Итерационные методы решения задач установившейся анизотропной фильтрации с многозначным законом тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат физико-математических наук Исмагилов, Ирек Наилевич
- Специальность ВАК РФ05.13.18
- Количество страниц 120
Оглавление диссертации кандидат физико-математических наук Исмагилов, Ирек Наилевич
ВВЕДЕНИЕ
1 ПОСТАНОВКА И ИССЛЕДОВАНИЕ НЕЛИНЕЙНЫХ СТАЦИОНАРНЫХ ЗАДАЧ АНИЗОТРОПНОЙ ФИЛЬТРАЦИИ
1.1 Постановка нелинейных стационарных задач анизотропной фильтрации.
1.2 Существование решения задачи.
2 ПРИМЕНЕНИЕ МЕТОДА ИТЕРАТИВНОЙ РЕГУЛЯРИЗАЦИИ ДЛЯ РЕШЕНИЯ НЕЛИНЕЙНЫХ СТАЦИОНАРНЫХ ЗАДАЧ АНИЗОТРОПНОЙ ФИЛЬТРАЦИИ
2.1 Метод итеративной регуляризации для решения вариационных неравенств второго рода в банаховом пространстве
2.2 Метод итеративной регуляризации для решения вариационных неравенств второго рода в случае гильбертова пространства.
2.3 Дополнительные свойства операторов.
2.4 Применение метода итеративной регуляризации для решения нелинейных стационарных задач анизотропной фильтрации.
3 ИТЕРАЦИОННЫЙ МЕТОД РАСЩЕПЛЕНИЯ ДЛЯ РЕ
ШЕНИЯ НЕЛИНЕЙНЫХ СТАЦИОНАРНЫХ ЗАДАЧ АНИ
ЗОТРОПНОИ ФИЛЬТРАЦИИ
3.1 Построение метода расщепления для решения вариационных неравенств второго рода в гильбертовом пространстве.
3.2 Исследование сходимости итерационного метода расщепления
3.3 Применение метода расщепления для решения нелинейных стационарных задач анизотропной фильтрации.
4 КОНЕЧНОМЕРНОМЕРНЫЕ АППРОКСИМАЦИИ ВАРИАЦИОННЫХ НЕРАВЕНСТВ И РЕЗУЛЬТАТЫ ЧИС
4.1 Конечноэлементные аппроксимации для задач анизотроп
ЛЕННЫХ ЭКСПЕРИМЕНТОВ ной фильтрации
4.2 Результаты численных экспериментов
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Итерационные методы решения вариационных неравенств нелинейной стационарной фильтрации2005 год, кандидат физико-математических наук Исмагилов, Линар Наилевич
Итерационные методы решения некоторых вариационных неравенств с псевдомонотонными операторами2002 год, кандидат физико-математических наук Али Мохамед Саддеек Абд Эллах
Приближенные методы решения вариационных и квазивариационных неравенств теории нелинейной фильтрации и теории мягких оболочек2007 год, доктор физико-математических наук Задворнов, Олег Анатольевич
Исследование задач фильтрации с предельным градиентом и теории мягких оболочек и методов их решения2000 год, доктор физико-математических наук Бадриев, Ильдар Бурханович
Сеточные методы решения нелинейных эволюционных уравнений и неравенств с двойным вырождением1998 год, доктор физико-математических наук Павлова, Мария Филипповна
Введение диссертации (часть автореферата) на тему «Итерационные методы решения задач установившейся анизотропной фильтрации с многозначным законом»
Математическое моделирование широко используется при решении различных классов прикладных задач. В особенности это относится к нелинейным задачам. Одной из областей, в которой эффективно используются методы математического моделирования, является теория подземной фильтрации аномальных жидкостей.
Решению возникающих в этой области задач посвящена обширная литература.
Остановимся вкратце на работах, близких к тематике диссертации.
Стационарные задачи фильтрации в изотропных средах с предельным градиентом рассматриваются, например, в работах, [3], [4], [32], [53], [62], [78], [74], [96] - [98], [108], [110], [126], [127], [131]. Эти классы задач описываются математически с помощью уравнений и вариационных неравенств с вырождающимися операторами монотонного типа (монотонными, обратно сильно монотонными [49], псевдомонотонными [86]) в банаховых пространствах.
К задачам фильтрации жидкости в изотропных средах, следующей нелинейному многозначному закону, относятся задачи об определении предельно-равновесных целиков остаточной вязкопластичной нефти (см. [32], [56] - [60], [78], [106], [119]), которые также описываются математически с помощью уравнений и вариационных неравенств с вырождающимися операторами монотонного типа.
Неоднородность пористой среды оказывает существенное влияние на интенсивность и направление фильтрационных процессов.
Как отмечается в ряде работ, (см., например, [122], [123], [124]) пористые среды, в которых происходят фильтрационные течения жидкости, как правило, неоднородны, могут иметь слоистое строение, систему трещин, обладающих упорядоченным расположением в пространстве.
Следует отметить, что подавляющая часть нефтяных и газовых месторождений приурочена к коллекторам трёх типов - гранулярным, трещинным и смешанного строения. К первому типу относятся коллекторы, сложенные песчано-алевритовыми породами, поровое пространство которых состоит из межзерновых полостей. Подобным строением порового пространства характеризуются также некоторые пласты известняков и доломитов. В чисто трещиноватых коллекторах (сложенных преимущественно карбонатами) поровое пространство образуется системой трещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые нетрещиноватые блоки пород, поровое пространство которых практически не участвует в процессах фильтрации. На практике, однако, чаще всего встречаются трещиноватые коллекторы смешанного типа, поровое пространство которых включает как системы трещин, так и поровое пространство блоков, а также каверны и карст.
Эти факторы (слоистость, наличие пространственно-ориентированных систем трещин) зачастую приводят к появлению анизотропии фильтрационных свойств в пористых средах.
К необходимости учета анизотропных свойств приводят и задачи распространения жидкой субстанции в пористых средах, возникающих при проектировании различных технологических устройств, например, в нефтехимии.
Постановки задач теории нелинейной фильтрации в анизотропных средах рассмотрены в работах [77], [100], [102],[128], [144]. В этих работах математические модели нелинейной фильтрации сведены к обобщению известного тензорного закона Дарси. Свое развитие теория нелинейной фильтрации в анизотропных средах получила в работах [30], [54]. Авторы этих работ указывают на то, что при фильтрации жидкости между полями скорости и градиента давления существует связь, и используя теорию нелинейных тензорных функций, аппроксимируют эту связь зависимостями между проекциями вектора градиента давления на соответствующие оси и компонентами тензоров, задающих нелинейные свойства среды и компонентами вектора скорости.
Вопросам исследования разностных методов решения нелинейных стационарных задач теории фильтрации несжимаемой жидкости в изотропных средах, следующей непрерывному закону фильтрации с предельным градиентом посвящены работы [46], [47], [67], [69], [70], [89], [90], где математически задача сформулирована в виде квазилинейного вырождающегося эллиптического уравнения. В [69], [70], [89] доказаны теоремы существования решения и единственности скорости фильтрации, проведена и исследована аппроксимация закона фильтрации с предельным градиентом близким законом без предельного градиента. В [47], [67], [70], [89] строятся и исследуются разностные схемы для указанных задач, изучаются вопросы существования и сходимости решений разностных схем и сходимости разностных скоростей фильтрации. В [46], [70], [89] предложены и исследованы итерационные методы численного решения разностных схем.
Математическая модель задачи стационарной фильтрации в изотропных средах с разрывным законом в виде вариационного неравенства второго рода рассмотрена в работе [81], где, в частности, исследованы вопросы аппроксимации разрывного закона фильтрации с предельным градиентом близким непрерывным законом без предельного градиента. В [85] рассматривался вариант метода расширенного лагранжиана численной реализации конечномерной аппроксимации стационарной задачи фильтрации с разрывным законом.
Вопросам корректности математических моделей стационарных задач фильтрации в изотропных средах с разрывным законом, сформулированных в виде вариационных неравенств первого рода, задач на минимум функционала, с многозначными операторами, исследованию двойственных задач посвящены работы [25], [66], [71], [88]. В частности, в работе [66] установлена эквивалентность вариационного неравенства первого рода включению с многозначным законом фильтрации. В работах [8], [18], [26], [84], [90], [92] проводилось построение и исследование конечномерных аппроксимаций (конечно-разностных и конечноэлементных) для рассматриваемых задач. В работах [25] изучались вопросы регуляризации разрывного закона близким непрерывным.
Вопросам построения и исследования итерационных методов решения вариационных неравенств с монотонными, максимально монотонными, сильно монотонными операторами посвящено большое количество работ. Следует отметить, что, как правило, рассматривались случаи конечномерного или гильбертова пространства (см. [5], [12] - [14], [31], [35], [36], [44], [45], [49], [51], [52], [72], [73], [104], [129], [135] - [148]). В случае банаховых пространств отметим здесь работы [9] - [11], [17], [29], [40].
Для задач фильтрации с разрывным законом итерационные методы рассматривались в работах [12], [17], [26], [85], [90], [92]. Эти методы предполагали предварительную регуляризацию - замену разрывного закона фильтрации близким однозначным.
В работах [133] рассмотрены итерационные методы, которые позволяют решать стационарные задачи фильтрации жидкости в изотропной пористой среде с многозначным законом фильтрации.
Отметим, что для ряда специальных областей и законов фильтрации в работах [3], [32], [56] - [62], [78], [98], [110], [119], [127] были построены точные характеристики решения (границы областей, где модуль градиента давления равен предельному градиенту) методами теории струй [50]. Эти характеристики оказываются весьма полезными при оценке эффективности приближенных методов для задач с произвольными областями и законами фильтрации.
Таким образом, анализ литературы, позволяет сделать вывод о том, что, во-первых, в основном используются линейные модели, а во-вторых, рассматривается случай изотропной среды. Случаи нелинейной фильтрации в анизотропных средах рассматриваются в областях специального вида и при специальных видах законов фильтрации.
В то же время, многие практические задачи требуют использования нелинейных законов фильтрации (с предельным градиентом, многозначные законы, нелинейный рост на бесконечности функций, определяющих законы) и рассмотрения анизотропности пористых сред, в которых происходит фильтрация. Поэтому исследование математических моделей, учитывающих нелинейный и анизотропный характер зависимости скорости фильтрации от градиента давления, построение эффективных методов численной реализации таких моделей является актуальной задачей.
В настоящей диссертации проведены построение и исследования корректности математических моделей процессов установившейся фильтрации несжимаемой жидкости, следующей нелинейному анизотропному закону фильтрации с предельным градиентом, в произвольной ограниченной области. Также проведено построение и исследование приближенных методов решения вариационных неравенств второго рода с операторами монотонного типа и недифференцируемыми выпуклыми функционалами на выпуклых замкнутых множествах в банаховых и гильбертовых пространствах, возникающих при описании рассматриваемых задач.
Диссертация состоит из введения и четырех глав.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Применение конформных и неконформных методов конечных элементов для многомасштабного моделирования процесса фильтрации в геологических средах2019 год, кандидат наук Марков Сергей Игоревич
Математические моделирование некоторых задач теории упругости и пороупругости в существенно неоднородных анизотропных средах2004 год, кандидат физико-математических наук Заславский, Михаил Юрьевич
Смешанный гибридный метод конечных элементов и метод декомпозиции области для вариационных неравенств второго порядка2004 год, кандидат физико-математических наук Игнатьева, Марина Александровна
Итерационные методы решения задач линейной и нелинейной вязкоупругости, термовязкоупругости, термоупругости2000 год, доктор физико-математических наук Светашков, Александр Андреевич
Численное моделирование проблем пороупругости2014 год, кандидат наук Колесов, Александр Егорович
Список литературы диссертационного исследования кандидат физико-математических наук Исмагилов, Ирек Наилевич, 2008 год
1.A. О решении некоторых уравнений, содержащих разрывные монотонные преобразования/А.А. Абрамов, А.Н. Гаипова// Журнал вычисл. матем. и матем. физики. - 1972. - Т. 12. - N 1. - С. 204-207.
2. Абрамов A.A. О некоторых уравнениях, содержащих монотонные разрывные операторы/А.А. Абрамов, А.Н. Гаипова// Доклады АН СССР. 1973. - Т. 212. - N 3. - С. 529-532.
3. Алишаев М.Г. О стационарной фильтрации с начальным градиентом// В сб. Теория и практика добычи нефти. М.: Недра, - 1968, - С. 202-211.
4. Алишаев М.Г. О некоторых особенностях фильтрации пластовой девонской нефти при пониженных температурах/М.Г. Алишаев, Г.Г. Ва-хитов, М.М. Гехтман, И.В.Глумов// Известия АН СССР, сер. Механика жидкости и газа. 1966. - N 3. - С. 166-169.
5. Альбер Я. И. Принцип невязки при решении нелинейных задач с монотонными операторами регуляризующий алгоритм/Я.И. Альбер, И.П. Рязанцева// Доклады АН СССР. - 1978 - Т. 212. - N 5. - С. 10171020.
6. Аравии В. И. К вопросу о фильтрации в анизотропно-водопроницаемых грунтах/В.И. Аравин// Тр. Ленинградского индустриального института. 1937 - вып. 2. - N 9. - С. 3-12.
7. Аравин В. И. Фильтрация в анизотропно-водопроницаемом грунте /В.И. Аравин// Тр. Ленинградского индустриального института. -1940 вып. 1. - N 1. - С. 3-14.
8. Бадриев И. Б. Разностные схемы для нелинейных задач фильтрации с разрывным законом// Изв. ВУЗов. Матем. 1983. - N 5. - С. 3-12.
9. Бадриев И. Б. Исследование сходимости итерационного процесса для уравнений с вырождающимися операторами/И.Б. Бадриев, O.A. За-дворнов// Дифф. уравнения. 1996 - Т. 32. - N 7. - С. 898-901.
10. Бадриев И. Б. О сильной сходимости итерационного метода для операторов с вырождением/И.Б. Бадриев, O.A. Задворнов//Журн. вычисл. математики и матем. физики. 1997. - Т.37, - N 12. - С. 1424-1426.
11. Бадриев И. Б. Построение и исследование сходимости итерационных методов решения вариационных задач с недифференцируемым функционалом/И.Б. Бадриев, O.A. Задворнов// Дифф. уравн. 2002, -Т. 38. - N 7, - С. 930-935.
12. Бадриев И. Б. Итерационные методы решения вариационных неравенств второго рода с обратно сильно монотонными операторами/И.Б. Бадриев, O.A. Задворнов// Известия ВУЗов. Математика.- 2003. N 1. - С. 20-28.
13. Бадриев И.Б., Задворнов O.A. Методы декомпозиции для решения вариационных неравенств второго рода с обратно сильно монотонными операторами // Дифф. уравн. 2003. - Т. 39, N 7. - С. 888-895.
14. Бадриев И. Б. Итерационные методы решения вариационныхнера-венств в гильбертовых пространствах./И.Б. Бадриев, O.A. Задворнов- Казань: Изд-во КГУ, 2003. 132 с.
15. Бадриев И.Б., Задворнов O.A. О сходимости итерационного метода двойственного типа решения смешанных вариационных неравенств // Дифференциальные уравнения. 2006. - Т. 42, N 8. - С. 1115-1122.
16. Бадриев И. Б. Исследование сходимости итерационных методов решения некоторых вариационных неравенств с псевдомонотонными операторами/И.Б. Бадриев, O.A. Задворнов, A.M. Саддек// Дифф. уравн. 2001, - Т. 37. - N 7, - С. 891-898.
17. Бадриев И. Б. О конечномерных аппроксимациях некоторых вариационных неравенств второго рода/И.Б. Бадриев, O.A. Задворнов, A.M. Саддек //Иссл-я по прикл. матем. и информатике, Казань: Изд-во Каз. матем. об-ва, 2001. - Вып. 23. - С. 8-21.
18. Бадриев И. Б. Итерационные методы решения стационарных задач анизотропной фильтрации / И.Б. Бадриев, И.Н. Исмагилов// Труды Средне-волжского математического общества. 2006. - Т. 8, N 1. -С. 150-159.
19. Бадриев И. Б. Итерационные методы решения стационарных задач анизотропной фильтрации / И.Б. Бадриев, И.Н. Исмагилов // Исследования по прикладной математике и информатике. Казань: Изд-во Казанского математического общества, 2006. - Вып. 26. - С.19-35.
20. Бадриев И.Б. Математическое моделирование стационарных анизотропных задач теории фильтрации с многозначным законом / И.Б.Бад-риев, И.Н. Исмагилов// Вестник Удмуртского университета. Математика. 2007. - N 1. - С. 3-8.
21. Бадриев И. Б. Применение метода двойственности к решению нелинейных задач теории фильтрации с предельным градиентом/И.Б. Бадриев, М.М. Карчевский// Дифференц. уравнения. 1982. - Т. 18. -N 7. - С. 1133-1144.
22. Бадриев И. Б. Исследование сходимости итерационных методов решения нелинейных задач теории фильтрации/И.Б. Бадриев, А.Д. Ляш-ко, О.В. Панкратова// Известия ВУЗов. Матем. 1998. N 11. - С. 8-13.
23. Байокки К. Вариационные и квазивариационные неравенства. Приложения к задачам со свободной границей./К. Байокки, А. Капелло//-М.: Наука, 1988. 448 с.
24. Бакушинский A.B. Некорректные задачи. Численные методы и приложения. /А.Б. Бакушинский, A.B. Гончарский// М.: Изд-во МГУ, 1989. - 199 с.
25. Бакушинский А.Б. Итеративные методы решения некорректных задач. /А.Б. Бакушинский, A.B. Гончарский// М.: Наука, 1989. - 128 с.
26. Басниев К. С. Обобщенный закон Дарси для анизотропных пористых сред/К.С. Басниев, Н.М. Дмитриев// Изв. Вузов. Нефть и газ 1986 - N 5. - С. 54-59.
27. Бенсусан А. Методы декомпозиции, децентрализации, координации и их приложения/А. Бенсусан , Ж.-Л. Лионе, Р. Темам// Методы вычислит, математики. Новосибирск: Наука, Сиб. отд-ние, 1975. -С. 144-274.
28. Бернандинер М.Г., Ентов В.М. Гидродинамическая теория аномальных жидкостей. М.: Наука, 1975. - 199 с.
29. Вайнберг М.М. Вариационные методы исследования нелинейных операторов. М.: Гостехиздат, 1956. - 344 с.
30. Вайнберг М.М. Вариационный метод и метод монотонных операторов. М.: Наука, 1972. - 416 с.
31. Вайнелъгп В. К численному решению вариационных неравенств// Дифференц. уравнения. 1981.- Т.17. - № 11.- С. 2029 - 2040.
32. Вайнелът В. К численному решению вариационных неравенств// Вариационно-разностные методы в математической физике. М., 1984. - С. 34 - 41.
33. Васильев Ф.П. Численные методы решения экстремальных задач. -М.: Наука, 1980. 518 с.
34. Васильев Ф.П. Методы решения экстремальных задач. М.: Наука, 1981. - 400 с.
35. Васильев Ф.П. Численные методы решения экстремальных задач. -М.: Наука, 1988. 552 с.
36. Гаевский X., Грегер К., Захариас К. Нелинейные операторные уравнения и операторные дифференциальные уравнения. М.: Мир, 1978. -336 с.
37. Гайфутдинов А.Н., Якимов Н.Д. Теоремы сравнения для задач нелинейной анизотропной фильтрации// Изв. АН СССР "Механика жидкости и газа", №5, 1988. С. 45-51.
38. Гайфутдинов А.Н., Якимов Н.Д. Вариационные теоремы для задач нелинейной анизотропной фильтрации. (Тезисы)// II Респ.конфер. "Механика машиностроения". Брежнев, 1987.
39. Галеев Э.М., Тихомиров В.М. Краткий курс теории экстремальных задач. М.: Изд-во Московского ун-та, 1989. - 204 с.
40. Главачек ИГаслингер Я., Нечас И., Ловишек Я. Решение вариационных неравенств в механике. М.: Мир, 1986. - 270 с.
41. Гловински Р.Г., Лионе Ж.-Л., Тремолъер Р. Численное исследование вариационных неравенств. М.: Мир, 1979. - 576 с.
42. Глушенков В.Д. Об одном уравнении нелинейной теории фильтрации/ / Прикладная математика в научно-технических задачах. Казань: Изд-во Казан, гос. ун-та, - 1976. - С. 12 - 21.
43. Глушенков В.Д. Разностная схема для одного вырождающего крази-линейного эллиптического уравнения // Применение ЭВМ к решению задач мат. физики и АСУ. Казань: Изд-во КГУ. - 1977. - С. 121-126.
44. Голубева О.В. Задачи фильтрации в анизотропных средах //Сб. научных трудов "Исследования по теории функций комплексного переменного с приложениями к механике сплошных сред Киев: Наукова Думка, 1986. С. 57 - 63.
45. Голъштейн Е.Г., Третьяков Н.В. Модифицированные функции Ла-гранжа. М.: Наука. - 1989. - 400 с.
46. Гуревич М.И. Теория струй идеальной жидкости. М.: Наука, 1961. -496 с.
47. Даутов Р.З. Об операторах точного штрафа для эллиптических вариационных неравенств с препятствием внутри области//Дифференц. уравнения. 1995.- Т.31. - № 6.- С. 961 - 970.
48. Девликамов В.В., Хабибуллин З.А., Кабиров М.М. Аномальные нефти. М.: Недра, 1975. - 168 с.
49. Дмитриев Н.М. Нелинейные законы фильтрации для анизотропных пористых сред/Н.М. Дмитриев, В.М. Максимов// Прикладная математика и механика. 2001. - Т. 65. - вып.6. - С. 963-970.
50. Дюво Г., Лионе Ж.-Л. Неравенства в механике и физике. М.: Наука, 1980. - 384 с.
51. Ентов В.М. О расчете предельно равновесных целиков при вытеснении вязкопластической нефти из слоисто-неоднородного пласта/В.М. Ентов, Т.А. Малахова, В.Н. Панков, C.B. Панько// Прикладная математика и механика. 1980. - Т. 44. - N 1. - С. 113-123.
52. Ентов В.М. К расчету целиков остаточной вязко-пластической нефти/В.М. Ентов, В.Н. Панков, C.B. Панько// Прикладная математика и механика. 1980. - Т. 44. - N 5. - С. 847-856.
53. Ентов В.М. О форме целика остаточной вязкопластичной нефти при разработке круговой скважины/В.М. Ентов, В.Н. Панков, C.B. Панько// Известия АН СССР, сер. МЖГ. 1984. - N 4. - С. 88-93.
54. Ентов В.М., Панков В.Н., Панько C.B. Математическая теория целиков остаточной вязкопластичной нефти. Томск: Изд-во Томского ун-та. - 1989. - 196 е.
55. В.M. Ентов К вариационной формулировке задачи о целиках остаточной нефти/В.М. Ентов, C.B. Панько // Прикладная математика и механика. 1984. - Т. 48. - N 6. - С. 966-972.
56. Игнатьева М.А., Лапин A.B. Решение задачи о препятствии методом декомпозиции области // Ученые записки Казанского государственного университета. Физико-математические науки. 2005. - Т. 147. -Кн. 3. - С.112-126.
57. Ильинский Н.В. Задача нелинейной фильтрации с неоднолистной областью годографа скорости/Н.Б. Ильинский, Е.Г. Шешуков// Изв. вузов. Математика. 1972. - N 10. - С. 34-40.
58. Иоффе А.Д., Тихомиров В.М. Теория экстремальных задач. М.: Наука, 1974. - 480 с.
59. Исмагилов И.Н. Методы решения нелинейных стационарных анизотропных задач фильтрации / И.Н. Исмагилов, И.Б. Бадриев // Ученые записки Казанского государственного университета. Физико-математические науки. 2007. - Т. 149, Кн. 4. - С. 73-88.
60. Карчевский М.М. Нелинейные задачи теории фильтрации с разрывными монотонными операторами/М.М. Карчевский, И.Б. Бадри-ев//Численные методы механики сплошной среды. Новосибирск: Изд-во ИТПМ СО АН СССР. - Т. 10. - N 5. - 1979. - С. 63-78.
61. Карчевский М.М. Исследование разностной схемы для нелинейной стационарной задачи теории фильтрации/М.М. Карчевский, A.B. Лапин// Исследования по прикладной математике. Казань: Изд-во КГУ. - 1979. - Вып 6. - С. 23 - 31.
62. Карчевский М.М. Разностные схемы для нелинейных многомерных эллиптических уравнений. I/M.M. Карчевский, А.Д. Ляшко// Изв. вузов. Математика. 1972. - N 11. - С. 23-31.
63. Киидерлерер Д. Введение в вариационные неравенства и их приложения./Д. Киндерлерер, Г. Стампаккья// М.: Мир, 1983. - 256 с.
64. Коинов И.В. Обобщенные вариационные неравентсва на произведении множеств// Исследования по информатике, Казань: Изд-во Отечество. 2001. -Вып. 3. - С. 111-120.
65. Коновалов А.Н. Задачи фильтрации многофазной несжимаемой жидкости. Новосибирск: Наука, Сиб. отд-ние, 1988. - 166 с.
66. Корнеев В. Г. Схемы метода конечных элементов высоких порядков точности. Л: изд-во Лениградского ун-та, 1977. - 208 с.
67. Красносельский М.А. Топологические методы в теории нелинейных интегральных уравнений. М.: Гостехиздат, 1956. - 392 с.
68. Костерин A.B. Об уравнениях нелинейной анизотропной фильтра-ции/А.В. Костерин// Известия АН СССР. МЖГ. - 1980. - № 5. - С. 158-160.
69. Котляр Л.М. Плоские стационарные задачи фильтрации жидкости с предельным градиентом./Л.М. Котляр, Э.В. Скворцов// Казань: Изд-во Казанск. ун-та. 1978. - 144 с.
70. Лаврентьев М.А., Шабат Б. В. Методы теории функции комплексного переменного. М.: Наука, 1977. -700 с.
71. Ладыженская O.A. Краевые задачи математической физики. М.: Наука, 1973. - 407 с.
72. Лапин A.B. Об исследовании некоторых нелинейных задач теории фильтрации // Журн. вычисл. матем. и матем. физ. 1979. - Т. 19. -N 3. - С. 689 -700.
73. Лапин A.B. Исследование одного нестационарного нелинейного вариационного неравенства // Дифференц. уравнения. 1980. - Т. 16. -N 7. - С. 1245-1254.
74. Лапин A.B. Введение в теорию вариационных неравенств. Казань: Изд-во Казанск. ун-та, 1981. - 122 с.
75. Лапин A.B. Сеточные аппроксимации вариационных неравенств. Казань: Изд-во Казанск. ун-та, 1984. - 96 с.
76. Лапин A.B. Метод расширенного лагранжиана для задач фильтрации с предельным градиентом// Вычислит, процессы и системы. М.: Наука, 1987. - Вып. 6. - С. 192-198.
77. Лионе Ж.-Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972. - 588 с.
78. Лоран П.-Ж. Аппроксимация и оптимизация. М.: Мир, 1975. - 496 с.
79. Ляшко А.Д. О вариационном методе для уравнений с разрывными монотонными операторами/А.Д. Ляшко, И.Б. Бадриев, М.М. Карчев-ский//Известия ВУЗов. Математика. 1978. - N 11. - С. 63-69.
80. Ляшко А. Д. О решении некоторых нелинейных задач теории фильтрации/А.Д. Ляшко, М.М. Карчевский// Изв. ВУЗов. Математика. -1975. N 6. - С. 73-81.
81. Ляшко А.Д. Разностные методы решения нелинейных задач теории фильтрации/А.Д. Ляшко, М.М. Карчевский// Изв. ВУЗов. Математика. 1983. - N 7. - С. 28-45.
82. Ляшко А Д. О нестационарных неравенствах с разрывными монотонными операторами и их сеточных аппроксимациях/А.Д. Ляшко, М.М. Карчевский, М.Ф. Павлова// Численные методы и их приложения. -София. 1984. - С. 70-74.
83. Ляшко А.Д. Разностные схемы для задач фильтрации с предельным градиентом/А.Д. Ляшко, М.М. Карчевский, М.Ф. Павлова// -Казань: Изд-во Казанск. ун-та, 1985. 122 с.
84. Ляшко А.Д. Исследование неявной разностной схемы для одного вариационного неравенства нелинейной теории фильтрации/А.Д. Ляшко, М.Ф. Павлова//Дифф. уравнения.- 1980. Т. 1б.-К 7. - С. 12551264.
85. Ляшко А.Д. О разностной аппроксимации нелинейного нестационарного вариационного неравенства/А.Д. Ляшко, М.Ф. Павлова// Дифферент уравнения. 1984. - Т. 20. - N 7. - С. 1237-1247.
86. Магарил-Илъяев Г. Г. Выпуклый анализ и его приложения. /Г.Г. Магарил-Ильяев, В.М. Тихомиров// М.: Эдиториал УР-СС, 2000. - 176 с.
87. Мирзаджанзаде А.Х. О теоретической схеме явления ухода раствора // Известия АН АзССР. 1953, - Т. 9 - N 4. - С. 203-205.
88. Мирзаджанзаде А.Х. Вопросы гидродинамики вязко-пластичных и вязких жидкостей в нефтедобыче. Баку: Азнефтиздат, 1966. - 409 с.
89. Мифтахутдинов Б.А. Некоторые вопросы плоской стационарной нелинейной фильтрации/ Б.А.Мифтахутдинов, Ю.М.Молокович, Э.В. Скворцов// В сб. Проблемы гидродинамики и рациональной разработки нефт. месторождений. Казань: Изд-во Казан, ун-та, 1971. -С. 51-70.
90. Михлии С.Г. Численная реализация вариационных методов. М.: Наука, 1966. - 430 с.
91. Молокович Ю.М. К вопросу нелинейной фильтрации в анизотропных (ортотропных) средах по проницаемости средах/Ю.М. Молокович// Гидродинамика и разработка нефтяных метсорождений. Казань: Изд-во Казанского ун-та, 1977. - С. 124 - 128.
92. Мосолов П.П. Вариационные методы в теории течений вязко-пластической среды/П.П. Мосолов, В.П. Мясников// Прикладная математика и механика. 1965. - Т. 29, Вып. 3. - С. 468 - 492.
93. Нумеров С.Н. К вопросу о нелинейной фильтрации газа в анизотропной среде/С.Н. Нумеров// Изв. ВНИИГ им. Б.Е.Веденеева. Л., 1974. - Т. 104, - С. 292 - 293.
94. Обэн Ж. П. Приближенное решение эллиптических краевых задач. -М.: Мир, 1980. 384 с.
95. Обен Ж.-П. Прикладной нелинейный анализ./Ж.-П. Обен, И. Эк-ланд// М.: Мир, 1988. - 516 с.
96. Павлова М.Ф. Исследование уравнений нестационарной нелинейной фильтрации// Дифф. уравнения. 1987. - Т. 23. - N 8. - С. 1436-1446.
97. Полубаринова-Кочина П.Я. О фильтрации в анизотропном грун-те/П.Я. Полубаринова-Кочина// Прикладная математика и механика. 1940. - Т. 4. - Вып. 2. - С. 101 - 104.
98. Полубаринова-Кочина П.Я. Теория движения грунтовых вод/П.Я. Полубаринова-Кочина// М.: Наука, 1977. - 664 с.
99. Пшеничный Б.Н. Выпуклый анализ и экстремальные задачи. М.: Наука, 1980. - 320 с.
100. Развитие исследований по теории фильтрации в СССР. М.: Наука, 1969. - 546 с.
101. Рокафеллар Р. Выпуклый анализ. М.: Мир, 1973. - 466 с.
102. Ром Е.С. Структурные модели порового пространства горных по-род./Е.С. Ром// Л.: Недра, 1985. - 240 с.
103. Самарский A.A. Введение в теорию разностных схем. М.: Наука,-1971. - 552 с.
104. Самарский A.A. Теория разностных схем. М.: Наука, 1977. - 656 с.
105. Самарский A.A. Разностные методы для эллиптических уравнений. /A.A. Самарский, В.Б. Андреев// М.: Наука, 1976. - 352 с.
106. Самарский A.A. Устойчивость разностных схем./А.А. Самарский, A.B. Гулин// М.: Наука, 1973. - 315 с.
107. Самарский A.A. Численные методы./A.A. Самарский, A.B. Гулин//-М.: Наука, 1989. 432 с.
108. Самарский A.A. Методы решения сеточных уравнений./А.А. Самарский, Е.С. Николаев// М.: Наука, 1978. - 590 с.
109. Скворцов Э.В. Подземная гидромеханика аномальных жидкостей. -Казань: Изд-во Казанск. ун-та, 1985. 76 с.
110. Стренг Г. Теория метода конечных элементов./Г. Стренг, Дж. Фикс// М.: Мир, 1977. - 512 с.
111. Съярле Ф. Метод конечных элементов для эллиптических задач. -М.: Мир. 1980. 512 с.
112. Толпаев В.А. Математические модели нелинейной фильтрации в грунтах с обобщенной анизотропией/В.А. Толпаев// Изв. вузов. Северо Кавказский регион. Естеств. науки. - 2000. - N 2. - С. 33 - 36.
113. Толпаев В.А. Математическое моделирование нелинейной фильтрации в анизотропных средах обобщенным методом С.Н. Нумеро-ва./В.А. Толпаев// Изв. вузов. Северо Кавказский регион. Естеств. науки. Приложение. - 2003. - N 12. - С. 3 - 11.
114. Толпаев В.А. Уравнения нелинейной фильтрации в анизотропных средах /В.А. Толпаев// Изв. вузов. Северо Кавказский регион. Естеств. науки. Приложение. - 2003. - N. 7. - С. 7 - 18.
115. Темам Р. Уравнения Навье-Стокса. Теория и численный анализ. М.: Мир, 1981. 408 с.
116. Фаткуллин Р. Г. Теоремы сравнения для некоторых задач фильтрации в неоднородных грунтах/Р.Г. Фаткуллин , Н.Д. Якимов // Известия АН СССР "Механика жидкости и газа", 1981 N2. - С.165-169.
117. Христианович С.А. Движение грунтовых вод, не следующих закону Дарси // Прикл. матем-ка и мех-ка. 1940. - Т. 4, Вып. 1. - С. 33 - 52.
118. Шешуков Е.Г. О нелинейной фильтрации в анизотропной среде/ Е.Г. Шешуков// Гидродинамика и разработка нефтяных месторождений. Казань: Изд-во Казанского ун-та, 1977. - С. 183-194
119. Экланд И. Выпуклый анализ и вариационные проблемы./И. Экланд, Р. Темам// М.: Мир, 1979. - 400 с.
120. Эрроу К. Исследования по линейному и нелинейному программированию./^. Эрроу , Гурвиц, Удзава// М.: ИЛ, 1962. - 334 с.
121. Якимов Н.Д. Исследование разрешимости задачи фильтрации в неоднородной земляной плотине. //Докл. АН СССР, 1979, Т.249 N 2 -С. 307-310.
122. Auchmuty G. Variational principles for variational inequalities// Numer. Funct. Anal, and Optimiz. 1989. - V. 10. - N 9-10. - P. 863-874.
123. Badriev I.B. On the methods of iterative regularization for the variational inequalities of the second kind/I.В. Badriev, O.A. Zadvornov, L.N. Ismagilov// Computational Methods in Applied Mathematics. -2003, Is.3. - N. 2. - P.223-234
124. Browder F.E., Fetrushin W.V. The solution by iteration of nonlinear functional equations in Banach spaces // Bull. American. Math. Soc. -1996. V. 72. - P. 571-575.
125. Gabay D. A dual algorithm for the solution of nonlinear variational problems via finite element approximation/D. Gabay, B. Merrier// Сотр. and Math, with Applications, Pergamon Press. 1976. - V. 2 . - P 17-40.
126. Konnov I. V. On the generalized vector variational inequality problem/I.V. Konnov, J.-C. Yao// O. Math. Anal. Appl. 1997. -V.226. - №1.-Р. 42-58.
127. Lions P.L. Splitting algorithms for the sum of two nonlinear operators/P.L. Lions, B. Merscier//SIAM J. Numer. Anal. 1979. -V. 16. - N 6. - P. 964-979.
128. Litwiniszin J. Stationary flows in heterogeneously anisotropic mediums/J. Litwiniszin//Ann. Polon. Math. 1950. - V. 22. - P.185.
129. Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings // Bull. Amer. Math. Soc. 1967. - V. 73. -P. 591-597
130. Résolution numériques de problèmes aux limites par des méthodes de Lagrangien augmenté /Eds M.Fortin, R.Glowinski. Paris: Dunod, 1983. -320 p.
131. Maruster S. The solution by iteration of nonlinear equations in Hilbert spaces // Proc. Amer. Math. Soc. 1977. - V. 63 (1). - P. 69-73
132. Meegoda N.J. An expression for the permeability of anisotropy granular media/N.J. Meegoda, I.P. King, K. Arulandan // Int. J. number, anal/ methods in geomechanics. 1989. - V. 13. - P. 575-598.
133. Numerov S.N. Nonlinear seepage in anisotropic media/S.N. Numerov //15th Congr. Int. Assoc. Hydraul. Res. V. 3. Istanbul, 1973. - P. 3946.
134. Rockafellar R. T. Convex functions, monotone operators and variational inequalities// in Theory and Applications of Monotone Operators, Tipografía Oderisi Editrice, Gubbio, Italy, 1969. P. 35-65.
135. Rockafellar R. T. Augmented Lagrangian multiplier rule and duality in nonconvex programming// SIAM J. Control and Optimization. 1974. -V. 12 - N 2, - P. 268-285.
136. Rockafellar R.T. Monotone Operators and Augmented Lagrangian Methods in Nonlinear Programming// Nonlinear Programming, Acad. Press. 1978. - N 3, - P. 1-25.
137. Tzeng P. Futher Applications of a Splitting Algorithm to Decomposition in Variational Inequalities and Convex Programming// Mathematical Programming. 1990. - V. 48, - P. 249-264.
138. Zhu D. New classes of generalized monotonicity/D. Zhu, P. Marcotte// Journal of Optimazation Theory and Applications. 1995. - V. 87. - N 2, -P. 457-471.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.