Идентификация новых генов дрожжей S. pombe и их роль в рекомбинационной репарации ДНК тема диссертации и автореферата по ВАК РФ 03.01.07, доктор биологических наук Хасанов, Фуат Каримович

  • Хасанов, Фуат Каримович
  • доктор биологических наукдоктор биологических наук
  • 2011, Москва
  • Специальность ВАК РФ03.01.07
  • Количество страниц 263
Хасанов, Фуат Каримович. Идентификация новых генов дрожжей S. pombe и их роль в рекомбинационной репарации ДНК: дис. доктор биологических наук: 03.01.07 - Молекулярная генетика. Москва. 2011. 263 с.

Оглавление диссертации доктор биологических наук Хасанов, Фуат Каримович

СПИСОК СОКРАЩЕНИЙ.

ГЛАВА 1. ВВЕДЕНИЕ.

ГЛАВА 2.0Б30Р ЛИТЕРАТУРЫ.

2.1. Рекомбинационная репарация в б1. ротЬе: роль в поддержании целостности генома.

2.2. Преимущества делящихся дрожжей для изучения репарации двухцепочечных разрывов ДНК.

2.3. Гены рекомбинационной репарации & ротЬе.

2.3.1. Белки 51. ротЬе, ответственные за образование 3'- выступающих однонитевых участков в сайтах повреждений ДНК.

2.3.2. Белки, ответственные за образование 11ас151-нуклеопротеинового филамента.

2.4. Механизм рекомбинационной репарации в эукариотах.

2.5. 8Ш и толерантность к УФ - повреждениям ДНК.

2.6. Связь механизмов контроля клеточного цикла и репарации повреждений

ГЛАВА 3. МАТЕРИАЛЫ И МЕТОДЫ.

3.1. Штаммы, среды и ростовые условия.

3.2. Использованные библиотеки ДНК и плазмиды.

3.3. Конструирование делеции гена & pom.be гкр55+.

3.4. Конструирование делеционного штамма Б.ротЪе Нр1.

3.5. Обнаружение и клонирование & ротЬе

3.6. Конструирование делеционного мутанта & ротЬе з/г!А::а^З+.

3.7. Эксперимент с повышенной экспрессией белка БМ.

3.8. Выделение белка БАГ из клеток ротЬе.

3.9. Манипуляции с ДНК.

3.10. Тесты на клеточный ответ на генотоксический стресс.

3.11. Мейотический тайм-курс и Нозерн анализ.

3.12. Определение уровня образования двуцепочечных разрывов ДНК в локусе S. ротЪе matl.

3.13. Тесты на белок - белковые взаимодействия.

3.14. Конструирование слитого белка His6-Rhp55.

3.15. Конструирование аллелей rhp55K57A и -K57R, а также rhp57K106A и K106R в хромосоме S. ротЪе.

3.16. Конструирование аллелей sfrl-K108E и sfrl-K164E, а также sfrl-F107E и sfrl-F163E в хромосоме S. pombe.

3.17. Рекомбинационный эксперимент на митотических клетках.

3.18. Эффективность споруляции и жизнеспособность спор.

3.19. Тесты на определение уровней мейотической рекомбинации.

3.20. Цитология и проточная цитометрия.

3.21. Приготовление хроматиновых спредов.

3.22. Иммунофлуоресцентная микроскопия.

3.23. Тест на образование ДНК - белковых комплексов в агарозном геле.

ГЛАВА 4. РЕЗУЛЬТАТЫ ИСЛЕДОВАНИЯ.

4.1. rhp55 + кодирует новый белок S. pombe с гомологией к RecA.

4.2. rhp55+ транскрибируется в вегетативно растущих клетках и индуцируется в мейозе.

4.3. rhp55 + является геном репарации повреждений ДНК.

4.4. кДНК rhp55+ комплементирует дефект в репарации повреждений ДНК, вызванный мутацией rhp55A.

4.5. S. pombe Rhp55 функционирует в одном пути с белками Rad и Rhp54.

4.6. Клетки rhp55A содержат аберантные нуклеусы и показывают повышенное содержание ДНК.

4.7. Делеция гена S. pombe rhp55 приводит к нарушениям мейоза и вызывает небольшое снижение мейотической рекомбинации.

4.8. Rhp55 и Rhp57 взаимодействуют in vivo.

4.9. Мутации в Walker мотиве «А» белков Rhp55 и Rhp57 приводят к ослабленной репарации ДНК.

4.10. Эффект мутаций в доменах связывания/гидролиза АТФ на функцию комплекса Rhp55-Rhp57 в клеточной пролиферации.

4.11. Белки репарации двуцепочечных разрывов ДНК S. pombe вовлечены во взаимные взаимодействия.

4.12. Взаимодействия, включающие белки S. pombe Rad22, Rtil и Rpal.l

4.13. Штаммы h90 с делециями генов rhp51+ и rhp55+ показывают «крапчатый» фенотип и образуют гетероталличные сегреганты.

4.14. Дефект клеток мутанта с делецией гена rhp55+ в переключении типа спаривания возрастает при понижении температуры.

4.15. Анализ организации геномной области, ответственной за переключение типа спаривания в клетках сегрегантов.

4.16. Секвенирование области smt у сегрегантов h90 с делецией гена rhp55+ показывает присутствие перестроек ДНК.

4.17. Замещение последовательности ТТТССА на GTTTGTG в области SAS2 не коррелирует с низким уровнем образования разрывов ДНК в matl:l.

4.18. rlpl+ кодирует новый RecA-подобный белок S. pombe с высокой гомологией к белку человека XRCC2.

4.19. rlpl + является геном репарации повреждений ДНК, действующим в одном пути с rhp51+, rhp54+ и rhp55+

4.20. Rlpl не имеет роли в репарации УФ-повреждений и в ответе на репликационный стресс.

4.21. Спонтанная митотическая внутрихромосомная рекомбинация в мутанте rlpl.

4.22. Мейоз и переключение типа спаривания в мутанте rlpl.

4.23. Дрожжевой двугибридный анализ взаимодействий Rlpl с другими белками рекомбинационной репарации.

4.24. Дрожжевой двугибридный анализ взаимодействия Rlpl с мейотическим гомологом S.pombe.

4.25. Доминантно-негативный эффект повышенной экспрессии Rhp51 на чувствительность мутанта rlpl к метил метансульфонату.

4.26. Sfrl - высококопийный супрессор нарушения репарации клеток, лишенных S. ротЪе Rad51 паралогов, Rhp55 (Rad55Sp) и Rhp57 (Rad57Sp).

4.27. Sfrl является членом пути рекомбинационной репарации ДНК, который действует в новом Rad51-зависимом пути, параллельно Rad51 паралогам Rhp55-Rhp57 и Rlpl.

4.28. Sfrl не играет существенной роли в возобновлении остановленной репликации и в переключении типа спаривания.

4.29. Белок S. pombe Sfrl взаимодействует с рекомбиназой Rhp51.

4.30. Образование фокусов Rhp51, индуцированных ионизирующей радиацией, уменьшено в мутанте sfrl Л.

4.31. Синергичное взаимодействие sfrl с мутантами г ad50 и exol с нарушениями в процессинге двуцепочечных разрывов ДНК.

4.32. Эпистатический анализ sfrl с мутантами по ДНК-геликазам rqhl и srs2.

4.33. Взаимодействие Sfrl с белками S. pombe Radi 8 и Rad60.

4.34. Sfrl участвует в Cdsl-независимом пути толерантности к УФ повреждениям ДНК.

4.35. Sfrl не вовлечена в поддержание целостности хромосом и митотическую рекомбинацию.

4.36. Мейотическая рекомбинация уменьшена в мутанте sfrl А.

4.37. Sfrl является ядерным белком.

4.38. Белок S. pombe Sfrl взаимодействует с Rad51Sp^n,HHK филаментом in vitro.

4.39. Идентификация нового мотива в белке Sfrl и его анализ.

4.40. Повышенная экспрессия PSA повторов приводит к Rad51 ^-зависимому доминантно-негативному эффекту на выживаемость клеток.

4.41. Мутации в PSA мотивах белка Sfrl приводят к ослабленной репарации ДНК в клетках S. Pombe.

4.42. Мейотическая рекомбинация уменьшена в б/г1 РБА-мутантных аллелях.

4.43. 8М-мутантные аллели дефектны для взаимодействия с Ыас1518р.

ГЛАВА 5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

5.1. & ротЪе Ш1р55, гомолог 5". сегехпягае Кас155, является новым белком рекомбинационной репарации в клетках делящихся дрожжей.

5.2. Белки Ы1тр51, Шхр54 и Ш1р55 образуют одну эпистатическую группу рекомбинационной репарации.

5.3. Белок КЬр55 вовлечен в поддержание стабильности генома и мейоз.

5.4. Свойства гетеродимера Я. ротЪе Ш1р55-Штр57.

5.5. Роль белков рекомбинационной репарации в механизме переключения типа спаривания у дрожжей.

5.6. Возможная функция Шр1, нового 11ас1518р паралога, в клеточном ответе «£ ротЪе на повреждение ДНК.

5.7. Особенности 8М-8"м5 медиаторного пути и ее эволюционная консервативность в клетках эукариот.

5.8. ЯасШ-зависимые суб-пути рекомбинационной репарации в клетках делящихся дрожжей.

5.9. 8£г1 и толерантность к УФ повреждениям ДНК.

5.10. Функция повторов аминокислотной последовательности белка 8М в рекомбинационной репарации & ротЪе.

ВЫВОДЫ.

Рекомендованный список диссертаций по специальности «Молекулярная генетика», 03.01.07 шифр ВАК

Заключение диссертации по теме «Молекулярная генетика», Хасанов, Фуат Каримович

выводы

1. Идентифицированы три новых гена, rhp55+, rlpl+ и sfrl+, в клетках дрожжей S. pombe с функцией в рекомбинационной репарации двуцепочечных разрывов ДНК, два из которых, rhp55+ и rlpl+, кодируют белки с гомологией к Е. coli RecA.

2. Охарактеризованы фенотипы мутантов по генам S. pombe rhp55+, rlpl+ и sfrl+ в репарации повреждений ДНК, мейозе и репликации ДНК.

3. Молекулярный анализ показывает образование стабильного комплекса между Rhp55 и другим RecA-подобным белком Rhp57 в клетках S. pombe in vivo. Мутации в сайтах связывания и гидролиза АТФ у белков Rhp55 и Rhp57 приводят к ослабленной репарации ДНК и нарушениям в клеточной пролиферации, что указывает на важность этих доменов в репарации ДНК.

4. Впервые установлено, что функции генов rhp51+ и rhp55+ важны для процесса переключения типа спаривания, как механизма «половой» дифференциации в клетках дрожжей.

5. Впервые выявлены взаимодействия между белками репарации двуцепочечных разрывов ДНК, образующих «репарасому» в клетках S. pombe.

6. Показан новый механизм сборки Rad51 — нуклеопротеинового филамента с участием белка Sfrl и действующий параллельно механизму, контролируемому Rhp51 паралогами, Rhp55-Rhp57 и Rlpl. Полученные данные позволяют рассматривать возможность многообразия механизмов медиаторных путей в клетках высших эукариот.

7. Показан новый путь в рекомбинационном механизме толерантности к УФ - повреждениям ДНК, контролируемый белком Sfrl.

8. Обнаружен новый домен (PSA повторы) в белке S. pombe Sfrl, ответственный за взаимодействие с ключевым рекомбинационным белком Rhp51. PSA повторы являются важной функциональной частью белка Sfrl. Замещение фенилаланина в коровых участках повторов приводит к строгому

234 ослаблению репарации ДНК и рекомбинации в мейозе, что указывает на важность химической природы этого аминокислотного участка.

9. Биоинформатический анализ позволил идентифицировать белки с потенциальными PSA повторами и в других эукариотических организмах, что предполагает консервативность этих доменов в низших эукариотах, в частности, в грибах.

10. Предложена модель полимеризации белка Rhp51 на одноцепочечной ДНК с участием медиаторного комплекса Sfrl-Swi5 в клетках делящихся дрожжей.

Список литературы диссертационного исследования доктор биологических наук Хасанов, Фуат Каримович, 2011 год

1. Shinohara, A., Ogawa, H., Matsuda, Y., Ushio, N., Ikeo, K. and Ogawa, T. (1993) Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 4,239-243.

2. Muris, D.F., Vreeken, K., Carr, A.M., Broughton, B.C., Lehmann, A.R., Lohman, P.H. and Pastink, A. (1993) Cloning the RAD51 homologue of Schizosaccharomyces pombe. Nucleic Acids Res 21,4586-4591.

3. Norioka, N., Hsu, M.Y., Inouye, S. and Inouye, M. (1995) Two recA genes in Myxococcus xanthus. J Bacteriol 177, 4179-4182.

4. Lovett, S.T. (1994) Sequence of the RAD55 gene of Saccharomyces cerevisiae: similarity of RAD55 to prokaryotic RecA and other RecA-like proteins. Gene 142, 103-106.

5. Heyer, W.D. (1994) The search for the right partner: homologous pairing and DNA strand exchange proteins in eukaryotes. Experientia 50, 223-233.

6. Schwacha, A. and Kleckner, N. (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123-1135.

7. Cartwright, R., Dunn, A.M., Simpson, P.J., Tambini, C.E. and Thacker, J. (1998) Isolation of novel human and mouse genes of the recA/RAD51 recombination-repair gene family. Nucleic Acids Res 26, 1653-1659.

8. Dosanjh, M.K., Collins, D.W., Fan, W., Lennon, G.G., Albala, J.S., Shen, Z. and Schild, D. (1998) Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Res 26, 1179-1184.

9. Albala, J.S., Thelen, M.P., Prange, C., Fan, W., Christensen, M., Thompson, L.H. and Lennon, G.G. (1997) Identification of a novel human RAD51 homolog, RAD51B. Genomics 46, 476-479.

10. Rice, M.C., Smith, S.T., Bullrich, F., Havre, P. and Kmiec, E.B. (1997) Isolation of human and mouse genes based on homology to REG2, a recombinational repair gene from the fungus Ustilagomaydis. Proc Natl Acad Sci U S A 94, 7417-7422.

11. Gavrilova, E.V., Mekhedov, S.L., Prozorov, A.A. and Khasanov, F.K. (1992) Bacillus subtilis gene rec223: molecular cloning and proposed function of its protein product]. Genetika 28, 29-39.

12. Sekiguchi, J., Akeo, K., Yamamoto, H., Khasanov, F.K., Alonso, J.C. and Kuroda, A. (1995) Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J Bacterid 177, 5582-5589.

13. Khasanov, F.K., Zvingila, D.J., Zainullin, A.A., Prozorov, A.A. and Bashkirov, V.I. (1992) Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol Gen Genet 234, 494-497.

14. Huysmans, E., Dams, E., Vandenberghe, A. and Wachter, R.D. (1983) The nucieotide sequences of the 5S rRNAs of four mushrooms and their use in studying the pnytogenetk position of bastdiomycetes among the eukaryotes. Nucl. Acids Res. 11,2871-2880.

15. Prabhala, G., Rosenberg, G.H. and K^ufer, N.F. (1992) Architectural Features of Pre-mRNA Introns in the Fission Yeast Schizosaccharomyces pombe. Yeast 8, 171-182.

16. Mertins, P. and Gallwitz, D. (1987) Nuclear pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe strictly requires an intron-contained, conserved' sequence element. Embo J 6,1757-1763.

17. Nurse, P. (1990) Universal control mechanism regulating onset of M-phase. Nature 344, 503-508.

18. Thompson, L.H. and Schild, D. (2002) Recombinational DNA repair and human disease. Mutat Res 509, 49-78.

19. Scully, R.E. (1997) Hormonally active ovarian tumors. Verh Dtsch Ges Pathol 81,245-252.

20. Scully, R., Chen, J., Plug, A., Xiao, Y., Weaver, D., Feunteun, Ji, Ashley, T. and Livingston, D.M1 (1997)} Association of BRCA1 with; Rad51- in mitotic and meiotic cells. Cell 88, 265-275.

21. Paulovich, A.G., Toczyski, D.P. and Hartwell, L.H. (1997) When checkpoints fail. Cell 88, 315-321.

22. Paques, F. and Haber, J.E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63, 349-404.

23. Lin; Y., Lukacsovich, T. and Waldman, A.S. (1999) Multiple pathways for-repair of DNA double-strand breaks in mammalian chromosomes. Mol Cell Biol 19, 8353-8360.

24. Davey, S., Nass, M.L., Ferrer, J.V., Sidik, K., Eisenberger, A., Mitchell, D;L. and? Freyer, G.A. (1997) The fission yeast UVDR DNA repair pathway is inducible. Nucleic Acids Res 25, 1002-1008. ;

25. Yasuhira, S., Morimyo, M. and Yasui, A. (1999) Transcription dependence and the roles of two excision repair pathways for UV damage in fission yeast Schizosaccharomyces pombe. J Biol Chem 274, 26822-26827.

26. Phipps, J;, Nasim, A. and Miller, D.R. (1985) Recovery, repair, and. mutagenesis in Schizosaccharomyces pombe. Adv Genet 23j 1-72.

27. Paques, F. and Haber, J:E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63, 349-404;

28. Petrini; J.H., Bressan, D.A. and Yao, M.S. (1997) The RAD52 epistasis group in mammalian double strand break repair. Semin Immunol 9, 181-188.

29. Lim, D.S. and Hasty, P. (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16, 71337143.

30. Tsuzuki, T., Fujii, Y., Sakumi, K., Tominaga, Y., Nakao, K., Sekiguchi, M., Matsushiro, A., Yoshimura, Y. and MoritaT (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci U S A 93, 6236-6240.

31. Xiao, Y. and Weaver, D.T. (1997) Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mrel 1 protein in murine embryonic stem cells. Nucleic Acids Res 25, 2985-2991.

32. Tavassoli, M., Shayeghi, M., Nasim, A. and Watts, F.Z. (1995) Cloning and characterization of the Schizosaccharomyces pombe rad32 gene: a gene required for repair of double strand breaks and recombination. Nucleic Acids Res. 23, 383388.

33. Ajimura, M., Leem, S.H. and Ogawa, H. (1993) Identification of New Genes Required for Meiotic Recombination in Saccharomyces cerevisiae. Genetics 133, 51-66.

34. Eggleston, A.K. and West, S.C. (1997) Recombination initiation: easy as A, B, C, D. chi? Curr Biol 7, R745-749.

35. Sharpies, G.J. and Leach, D.R. (1995) Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol Microbiol 17, 12151217.

36. Wilson, S., Tavassoli, M. and Watts, F.Z. (1998) Schizosaccharomyces pombe rad32 protein: a phosphoprotein with an essential phosphoesterase motifrequired for repair of DNA double strand breaks. Nucleic Acids Res 26, 52615269.

37. Haber, J.E. (1998) The many interfaces of Mrel 1. Cell 95, 583-586.

38. Usui, T., Ohta, T., Oshiumi, H., Tomizawa, J., Ogawa, H. and Ogawa, T. (1998) Complex formation and functional versatility of Mrel 1 of budding yeast in recombination. Cell 95, 705-716.

39. Paull, T.T. and Gellert, M. (1998) The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1, 969-979.

40. Dong, Z., Zhong, Q. and Chen, P.L. (1999) The Nijmegen breakage syndrome protein is essential for Mrell phosphorylation upon DNA damage. J Biol Chem 274, 19513-19516.

41. Bianco, P.R., Tracy, R.B. and Kowalczykowski, S.C. (1998) DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci 3, D570-603.

42. Jang, Y.K., Jin, Y.H., Kim, E.M., Fabre, F., Hong, S.H. and Park, S.D. (1994) Cloning and sequence analysis ofrhp51+, a Schizosaccharomyces pombe homolog of the Saccharomyces cerevisiae RAD51 gene. Gene 142, 207-211.

43. Jang, Y.K., Jin, Y.H., Myung, K., Seong, R.H., Hong, S.H. and Park, S.D. (1996) Differential expression of the rhp51+ gene, a recA and RAD51 homolog from the fission yeast Schizosaccharomyces pombe. Gene 169, 125-130.

44. Mûris, D.F., Vreeken, K., Schmidt, H., Ostermann, K., Clever, B., Lohman, P.H. and Pastink, A. (1997) Homologous recombination in the fission yeast

45. Schizosaccharomyces pombe: different requirements for the rhp51+, rhp54+ and rad22+ genes. Curr Genet 31, 248-254.

46. Shinohara, A., Ogawa, H. and Ogawa, T. (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457-470.

47. Sung, P. (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241-1243.

48. Sugiyama, T., Zaitseva, E.M. and Kowalczykowski, S.C. (1997) A single-stranded DNA-binding protein is needed for efficient' presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem 272, 79407945.

49. Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D. and Rehrauer, W.M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58, 401-465.

50. Ogawa, T., Yu, X., Shinohara, A. and Egelman, E.H. (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259, 1896-1899.

51. Conway, A.B., Lynch, T.W., Zhang, Y., Fortin, G.S., Fung, C.W., Symington, L.S. and Rice, P.A. (2004) Crystal structure of a Rad51 filament. Nat Struct Mol Biol 11,791-796.

52. Zaitseva, E.M., Zaitsev, E.N. and Kowalczykowski, S.C. (1999) The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J Biol Chem 274, 2907-2915.

53. Johnson, R.D. and Symington, L.S. (1995) Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol Cell Biol 15, 4843-4850.

54. Hays, S.L., Firmenich, A.A. and Berg, P. (1995) Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc Natl Acad Sci U S A 92, 6925-6929.

55. New, J.H., Sugiyama, T., Zaitseva, E. and Kowalczykowski, S.C. (1998) Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391, 407-410.

56. Shinohara, A. and Ogawa, T. (1998) Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391, 404-407.

57. Benson, F.E., Baumann, P. and West, S.C. (1998) Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391, 401-404.

58. Sung, P. (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11, 1111-1121.

59. Khasanov, F.K., Savchenko, G.V., Bashkirova, E.V., Korolev, V.G., Heyer, W.D. and Bashkirov, V.I. (1999) A new recombinational DNA repair gene, from Schizosaccharomyces pombe with homology to Escherichia coli RecA. Genetics 152, 1557-1572.

60. Haruta, N., Kurokawa, Y., Murayama, Y., Akamatsu, Y., Unzai, S., Tsutsui, Y. and Iwasaki, H. (2006) The Swi5-Sfrl complex stimulates Rhp51/Rad51- and Dmcl-mediated DNA strand exchange in vitro. Nat Struct Mol Biol 13, 823-830.

61. Salakhova, A.F., Savchenko, G.V., Khasanov, F.K., Chepurnaia, O.V., Korolev, V.G. and Bashkirov, V.I. (2005) The dds20+ gene controls a novel Rad5 ISp-dependent pathway of recombinational repair in Schizosaccharomyces pombe]. Genetika 41, 736-745.

62. Tsutsui, Y., Khasanov, F.K., Shinagawa, H., Iwasaki, H. and Bashkirov, V.I. (2001) Multiple interactions among the components of the recombinational DNA repair system in Schizosaccharomyces pombe. Genetics 159, 91-105.

63. Lehmann, A.R., Walicka, Mi, Griffiths, D.J., Murray, J.M., Watts, F.Z., McCready, S. and Carr, A.M. (1995) The radl8 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol Cell Biol 15, 7067-7080.

64. Verkade, H.M., Bugg, S.J., Lindsay, H.D., Carr, A.M. and O'Connell, M.J. (1999) Radl8 is required for DNA repair and checkpoint responses in fission yeast. Mol Biol Cell 10, 2905-2918.

65. Hartsuiker, E., Vaessen, E., Can-, A.M. and Kohli, J. (2001) Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair. Embo J 20, 6660-6671.

66. Kaykov, A. and Arcangioli, B. (2004) A programmed strand-specific and modified nick in S. pombe constitutes a novel type of chromosomal imprint. Curr Biol 14,1924-1928.

67. Vengrova, S. and Dalgaard, J.Z. (2004) RNase-sensitive DNA modification(s) initiates S. pombe mating-type switching. Genes Dev 18, 794-804.

68. Ostermann, K., Lorentz, A. and Schmidt, H. (1993) The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae. Nucleic Acids Res 21, 5940-5944.

69. Grishchuk, A.L., Kraehenbuehl, R., Molnar, M., Fleck, O. and Kohli, J. (2004) Genetic and cytological characterization of the RecA-homologous proteins Rad51 and Dmcl of Schizosaccharomyces pombe. Curr Genet 44, 317-328.

70. Arcangioli, B. (1998) A site- and strand-specific DNA break confers asymmetric switching potential in fission yeast. EMBO J 17, 4503-4510.

71. Game, J.C. (1993) DNA double-strand breaks and the RAD50-RAD57 genes in Saccharomyces. Semin Cancer Biol 4, 73-83.

72. Suto, K., Nagata, A., Murakami, H. and Okayama, H. (1999) A double-strand break repair, component is essential for S phase completion in fission yeast cell cycling. Mol Biol Cell 10, 3331-3343.

73. Wold, M.S. (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66, 61-92.

74. Parker, A.E., Clyne, R.K., Carr, A.M. and Kelly, T.J. (1997) The Schizosaccharomyces pombe radll+ gene encodes the large subunit of replication protein A. Mol Cell Biol 17, 2381-2390.

75. Lee, S.E., Moore, J.K., Holmes, A., Umezu, K., Kolodner, R.D. and Haber, J.E. (1998) Saccharomyces Ku70, mrell/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399-409.

76. Brush, G.S., Morrow, D.M., Hieter, P. and Kelly, T.J. (1996) The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc Natl Acad Sci USA 93, 15075-15080.

77. Brush, G.S. and Kelly, T.J. (2000) Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response. Nucleic Acids Res 28, 3725-3732.

78. Carty, M.P., Zernik-Kobak, M., McGrath, S. and Dixon, K. (1994) UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein. Embo J 13, 2114-2123.

79. Hays, S.L., Firmenich, A.A., Massey, P., Banerjee, R. and Berg, P. (1998) Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol Cell Biol 18, 4400-4406.

80. Sugiyama, T., New, J.H. and Kowalczykowski, S.C. (1998) DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci U S A 95, 6049-6054.

81. Sung, P. and Klein, H. (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7, 739-750.

82. Eggler, A.L., Inman, R.B. and Cox, M.M. (2002) The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A. J Biol Chem 277, 39280-39288.

83. Beeraink, H.T. and Morrical, S.W. (1999) RMPs: recombination/replication mediator proteins. Trends Biochem Sci 24, 385-389.

84. Lisby, M., Barlow, J.H., Burgess, R.C. and Rothstein, R. (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699-713.

85. Gasior, S.L., Wong, A.K., Kora, Y., Shinohara, A. and Bishop, D.K. (1998) Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes Dev 12, 2208-2221.

86. Sugawara, N., Wang, X. and Haber, J.E. (2003) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12, 209219.

87. Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S. and Ogawa, T. (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3, 145-156.

88. Singleton, M.R., Wentzell, L.M., Liu, Y., West, S.C. and Wigley, D.B. (2002) Structure of the single-strand annealing domain of human RAD52 protein. Proc Natl Acad Sci U S A 99, 13492-13497.

89. Sharan, S.K., Morimatsu, M., Albrecht, U., Lim, D.S., Regel, E., Dinh, C., Sands, A., Eichele, G., Hasty, P. and Bradley, A. (1997) Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804-810.

90. Amitani, I., Baskin, R.J. and Kowalczykowski, S.C. (2006) Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol Cell 23, 143-148.

91. Mazin, A.V., Alexeev, A.A. and Kowalczykowski, S.C. (2003) A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278, 14029-14036.

92. Wolner, B. and Peterson, C.L. (2005) ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break. J Biol Chem 280, 10855-10860.

93. Heyer, W.D., Li, X., Rolfsmeier, M. and Zhang, X.P. (2006) Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 34, 41154125.

94. Tan, T.L., Kanaar, R. and Wyman, C. (2003) Rad54, a Jack of all trades in homologous recombination. DNA Repair (Amst) 2, 787-794.

95. Petukhova, G., Stratton, S. and Sung, P. (1998) Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91-94.

96. Solinger, J.A., Kiianitsa, K. and Heyer, W.D. (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10,1175-1188.

97. Li, X. and Heyer, W.D. (2009) RAD54 controls access to the invading 3'-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 37, 638-646.

98. Khasanov, F.K., Salakhova, A.F., Chepurnaja, O.V., Korolev, V.G. and Bashkirov, V.I. (2004) Identification and characterization of the rlpl+, the novel

99. Rad51 paralog in the fission yeast Schizosaccharomyces pombe. DNA Repair (Amst) 3, 1363-1374.

100. Lambert, S. and Lopez, B.S. (2001) Role of RAD51 in sister-chromatid exchanges in mammalian cells. Oncogene 20, 6627-6631.

101. Shivji, M.K. and Venkitaraman, A.R. (2004) DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair (Amst) 3, 835-843.

102. Baumann, P., Benson, F.E. and West, S.C. (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757-766.

103. Yasui, A. and McCready, SJ. (1998) Alternative repair pathways for UV-induced DNA damage. Bioessays 20, 291-297.

104. Murray, J.M., Lindsay, H.D., Munday, C.A. and Can-, A.M. (1997) Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol Cell Biol 17, 6868-6875.

105. Boddy, M.N., Lopez-Girona, A., Shanahan, P., Interthal, H., Heyer, W.D. and Russell, P. (2000) Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cdsl. Mol Cell Biol 20, 8758-8766.

106. Yamaguchi-Iwai, Y., Sonoda, E., Sasaki, M.S., Morrison, C., Haraguchi, T., Hiraoka, Y., Yamashita, Y.M., Yagi, T., Takata, M., Price, C., Kakazu, N. and

107. Takeda, S. (1999) Mrell is essential for the maintenance of chromosomal DNA in vertebrate cells. Embo J 18, 6619-6629.

108. Michel, B., Ehrlich, S.D. and Uzest, M. (1997) DNA double-strand breaks caused by replication arrest. Embo J 16, 430-438.

109. Kogoma, T. (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61,212-238.

110. Martinho, R.G., Lindsay, H.D., Flaggs, G., DeMaggio, A.J., Hoekstra, M.F., Carr, A.M. and Bentley, N.J. (1998) Analysis of Rad3 and Chkl protein kinases defines different checkpoint responses. Embo J 17, 7239-7249.

111. McCready, S J., Osman, F. and Yasui, A. (2000) Repair of UV damage in the fission yeast Schizosaccharomyces pombe. Mutat Res 451, 197-210.

112. Myung, K., Chen, C. and Kolodner, R.D. (2001) Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411,1073-1076.

113. Tercero, J.A. and Diffley, J.F. (2001) Regulation of DNA replication fork progression through damaged DNA by the Mecl/Rad53 checkpoint. Nature 412, 553-557.

114. Bashkirov, V.I., King, J.S., Bashkirova, E.V., Schmuckli-Maurer, J. and Heyer, W.D. (2000) DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol 20, 4393-4404.

115. Weichselbaum, R.R., Nove, J. and Little, J.B. (1978) Deficient recovery from potentially lethal radiation damage in ataxia telengiectasia and xeroderma pigmentosum. Nature 271, 261-262.

116. Siede, W., Friedberg, A.S. and Friedberg, E.C. (1993) RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90, 7985-7989.

117. Kolodner, R.D., Putnam, C.D. and Myung, K. (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297, 552-557.

118. Tercero, J.A., Longhese, M.P. and Diffley, J.F. (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11, 13231336.

119. Broomfield, S., Hryciw, T. and Xiao, W. (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486, 167-184.

120. Krogh, B.O. and Symington, L.S. (2004) Recombination proteins in yeast. Annu Rev Genet 38, 233-271.

121. Beach, D., Rodgers, L. and Gould, J. (1985) ranl+ controls the transition from mitotic division to meiosis in fission yeast. Curr Genet 10, 297-311.

122. Watanabe, Y., Lino, Y., Furuhata, K., Shimoda, C. and Yamamoto, M. (1988) The S.pombe mei2 gene encoding a crucial molecule for commitment to meiosis is under the regulation of cAMP. EMBO J 7, 761-767.

123. Manivasakam, P. and Schiestl, R.H. (1993) High efficiency transformation of Saccharomyces cerevisiae by electroporation. Nucleic Acids Res 21, 4414-4415.

124. Hindley, J., Phear, G., Stein, M. and Beach, D. (1987) Sucl+ encodes a predicted 13-kilodalton protein that is essential for cell viability and is directly involved in the division cycle of Schizosaccharomyces pombe. Mol Cell Biol 7, 504-511.

125. Fleck, O., Rudolph, C., Albrecht, A., Lorentz, A., Schar, P. and Schmidt, H. (1994) The mutator gene swi8 effects specific mutations in the mating-type region of Schizosaccharomyces pombe. Genetics 138, 621-632.

126. Waddell, S. and Jenkins, J.R. (1995) arg3+, a new selection marker system for Schizosaccharomyces pombe: application of ura4+ as a removable integration marker. Nucleic Acids Res 23, 1836-1837.

127. Waddell, S., Jenkins, J.R. and Proikas-Cezanne, T. (2001) A "no-hybrids" screen for functional antagonizes of human p53 transactivator function: dominant negativity in fission yeast. Oncogene 20,6001-6008.

128. Waddell, S. and Jenkins, J.R. (1995) arg3+, a new selection marker system for Schizosaccharomyces pombe: application of ura4+ as a removable integration marker. Nucleic Acids Research 23, 1836-1837.

129. Wright, A.P., Maundrell, K. and Shall, S. (1986) Transformation of Schizosaccharomyces pombe by non-homologous, unstable integration of plasmids in the genome. Curr Genet 10, 503-508.

130. Bahler, J.^ Wyler, T., Loidl, J. and Kohli, J. (1993) Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. J Cell Biol 121,241-256.

131. Grimm, C., Schaer, P., Munz, P. and Kohli, J. (1991) The strong ADH1 promoter stimulates mitotic and meiotic recombination at the ADE6 gene of Schizosaccharomyces pombe. Mol Cell Biol 11, 289-298.

132. Nadin-Davis, S.A. and Nasim, A. (1990) Schizosaccharomyces pombe rasl and byrl are functionally related genes of the ste family that affect starvation-induced transcription of mating-type genes. Mol Cell Biol 10, 549-560.

133. Donovan, J.W., Milne, G.T. and Weaver, D.T. (1994) Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair. Genes Dév 8,2552-2562.

134. Gyuris, J., Golemis, E., Chertkov, H. and Brent, R. (1993) Gdil, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791-803.

135. Santos-Rosa, H., Clever, B., Heyer, W.D. and Aguilera, A. (1996) The yeast HRS1 gene encodes a polyglutamine-rich nuclear protein required for spontaneous and hprl -induced deletions between direct repeats. Genetics 142, 705-716.

136. Pringle, J.R., Adams, A.E., Drubin, D.G. and Haarer, B.K. (1991) Immunofluorescence methods for yeast. Methods Enzymol 194, 565-602.

137. Forsburg, S.L. and Sherman, D.A. (1997) General purpose tagging vectors for fission yeast. Gene 191, 191-195.

138. Scherer, S. and Davis, R.W. (1979) Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A 76, 4951-4955.

139. Lea, D.E. and Coulson, C.A. (1949) The distribution of the number of mutants in bacterial populations. J. Genet. 49, 264-285.

140. Hoheisel, J.D., Maier, E., Mott, R., McCarthy, L., Grigoriev, A.V., Schalkwyk, L.C., Nizetic, D., Francis, F. and Lehrach, H. (1993) High resolution cosmid and PI maps spanning the 14 Mb genome of the fission yeast S. pombe. Cell 73, 109-120.

141. Prabhala, G., Rosenberg, G.H. and Kaufer, N.F. (1992) Architectural features of pre-mRNA introns in the fission yeast Schizosaccharomyces pombe. Yeast 8,171-182.

142. Russell, P., Moreno, S. and Reed, S.L (1989) Conservation of mitotic controls in fission and budding yeasts. Cell 57, 295-303.

143. Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.

144. Lovett, S.T. and Mortimer, R.K. (1987) Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics 116, 547-553.

145. Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P.C., Nicolas, A. and Forterre, P. (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414-417.

146. Lin, Y. and Smith, G.R. (1994) Transient, meiosis-induced expression of the rec6 andrecl2 genes of Schizosaccharomyces pombe. Genetics 136, 769-779.

147. Mumberg, D., Muller, R. and Funk, M. (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119-122.

148. Russell, P. and Nurse, P. (1986) Schizosaccharomyces pombe and Saccharomyces cerevisiae: a look at yeasts divided. Cell 45, 781-782.

149. Forsburg, S.L. and Nurse, P. (1991) Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annu Rev Cell Biol 7, 227-256.

150. Nielsen, O. and Egel, R. (1989) Mapping the double-strand breaks at the mating-type locus in fission yeast by genomic sequencing. EMBO J 8, 269-276.

151. Fleck, O., Heim, L. and Gutz, H. (1990) A mutated swi4 gene causes duplications in the mating-type region of Schizosaccharomyces pombe. Curr Genet 18,501-509.

152. Beach, D., Nurse, P. and Egel, R. (1982) Molecular rearrangement of mating-type genes in fission yeast. Nature 296, 682-683.

153. Arcangioli, B. and Klar, A.J. (1991) A novel switch-activating site (SAS1) and its cognate binding factor (SAP1) required for efficient matl switching in Schizosaccharomyces pombe. EMBO J 10, 3025-3032.

154. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215, 403-410.

155. Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48,443-453.

156. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 48764882.

157. Tavassoli, M., Shayeghi, M., Nasim, A. and Watts, F.Z. (1995) Cloning and characterisation of the Schizosaccharomyces pombe rad32 gene: a gene requiredfor repair of double strand breaks and recombination. Nucleic Acids Res 23, 383388.

158. Doe, C.L., Ahn, J.S., Dixon, J. and Whitby, M.C. (2002) Mus81-Emel and Rqhl involvement in processing stalled and collapsed replication forks. J Biol Chem 277, 32753-32759.

159. Arcangioli, B. and de Lahondes, R. (2000) Fission yeast switches mating type by a replication-recombination coupled process. EMBO J 19, 1389-1396.

160. Sauvageau, S., Stasiak, A.Z., Banville, I., Ploquin, M., Stasiak, A. and Masson, J.Y. (2005) Fission yeast rad51 and dmcl, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol Cell Biol 25, 43774387.

161. Grishchuk, A.L. and Kohli, J. (2003) Five RecA-like proteins of Schizosaccharomyces pombe are involved in meiotic recombination. Genetics 165, 1031-1043.

162. Martin, V., Chahwan, C., Gao, H., Blais, V., Wohlschlegel, J., Yates, J.R., 3rd, McGowan, C.H. and Russell, P. (2006) Swsl is a conserved regulator of homologous recombination in eukaryotic cells. EMBO J 25, 2564-2574.

163. Kaykov, A., Holmes, A.M. and Arcangioli, B. (2004) Formation, maintenance and consequences of the imprint at the mating-type locus in fission yeast. EMBO J 23, 930-938.

164. Akamatsu, Y., Tsutsui, Y., Morishita, T., Siddique, M.S., Kurokawa, Y., Ikeguchi, M., Yamao, F., Arcangioli, B. and Iwasaki, H. (2007) Fission yeast

165. Mitchell, T.G. and Perfect, J.R. (1995) Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8, 515-548;

166. Symington, L.S. (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66, 630-670, table of contents.

167. Pellegrini, L., Yu, D.S., Lo, T., Anand, S., Lee, M., Blundell, T.L. and Venkitaraman, A.R. (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287-293.

168. Heyer, W.D. and Kohli, J. (1994) Homologous recombination. Experientia 50, 189-191.

169. Shortle, D. (1989) Probing the determinants of protein folding and stability with amino acid substitutions. J Biol Chem 264, 5315-5318.

170. Mandelkow, E.M. and Mandelkow, E. (1994) Tau protein and Alzheimer's disease. Neurobiol Aging 15 Suppl 2, S85-86.

171. Geissler, S., Siegers, K. and Schiebel, E. (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17, 952966.

172. Guthrie, C., Nashimoto, H. and Nomura, M. (1969) Studies on the assembly of ribosomes in vivo. Cold Spring Harb Symp Quant Biol 34, 69-75.

173. Lhoest, J. and Colson, C. (1981) Cold-sensitive ribosome assembly in an Escherichia coli mutant lacking a single methyl group in ribosomal protein L3. Eur J Biochem 121,33-37.

174. Friedberg, E.C. (1988) Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev 52, 70-102.

175. Birkenbihl, R.P. and Subramani, S. (1992) Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res 20, 6605-6611.

176. Sonoda, E., Sasaki, M.S., Buerstedde, J.M., Bezzubova, O., Shinohara, A., Ogawa, H., Takata, M., Yamaguchi-Iwai, Y. and Takeda, S. (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17, 598-608.

177. Morrison, C. and Takeda, S. (2000) Genetic analysis of homologous DNA recombination in vertebrate somatic cells. Int J Biochem Cell Biol 32, 817-831.

178. Thompson, L.H. and Schild, D. (1999) The contribution of homologous recombination in preserving genome integrity in mammalian cells. Biochimie 81, 87-105.

179. Schild, D., Lio, Y.C., Collins, D.W., Tsomondo, T. and Chen, D.J. (2000) Evidence for simultaneous protein interactions between human Rad51 paralogs. J Biol Chem 275, 16443-16449.

180. Sung, P., Higgins, D., Prakash, L. and Prakash, S. (1988) Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J 7, 3263-3269.

181. Rehrauer, W.M. and Kowalczykowski, S.C. (1993) Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation. J Biol Chem 268, 1292-1297.

182. Sung, P. and Stratton, S.A. (1996) Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J Biol Chem 271, 2798327986.

183. Sonoda, E., Sasaki, M.S., Morrison, C., Yamaguchi-Iwai, Y., Takata, M. and Takeda, S. (1999) Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol Cell Biol 19, 5166-5169.

184. Jiang, H., Xie, Y., Houston, P., Stemke-Hale, K., Mortensen, U.H., Rothstein, R. and Kodadek, T. (1996) Direct association between the yeast Rad51 and Rad54 recombination proteins. J Biol Chem 271, 33181-33186.

185. Clever, B., Interthal, H., Schmuckli-Maurer, J., King, J., Sigrist, M. and Heyer, W.D. (1997) Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J 16, 2535-2544.

186. Tan, T.L., Essers, J., Citterio, E., Swagemakers, S.M., de Wit, J.,.Benson, F.E., Hoeijmakers, J.H. and Kanaar, R. (1999) Mouse Rad54 affects DNA conformation and DNA-damage-induced Rad51 foci formation. Curr Biol 9, 325328.

187. Golub, E.I., Kovalenko, O.V., Gupta, R.C., Ward, D.C. and Radding, C.M. (1997) Interaction of human recombination proteins Rad51 and Rad54. Nucleic Acids Res 25,4106-4110.

188. Tanaka, K., Hiramoto, T., Fukuda, T. and Miyagawa, K. (2000) A novel human rad54 homologue, Rad54B, associates with Rad51. J Biol Chem 275, 26316-26321.

189. Krejci, L., Damborsky, J., Thomsen, B., Duno, M. and Bendixen, C. (2001) Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol Cell Biol 21, 966-976.

190. Mazin, A.V., Bornarth, C.J., Solinger, J. A., Heyer, W.D. and Kowalczykowski, S.C. (2000) Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol Cell 6, 583-592.

191. Story, R.M., Weber, I.T. and Steitz, T.A. (1992) The structure of the E. coli recA protein monomer and polymer. Nature 355, 318-325.

192. Aihara, H., Ito, Y., Kurumizaka, H., Yokoyama, S. and Shibata, T. (1999) The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. J Mol Biol 290, 495-504.

193. Kurumizaka, H., Aihara, H., Kagawa, W., Shibata, T. and Yokoyama, S. (1999) Human Rad51 amino acid residues required for Rad52 binding. J Mol Biol 291, 537-548.

194. Park, M.S., Ludwig, D.L., Stigger, E. and Lee, S.H. (1996) Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J Biol Chem 271, 18996-19000.

195. Davis, A.P. and Symington, L.S. (2003) The Rad52-Rad59 complex interacts with Rad51 and replication protein A. DNA Repair (Amst) 2, 1127-1134.

196. Bai, Y. and Symington, L.S. (1996) A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev 10, 2025-2037.

197. Bai, Y., Davis, A.P. and Symington, L.S. (1999) A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence ofRAD51 or RAD59. Genetics 153, 1117-1130.

198. Van Dyck, E., Hajibagheri, N.M., Stasiak, A. and West, S.C. (1998) Visualisation of human rad52 protein and its complexes with hRad51 and DNA. J Mol Biol 284, 1027-1038.

199. Jia, S., Yamada, T. and Grewal, S.I. (2004) Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119, 469-480.

200. Klar, A J. and Bonaduce, M.J. (1991) swi6, a gene required for mating-type switching, prohibits meiotic recombination in the mat2-mat3 "cold spot" of fission yeast. Genetics 129, 1033-1042.

201. Vagin, D.A., Khasanov, F.K. and Bashkirov, V.I. (2006) The role of recombinational repair proteins in mating type switching in fission yeast cells]. Genetika 42, 487-493.

202. Sugawara, N., Ira, G. and Haber, J.E. (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20, 5300-5309.

203. Petukhova, G., Stratton, S.A. and Sung, P. (1999) Single strand DNA binding and annealing activities in the yeast recombination factor Rad59. J Biol Chem 274, 33839-33842.

204. Sung, P. and Robberson, D.L. (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82, 453-461.

205. Parsons, C.A., Baumann, P., Van Dyck, E. and West, S.C. (2000) Precise binding of single-stranded DNA termini by human RAD52 protein. EMBO J 19, 4175-4181.

206. Navadgi, V.M., Dutta, A. and Rao, B.J. (2003) Human Rad52 facilitates a three-stranded pairing that follows no strand exchange: a novel pairing function of the protein. Biochemistry 42, 15237-15251.

207. Ira, G. and Haber, J.E. (2002) Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol Cell Biol 22, 6384-6392.

208. Nakayama, J., Klar, A.J. and Grewal, S.I. (2000) A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis. Cell 101,307-317.

209. Alexiadis, V. and Kadonaga, J.T. (2002) Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Genes Dev 16,2767-2771.

210. O'Regan, P., Wilson, C., Townsend, S. and Thacker, J. (2001) XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding. J Biol Chem 276, 22148-22153.

211. Braybrooke, J.P., Spink, K.G., Thacker, J. and Hickson, I.D. (2000) The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2. J Biol Chem 275, 29100-29106.

212. Sultanova, A.N., Salakhova, A.F., Bashkirov, V.l. and Khasanov, F.K. (2007) Cell phenotypes of a mutant in the gene encoding a Rad51 paralog in. fission yeast]. Genetika 43, 183-188.

213. Jones, N.J., Cox, R. and Thacker, J. (1987) Isolation and cross-sensitivity of X-ray-sensitive mutants of V79-4 hamster cells. Mutat Res 183,279-286.

214. Dronkert, M.L. and Kanaar, R. (2001) Repair of DNA interstrand crosslinks. Mutat Res 486, 217-247.

215. Abe, H., Wada, M., Kohno, K. and Kuwano, M. (1994) Altered drug sensitivities to anticancer agents in radiation-sensitive DNA repair deficient yeast mutants. Anticancer Res 14, 1807-1810.

216. Xiao, W., Chow, B.L. and Rathgeber, L. (1996) The repair of DNA methylation damage in Saccharomyces cerevisiae. Curr Genet 30, 461-468.

217. Cervantes, M.D., Farah, J.A. and Smith, G.R. (2000) Meiotic DNA breaks associated with recombination in S. pombe. Mol Cell 5, 883-888.

218. Fukushima, K., Tanaka, Y., Nabeshima, K., Yoneki, T., Tougan, T., Tanaka, S. and Nojima, H. (2000) Dmcl of Schizosaccharomyces pombe plays a role in. meiotic recombination. Nucleic Acids Res 28, 2709-2716.

219. Masson, J.Y., Tarsounas, M.C., Stasiak, A.Z., Stasiak, A., Shah, R., Mcllwraith, M.J., Benson, F.E. and West, S.C. (2001) Identification andpurification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15, 3296-3307.

220. French, C.A., Masson, J.Y., Griffin, C.S., O'Regan, P., West, S.C. and Thacker, J: (2002)> Role of mammalian RAD51L2 (RAD51C) in recombination and genetic stability. J Biol Chem 277, 19322-19330.

221. Vagin; D.A., Bashkirov, V.I. and Khasanov, F.K. (2006) Analysis of mutations in the matl region of Schizosaccharomyces pombe strain with the deletion of gene rhp55+]. Genetika 42, 602-610.

222. Hayase, A., Takagi, M., Miyazaki, T., Oshiumi, H., Shinohara, M. and Shinohara, A. (2004) A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmcl. Cell 119, 927-940.

223. Tsubouchi, H. and Roeder, G.S. (2004) The budding yeast mei5 and sae3 proteins act together with dmcl during meiotic recombination. Genetics 168, 12191230.

224. Ellermeier, C., Schmidt, H. and Smith, G.R. (2004) Swi5 acts in meiotic DNA joint molecule formation in Schizosaccharomyces pombe. Genetics 168, 1891-1898.

225. Akamatsu, Y. and Jasin, M. (2010) Role for the mammalian Swi5-Sfrl complex in DNA strand break repair through homologous recombination. PLoS Genet 6, el001160.

226. Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J. and Helleday, T. (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913-917.

227. Kurokawa, Y., Murayama, Y., Haruta-Takahashi, N., Urabe, I. and Iwasaki, H. (2008) Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators. PLoS Biol 6, e88.

228. Murayama, Y., Kurokawa, Y., Mayanagi, K. and Iwasaki, H. (2008) Formation and branch migration of Holliday junctions mediated by eukaryotic recombinases. Nature 451, 1018-1021.

229. Waga, S. and Stillman, B. (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67, 721-751.

230. Boddy, M.N., Shanahan, P., McDonald, W.H., Lopez-Girona, A., Noguchi, E., Yates, I J. and Russell, P. (2003) Replication checkpoint kinase Cdsl regulates recombinational repair protein Rad60. Mol Cell Biol 23, 5939-5946.

231. Ampatzidou, E., Irmisch, A., O'Connell, M.J. and Murray, J.M. (2006) Smc5/6 is required for repair at collapsed replication forks. Mol Cell Biol 26, 9387-9401.

232. Laursen, L.V., Ampatzidou, E., Andersen, A.H. and Murray, J.M. (2003) Role for the fission yeast RecQ helicase in DNA repair in G2. Mol Cell Biol 23, 3692-3705.

233. Caspari, T., Murray, J.M. and Carr, A.M. (2002) Cdc2-cyclin B kinase activity links Crb2 and Rqhl-topoisomerase III. Genes Dev 16, 1195-1208.

234. Prinz, S., Amon, A. and Klein, F. (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146, 781-795.

235. Penkner, A., Portik-Dobos, Z., Tang, L., Schnabel, R., Novatchkova, M., Jantsch, V. and Loidl, J. (2007) A conserved function for a Caenorhabditis elegans Coml/Sae2/CtIP protein homolog in meiotic recombination. EMBO J 26, 50715082.

236. Young, J.A., Hyppa, R.W. and Smith, G.R. (2004) Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167, 593-605.

237. Li, X. and Heyer, W.D. (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18, 99-113.

238. Yang, H., Li, Q., Fan, J., Holloman, W.K. and Pavletich, N.P. (2005) The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNAssDNA junction. Nature 433, 653-657.

239. Bork, P., Blomberg, N. and Nilges, M. (1996) Internal repeats in the BRCA2 protein sequence. Nat Genet 13, 22-23.

240. Takahashi, M. (1989) Analysis of DNA-RecA protein interactions involving the protein self-association reaction. J Biol Chem 264, 288-295.

241. Forget, A.L., Kudron, M.M., McGrew, D.A., Calmann, M.A., Schiffer, C.A. and Knight, K.L. (2006) RecA dimers serve as a functional unit for assembly of active nucleoprotein filaments. Biochemistry 45, 13537-13542.

242. Liu, J., Doty, T., Gibson, B. and Heyer, W.D. (2010) Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.