности NA нескольких групп вирусов, в частности: а) природных изолятов вирусов одного подтипа, выделенных от различных хозяев; б) искусственно полученных реассортантов вируса гриппа; в) вирусов, устойчивых к ингибиторам NA; г) NA в составе вирусной частицы в сравнении с тем же ферментом, находящимся в растворе.Кроме того, на основании полученных данных об олигосахаридной специфичности NA предполагалось изучение влияния отдельных аминокислотных замен на функционирование фермента.Новизна полученных результатов.Предложен метод определения специфичности NA, основанный на использовании в качестве ее субстратов набора флуоресцентно-меченых по спейсерной группе сиалоолигосахаридов.С помощью семи субстратов показано, что для нейраминидаз вирусов гриппа, выделенных от различных «хозяев», характерны индивидуальные профили субстратной специфичности.Показано, что восстановление функционального баланса гемагглютинин/нейраминидаза реассортантов вирусов гриппа человека с вирусами птиц, может происходить не только благодаря изменению активности, но также и субстратной специфичности NA.Показано, что замена H274Y (NA), обеспечивающая устойчивость современных вирусов гриппа человека к лекарству тамифлю, не приводит к изменению специфичности NA.Доказано, что функционирование NA зависит от непосредственного окружения фермента, а именно, свойства индивидуального белка отличаются от таковых в составе вирусной частицы.Научно-практическая ценность работы.Разработанный метод определения специфичности NA оказался востребованным в службах эпидемиологического надзора за появлением новых разновидностей вируса гриппа, в частности, опасных для человека птичьих штаммов, а также мутаптных вариантов, устойчивых к тамифлю. Предлагаемый метод уже используется для характеризации новых сезонных штаммов вируса гриппа в центрах контроля и профилактики заболеваний: в США (Centers for Disease Control and Prevention), Атланта) и Германии (Институт им. Роберта Коха, Robert Koch-Institut, Берлин).Кроме того, разработанный метод позволил выявить изменения, происходящие с NA вакцинного варианта вируса гриппа при его инактивации при длительном хранении, что актуально при получении нового поколения противовирусных вакцин (Европейский исследовательский консорциум FLUVACC, FP6).

Похожие диссертационные работы по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Штыря, Юлия Александровна

ВЫВОДЫ

1. Разработан метод определения субстратной специфичности нейраминидаз, основанный на использовании BODIPY-меченых сиалилолигосахаридов. Метод позволяет измерять активность и определять субстратную специфичность нейраминидазы в составе вируса гриппа, а также изучать кинетику гидролиза сиалилолигосахаридов.

2. Специфичность нейраминидазы вируса гриппа определяется не антигенным подтипом (H1N1, H5N1 или H9N2), а видом организма-хозяина. Вирусы, выделенные от любого хозяина, более эффективно гидролизуют а2-3, чем а2-б-сиалилолигосахариды, но значительно отличаются между собой по скорости гидролиза а2-3-рецепторов, которая уменьшается в ряду: вирусы водоплавающей птицы вирусы домашней птицы вирусы свиньи вирусы человека.

3. Аминокислотные замены в положениях 79, 206 и 366 нейраминидазы (N1), локализованные, соответственно, в стебле, зоне межмономерных контактов, и в районе гемоадсорбционного сайта, вызывают изменение профиля субстратной специфичности.

4. Замена в положении 274 нейраминидазы (N1), вызывающая устойчивость вирусов гриппа к ее ингибитору, противовирусному лекарству тамифлю, не приводит к изменению профиля субстратной специфичности всех изученных нейраминидаз.

5. Реассортанты вирусов гриппа, полученные с намеренным функциональным дисбалансом гемагглютинина и нейраминидазы, в ходе лабораторной эволюции восстанавливают баланс. Один из механизмов этого восстановления включает изменение профиля специфичности нейраминидазы.

6. Комбинация различных гемагглютининов с одной и той же нейраминидазой не приводит к изменению профиля ее субстратной специфичности, в то время как М-белка - может приводить.

7. Субстратная специфичность индивидуальной нейраминидазы вируса гриппа в растворе и того же фермента в составе вирусной частицы отличаются.

БЛАГОДАРНОСТИ

Автор выражает благодарность: Мочаловой JI.B. за участие в разработке метода и представление данных по субстратной специфичности NA для вирусов А/индюк/Миннесота/38391-6/1995, А/индюк/Висконсин/01/1996 и

А/гусь/Миннесота/80 (подтипа H9N2); Корчагиной Е.Ю. и Пазыниной Г.В. за синтез субстратов; Кордюковой JI.B. за предоставление образцов вируса гриппа А/Пуэрто-Рико/8/34 после обработки бромелаином и проназой; Кузьмину Д.С. за представление математических моделей NA (реассортанта R2 и адаптанта R2 XXI) и результаты математического моделирования взаимодействия NA с сиало- и асиалоолигосахаридами и MU-NANA; Куровой B.C. и Мочаловой JI.B. за обсуждение ферментативной кинетики и предоставление данных по субстратной специфичности вирусов подтипа H1N1; Возновой Г.П. за помощь в очистке вирусного материала и представление данных по рецепторной специфичности НА различных вариантов вируса гриппа А/Пуэрто Рико/8/34, полученных при использовании метода твердофазного анализа.

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что предложенный флуоресцентный метод изучения нейраминидазы вируса гриппа отвечает ожиданиям, — как по техническим характеристикам, так и по широте применения. Действительно, метод позволяет с высокой точностью (относительная ошибка составляет 5%) проводить одновременный анализ десятка образцов в широком диапазоне концентраций субстратов (10 — 500 пмоль). Для проведения работы требуются минимальные количества вирусного материала, причем подходят как высокоочищенные образцы, так и аллантоисная жидкость, компоненты которой не мешают проведению определения и не оказывают влияния на профиль субстратной специфичности. Данное количество вирусного материала на порядок меньше, чем требует известный ранее подход к определению олигосахаридной специфичности. Применение семи субстратов (ранее — только два) оказалось оправданным, так как профиль субстратной специфичности является более ценной характеристикой вирусной NA (и всего вируса в целом), чем простое измерение активности по одному или двум субстратам. Благодаря использованию набора субстратов в сочетании с кинетическим измерениями открылась возможность решать такие задачи, которые ранее не ставились вовсе, или, из-за неадекватности молекулярных инструментов, решались некорректно. Данные по субстратной специфичности 32 вирусов гриппа, полученные в ходе данной работы, позволяют сделать первые обобщения относительно особенностей вирусов, происходящих от разных хозяев, а также принадлежащих к разным подтипам NA. Найденные для NA закономерности, в целом, согласуются с рецептор-узнающими свойствами другого сиало-узнающего белка вируса гриппа — гемагглютинина (эти свойства ранее были выявлены в нашей лаборатории при помощи того же набора олигосахаридов), что еще раз подтверждает синхронность эволюционных изменений NA и НА. В то же время, мы осознаем, что эта синхронность не абсолютна, и именно ее нарушения могут стать индикаторами необычных путей развития вируса гриппа. Мы также надеемся, что расширение и углубление одновременного исследования олигосахаридной специфичности NA и НА поможет объяснить причины изменений, происходящих при переходе вирусом межвидового барьера от птицы к человеку, и предсказать субстратную специфичность ожидаемого пандемического вируса. Практическая важность такого предсказания очевидна, поскольку современное поколение лекарств против вируса гриппа - это ингибиторы NA, и резкое изменение субстратной специфичности может привести к «уходу» вируса из-под контроля этими лекарствами; иными словами, систематический мониторинг субстратной специфичности NA вновь возникающих вирусов гриппа открывает возможность предсказать пандемию гриппа задолго до ее начала.

Список литературы диссертационного исследования кандидат биологических наук Штыря, Юлия Александровна, 2009 год

1. Арбатский Н.П., Желтова А.О., Юртов Д.В., Деревицкая В.А., Кочетков Н.К., Последовательное выделение гемагглютинина и нейраминидазы из вируса гриппа А/Краснодар/101/59 (H2N2) с помощью бромелаина. // Биохимия 306: 1490-1493 (1989).

2. Руднева И.А., Ильюшина Н.А., Шилов А.А., Варич H.JL, Синицын Б.В., Кропоткина Е.А., Каверин Н.В. Функциональное взаимодействие гликопротеинов вируса гриппа. // Мол. Биол. Ъ1\ 34-40 (2003).

3. Baigent S.J., Bethell R.C., and McCauley J.W. Genetic analysis reveals that both hemagglutinin and neuraminidase determine the sensitivity of naturally occurng avian influenza viruses to zanamivir in vitro. // Virol. 263: 323-338 (1999).

4. Baigent, S. J. & McCauley, J. W. Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. // Virus Res. 79: 177—185 (2001).

5. Barman S., and Nayak D.P. Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association. // J. Virol. 74: 6538-6545 (2000).

6. Barros J.F. Jr., Alviano D.S., Silva M.H., Wigg M.D., Alviano C. S., Schauer R. and Couceiro J.N.S.S. Characterization of sialidase from an influenza A (H3N2) virus strain: kinetic parameters and substrate specificity. // Intervirol. 46: 199-205 (2003).

7. Baum E.Z., Wagaman P.C., Ly L., Turchi I., Le J., Bucher D., Bush K. A point mutation in influenza В neuraminidase confers resistance to peramivir and loss of slow binding. II Antiviral Res. 59: 13-22 (2003).

8. Baum L.G. and Paulson J.C. The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity.// Virol 180: 10-15 (1991).

9. Berezin I.V., Martinek K. Basics of physical chemistry of enzymatic catalysis, High School, Moscow (1977).

10. Bianco A., Brufani M., Dri D.A., Melchioni C., Filocamo L. Design and synthesis of a new furanosic salylmimetic as a potential influenza neuraminidase inhibitor. // Letters in organic chemistry 2: 83-88 (2005).

11. Blok J. and Air G.M. Block deletions in the neuraminidase genes from some influenza A viruses of the N1 subtype. // Virol. 118: 229-234 (1982).

12. Bradford M.M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. // Anal. Biochem. 72: 248-254 (1976).

13. Branden C. and Tooze J. Beta structures. In Introduction to protein structure. Corland Publishing, New York: 72 (1998).

14. Buxton R.C., Edwards В., Juo R.R., Voyta J.C., Tisdale M., and Bethell R.C. Development of a sensitive chemiluminescent neuraminidase assay for the determination of influenza virus susceptibility to zanamivir. // Anal. Biochem. 280:291-300 (2000).

15. Castrucci M.R. & Y Kawaoka. Biologic importance of neuraminidase stalk length in influenza A virus. // J. Virol. 67: 759-764 (1993).

16. Choi Y.K., Seo S.H., Kim J.A., Webby R.J. and Webster R.G. Avian influenza viruses in Korean live poultry markets and their pathogenic potential. // Virol. 332: 529-537 (2005).

17. Collins P.J., Haire L.F., Lin Yi Pu, Liu J., Russell R.J., Walker P. A., Skehel J.J., Martin S.R., Hay A.J., Gamblin S.J., Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. // Nature 453: 1258 1262 (2008).

18. Colman P.M. NA enzyme and antigen. // In The influenza viruses (R. M. Krug, ed.). Plenum Publishing Corporation, New York: 175-218 (1989).

19. Colman P.M., Hoyne P.A., and Lawrence M.C. Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. II J. Virol. 67: 2972-2980 (1993).

20. Colman P.M., Smith B.J. The trypanosomal trans-sialidase: two catalytic functions associated with one catalytic site. // Structure 10: 1466-1468 (2002).

21. Copeland R.A. Enzymes: A practical introduction to structure, mechanism, and data analysis, Wiley-VCH, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto 257-258 (2000).

22. Couceiro J.N.S.S. and Baum L.J. Characterization of the hemagglutinin receptor specificity and neuraminidase substrate specificity of clinical isolates of human influenza A viruses. // Mem. Inst. Oswaldo Cruz Rio de Janeiro 89: 587-591 (1994).

23. Diaz M.O., Ziemin S., Le Beau M.M.; Pitha P., Smith S.D., Chilcote R.R., Rowley J.D. Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. PNAS. 85: 5259-5260 (1988).,

24. Eisen M.B., Sabesan S., Skehel J.J., Wiely D.C. Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosacharide complexes determined by X-ray crystallography. // Virol. 232: 19-31 (1997).

25. Eschenfelder V. and Brossmer R. 5-Bromo-indol-3-yl 5-acetamido-3,5-dideoxy-a-D-glycero-D-galactononulopyranosidonic acid, a novelchromogenic substrate for the staining of sialidase activity. // Glycoconjugate J. 4: 171-178 (1987).

26. Fanning T.G., Reid A.H., Taubenberger J.K. Influenza A virus neuraminidase: regions of the protein potentially involved in virus-host interactions. // Virol. 276: 417—423 (2000).

27. Ferko В., Kittel C., Romanova J., Sereinig S., Katinger H., Egorov A. Live attenuated influenza virus expressing human interleukin-2 reveals increased immunogenic potential in young and aged hosts. // J Virol. 80: 11621-11627 (2006).

28. Ferko В., Stasakova J., Romanova J., Kittel C., Sereinig S., Katinger H., Egorov A. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. // J Virol. 78: 13037-13045 (2004).

29. Gambaryan A.S., Robertson J.S., Matrosovich M.N. Effects of eggadaptation on the receptor-binding properties of human influenza A and В viruses. // Virol 258: 232-239 (1999).

30. Garoff H., Hewson R., Opstelten D.-J. E. Vims Maturation by Budding. // Microbiology and Molecular Biology Reviews. 62: 1171-1190(1998).

31. Govorkova E.A., Leneva I.A., Goloubeva O.G., Bush K., Webster R.G. Comparison of efficacies of RWJ-270201, zanamivir, and oseltamivir against H5N1, H9N2, and other avian influenza viruses. // Antimicrob Agents Chemother. 45: 2723-2732 (2001).

32. Guan Y., Shortridge K.F., Krauss S. and Webster R.G. Molecular characterization of H9N2 influenza viruses: where they the donors of the "internal " genes of H5N1 in Hong Kong. // PNAS. 96: 9363-9367 (1999).

33. Gubareva L.V., Bethell R.C., Hart G.J., Murti K.G., Penn C.R., and Webster R.G. Characterization of mutants of influenza A virus selected^ with the neuraminidase inhibitor 4-guanidino-Neu5Ac2en. // J. Virol. 70: 1818-1827 (1996).

34. Gubareva L.V., Matrosovich M.N., Brenner M.K., Bethell R.C., and Webster R.G. Evidence for zanamivir resistance in an immunocompromised child infected with influenza В vims. II J. Infect. Dis. 178: 1257-1262 (1998).

35. Gubareva L.V., Nedyalkova M.S., Novikov D.V., Murti K.G., Hoffmann E. and Hayden F.G. A release-competent influenza A vims mutant lacking the coding capacity for the neuraminidase active site. // J. Gen. Virol. 83: 26832692 (2002).

36. Ha, Y., Stevens, D.J., Skehel, J.J., Wiley, D.C. X-ray structures of П5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. // PNAS: 98: 11181-11186 (2001).

37. Harris A., Cardone G., Winkler D.C., Heymann J.B., Brecher M., White J.M., Steven A.C. Influenza virus pleiomorphy characterized by cryoelectron tomography. // PNAS. 103:19123-19127 (2006).

38. Herlocher M.L., Maassab H.F., Webster R.G. Molecular and biological changes in the cold-adapted "master strain" A/AA/6/60 (H2N2) influenza virus. // PNAS. 90: 6032-6036 (1993)

39. Hughes M., Matrosovich M., Rodges M., McGregor M., and Kawaoka Y. Influenza A viruses lacking sialidase activity can undergo multiple cycles of replication in cell culture, eggs, or mice. // J. Virol. 74: 5206-5212 (2000).

40. Hughes M.T., McGregor M., Suzuki Т., Suzuki, Y. and Kawaoka Y. Adaptation of influenza A viruses to cells expressing low levels of sialic acid leads to loss of neuraminidase activity. // J. Virol. 75: 3766-3770 (2001).

41. Hui-Ling Yen, Ilyushina N.A., Salomon R., Hoffmann E., Webster R.G., Govorkova E.A. Neuraminidase Inhibitor-Resistant Recombinant

42. Jin H., Leser G.P., Zhang J. and Lamb R.A. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. // EMBO ./. 16: 12361247 (1997).

43. Jourdian G.W., Dean L., and Roselman S. A periodate-resortinol method for the quantitive estimation of five sialic acids and their glycosides. // J. Biol.Chem. 25: 430-435 (1971).

44. Kang D., Gho Y.S., Suh M., Kang C. Highly Sensitive and Fast Protein Detection with Coomassie Brilliant Blue in Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis // Bull. Korean Chem. Soc 23: 1511-1512 (2002).

45. Karasin A.I., Olsen C.W., Anderson G.A. Genetic characterization of an H1N2 influenza vims isolated from a pig in Indiana. // J. Clin. Microbiol. 38: 24532456 (2000).

46. Katinger D., Mochalova L., Chinarev A., Bovin N., and Romanova J. Specificity of neuraminidase activity from influenza viruses isolated in different hosts tested with novel substrates. // Arch. Virol. 149: 2131-2140 (2004).

47. Kobasa D., Kodihalli S., Luo M., Castrucci M.R., Donatelli I., Suzuki Y., Suzuki T. and Kawaoka Y. Amino acid resides contributing to the substrate specificity of the influenza A virus neuraminidase. // J. Virol 1Ъ: 6743-6751 (1999).

48. Kobasa D., Wells K., and Kawaoka Y. Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine. // J. Virol. 75: 11773-11780 (2001).

49. Kundu A., Avalos R.T., Sanderson C.M., Nayak D.P. Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. // J Virol. 70: 6508-15 (1996).

50. Lackenby A., Hungnes O., Dudman S.G., Meijer A., Paget W.J., Hay A.J., Zambon M.C. Emergence of resistance to oseltamivir among influenza A (H1N1) viruses in Europe // EUROSUR VEILLANCE 13 1 -2 (2008)

51. Laemmli U.K. Cleavage of structural proteins during the assembly at the head of bacteriophage T4. II Nature. 227: 680-685 (1970).

52. Lambre C.R., Terzidis H., Greffard A., and Webster R.G. Measurement of anti-influenza neuraminidase antibody using a peroxidase-linked lectin and microtitre plates coated with natural substrates. // J. Immunol. Meth. 135: 4957 (1990).

53. Latham Т., Galarza J.M. Formation of wild-type and chimeric influenza viruslike particles following simultaneous expression of only four structural proteins. IIJ Virol 75: 6154-65 (2001).

54. Liu, Y., Misulovin, Z., Bjorkman, P.J. The molecular mechanism of sulfated carbohydrate recognition by the cysteine-rich domain of mannose receptor. // J.Mol.Biol: 305: 481-490 (2001)

55. Lu, В., Zhou, H., Ye, D., Kemble, G. & Jin, H. Improvement of influenza A/Fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics. IIJ Virol 79: 6763-6771 (2005).

56. Makarova N.V., Kaverin N.V., Krauss S., Senne D. and Webster R.G. Transmission of Eurasian avian H2 influenza virus to shorebirds in North America.11 J. Gen. Virol 80: 3167-3171 (1999).

57. Matrosovich M., Matrosovich Т.,Gray Т., Roberts N.A. and Klenk H.-D., Neuraminidase is important for the initiation of influenza virus infection in human airway epitelium.// J. Virol. 78: 12665-12667 (2004).

58. Matrosovich M.N., Krauss S., and Webster R.G. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. // Virol. 281: 56-162(2001).

59. Matrosovich M.N., Zhou N., Kawaoka Y., and Webster R.G. The surface glycoproteins of H5 viruses isolated from humans, chikens, and aquatic birds have distinguishable properties. II J. Virol. 73: 1146-1155 (1999).

60. McKimm-Breschkin J.L. Resistance of influenza viruses to neuraminidase inhibitors a review. // Antiviral Res. 47: 1-17 (2000).

61. Mishin V.P., Hayden F.G., Gubareva L.V. Susceptibilities of antiviral-resistant influenza viruses to novel neuraminidase inhibitors. // Antimicrob Agents Chemother. 49: 4515-20 (2005a).

62. Mishin V.P., Novikov D., Hayden F.G., Gubareva L.V. Effect of hemagglutinin glycosylation on influenza virus susceptibility to neuraminidase inhibitors. IIJ Virol. 79: 12416-24 (2005b).

63. Mitnaul J., Matrosovich M.N, Castrucci M.R., Tuzicov A.B, Bovin N.V., Kobasa D, and Kawaoka Y. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A viruses. // J. Virol. 74: 6015-6020 (2000).

64. Mochalova L., Kurova V., Shtyrya Y., Korchagina E., Gambaryan A., Belyanchikov I., Bovin N. Oligosaccharide specificity of influenza H1N1 virus neuraminidases. HArch. Virol., 152:2047-2057(2007).

65. Nayak D.P., Hui E.K., Barman S. Assembly and budding of influenza virus. // Virus Res. 106: 147-65 (2004).

66. Nicol S.T., Airkawa J., and Kawaoka Y. Emerging viral diseases. 11 PNAS 97: 12411-12412 (2000).

67. Oakley B.R., Kirsch D.R. and Morris N.R. A simplified ultrasensitive silver stain for detecting proteins in polyacrilamide gels. // Anal.Biochem. 105: 361363 (1980).

68. Oxford J.S., Bossuyt S., Eswarasaran R. and Lambkin R. Drugs to combat the epidemic and pandemic faces of influenza. // In Influenza (C.W. Potter ed.) Elsevier: 201-234 (2002).

69. Paulson J.C., Weinstein J., Dorland L., van Halbeek H., Viegenthart J.F.J. Newcastle disease virus contains a linkage-specific glycoprotein sialidase. // J. Biol. Chem. 257: 12734-12738 (1982).

70. Potier M., Mameli L., Belisle M., Dallaire L., and Melancon S.B. Fluorometric assay with a sodium (4-methylumbelliferyl-a-D-N-acetylneuraminate) substrate. II Anal. Biochem. 94: 287-296 (1979).

71. Rudneva I.A., Sklyanskaya E.I., Barulina O.S., Yamnikova S.S.,. Kovaleva V.P., Tsvetkova I.V. and Kaverin N.V. 1996. Phenotypic expression of HA -NA combinftions in human avian influenza A virus reassortants. // Arch. Virol. 141: 1091-1099.

72. Russell R.J., Haire L.F., Stevens D.J., Collins P.J., Lin Y.P., Blackburn G.M., Hay A.J., Gamblin S.J., Skehel J.J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. // Nature. 44: 45-49 (2006).

73. Saito Т., Kawano K. Loss of glycosylation at Asnl44 alters the substrate preference of the N8 influenza A virus neuraminidase. // J Vet Med Sci. 59: 923-926 (1997).

74. Smee D.F., Sidwell R.W., Morrison A.C., Bailey K.W., Baum E.Z., Ly L., Wagaman P.C. Characterization of an influenza A (H3N2) virus resistant tothe cyelopentane neuraminidase inhibitor RWJ-270201. // Antiv. Res. 52: 251259 (2001).

75. Smith B.J., Colman P.M., von Itzstein M., Danylec В., and Varghese J.N. Analysis of inhibitor binding in influenza virus neuraminidase. // Prot. Sci. 10: 689-696(2001).

76. Somers, W.S., Tang, J., Shaw, G.D., Camphausen, R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P-and E-selectin bound to SLe(X) and PSGL-1. // Cell 103: 467-479 (2000)

77. Staschke K.A., Colacino J.M., Baxter A.J., Air G.M., Bansal A., Hornback W.J., Munroe J.E., and Laver W.G. Molecular basis for the resistance of influenza viruses to 4-guanidino-Neu5Ac2en. // Virol. 214: 642646 (1995).

78. Strauss J.H. and Strauss E.G. Minus-strand RNA viruses. // In Viruses and human disease. Academic Press: 123-169 (2002).

79. Suzuki Т., Takahashi Т., Nishinaka D., Murakami M., Fujii S., Hidari K.I., Miyamoto D., Li Y.T., Suzuki Y. Inhibition of influenza A vims sialidase activity by sulfatide. // FEBSLett. 553: 355-359 (2003).

80. Suzuki Т., Takahashi Т., Saito Т., Hidari K.I-P.J., Miyamoto D., Suzuki Y. Evolutional analysis of human influenza A virus N2 neuraminidase gene based on the transition of the low-pH stability of sialidase activity. // FEBS

81. Lett. 557: 228-232 (2004).

82. Takahashi Т., Suzuki Т., Hidari K.I-P.J., Miyamoto D., Suzuki Y. A molecular mechanism for the low-pH stability of sialidase activity of influenza A vims N2 neuraminidases. // FEBSLett. 543: 71-75 (2003).

83. Varghese J.N. and Colman P.M. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. // J. Mol. Biol. 221:473-486 (1991).

84. Varghese J.N., Colman P.M., van Donkelaar A., Blick T.J., Sharasrabudhi A., and McKimm-Breschkin J.L. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. // Biochem. 94: 11808-11812 (1997).

85. Varghese J.N., Laver W.G. and Colman P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9A resolution. // Nature. 303: 35-40 (1983).

86. Wagner R., Matrosovich M. and Klenk H.-D. Functional balance between hemagglutinin and neuraminidase in influenza virus infections. // Rev. Med. Virol. 12: 159-166(2002).

87. Wagner R., Wolf Т., Herwig A., Pleschka S., and Klenk H.-D. Interdependence of hemagglutinin glycosilation and neuraminidase as regulators of influenza growth: a study by reverse genetics. // J. Virol. 74: 6316-6323 (2000).

88. Warren L. The thiobarbituric acid assay of sialic acids. // J. Biol. Chem. 234: 1971-1975 (1959).

89. Watts A.G., and Withers S.G., The synthesis of some mechanistic probes for sialic acid processing enzymes and the labeling of a sialidase from Trypanosoma rangeli. // Can. J. Chem. 82: 1581-1588 (2004).

90. Watts A.G., Oppezzo P., Withers S.G., Alzari P.M., Buschiazzo A. Structural and Kinetic Analysis of Two Covalent Sialosyl-Enzyme Intermediates on Trypanosoma rangeli Sialidase // J. Biol. Chem. 281: 4149' 4155(2006).

91. Webby R.J. and Webster R.G. Emergence of influenza A viruses. // Phil. Trans. R. Soc. 356: 1817-1828 (2001).

92. Yen HL, Hoffmann E, Taylor G, Scholtissek C, Monto AS, Webster RG, Govorkova EA. Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. // J Virol. 80: 8787-95 (2006).

93. Zhang J., Pekosz A., and Lamb R.A. Influenza virus assembly and lipid raft microdomains: a role for the cytoplazmic tails of the spike glycoproteins. // J. Virol. 74: 4634-4644 (2000).

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.