Исследование динамики вихревых потоков и волн в дисперсных и стратифицированных средах тема диссертации и автореферата по ВАК РФ 01.02.05, доктор физико-математических наук Дружинин, Олег Александрович
- Специальность ВАК РФ01.02.05
- Количество страниц 301
Оглавление диссертации доктор физико-математических наук Дружинин, Олег Александрович
ВВЕДЕНИЕ
ГЛАВА 1. СВОЙСТВА ДИНАМИКИ ЧАСТИЦЫ В ПОТОКЕ ЖИДКОСТИ
1.1 Введение. Уравнение движения частицы в потоке жидкости
1.2 Динамика частицы в неоднородном стационарном течении идеальной жидкости
1.2.1 Точное частное решение для скорости частицы.
1.2.2 Динамика частицы в осесимметричном вихре
1.2.3 Хаотическое движение и аномальная дисперсия частиц в течении
Грина - Тейлора
1.3 Динамика частицы в течении вязкой жидкости.
1.3.1 Асимптотическое решение для скорости частицы
1.3.2 Динамика частицы в осесимметричном вихре
1.3.3 Ограниченое и неограниченное движение частицы в течении
Грина -Тейлора
1.3.4 Устойчивость решения уравнения Чена для скорости частицы в однородном потоке
1.4 Выводы к главе
1.5 Рисунки к главе
ГЛАВА 2. ДИНАМИКА ПОТОКОВ, НЕСУЩИХ ТВЕРДЫЕ ЧАСТИЦЫ
2.1 Введение. Уравнения движения частиц и жидкости с учетом межфазного взаимодействия
2.2 Динамика концентрации частиц и межфазное взаимодействие в осесимметричном вихре
2.2.1 Аналитическое решение в виде волны концентарции
2.2.2 Аналитическое решение для поля завихренности
2.2.3 Результаты численного моделирования
2.3 Динамика концентрации частиц и межфазное взаимодействие в течении Стюарта.
4 2.3.1 Аналитическое решение для концентрации частиц и завихренности жидкости
2.3.2 Результаты численного моделирования
2.4 Эффект гравитационного оседания частиц и межфазное взаимодействие в течении Грина-Тейлора.
2.4.1 Аналитическое решение для концентрации частиц и модификации завихренности жидкости
2.4.2 Результаты численного моделирования
2.5 Волновая динамика разбавленной суспензии оседающих частиц
2.5.1 Уравнение для волновых возмущений
2.5.2 Результаты численного моделирования
2.6 Влияние инерции частиц на межфазное взаимодействие в изотропной турбулентности
2.6.1 Модификация спектра изотропной турбулентности частицами с малой инерцией
2.6.2 Результаты численного моделирования
2.7 Выводы к главе 2.
2.8 Рисунки к главе
ГЛАВА 3. ДИНАМИКА ПОТОКОВ ЖИДКОСТИ, НЕСУЩЕЙ
МИКРОПУЗЫРЬКИ
3.1 Введение. Уравнения движения пузырьковой жидкости с учетом межфазного взаимодействия
3.2 Исследование свойств пространственно - развивающегося пузырькового слоя смешения с помощью прямого численного моделирования.
3.2.1 Формулировка задачи и описание численного метода
3.2.2 Метод лагранжево - эйлерова отображения для вычисления концентрации и скорости пузырьков
3.2.3 Свойства течения и межфазного взаимодействия в случае однородного распределения исходной концентрации пузырьков
3.2.4 Свойства течения и межфазного взаимодействия в случае ступенчатого распределения исходной концентрации пузырьков
3.3 Исследование динамики турбулентных потоков пузырьковой жидкости с помощью прямого численного моделирования
3.3.1 Динамика однородной турбулентности, несущей микропузырьки
3.3.2 Динамика турбулентного пузырькового потока с постоянным сдвигом средней скорости
3.4 Волновая динамика пузырькового слоя при воздействии акустической накачки
3.4.1 Основные уравнения
3.4.2 Режим слабой нелинейности
3.4.3 Режим пилообразных волн
3.4.4 Результаты численного моделирования
3.5 Выводы к главе 3.
3.6 Рисунки к главе
ГЛАВА 4. ДИНАМИКА ВИХРЕВЫХ ПОТОКОВ В ЖИДКОСТИ СО СТРАТИФИКАЦИЕЙ ПЛОТНОСТИ В ВИДЕ ПИКНОКЛИНА: ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ И СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ
4.1 Введение.
4.2 Исследование процесса заглубления пикноклина под действием турбулентного сдвигового потока
4.2.1 Математическая модель и численное моделирование заглубления термоклина под действием турбулентного сдвигового потока.
4.2.2 Решение для спектра внутренних волн для заданного спектра пульсаций скорости сдвигового потока
4.3 Генерация внутренних волн в пикноклине под действием сдвиговой неустойчивости
4.3.1 Основные уравнения и описание численного метода
4.3.2 Результаты численного моделирования
4.4 Динамика турбулентной струи в пикноклине
4.4.1 Формулировка задачи и описание численного метода
4.4.2 Результаты численного моделирования
4.4.3 Аналитическая оценка для временных асимптотик масштабов длины и скорости струи
4.5 Выводы к главе 4.
4.6 Рисунки к главе
Рекомендованный список диссертаций по специальности «Механика жидкости, газа и плазмы», 01.02.05 шифр ВАК
Коллективная динамика структур и осцилляторов в течениях жидкости2004 год, доктор физико-математических наук Соустова, Ирина Анатольевна
Моделирование взаимодействия тел и гидрофизических полей морской среды методом крупных вихрей.2012 год, доктор технических наук Ткаченко, Игорь Вячеславович
Внутренние турбулентные течения газовзвеси в энергетических установках2006 год, доктор физико-математических наук Волков, Константин Николаевич
Турбулентность и разрывы в сложных гидродинамических течениях жидкости и плазмы2009 год, доктор физико-математических наук Петросян, Аракел Саркисович
Физико-математическая модель вихревого следа самолета в турбулентной атмосфере2002 год, доктор технических наук Вышинский, Виктор Викторович
Введение диссертации (часть автореферата) на тему «Исследование динамики вихревых потоков и волн в дисперсных и стратифицированных средах»
Задачи, связанные с динамикой потоков и волн в дисперсных и стратифицирова-ных средах, представляют интерес как с прикладной, так и с фундаментальной точек зрения. Актуальность задач, связанных с динамикой таких сред, обусловлена их многочисленными приложениями во многих областях науки и техники. В число примеров физических процессов, связанных с течениями дисперсных жидкостей (т.е. жидкостей, несущих твердые частицы или пузырьки, газовзвесей и газокапельных потоков) входят: распространение примесей в океане и аэрозолей в атмосфере, пылевые и песчаные бури, дисперсия капель топлива в двигателе внутреннего сгорания, течения пузырьковых жидкостей в процессах ферментации и движение газовзвесей в различных технических устойствах в промышленном производстве (химических и ядерных реакторах, в процессах распылительной сушки и т.д.) [1, 2, 3]. Задачи динамики стратифицированной жидкости связаны с процессами перемешивания и генерации внутренних волн поверхностными сдвиговыми потоками в атмосфере и океане, со струйными течениями, обусловленными выбросами загрязнений, с развитием турбулентного следа за телом, движущимся в пикноклине при больших числах Рейнольдса и Фруда, и многие другие [4, 5]-[14].
Известно, что динамика диспресной среды описывается системой уравнений для несущей фазы (жидкости или газа) и для частиц (или концентрации) примеси. При этом мгновенные скорости частиц примеси определяются (но, в случае конечной инерции частиц, как правило, не совпадают с) полем скорости несущей фазы. В настоящее время известно, что поле скорости инерционной примеси, в отличие от поля скорости несущей жидкости, не является бездивергентным [15]. Это свойство обусловливает формирование со временем существенно неоднородного распределения концентрации частиц примеси даже в том случае, когда исходное распределение концентрации однородно. Явление образования неоднородностей распределения концентрации частиц примеси в вихревых потоках принято называть кластеризацией [16]. В случае достаточно большой массовой концентрации частиц (или объемной доли пузырьков в потоке пузырьковой жидкости) они оказывают существенное воздействие на динамику несущей фазы [1, 2].
Изучение динамики одиночной частицы в потоке жидкости важно для описания движения дисперсной среды в целом и представляет самостоятельный интерес [2]. Известно, что траектория частицы (или пузырька) в общем случае не совпадает с траекторией жидкой (лагранжевой) частицы из-за эффекта инерции [17, 15]. Результаты предыдущих исследований, получение с помощью численного моделирования движения частиц в вихревых потоках [15], [18] - [21], показывают, что динамика частицы с инерцией может быть весьма сложной даже в ламинарных двумерных течениях. Значительное внимание исследователей привлекли течения Грина-Тейлора [22] и Стюарта [23], представляющие собой точные двумерные стационарные решения уравнений Эйлера. Результаты [15], [18] - [21] показывают, что траектории частиц с плотностью большей, чем плотность жидкости в этих течениях могут хаотическими.
Следует отметить, что в ранних исследованиях использовалось уравнение для скорости частицы, полученное для случая однородного, нестационарного поля течения жидкости [24]. Соответствующее уравнение для скорости частицы носит название уравнения Чена, и его решение широко используется в исследованиях динамики дисперсных сред [24] - [28],[2]. Однако вопрос об устойчивости решения этого уравнения для скорости частицы не рассматривался.
Корректный вывод уравнения для скорости частицы, движущейся в нестационарном и неоднородном течении вязкой жидкости, был выполнен Махеу and Riley (1983) для случая, когда возмущение поля скорости несущего течения, привносимое частицей в жидкость, является стоксовым [25]. В этом случае инерционные силы (градиента давления и присоединенной массы) малы по сравнению с вязкими силами (Стокса и Бассе). С другой стороны, в исследованиях [18] - [21] вязкие и инерционные силы оказываются сравнимыми по порядку величины, а силой Бассе вообще пренебрегается.
Динамика жидкости, несущей множество частиц, описывается системой уравнений для скорости несущей жидкости и для скорости дисперсной фазы (частиц), и эти уравнения связаны между собой благодаря воздействию частиц на жидкость [1, 2, 3]. Если концентрация частиц С достаточно мала (С < 10~2), и не происходит процессов перехода одной фазы в другую и химических реакций, то воздействие частиц на несущую жидкость осуществляется благодаря силе трения, возникающей из-за наличия проскальзывания, т.е. отличия скорости отдельно взятой частицы от локальной скорости жидкости. Эта разность скоростей обусловлена инерцией частицы. Экспериментальные данные [16] и результаты численного моделирования [29, 15, 30, 32] показывают, что инерция тяжелых частиц обусловливает их накапливание (или кластеризацию) в областях малой завихренности, т.е. на периферии вихрей, несущего течения. С другой стороны, частицы с плотностью меньшей, чем плотность жидкости (в том числе и пузырьки), накапливаются в центрах вихрей. Результаты исследований показывают [33] - [40], [32], что кластеризация частиц происходит наиболее интенсивно, когда их время релаксации близко к характерному временному масштабу несущего течения. В случае переходных течений (таких как течение в ближнем следе, или в ближней зоне слоя смешения) этот масштаб определяется характерным значением завихренности крупномасштабных вихрей [33] - [40]. В случае же изотропной турбулентности характерный масштаб течения определяется комогоровским временным масштабом rjt [32].
Результаты многочисленных экспериментальных исследований турбулентных двухфазных течений в случае, когда скорость гравитационного оседания частиц пренебрежимо мала, показывают, что тяжелые частицы могут как ослаблять, так и усиливать турбулентность [41] - [48]. Исследователями выдвигались различные критерии оценки, характеризующие воздействие частиц на турбулентность. Например, исходя из совокупности известных экспериментальных данных Gore and Crowe (1989) предположили, что частицы усиливают или ослабляют турбулентность, если отношение диаметра частицы к пространственному масштабу энергонесущих вихрей жидкости больше или меньше 0.1. При этом предполагалось, что усиление турбулентности частицами происходит благодаря турбулизации жидкости в следе, возникающему при обтекании частицы [50]. Другой критерий был предложен Hetsroni (1989), согласно которому число Рейнольдса частицы является основным параметром, определяющим эффект воздействия частиц на турбулентность (также благодаря эффектам, связанным с турбулентным следом за каждой частицей) [49]. Предлагались также различные модели и механизмы, поясняющие эффект воздействия следа за частицей на характеристики несущего турбулентного потока [52, 53]. В другом исследовании [51] предполагалось также, что главным параметром межфазного взаимодействия является отношение времени релаксации частицы тр к интегральному масштабу времени турбулентности Т, и что частицы с малой инерцией тр < Т ослабляют турбулентность, а частицы с большой инерцией тр > Т усиливают турбулентность.
В ранних теоретических и численных исследованиях вихревых течений двухфазных жидкостей использовались методы осреденения, аналогичные полуэмпирическому подходу в случае однофазной жидкости [1, 2, 54, 55]. Результаты показывают, что эффективность этих методов определяется удачным подбором модельных коэффициентов, которые оказываются зависящими от конкретного вида течения [54, 51]. Поэтому растущий интерес исследователей в последнее время привлекают методы численного моделирования вихревых двухфазных течений, не требующие модельных предположений и использования процедуры замыкания [4]. Наиболее эффективным считается метод прямого численного интегрирования уравнений динамики двухфазной среды, при котором разрешаются все масштабы движения жидкости и частиц, а подсеточные эффекты пренебрежимо малы [56, 57, 60, 61]. Результаты этих работ показывают, что тяжелые частицы с достаточно большой инерцией (т.е. с временем релаксации большим, чем колмогоровский временной масштаб турбулентности тр > т^) ослабляют турбулентность.
Следует отметить однако, что в предыдущих работах [56, 57, 60, 61] в целях сокращения требуемых численных ресурсов использовался так называемый метод "стохастических" частиц. В этом методе одна "стохастическая" (или численная) частица представляет собой большое число (порядка ста) реальных частиц. При этом сила, с которой одна численная частица воздействует на несущее течение, умножается на число представляемых ею реальных частиц. Представление "стохастических" частиц искажает реальное воздействие частиц на жидкость и ведет к результатам с неясными границами применимости [51].
Теоретические и численные исследования ламинарных течений в рамках уравнений "пылевого газа" (описывающих течение жидкости, несущей частицы, диаметр которых мал по сравнению с пространственным масштабом несущего течения) показывают, что воздействие частиц на жидкость приводит к уменьшению эффектов вязкости и таким образом дестабилизирует течение [62]-[64].
Процесс гравитационного оседания частиц встречается на практике при распылительной сушке дисперсной фазы [65, 66]. При этом частицы либо стационарно оседают, либо поддерживаются на весу вертикальным потоком воздуха, скорость которого примерно равна скорости оседания частиц в покоящейся среде. Экспериментальные наблюдения показывают, что изначально однородное распределение частиц неустойчиво, и развитие неустойчивости ведет к образованию "пузырей", т.е. областей несущей жидкости без частиц. Предпринималось много попыток объяснить механизм этой неустойчивости в общем случае суспензии с большой концентарцией, где эффекты взаимодействия частиц между собой существенны [67]-[73]. Однако, теоретический анализ осложняется тем, что приходится вводить различные модельные предположения для описания взаимодействия частиц и использовать уравнения движения, применимость которых остается под вопросом. С другой стороны, не предпринималось попыток объяснить механизм образования "пузырей" в случае разбавленной суспензии, уравнения движения которой хорошо известны [62, 63, 1, 2].
Влияние гравитационного оседания частиц на межфазное взаимодействие в изотропной турбулентности исследовалось с помощью численного моделирования [57]. Результаты показывают, что воздействие частиц на турбулентность приводит к возникновению анизотропии поля скорости несущего течения, выражающегося в увеличении доли кинетической энергии, приходящейся на вертикальную составляющую пульсаций скорости жидкости.
Следует отметить, что несмотря на значительный накопленный экспериментальный материал и успехи в численном моделировании двухфазных вихревых потоков в вышеупомянутых исследованиях, не удавалось найти аналитических решений, описывающих кластеризацию частиц в вихревых потоках и их воздействие на несущее течение. В предыдущих исследованиях не изучалось также, каким образом инерция частиц (определяемая временем релаксации) влияет на межфазное взаимодействие. Не удавалось также получить аналитических решений, показывающих каким образом гравитационное оседание частиц влияет на межфазное взаимодействие в вихревых течениях и в разбавленной суспензии частиц, оседающих в покоящейся жидкости.
Свойства межфазного взаимодействия и динамика потоков пузырьковых жидкостей также привлекают большой интерес исследователей. Известно, что в обычной (неочищенной) воде граничное условие для скорости жидкости на поверхности газового пузырька соответствует условию прилипания, подобно случаю твердой частицы [74], и если диаметр пузырька достаточно мал (т.е. число Вебера меньше единицы), то поверхность пузырька не деформируется. Таким образом, движение пузырька в жидкости в этом случае эквивалентно движению твердой частицы с нулевой плотностью. Малость материальной массы пузырька однако "компенсируется" эффектом присоеди-неной массы, которая обусловливает инерционность пузырька [75, 1].
Результаты экспериментальных исследований пузырькового турбулентного слоя смешения показывают, что распределение концентрации пузырьков существенно неоднородно. Оказывается, что эффекты воздействия пузырьков на несущее течение довольно сложно зафиксированть в эксперименте, так как, в отличие от случая твердых частиц, соответствующее относительное изменение скорости жидкости пропорционально объемной доли пузырьков (и при концентрации порядка 10~3 в эксперименте составляет менее 0.1%) [76].
Численное исследование динамики концентарции пузырьков в изотропной тубулент-ности проводилось без учета воздействия пузырьков на несущее течение [77]. Прямое численное моделирование пузырькового слоя смешения проводилось лишь для периодического двумерного течения [78]. Прямое численное моделирование трехмерного слоя смешения не представлялось возможным из-за значительных затрат оперативной памяти и времени CPU. В предыдущих работах не были изучены структура распределения концентрации пузырьков и механизмы воздействия пузырьков на несущее течение жидкости в таких "канонических" течениях как свободный слой смешения и турбулентный поток с однородным сдвигом скорости, часто встречающихся в практических приложениях [4, 51].
Еще одним важным свойством жидкостей, несущих пузырьки, является свойство акустической нелинейности, которая может быть весьма существенной даже при относительно небольших значениях концентрации пузырьков (порядка 10~3) [79]. Известно, что эта нелинейность обусловливает эффект генерации низкочастотной акустической волны при нелинейном взаимодействии двух высокочастотных волн в пузырьковом слое [80, 81, 82]. Однако, как показывают результаты этих исследований, генерация низкочастотного сигнала существенно осложняется наличием большой диссипации, обусловленной колебаниями резонансных пузырьков. Тем не менее, экспериментальные результаты показывают, что эффект генерации низкочастотной волны в пузырьковом слое по амплитуде сигнала в несколько раз превосходит такой же эффект в чистой воде [81].
Результаты [80, 81, 82] указывают на то, что процесс генерации сигнала разностной частоты в пузырьковом слое может быть оптимизирован благодаря резонансным свойствам самого слоя. Поскольку даже при относительно малой концентрации пузырьков в слое (например при а0 = Ю-3) скорость звука в слое почти в пять раз меньше, чем в чистой воде [79], происходит эффективное отражение волн от границ слоя, что и делает возможным эффект резонанса. Этот эффект может быть использован для усиления генерации сигнала разностной частоты в случае, когда частоты волн накачки и разностная частота близки к частотам собственных мод слоя. При этом могут быть использованы нерезонансные пузырьки, что позволит избежать существенных потерь при колебаниях пузырьков.
В отличие от дисперсной жидкости, неоднородность поля плотности стратифицированной жидкости обусловлена неоднородным распределением полей температуры и (или) солености. Фактически, плотность жидкости может рассматриватся как концентрация безинерционной примеси, поле скорости которой совпадает с полем скорости жидкости, и динамика которой описывается уравнением переноса, включающем эффекты теплопроводности (или диффузии). При этом известно, что поле скорости жидкости описывается уравнениями Навье - Стокса, записанных в приближении Бусси-неска, в которых воздействие вариаций плотности на динамику жидкости обусловлено действием силы плавучести [4, 83, 84]. Таким образом, задачи, связанные с динамикой стратифицированной жидкости в определенном смысле можно рассматривать как частный случай задач, связанных с динамикой дисперсной жидкости, где примесь является безинерционной, и ее воздействие на несущее течение определяется силой плавучести.
Одним из наиболее распространенных типов стратификации плотности жидкости, встречающимся в натурных условиях (в атмосфере и океане, а также в пресноводных озерах), является устойчивая стратификация в виде пикноклина [83, 84]. Область пикноклина является переходной и разделяет слой легкой (теплой или менее соленой) жидкости, расположенный над слоем тяжелой жидкости. В этом случае, в установившемся режиме, профиль плотности жидкости хорошо описывается функцией типа гиперболического тангенса. Исследование динамики пикноклина при воздействии на него турбулентного сдвигового потока, процессы генерации внутренних волн и динамика турбулентных струй в пикноклине представляет интерес для океанологии и метеорологии и имеет много геофизических приложений [4, 85]. В данной диссертационной работе рассматривается несколько задач, связанных с динамикой пикноклина, вихревых потоков и генерацией внутренних волн в пикноклине, вызвывающих интерес как с прикладной, так и с фундаментальной точек зрения.
Одной из таких задач является исследование процесса заглубления пикноклина под действием турбулентного сдвигового потока. Динамика заглубления перемешанного слоя в устойчиво стратифицированной жидкости исследовалась ранее во многих лабораторных экспериментах, а также теоретически [14, 86, 87, 88, 89]. В этих экспериментах исследовалась конфигурация течения, где источник турбулентности равномерно распределен в приповерхностоном слое жидкости (как, например, в случае осциллирующей решетки или вращающегося диска), и рассматривалась линейная и двухслойная стратификации плотности. Однако во всех упомянутых выше исследованиях среднее сдвиговое течение отсутствовало.
В настоящее время хорошо известно, что неустойчивость сдвиговых течений при определенных условиях может быть также весьма эффективным источником возбуждения внутренних гравитационных волн. Наблюдения показывают наличие вертикально распространяющихся внутренних волн в верхних слоях атмосферы с отличной от нуля горизонтальной компонентой фазовой скорости, источником которых по-видимому является сдвиговая неустойчивость воздушных потоков в нижних слоях атмосферы [5, 6]. Сдвиговая неустойчивость поверхностных течений является одним из возможных источников генерации внутренних волн в океанском сезонном термоклине [7]-[11]. g Экспериментальные наблюдения показывают, что развитие сдвиговой неустойчивости приводит к генерации внутренних волн вихрями в следе за сферой, движущейся в пикноклине при больших числах Фруда [12]. В геофизических потоках область максимального сдвига скорости течения как правило не совпадает с горизонтом залегания пикноклина (например, в атмосферных потоках, в устьях рек при впадении в океан, в дрейфовых течениях в верхнем слое океана и т.п.). В связи с этим в настоящее время активно изучается течения с конфигурацией "сдвиговый поток над пикнокли-ном", как экспериментально [13, 14],[90] - [92] так и с помощью численного моделирования [93]-[95]. Развитие гидродинамической неустойчивости и генерация внутренних волн в устойчиво - стратифицированной струе Бикли исследовалась в работе [95], где численно решались как линейная, так и полная задачи. Результаты показывают, что в случае постоянной частоты плавучести (т.е. линейной стратификации) генерации внутренних волн не происходит из-за подавления развития вихревой неустойчивости в струе за счет стабилизирующего эффекта стратификации. Оказывается однако, что генерация внутренних волн возможна в случае специально подобранного распределения плотности (с профилем частоты плавучести в виде tanh2 у, где у - вертикальная координата). В этом случае развитие сдвиговой неустойчивости происходит в области |у| < 1, где эффекты стратификации малы, а внутренние волны возбуждаются вихрями по краям струи в области \у\ > 1.
Исследование струйных турбулентных течений стратифицированной жидкости также является важной задачей, встречающихся во многих приложениях геофизики и океано-• логии. Примером могут служить задачи, связанные с исследованием следа за аксиально симметричным телом (сферой или эллипсоидом), движущимся в стратифицированной жидкости при больших числах Рейнольдса и Фруда. В этом случае течение в следе за телом представляет собой цилиндрическую турбулентную струю, средняя горизонтальная скорость которой сонаправлена со скоростью тела [96] - [104],[12]. Экспериментальные исследования показывают, что поле обтекания вблизи сферы и внутренние волны, излучаемые сферой при больших числах Фруда, не оказывают влияния на дальний след [100, 12]. Известно также, что в области дальнего следа скорость жидкости значительно меньше (порядка нескольких процентов) скорости сферы, так что числа Рейнольдса и Фруда течения в дальнем следе значительно меньше чисел Рейнольдса и Фруда сферы, Ret = VDju и Frt = 2V/ND (где V и D - скорость и диаметр сферы, и 0 - кинематическая вязкость жидкости, N - характерное значение частоты плавучести).
Свойства течения в области дальнего следа довольно подробно исследовались в экспериментах [100]-[104]. Как правило, параметры эксперимента таковы, что изменение средней скорости вдоль горизонтальной оси течения в рассматриваемой области пренебрежимо мало, и течение можно рассматривать как х-периодическое. Основными измеряемыми характеристиками при этом являются зависимости от времени максимума средней скорости Um и поперечной и вертикальной ширины следа Ьу и Ьг. Результаты экспериментов [100]-[104] говорят о том, что при достаточно больших числах Рейнольдса и Фруда сферы Reb и Frb на достаточно больших временах зависимости ширины следа в поперечном направлении Ьу и максимума средней скорости Um от времени имеют степенной вид и зависят от чисел Reb и Frь. По данным работы [100], при Явь > 5 х 103 и числах Фруда Frb <10 ширина струи и скорость в дальнем следе изменяются согласно Ьу ~ tи Um ~ f~2/3 т.е. так же, как и в нестратифицированном следе. Результаты измерений [104] при числах Фруда и Рейнольдса (Fr;,, Reb) в диапазоне от (3,3400) до (10,11500) показывают, что Um ~ f-0-9. При этом авторы [104] отмечают, что разница в показателе для скорости Um по сравнению с результатом [100] может быть отнесена к погрешности измерений. Результаты работы [101], полученные для чисел (Frb, Reb) в диапазоне от (10,5 х 103) до (240,11.6 х 103), свидетельствуют о том, что на временах 10 < Nt < 100 скорость спадает со временем по степенному закону в виде Um ~ t~°-25, т.е. медленнее чем в нестратифицированной струе. С другой стороны, на временах Nt >100 скорость спадает по закону Um ~ f-0-76, т.е. быстрее, чем в нестратифицированном случае. Результаты исследований [100, 101, 104] показывают, что максимум скорости в стратифицированном следе может в несколько раз превосходить значение Um в нестратифицированном следе при тех же параметрах движения сферы. Установлено, что увеличение средней скорости в следе обратно пропорционально числу Фруда Fr^ Предполагается, что эффект увеличения скорости обусловлен коллапсом вертикальных турбулентных пульсаций скорости в следе [104].
В работе [105] с помощью численного моделирования исследовалась динамика турбулентной цилиндрической струи как в случае нестратифицированной жидкости, так и в случае жидкости с постоянной частотой плавучести. Параметры струи задавались такими, что соответствующие числа Рейнольдса и Фруда равнялись Re = 104 и Fr = 10. Размер области счета в горизонтальном (х) направлении задавался много больше интегрального масштаба турбулентности. Результаты [105] показывают, что как в нестратифицированном случае, так и в случае стратификации с постоянной частотой плавучести, зависимости максимума горизонтальной скорости Um и ширины струи Ly от времени хорошо согласуются с данными измерений [100, 101, 104] в рассматриваемом диапазоне параметров. Численные данные [105] свидетельствуют о том, что после начальной стадии коллапса течение в следе остается трехмерным вплоть до Nt ~ 100, что также согласуется с экспериментальными данными [103]. Исследования вертикальной структуры течения в дальнем следе за сферой при числах (Fr^, Яеь) в диапазоне (4,5 х 103) до (4,20 х 103) говорят о том, что вертикальная ширина следа Lz не возрастает и даже слегка уменьшается на временах Nt < 40, а затем растет по степенному закону Lz ~ tn с показателем 0.3 < п < 0.5 [103].
Характерной структурной особенностью течения в стратифицированном следе при Nt 1 является наличие крупномасштабных вихрей с вертикальной завихренностью, располагающихся в шахматном порядке в горизонтальной плоскости в окрестности оси следа [96]. В перечисленных выше исследованиях установлено, что формирование крупномасштабных вихревых структур происходит при 20 < Nt < 100, т.е. на стадии, когда течение в следе нельзя рассматривать как чисто двумерное.
Необходимо отметить, что в предыдущих исследованиях [100] - [104], [105] рассматривался случай линейной стратификации плотности жидкости. В этом случае излучение внутренних волн оказывает существенное воздействие на динамику турбулентности струи [105]. Стратификация плотности жидкости в виде пикноклина существенным образом отличается отлинейной стратификации, поскольку вне области пикноклина не происходит переноса энергии в вертикальном направлении за счет излучения внутренних волн.
Целью данной работы является исследование динамики вихревых потоков и волн в дисперсных и сертифицированных средах и решение следующих задач:
1) Исследование динамики частицы в неоднородных, стационарных потоках идеальной жидкости и в течениях вязкой жидкости, поиск аналитических решений для скорости частицы, анализ устойчивости этих решений, проведение численного моделирования динамики частицы для конкретных типов гидродинамических течений;
2) Исследование межфазного взаимодействия в вихревых потоках, несущих твердые частицы, поиск аналитических решений и проведение численного моделирования, описывающих кластеризацию частиц и их воздействие на несущее течение, исследование влияния гравитационного оседания частиц на межфазное взаимодействие, исследование влияния инерции частиц на межфазное взаимодействие в изотропной турбулентности;
3) Проведение прямого численного моделирования и исследование свойств пространственно - развивающегося пузырькового слоя смешения, однородной и изотропной турбулентности пузырьковой жидкости, и турбулентного пузырькового потока с постоянным сдвигом средней скорости, численное и аналитическое исследование резонансных свойств и процесса генерации волны разностной частоты в слое нерезонансных пузырьков;
4) Построение математической модели и численное моделирование процесса заглубления пикноклина под воздействием тубулентного сдвигового потока, построение аналитического решения для спектра внутренних волн в пикноклине при заданном спектре турбулентных пульсаций скорости, численное моделирование процесса генерации внутренних волн в пикноклине под действием сдвиговой неустойчивости, прямое численное моделирование динамики турбулентной струи в пикноклине, сравнение численных результатов с экспериментальными данными.
Диссертация состоит из введения, четырех глав, заключения и библиографии.
Похожие диссертационные работы по специальности «Механика жидкости, газа и плазмы», 01.02.05 шифр ВАК
Физическое моделирование взаимодействия нелинейных поверхностных волн с турбулентностью в пограничных слоях атмосферы и океана2010 год, кандидат физико-математических наук Ермакова, Ольга Станиславовна
Метод вихревых частиц и его приложение к задачам гидроаэродинамики корабля1998 год, доктор технических наук Корнев, Николай Владимирович
Численное моделирование динамики безымпульсного турбулентного следа в устойчиво стратифицированной среде2004 год, доктор физико-математических наук Воропаева, Ольга Фалалеевна
Экспериментальное исследование динамики локализованных областей турбулизованной жидкости и гравитационно-капиллярных волн в поле турбулентных течений2011 год, кандидат физико-математических наук Капустин, Иван Александрович
Численное моделирование динамики локального возмущения поля плотности в стратифицированной среде2001 год, кандидат физико-математических наук Зудин, Андрей Николаевич
Заключение диссертации по теме «Механика жидкости, газа и плазмы», Дружинин, Олег Александрович
ЗАКЛЮЧЕНИЕ
Итак, в данной диссертационой работе получены следующие результаты:
1. Исследована динамика одиночной частицы в течении идеальной жидкости. Найдено точное частное решение, согласно которому частица может двигаться как по течению (со скоростью, отличной от локальной скорости жидкости), так и против течения. Показано, что движение частицы в осесимметричном вихре является полностью интегрируемым, и что в этом случае эффект присоединенной массы обусловливает устойчивость траектории частицы. Показано также, что движение частицы в течении Грина-Тейлора (представляющем собой совокупность разнополярных вихрей, разделенных сепаратрисами) может быть неограниченным и хаотическим, и что движение частицы с плотностью, много большей, чем плотность жидкости (рр р/), является регулярным. Показано, что дисперсия (т.е. среднеквадратичное смещение) частицы имеет временную асимптотику D ~ f, где показатель 1 < 7 < 2. При этом нормальная дисперсия (с 7 ~ 1) наблюдается для легких частиц (рр р/), а баллистический режим (с 7 ~ 2) - для тяжелых частиц (рр р/).
2. Получено асимптотическое решение для скорости частицы с малой инерцией в сток-совом режиме. Решение показывает, что при движении частицы в осесимметричном вихре действие силы Бассе приводит к уменьшению скорости радиального смещения частицы относительно линий тока несущего течения. В то же время, сила Бассе приводит к уменьшению угловой скорости легкой частицы, и к увеличению этой скорости для тяжелой частицы. Решение показывает также, что при движении частицы в течении Грина-Тейлора действие силы Бассе качественно меняет характер движения тяжелой частицы и является определяющим при подходе частицы к седловой точке и пересечении сепаратрисы вихря. Таким образом установлено, что именно действие силы Бассе делает возможным пересечение сепаратрисы вихря частицей с малой инерцией и ее неограниченное движение в течении, соостоящем из множества вихрей.
3. Исследована устойчивость решения для скорости частицы в однородном, зависящем от времени течении несущей жидкости. Показано, что при соотношении плотности частицы к плотности жидкости рр/р/ < 7/4 решение для скорости частицы является неустойчивым. Установлено также, что если сила Бассе не учитывается, то решение для скорости частицы устойчиво.
4. Получено аналитическое решение, описывающее динамику поля концентрации частиц и их воздействие на несущее течение в осесимметричном вихре. Решение показывает, что с течением времени формируется волна концентрации, распространяющаяся от центра вихря к его периферии. Концентрация увеличивается со временем на гребне волны и экспоненциально уменьшается в области ядра вихря и после прохождения гребня волны. Решение показывает также, что воздействие частиц на несущее течение приводит к уменьшению завихренности в области ядра вихря и генерации локального пика завихренности в окрестности расположения гребня волны концентрации в данный момент времени. Проведено численное моделирование межфазного взаимодействия в осесмметричном вихре, результаты которого находятся в хорошем согласии с аналитическим решением.
5. Получено аналитическое решение для концентрации частиц и завихренности и тензора скорости деформации жидкости в окрестности центров вихрей и седловых точек в течении Стюарта. Решение показывает, что концентрация частиц уменьшается со временем в центрах вихрей и увеличивается в области седловых точек и на периферии вихрей. Решение показывает также, что под воздействием частиц на несущее течение завихренность уменьшается в окрестности центров вихрей, и происходит генерация пиков завихренности в области локальных максимумов концентрации частиц на периферии вихрей. В результате воздействия частиц на несущее течение происходит рост скорости деформации жидкости в окрестности седловых точек течения. Проведено численное моделирование межфазного взаимодействия в течении Стюарта, и получено хорошее согласие численных результатов с аналитическим решением.
6. Получены аналитическое и численное решения, описывающие процесс оседания частиц в течении Грина-Тейлора и воздействие частиц на несущее течение. Результаты показывают, что с течением времени происходит кластеризация оседающих частиц в окрестности выделенных траекторий. Воздействие частиц на несущее течение приводит к уменьшению завихренности жидкости в центрах вихрей и генерации завихренности в окрестности траекторий оседания частиц. Это обусловливает смещение ядер вихрей несущего течения по направлению к траекториям оседания частиц. Результаты численного моделирования показывают, что средняя скорость оседания частиц превышает скорость Стокса оседания частицы в покоящейся жидкости.
7. Получены аналитическое и численное решения, описывающие динамику волновых возмущений в разбавленной суспензии стационарно оседающих частиц в покоящейся жидкости. Результаты показывают, что в случае частиц с малой инерцией динамика волновых возмущений в суспензии с концентрацией частиц Со(у) (где у - вертикальная координата) аналогична динамике внутренних волн в стратифицированной жидкости с плотностью peff = pj( 1 -f- Co(y)S), где 5 = pp/pj - отношение плотностей частицы и жидкости. Аналитические и численные результаты показывают, что в случае устойчивой стратификации концентрации, а также в случае частиц с большой инерцией, возмущения затухают. Результаты показывают также, что в случае двухслойной суспензии с неустойчивой стратификацией концентрации происходит развитие неустойчивости, аналогичной неустойчивости Рэлея - Тейлора, которая приводит к образованию замкнутых областей ("пузырей") жидкости с малой концентрацией частиц.
8. В пределе малого времени релаксации частиц получено аналитическое решение, описывающее модификацию частицами спектра кинетической энергии жидкости в изотропной турбулентности. Проведено прямое численное моделирование межфазного взаимодействия в изотропной турбулентности. Аналитическое и численное решения показывают, что результат воздействия частиц на турбулентность качественным образом зависит от инерции частиц. Если время релаксации частиц тр много меньше колмо-горовского масштаба времени т^, то воздействие частиц на турбулентность приводит к увеличению кинетической энергии жидкости. С другой стороны, если тр ~ тъ, то воздействие частиц на турбулентность приводит к уменьшению кинетической энергии жидкости.
9. С помощью прямого численного моделирования исследованы свойства пузырькового пространственно - развивающегося слоя смешения. Для проведения рассчетов разработан метод лагранжево-эйлерова отображения, который позволяет удовлетворительно разрешать градиенты скорости и концентрации без развития численной неустойчивости. Рассмотрено два случая исходного распределения концентрации пузырьков -однородное распределение и ступенчатое распределение. Установлено, что в случае исходного однородного распределения концентрации пузырьков их воздействие на несущее течение приводит к уменьшению флуктуаций скорости жидкости в слое смешения. При этом ширина вихревого слоя уменьшается пузырьками в области до слияния вихрей, и увеличивается вниз по потоку в области слияния вихрей. Результаты, полученные в случае исходного ступенчатого распределения концентрации, показывают, что воздействие пузырьков на жидкость приводит к увеличению пульсаций скорости и ширины вихревого слоя в области течения до слияния вихрей, и к уменьшению пульсаций скорости в области слияния вихрей вниз по течению.
10. С помощью прямого численного моделирования исследованы свойства однородной изотропной турбулентности и турбулентного потока с однородным сдвигом скорости, несущих микропузырьки. Показано, что эффект воздействия пузырьков на жидкость аналогичен эффекту стратификации с плотностью жидкости (1 — С)р/, где С - концентрация пузырьков и pj - плотность чистой жидкости. Рассмотрено три случая распределения исходной концентрации пузырьков: однородное распределение концентрации (или нейтральная стратификация); концентрация, увеличивающаяся с высотой (устойчивая стратификация); и концентрация, уменьшающаяся с высотой (неустойчивая стратификация). Показано, что в случае устойчивой стратификации воздействие пузырьков на несущее течение приводит к уменьшению кинетической энергии жидкости и к ослаблению передачи кинетической энергии по спектру турбулентности. В случае неустойчивой стратификации концентрации пузырьки увеличивают кинетическую энергию жидкости и усиливают передачу энергии по спектру. В случае нейтральной стратификации воздействие пузырьков на жидкость не приводит к заметному изменению харатеристик однородной турбулентности.
11. Аналитически и численно исследованы свойства пузырькового слоя в случае, когда собственные волновые моды слоя находятся в резонансе с акустическими волнами накачки. Получены решения для поля давления в слое и для отраженной и прошедшей волн как в слабонелинейном режиме (при достаточно малой амплитуде волны накачки), так и в режиме сильной нелинейности. В последнем случае поле давления в слое имеет вид пилообразных волн, распространяющихся навстречу друг другу. Результаты показывают, что под действием двухчастотной накачки с частотами, близкими к частотам двух соседних собственных мод слоя, происходит генерация волны разностной частоты в слое, амплитуда которой усиливается благодаря эффекту резонанса с первой собственной модой слоя. Численные результаты показывают, что мощность прошедшего низкочастотного сигнала может быть значительной (порядка 10%) по отношению к мощности накачки даже при относительно небольшой (Ю-3) концентрации пузырьков в слое.
12. Построена математическая модель и проведено численное моделирование процесса заглубления пикноклина под действием турбулентного сдвигового потока. Результаты показывают, что на достаточно больших временах процесс заглубления становится квазистационарным. При этом в окрестности пикноклина локальное число Ричардсона оказывается близким к критическому, что обусловливает развитие локальной вихревой неустойчивости и генерацию внутренних волн. Получено аналитическое решение для спектра внутренних волн, генерируемых в пикноклине пульсациями скорости с заданным спектром. Получено хорошее согласие численного и аналитического решений с экспериментальными данными.
13. С помощью численного моделирования исследовано течение с конфигурацией "сдвиговый поток над пикноклином". При этом рассмотрены как периодическое, так и пространственно - развивающееся (вниз по потоку) течения. Показано, что под действием сдвиговой неустойчивости происходит рост вихрей в слое смешения, и их воздействие на пикноклин приводит к генерации внутренних волн. Установлено, что генерация внутренних волн наиболее эффективна в случае, когда точка перегиба профиля скорости смещена относительно пикноклина на расстояние порядка ширины слоя сдвига. При этом максимальная амплитуда внутренних волн обратно пропорциональна числу Ричардсона Ri0 = (gApo/po)(Lo/Ulq) (где (дАр0/р0) - скачок плавучести, L0 и Uo - характерные масштабы длины и скорости течения). Показано также, что в пространственно-развивающемся течении как с моногармоническим, так и с многочастотным возмущением на входе главная, наиболее неустойчивая мода становится преобладающей вниз по потоку. При этом спектры пульсаций скорости и плотности имеют хорошо выраженный пик на частоте главной моды. Получено хорошее согласие численных результатов с известными экспериментальными данными.
14. С помощью прямого численного моделирования исследована динамика турбулентной струи в пикноклине. Числа Рейнольдса и Фруда струи, задаваемые при численном моделировании, близки к типичным значениям этих параметров в дальнем следе в лабораторных экспериментах. Результаты показывают, что можно различать две стадии развития течения. На начальной стадии на временах Nt < 10 (где N - характерное значение частоты плавучести) происходит коллапс струи, приводящий к сжатию профиля течения и подавлению флуктуаций скорости в вертикальном направлении, и к генерации внутренних волн. При этом максимум средней скорости Um значительно превышает скорость в нестратифицированной струе в те же моменты времени. На последующей стадии при 10 < Nt < 100 течение в струе становится автомодельным. На этой стадии происходит формирование крупномасштабных вихрей с чередующимся знаком вертикальной компоненты завихренности, располагающихся в шахматном порядке вблизи продольной (х) оси течения. При достаточно больших Nt поле х-компоненты завихренности состоит из горизонтальных слоев разной полярности. Временные зависимости максимума средней скорости Um и попереченой и вертикальной ширины струи Ly и Lz описываются асимптотиками Um ~ t~0-6, Ly ~ t0A и Z/2 ~ t°-2, хорошо согласующимися с экспериментальными данными. Получена аналитическая оценка для масштабов скорости и ширины струи при больших Nt, которая находится в хорошем согласии с численными и экспериментальными данными.
Список литературы диссертационного исследования доктор физико-математических наук Дружинин, Олег Александрович, 2004 год
1. Нигматулин Р.И., Динамика многофазных сред г. 1,2 (Москва: Наука, 1987).
2. Шрайбер А.А., Гавин Л.Б., Наумов В.А., Яценко В.П. Турбулениные течения газовзвеси (Москва: Наука, 1987).
3. S.L. Soo Fluid dynamics of multiphase systems (Blaisdell, Waltham, MA 1967).
4. A.C. Монин, Яглом, Статистическая гидромеханика (Гидрометеоиздат, 1990).
5. Haines С.О., "Internal atmospheric gravity waves at ionospheric heights", Can. J. Phys. (1960), vol. 38, 1441.
6. Mastarantonio G., Einandi F., Fua D. and Lalas D.P., "Generation of gravity waves by jet streams in the atmosphere", J. Atmos. sci. (1976), vol. 33, 1730.
7. Fisher H., List J., Koh R., Imberger J. and Brooks N., "Mixing in Inland and Coastal Waters", Academic (1979).
8. Brost R.A., Wyngaard J.C. and Lenschow A.H., "Marine stratocumulus layers. Part II. Turbulence budgets", J. Atmos. Sci. (1982), vol. 39, 818.
9. Woods J., "Wave-induced shear instability in the summer thermocline", J. Fluid Mech. (1988), vol. 32, 791.
10. Farmer D.M., Apmil L., "The flow of Atlantic water through the Strait of Gibraltar", Progr. Oceanogr. (1988), vol. 21, 1-24.
11. Robey H.F., "The generation of internal waves by a towed sphere and its wake in a thermocline", Physics of Fluids (1997), vol. 9, 3353.
12. Lofquist K., "Flow and stress near an interface between stratified liquids", Phys. Fluids (I960), vol. 3, 158.
13. Kato H. and Phillips M., "On the penetration of a turbulent layer into stratified fluid", J. Fluid Mech., vol. 37 (1969), 643.
14. M.R. Maxey, "On the advection of spherical and non-spherical particles in a non-uniform flow," Phil. Trans. R. Soc. of London A333, no.1631, 289-307 (1990).
15. J.K. Eaton and J.R. Fessler, "Preferential concentration of particles by turbulence," Int. J. Muliphase Flow, vol. 20, 169 (1994).
16. H. Aref, "Chaotic advection of fluid particles", Phil. Trans. R. Soc. London A, vol. 333, 273-288 (1992).
17. A.M. Ganan-Calvo and J.C. Lasheras, "The dynamics and mixing of small spherical particles in a plane free shear layer," Phys. Fluids A3, 1207-1217 (1991).
18. A.Crisanti, M.Falcioni, A.Provenzale, and A.Vulpiani, "Passive advection of particles denser than the surrounding fluid", Phys. Lett. A, vol. 150, 79 (1990).
19. A.Crisanti, M.Falcioni, A.Provenzale, P.Tanga and A.Vulpiani, "Dynamics of passively advected impurities in simple two-dimensional flow models," Phys. Fluids A, vol. 4, 1805 (1992).
20. L.P.Wang, M.R.Maxey, T.D.Burton and D.E.Stock, "Chaotic dynamics of particles dispersion in fluids," Phys. Fluids A4, 1789 (1992).
21. G.I Taylor, "On the decay of vortices in a viscous fluid", Philos. Mag., vol. 46, 671 (1923).
22. J.T. Stuart, "On finite amplitude oscillations in laminar mixing layers", J. Fluid Mech., vol. 29, 417 (1967).
23. C.M. Tchen, "Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid", Ph. D. thesis (Delft University, 1947).
24. M.R. Maxey and J.J. Riley, "Equation of motion for small rigid sphere in a nonuniform flow," Phys. Fluids. 26, 883-889 (1983).
25. J.O. Hinze, Turbulence, 2nd ed., 464 (McGraw-Hill, New York, 1975).
26. A.T. Hjelmfelt and L.F. Mockros, "Motion of discrete particles in a turbulent fluid", Appl. Sci. Res., vol. 16, 149 (1966).
27. F.A. Morrison and M.B. Stuart, "Small bubble motion in an accelerating liquid", J. Appl. Mech., vol 98, 399 (1976).
28. K.D. Squires and J.K. Eaton, "Preferential concentration of particles by turbulence," Phys. Fluids A3, 1169-1178 (1991).
29. M.R. Maxey, "The motion of small spherical particles in a cellular flow field," Phys. Fluids A30, 1915-1929 (1987).
30. M.R. Maxey, "The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields," J.Fluid Mech. 174, 441 (1987).
31. L.-P. Wang and M.R. Maxey, "Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence," J. Fluid Mech. 256, 27-68 (1993).
32. Chung, J.N., Troutt, T.R. "Simulations of particle dispersion in an axisymmetric jet", J. Fluid Mech., vol. 186, 199-222 (1988).
33. C.T. Crowe, R. Gore and T.R. Troutt, "Particle dispersion by coherent structures in free shear flows," Particulate Sci. Tech. 3, 149-158 (1985).
34. L.Tang, E. Wen, T. Yang, C.T. Crowe, J.N. Chung and T.R. Troutt, "Self-Organizing particle dispersion mechanism in a plane wake," Phys. Fluids A4, 2244-2251 (1992).
35. K.-K. Tio, A. Linan, J.C. Lasheras, and A.M. Ganan-Calvo, "On the dynamics of buoyant and heavy particles in a periodic Stuart vortex flow," J. Fluid Mech. 254, 671699 (1993).
36. K.-K. Tio, A.M. Ganan-Calvo and J.C. Lasheras, "The dynamics of small heavy rigid spherical particles in a periodic Stuart vortex flow," Phys. Fluids A5, 1679-1693 (1993).
37. Lazaro, B.J., Lasheras, J.C., "Particle dispersion in the developing free shear layer. Part 1. Unforced flow", J. Fluid Mech., vol. 235, 143-178 (1992).
38. Lazaro, B.J., Lasheras, J.C., "Particle dispersion in the developing free shear layer. Part 1. Forced flow", J. Fluid Mech., vol. '235, 179-221 (1992).
39. J.E. Martin and E. Meiburg, "The accumulation and dispersion in forced two-dimensional mixing layers. I. The fundamental and subharmonic cases," Phys. Fluids 6, 1116-1132 (1994).
40. G. Hetsroni and M. Sokolov, "Distribution of mass, velocity and intensity of turbulence in a two-phase turbulent jet," J. Appl. Mech. (June), 315 (1970).
41. Y. Levy and F.C. Lockwood, "Velocity measurements in a particle-laden, turbulent free jet," Combust. Flame 40, 333 (1981).
42. J.S. Shuen, A.S.P. Solomon, Q.F. Zang and G.M. Faeng, "Structure of particle-laden jets: measurements and predictions," AIAA J. 23, 396 (1985).
43. T.G. Theofanous and J. Sullivan, "Turbulence in two-phase dispersed flow," J. Fluid Mech. 116, 343 (1982).
44. Y. Tsuji and Y. Morikawa, "LDV measurements of an air-solid two-phase flow in a horizontal pipe," J. Fluid Mech. 120, 385 (1982).
45. S.L. Lee and F. Durst, "On the motion of particles in turbulent duct flows," Int. J. Multiphase Flow 8, 125 (1982).
46. K. Hishida, A. Ando and M. Maeda, "Experiments on particle dispersion in a turbulent mixing layer," Int. J. Multiphase Flow 18, 181 (1992).
47. J.D. Kulic, J.R. Fessler and J.K. Eaton, "Particle response and turbulence modification in fully developed channel flow," J. Fluid Mech. 277, 109 (1994).
48. G. Hetsroni, "Particle-turbulence interaction," Int. J. Multiphase Flow, 15, 735 (1989).
49. R.A. Gore and C.T. Crowe, "Effect of particle size on modulating turbulent intensity," Int. J. Multiphase Flow bf 15, 279 (1989).
50. S.E. Elghobashi, "On predicting particle-laden turbulent flows," App. Sci. Res. 52, 309 (1994).
51. Z. Yuan and E.E. Michaelides, "Turbulence modulation in particulate flows a theoretical approach," Int. J. Multiphase Flow 18, 779 (1992).
52. L.P. Yarin and G. Hetsroni, "Turbulent intensity in dilute two-phase flows," Int. J. Multiphase Flow 20, 27 (1994).
53. S.E. Elghobashi and T.W. Abou-Arab, "A two-equation model for two-phase flows," Phys. Fluids 26, 931 (1983).
54. Г.И. Баренблатт Подобие, автомодельностпь, промежуточная асимптотика (Ленинград: Гидрометеоиздат 1982).
55. K.D. Squires and J.К. Eaton, "Particle response and turbulence modification in isotropic turbulence," Phys. Fluids A2, 1191 (1990).
56. S.E. Elghobashi and G.C. Truesdell, "On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification," Phys. Fluids A5, 1790 (1993).
57. P.K. Yeung and S.B. Pope, "An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence," J. Comput. Phys. 79, 373 (1989).
58. S. Balachandar and M. Maxey, "Methods for evaluating fluid velocities in spectral simulations of turbulence," J. Comput. Phys. 83, 96 (1989).
59. M. Boivin, O. Simonin and K.D. Squires Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235 (1998).
60. S. Sundaram and L. Collins, "A numerical study of the modulation of isotropic turbulence by suspended particles," J. Fluid Mech. 379, 105 (1999).
61. P.G. Saffman, "On the stability of laminar flow of a dusty gas," J. Fluid Mech. 13, 120 (1962).
62. F.E. Marble, "Dynamics of dusty gases", Ann. Rev. Fluid Mech., vol. 2, 397 (1970).
63. F. Wen and J. Evans, "Linear instability of a two-layer flow with differential particle loading", Phys. Fluids 6, 3893-3905 (1994).
64. J.F. Davidson and D. Harrison Fluidized particles (Cambridge University Press 1967).
65. А. А. Долинский, Г.К. Иваницкий Оптимизация процессов распылительной сушки (Киев: Наук, думка 1984).
66. G.K. Batchelor, "A new theory of the instability of a uniform fluidized bed", J. Fluid Mech. 193, 75-110 (1988).
67. D.L. Koch, "Kinetic theory for a monodisperse gas-solid suspension", Phys. Fluids A2 (10), 1711-1723 (1991).
68. G.K. Batchelor, "Secondary instability of a gas-fluidized bed", J. Fluid Mech. 257, 359 (1993).
69. G.K. Batchelor, J.M. Nitsche, "Instability of stationary unbounded stratified fluid", J. Fluid Mech., vol. 227, 357 (1991).
70. В.Г. Левин, Физико-химическая гидродинамика (M.: Физматгиз 1959).
71. Ландау Л.Д., Лившиц Е.М. Гидродинамика (Москва, Наука 1987).
72. P.M. Rightley and J.C. Lasheras, "Bubble dispersion and interphase coupling in a free shear flow", J. Fluid Mech., vol. 412, 21 (2000).
73. L.-P. Wang and M.R. Maxey, "The motion of microbubbles in a forced isotropic and homogeneous turbulence", Appl. Sci. Res., vol. 51, 291 (1993).
74. G.R. Ruetsch and E. Meiburg, "Two-way coupling in shear layers with dilute bubble concentrations", Phys. Fluids, vol. 6, 2656 (1994).
75. K.A. Наугольных, Л.А. Островский Нелинейные волновые процессы в акустике (М.: Наука, 1990).
76. Е.А. Заболотская, С.И. Солуян, "Излучение гармоник и комбинационных частот воздушными пузырьками", Акуст. журн, т. 18, 3, 472 (1972).
77. L.M. Kustov, V.E. Nazarov, L.A. Ostrovsky, A.M. Sutin, and S.V. Zamolin, "Parame-tyric acoustic radiation with a bubble layer", Acoust. Lett., vol. 6, 15 (1982).
78. JI.M. Кустов, B.E. Назаров, A.M. Сутин, "Обращение волнового фронта акустической волны в пузырьковом слое", Акуст. Журнал, т. 31, 4, 837 (1985).
79. Дж. Тернер Эффекты плавучести в жидкости (М.: Мир 1977).
80. О.М. Филлипс Динамика верхнего слоя океана (Ленинград: Гидрометеоиздат 1980).
81. В.Н. Степанов Мировой океан (М.: Знание 1974).
82. С.И. Воропаев, Б.Л. Гаврилин, А.Г. Зацепин, К.Н. Федоров, "Лабораторное исследование углубления перемешиваемого слоя в однородной жидкости", Изв. АН СССР Физика атм. и океана, т. 16 (2), 197 (1980).
83. Е. Xuequan and E.J. Hopfinger, "On mixing across an interface in a stably stratified fluid", J. Fluid Mech., vol.166, 227 (1986)
84. D.J. Carruthers and J.C.R. Hunt, "Velocity fluctuations near an interface between a turbulent region and a stably stratified layer", J. Fluid Mech., vol. 165, 475 (1986).
85. C.C. Зилитинкевич, К.Д. Крейман, А.И. Фельзенбаум, "Турбулентность и авто-модельность турбулентного профиля в термоклине", ДАН СССР, т. 300 (5), 1226 (1988).
86. Narimousa S., Long R.R. and Kitaigorodskii S.A., "Entrainement due to turbulent shear flow at the interface of a stably stratified fluid", Tellus (1986), vol. 38A, 76.
87. Druzhinin O.A., Kazakov V.I., Matusov P.A. and Ostrovsky L.A., "The evolution of a thermocline effected by a turbulent stream", Nonlinear processes in Geophysics (1995), vol. 2, 49.
88. Strang E.J. and Fernando H.J.S., "Entrainment and mixing in stratified shear flow", J. Fluid Mech. (2001), vol. 428, 349.
89. Michalke A., "On the instability of the hyperbolic-tangent velocity profile", J. Fluid Mech. (1964), vol. 19, 543.
90. Hazel P., "Numerical studies of the stability of inviscid stratified shear flows", J. Fluid Mech. (1972), vol. 51, 39.
91. Sutherland B.R. and Peltier W.R., "Turbulence transition and internal wave generation in density stratified jets", Phys. Fluids (1994), vol. 6, 1267.
92. J.T. Lin and Y.H. Pao, "Wakes in stratified fluid", Annu. Rev. Fluid Mech., vol. 11, P. 317 (1979).
93. Q. Lin, D.L. Boyer and H.J.S. Fernando, "Turbulent wakes of linearly stratified flow past a sphere", Phys. Fluids A, vol. 4, P. 1687 (1992).
94. Q. Lin, W.R. Lindberg, D.L. Boyer and H.J.S. Fernando, "Stratified flow past a sphere", J. Fluid Mech., vol. 240, P. 315 (1992).
95. J.M. Chomaz, P. Bonneton, A. Butet and E.J. Hopfinger, "Vertical diffusion of the far-wake of a sphere moving in a stratified fluid", Phys. Fluids A, vol. 5, P. 2799 (1993).
96. G'.R. Spedding, F.K. Browand and A.M. Fincham, "Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid", J. Fluid Mech., vol. 314, P. 53 (1996).
97. G.R. Spedding,. J.Fluid Mech., "The evolution of initially turbulent bluff-body wakes at high internal Froude number", vol. 337, P. 283 (1997).
98. G.R. Spedding, Phys. Fluids, "Anisotropy in turbulence profiles of stratified wakes", vol. 13, P. 2361 (2001).
99. G.R. Spedding, J. Fluid Mech., "Vertical structure in stratified wakes with high initial Froude number", vol. 454, P. 71 (2002).
100. M. Bonnier and 0. Eiff, "Experimental investigation of the collapse of a turbulent wake in a stably stratified fluid", Phys. Fluids, vol.14, P. 791 (2002).
101. Gourlay M.J., Arendt S.C., Fritts D.C. and Werne J., "Numerical modeling of initially turbulent wakes with net momentum", Phys. Fluids (2001), vol. 13, 3783.
102. C. Pozrikidis, Introduction to theoretical and computational fluid dynamics, pp. 265, 303 (Oxford Univ. Press, 1997).
103. F.G. Moraga, A.E. Larreteguy, D.A. Drew, R.T. Lahey, "Assessment of turbulent dispesrion models of bubbly flows", Int. J. Multiphase Flow, to appear (2004).
104. L.A. Ostrovsky, A.M. Sutin, I.A. Soustova, A.I. Matveev, A.I. Potapov, "Nonlinear, low frequency sound generation in a bubble layer: theory and laboratory experiment", J. Acoust. Soc. Am., vol. 104 (2), Pt. 1 (1998).
105. W. Rodi, "Examples of calculation methods for flow and mixing in stratified fluids", J. Geophys. Res., vol.92(C5), 5305 (1987).
106. JI.A. Островский, Ю.И. Троицкая, "Модель турбулентного переноса и динамики турбулентности в стратифицированном сдвиговом течении", Известия РАН "Физика атмосферы и океана", т.23, 10, 567 (1987).
107. Л.А. Островский, "Об ударных волнах в акустических резонаторах", Акуст. журн., т.20, 1,140 (1974).
108. В.В. Канер, О.В. Руденко, Р.В. Хохлов, "К теории нелинейных колебаний в акустических резонаторах", Акуст. журн., т. 23, 5, 756 (1977).
109. A.J. Lichteberg and М.А. Lieberman Regular and stochastic motion (Springer-Verlag, Berlin, 1983).
110. H. Lamb Hydrodrjnamics, 7th ed. (Cambridge Univ. Press, Cambridge, 1975).
111. C.A.J. Fletcher Computational techniques for fluid dynamics Vol. 1,2 (Springer 1990).
112. A.A. Chernikov, A.I. Neishtadt, A.V. Rogalsky, and V.Z. Yakhnin, Chaos, vol. 1, 206 (1991).
113. E.E. Michaelides, "A novel way of computing the Basset term in unsteady multiphase flow computations", Phys. Fluids, vol. 4, 1579 (1992).
114. M.R. Maxey, "The equation of motion of a small rigid sphere in a nonuniform or unsteady flow", Gas-Solid Flows, ASME-FED, vol. 166, 57 (1993).
115. C.F.M. Coimbra and R.H. Rangel, "General solution of the particle momentum equation in unsteady Stokes flows", J. Fluid Mech., vol. 370, 53 (1998).
116. N. Konopliv, "Gravitationally induced acceleration of spheres in creeping flow a heat transfer analogy", AIChE J., vol. 17, 1502 (1971).
117. Л.А. Островский, "Динамика концентрации легких и тяжелых частиц в течениях жидкости", Изв. РАН "Физика атмосферы и океана", т.26, 1307 (1992).
118. C.-S. Yih, "Wavy motions in stratified fluids" in Nonlinear waves, ed. by S. Leibovich and A.R. Seebass (Cornell University Press, 1974).
119. G.K. Batchelor, The theory of homogeneous turbulence. 4th ed., 49,119 (Cambridge, I960).
120. M. Lesieur, Turbulence in fluids. 2nd ed., 161 (Kluwer, 1990) .
121. O.M. Белоцерковский, "Численные методы в механике сплошных сред", с. 135. М.: Наука 1984.
122. R. Mei, C.J. Lawrence, and R.J. Adrian, "Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity", J. Fluid Mech, vol. 233, 613 (1991).
123. Clift, H., Grace, J.R. and Weber, M.E. Bubbles, Drops and Particles (Academic, New York 1978).
124. C.J. Lawrence and R. Mei, "Long-time behavior of the grag on a body in impulsive motion', J. Fluid Mech., vol. 283, 307 (1995).
125. G. Sridar and J. Katz, "Drag and lift forces on microscopic bubbles entrained by a vortex", Phys. Fluids, vol. 7, 389 (1995).
126. J.J.M. Magnaudet, "The forces acting on bubbles and rigid particles", in Proc. ASME Fluid Engn. Div. Summer Meeting, June, 9 (1997).
127. C.-M. Ho and P. Huerre, "Perturbed free shear layers", Ann. Rev. Fluid Mech., vol. 16, 365 (1984).
128. R. Breidental, "Structure in turbulent mixing layers and wakes using a chemical reaction", J. Fluid Mech., vol. 170, 499 (1986).
129. C.T. Crowe, T.R. Troutt and J.N. Chung, "Numerical models for two-phase turbulent flows," Ann. Rev. Fluid Mech. 28, 11 (1996).
130. Y. Yang, J.N. Trout and C.T. Crow, "The influence of particles on the spatial stability of two-phase mixing layers", Phys. Fluids A2, 1839 (1990).
131. G.L. Brown and A. Roshko, "On density effects and large structure in turbulent mixing layers", J. Fluid Mech., vol. 64, 775 (1974).
132. C.D. Winant and F.K. Browand, "Vortex pairing: the mechanism of turbulent mixing layer growth at moderate Reynolds number", J. Fluid Mech., vol. 63, 237 (1974).
133. L.P. Bernal and A. Roshko, "Streamwise vortex structure in plane mixing layers", J. Fluid Mech., vol. 170, 499 (1986).
134. J.C. Lasheras, J.S. Cho, and T. Maxworthy, "On the origin and evolution of streamwise vortical structuresin a plane, free shear layer", J. Fluid Mech., vol. 172, 231 (1986).
135. J.C. Lasheras and H. Choi, "Three-dimensional instability of a plane, free shear layer: an experimental study of the formation and evolution of streamwise vortices", j. Fluid Mech., vol. 189, 53 (1988).
136. P.S. Lowery and W.C. Reynolds, "Numerical simulation of a spatially developing, forced, plane mixing layer", Report No. TF-26, Mech. Eng. Dept., Stanford Univ. (CA, 1986).
137. J.C. Buell and N.N. Mansour, "Asymmetric effects in three-dimensional spatially-developing mixing layers", 7-th Symp. Turb. Shear Flows, 9.2.1 (Stanford Univ., August 1989).
138. M.M. Rogers and R.D. Moser, "The three-dimensional evolution of a plane mixing layer: the Kelvin Helmholtz rollup", J. Fluid Mech., vol. 243, 183 (1992).
139. R.D. Moser and M.M. Rogers, "The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence", J. Fluid Mech., vol. 247, 275 (1993).
140. F. Wen, N. Kamalu, J.N. Chung, C.T. Crowe, and T.R. Troutt, "Particle dispersion by vortex structure in plane mixing layers", Trans. ASME: J. Fluids Engng., vol. 114, 657 (1992).
141. A.B. Cortesi, G. Yadigaroglu, and S. Banerjee, "Numerical investigation of the three -dimensional structures in stably stratified mixing layers" Phys. Fluids 10, 1449 (1993).
142. R.S. Miller and J. Bellan, "Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon droplet laden stream", J. Fluid Mech., vol. 384, 293 (1999).
143. E. Meiburg, E. Wallner, A. Pagela, A. Riaz, C. Hartel, and F. Necker, "Vorticity dynamics of dilute two-way-coupled particle-laden mixing layers," J. Fluid Mech. 421, 185 (2000).
144. N.D. Sandham and W.C. Reynolds, "Some inlet plane effects on the numerically simulated spatially developing two dimensional mixing layer", Turbulet Shear Flows, vol. 6, 441 (Springer, New York 1989).
145. R.T. Pierrhumbert and S.E. Widnall, "The two-and three-dimensional instabilities of a spatielly periodic shear layer", J. Fluid Mech., vol. 114, 59 (1982).
146. G.M. Corcos and S.J. Lin, "The mixing layer: deterministic model for a turbulent flow. Part 2. The origin of three-dimensional motion", J. Fluid Mech., vol.139, 67 (1984).
147. S.J. Lin and G.M. Corcos, "The mixing layer: deterministic model for a turbulent flow. Part 3. The effect of plain strain on the dynamics of sreamwise vortices", J. Fluid Mech., vol. 141, 139 (1984).
148. A.K.M.F. Hussain, "Coherent structures and incoherent turbulence", in Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), 453 (North Holland, 1983).
149. G.M. Corcos and F.S. Sherman, "The mixing layer: deterministic models for a turbulent flow. Part 1. Introduction and the two dimensional flow", J. Fluid Mech., vol. 139, 29 (1984)
150. P.E. Dimotakis, "Two-dimensional shear-layer entrainment", AIAA J., vol. 24, 1791 (1986).
151. M.M. Koochesfahani and P.E. Dimotakis, "Mixing and chemical reaction in a turbulent liquid mixing layer", J. Fluid Mech., vol. 170, 83 (1986).
152. R. Wilhelmson and J. Ericksen, "Direct solution for Poisson's equation in three dimensions", J. Comput. Phys., vol. 25, 319 (1977).
153. T. Gerz, U. Shumann, and S. Elghobashi, "Direct simulation of stably stratified homogeneous turbulent shear flows", J. Fluid Mech., vol. 200, 563 (1989).
154. U. Shumann, "Realizability of Reynolds stress turbulence models", Phys. Fluids, vol. 20, 721 (1977).
155. S. Kida and M. Tanaka, "Reynolds stress and vortical structure in a uniformly sheared turbulence", J. Phys. Soc. Jpn., vol. 61, 4400 (1992).
156. S. Kida and M. Tanaka, "Dynamics of vortical structures in a homogeneous shear flow", J. Fluid Mech., vol. 274, 43 (1994).
157. S. Tavularis and U. Karnik, "Further experiments on the evolution of turbulent stresses in uniformly sheared turbulence", J. Fluid Mech., vol. 204, 457 (1989).
158. O.A. Druzhinin, L.A. Ostrovsky, and Yu.A. Stepanyants, "Dynamics of particles in the steady flows of an inviscid fluid", CHAOS, Vol. 3, 359-367 (1993).
159. O.A. Druzhinin and L.A. Ostrovsky, "The influence of Basset force on particle dynamics in two-dimensional flows," Physica D76 , no.1-3, 34-43 (1994).
160. O.A. Druzhinin, L.A. Ostrovsky, and A. Prosperetti, "Low-frequency acoustic wave generation in a resonant bubble layer", Proc. 127th Meeting ASA, J. Acoust. Soc. Am., Vol. 95, No. 5, 3019 (1994).
161. O.A. Druzhinin, "Concentration waves and flow modification in a particle-laden circular vortex," Phys. Fluids 6, 3276-3284 (1994).
162. O.A. Druzhinin, "On the two-way interaction in two-dimensional particle-laden flows: the accumulation of particles and flow modification", J. Fluid Mech., Vol. 297, 49-76 (1995).
163. O.A. Druzhinin, "Dynamics of concentration and vorticity modification in a cellular flow laden with heavy particles", Phys. Fluids, Vol. 7, 2132-2142 (1995).
164. O.A. Druzhinin, "The dynamics of a concentration interface in a dilute suspension of solid heavy particles", Phys. Fluids, Vol. 9, 315-324 (1997).
165. S.E. Elghobashi and O.A. Druzhinin, "DNS of bubble-laden turbulent flows using the two fluid formulation", Bulletin of the APS, vol. 42(11), 2217 (1997).
166. Богатырев С.Д., Дружинин О.А., Заборских Д.В., Казаков В.И., Короткое Д.П., Резник С.Н., Серин Б.В., Таланов В.И., Троицкая Ю.И., "Генерация волновых возмущений в турбулентном стратифицированном сдвиговом потоке", препринт ИПФ РАН 474 (1998).
167. О.A. Druzhinin and S.E. Elghobashi, "Direct numerical simulation of bubble-laden turbulent flows using the two-fluid formulation", Proc. Illrd Int. Conf. Multiphase Flow (Lyon,June 1998).
168. O.A. Druzhinin and S.E. Elghobashi, "A Lagrangian Eulerian mapping solver for DNS of bubble-laden homogeneous turbulent shear flow using the two - fluid formulation", Bulletin of the APS, vol. 43(9), 1984 (1998).
169. O.A. Druzhinin and S.E. Elghobashi, "Direct numerical simulation of bubble-laden turbulent flows using the two-fluid formulation", Physics of Fluids , Vol. 10, pp. 685-697 (1998).
170. О.A. Druzhinin and S.E. Elghobashi, "On the decay rate of isotropic turbulence laden with micropartides", Phys. of Fluids, Vol. 11, pp. 602-610 (1999).
171. O.A. Druzhinin and S.E. Elghobashi, "On the point-force approximation in DNS of particle- laden flows with two-way coupling", Bulletin of the APS, vol. 44(8), 118 (1999).
172. О.A. Druzhinin and S.E. Elghobashi, "A Lagrangian-Eulerian mapping solver for direct numerical simulation of a bubble-laden homogeneous turbulent shear flow using the two-fluid formulation", J. Сотр. Physics, Vol. 154, pp. 174-196 (1999).
173. O.A. Druzhinin, "On the stability of a stationary solution of the Tchen's equation", Phys. Fluids, Vol. 12, 1878-1880 (2000)
174. O.A. Druzhinin and S.E. Elghobashi, "The properties of a spatially developing bubble - laden mixing layer with two-way coupling" Bulletin of the APS, vol. 45(9), 74 (2000).
175. A. O.A. Druzhinin and S.E. Elghobashi, "Direct numerical simulation of a three-dimensional spatially developing bubble-laden mixing layer with two-way coupling", J. Fluid Mech., Vol. 429, 23-61 (2001).
176. A O.A. Druzhinin and S.E. Elghobashi, "Direct numerical simulation of a three-dimensional spatially developing bubble-laden mixing layer with two-way coupling", Proc. IVth Int. Conf. Multiphase Flows (New Orleans, June 2001).
177. O.A. Дружинин, "Генерация внутренних волн в пикноклине под действием сдвиговой неустойчивости", препринт ИПФ РАН 574 (Нижний Новгород, 2001).
178. О. A. Druzhinin, "The influence of particle inertia on the two-way coupling and modification of isotropic turbulence by microparticles", Phys. Fluids, Vol. 13, 3738-3755 (2001).
179. O.A. Дружинин, "Коллапс и автомодельность турбулентной струи в пикноклине", препринт ИПФ РАН 613 (Нижний Новгород, 2002).
180. О.А. Дружинин, "Генерация внутренних волн в пикноклине под действием сдвиговой неустойчивости", Изв. РАН Физика атмосферы и океана, т. 37, 1, 121-131 (2003).
181. О.А. Дружинин, "Коллапс и автомодельность турбулентной струи в пикноклине", Изв. РАН Физика атмосферы и океана, т. 37, 5, 697-711 (2003).
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.