Интегрируемые иерархии нелинейных дифференциальных уравнений и многочастичные системы тема диссертации и автореферата по ВАК РФ 01.01.03, кандидат наук Прокофьев Вадим Вячеславович

  • Прокофьев Вадим Вячеславович
  • кандидат науккандидат наук
  • 2022, ФГАОУ ВО «Национальный исследовательский университет «Высшая школа экономики»
  • Специальность ВАК РФ01.01.03
  • Количество страниц 148
Прокофьев Вадим Вячеславович. Интегрируемые иерархии нелинейных дифференциальных уравнений и многочастичные системы: дис. кандидат наук: 01.01.03 - Математическая физика. ФГАОУ ВО «Национальный исследовательский университет «Высшая школа экономики». 2022. 148 с.

Оглавление диссертации кандидат наук Прокофьев Вадим Вячеславович

Contents

Introduction

1 Historical remarks

1.1 Nonlinear differential hierarchies

1.2 Many body systems

2 Tau function and bilinear equation

2.1 Baker-Akhiezer function

2.2 Tau function

3 Further Generalizations

3.1 Modified KP

3.2 0Î((œ)) algebra and 2d Toda hierarchy

3.3 Multi-component KP hierarchy

4 Main Results

4.1 KP hierarchy

4.2 2d Toda hierarchy

4.3 Matrix KP

Bibliography

Appendix A. Paper 1. Toda lattice hierarchy and trigonometric

Ruijsenaars—Schneider hierarchy

Appendix B. Paper 2. Matrix Kadomtsev-Petviashvili Hierarchy and Spin Generalization of Trigonometric Calogero Moser Hierarchy

Appendix C. Paper 3. Elliptic solutions to the KP hierarchy and

elliptic Calogero—Moser model

Appendix D. Paper 4. Elliptic solutions to Toda lattice hierarchy

and elliptic Ruijsenaars-Schneider model

Appendix E. Paper 5. Elliptic solutions to matrix KP hierarchy and

spin generalization of elliptic Calogero-Moser model

Рекомендованный список диссертаций по специальности «Математическая физика», 01.01.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Интегрируемые иерархии нелинейных дифференциальных уравнений и многочастичные системы»

Introduction

One of the most astonishing quality characterising integrable systems is their nontrivial interconnections with each other. In particular, there is a connection between integrable spin chains, integrable hierarchies of nonlinear partial equations and classical many-bodies models.

In this thesis we study poles dynamics of singular solutions of integrable hierarchies of KP type and show that it is isomorphic to dynamics of particles in many-body integrable systems on the level of hierarchies. Such connection between two different types of integrable systems has been a long known conjecture. The connection between nonlinear integrable equations and many-body systems was first study in seminal paper (Airault et al. [1977]). After that in the works such as (Krichever [1978],Krichever [1980], Krichever and Zabrodin [1995]) it was established that for the first nontrivial times dynamics of poles correspond to the motion of particles in systems of Calogero-Moser type with standard Hamiltonians. After that in papers (Shiota [1994], Haine [2007], Zabrodin [2020]) such connection was extended to the level of whole hierarchies, however it was done only for rational or trigonometric solutions which are just a limits of the most general elliptic solutions.

In a series of the articles presented in this thesis authors extend a connection between integrable hierarchies and many-body systems of Calogero type for three different hierarchies such as KP, 2D Toda lattice and matrix KP up to the most general elliptic solutions. The main results of these paper is that authors establish a connection between spectral curves of elliptic many-body systems and Hamiltonians responsible for dynamics of poles in higher times of corresponding hierarchy. Besides that methods developed in these articles could be used to discover poles dynamics for singular solutions of other hierarchies.

My thesis presents the results of five articles in which I am one of co-authors. In these articles a connection between integrable hierarchies of nonlinear differential equations and integrable many-body systems was studied. These works contain most general results for KP 2d-Toda and matrix KP hierarchies.

Похожие диссертационные работы по специальности «Математическая физика», 01.01.03 шифр ВАК

Список литературы диссертационного исследования кандидат наук Прокофьев Вадим Вячеславович, 2022 год

REFERENCES

1H. Airault, H. P. McKean, and J. Moser, "Rational and elliptic solutions of the Korteweg-De Vries equation and a related many-body problem," Commun. Pure Appl. Math. 30,95-148 (1977).

2I. M. Krichever, "Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of N particles on a line," ;unct. Anal. Appl. 12(1), 59-61 (1978). 3I. M. Krichever, "Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles," Funk. Anal. Ego Priloz 14(4), 45-54 (1980) (in Russian) [English translation: Funct. Anal. Appl. 14(4), 282-290 (1980)].

4D. V. Chudnovsky and G. V. Chudnovsky, "Pole expansions of non-linear partial differential equations," Nuovo Cimento I 40, 339-350 (1977).

5F. Calogero, "Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials," Math. Phys. 12, 419-436 (1971).

6F. Calogero, "Exactly solvable one-dimensional many-body systems," Lett. Nuovo Ciment 13, 411-415 (1975).

7J. Moser, "Three integrable Hamiltonian systems connected with isospectral deformations," Adv. Math 16, 197-220 (1975).

8M. A. Olshanetsky and A. M. Perelomov, "Classical integrable finite-dimensional systems related to Lie algebras," hys. Rej 71, 313-400 (1981).

9T. Shiota, "Calogero-Moser hierarchy and KP hierarchy," . Math. Phys 35, 5844-5849 (1994).

10L. Haine, "KP trigonometric solitons and an adelic flag manifold," IGMa 3, 015 (2007).

11 A. Zabrodin, "KP hierarchy and trigonometric Calogero-Moser hierarchy," J. Math. Phy 61, 043502 (2020); arXiv:1906.09846.

12V. Prokofev and A. Zabrodin, "Elliptic solutions to the KP hierarchy and elliptic Calogero-Moser model," arXiv:2102.03784.

13E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, "Transformation groups for soliton equations III," J. Phys. Soc. Jpi 50, 3806-3812 (1981).

14V. Kac and J. van de Leur, "The n-component KP hierarchy and representation theory," in Important Developments in Soliton Theory, edited by A. S. Fokas and V. E. Zakharov (Springer-Verlag, Berlin, Heidelberg, 1993).

15K. Takasaki and T. Takebe, "Integrable hierarchies and dispersionless limit," Physica D 235, 109-125 (2007).

16L. P. Teo, "The multicomponent KP hierarchy: Differential fay identities and Lax equations," Phys. A: Math. Theor. 44, 225201 (2011).

171. Krichever, O. Babelon, E. Billey, and M. Talon, "Spin generalization of the Calogero-Moser system and the matrix KP equation," im. Math. Soc. Trans. Ser. 2(170), 83-119 (1995).

18 J. Gibbons and T. Hermsen, "A generalization of the Calogero-Moser system," Physica D 11, 337-348 (1984).

19V. Pashkov and A. Zabrodin, "Spin generalization of the Calogero-Moser hierarchy and the matrix KP hierarchy," J. Phys. A: Math. Theoi 51, 215201 (2018).

20V. Prokofev and A. Zabrodin, "Matrix KP hierarchy and spin generalization of trigonometric Calogero-Moser hierarchy," Trudy MIAN 309, 241-256 (2020) [English

translation: Proc. Steklov Inst. Math. 309, 225-239 (2020)]; arXiv:1910.00434.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.