Геометрия и комбинаторика алгебр Годена тема диссертации и автореферата по ВАК РФ 01.01.06, доктор наук Рыбников Леонид Григорьевич

  • Рыбников Леонид Григорьевич
  • доктор наукдоктор наук
  • 2021, ФГАОУ ВО «Национальный исследовательский университет «Высшая школа экономики»
  • Специальность ВАК РФ01.01.06
  • Количество страниц 246
Рыбников Леонид Григорьевич. Геометрия и комбинаторика алгебр Годена: дис. доктор наук: 01.01.06 - Математическая логика, алгебра и теория чисел. ФГАОУ ВО «Национальный исследовательский университет «Высшая школа экономики». 2021. 246 с.

Оглавление диссертации доктор наук Рыбников Леонид Григорьевич

Table of Contents

Introduction

1 Gaudin model and its generalizations

1.1 Gaudin Hamiltonians from the center at the critical level

1.2 Inhomogeneous Gaudin model

1.3 Shift of argument subalgebras

1.4 Uniqueness of Gaudin algebras

2 Bethe ansatz conjecture

2.1 Diagonalization problem

2.2 Bethe ansatz equations for sl2

2.3 Opers on the projective line

2.4 Bethe Ansatz Conjecture

2.5 A possible topological meaning of BAC for shift of argument subalgebras

3 Compacification problem

3.1 Degenerate Gaudin models

3.2 Limits of shift of argument subalgebras

3.3 Monodromy problem

4 Monodromy problem and combinatorics of crystals

4.1 Cactus group

4.2 Crystals and their tensor products

4.3 Etingof's monodromy conjecture

4.4 Gaudin algebras and the monodromy of their eigenlines

4.5 Operadic coverings and coboundary categories

4.6 Shift of argument algebras

4.7 Completion of the main proof

4.8 Another monodromy result

5 Further development

5.1 Schubert intersections and Opers

5.2 Weyl groups and quantum cohomology

References

Acknowledgements

Appendix A Article 1. Uniqueness of higher Gaudin hamiltonians

Appendix B Article 2. Limits of Gaudin Systems: Classical and

Quantum Cases

Appendix C Article 3. Opers with irregular singularity and spectra

of the shift of argument subalgebra

Appendix D Article 4. Limits of Gaudin algebras, quantization of

bending flows, Jucys-Murphy elements and Gelfand-Tsetlin bases

Appendix E Article 5. Cactus group and monodromy of Bethe vectors

Appendix F Article 6. A proof of the Gaudin Bethe Ansatz conjecture

Appendix G Article 7. Crystals and monodromy of Bethe vectors

Рекомендованный список диссертаций по специальности «Математическая логика, алгебра и теория чисел», 01.01.06 шифр ВАК

Введение диссертации (часть автореферата) на тему «Геометрия и комбинаторика алгебр Годена»

Introduction

The main subject of the present thesis is the Bethe ansatz problem for the Gaudin quantum magnet chain. The main results of the thesis fall into the following three directions:

1. (joint with Boris Feigin and Edward Frenkel) Proof of the Bethe Ansatz Conjecture which states the completeness of the algebraic Bethe ansatz for the Gaudin model in the Feigin-Frenkel form.

2. (joint with Alexander Chervov and Gregorio Falqui) Classification of degenerations of the Gaudin model. Presenting Deligne-Mumford compactification of the moduli space of rational curves with marked points as the parameter space for Gaudin models.

3. (joint with Iva Halacheva, Joel Kamnitzer and Alex Weekes) Indexing of solutions of algebraic Bethe ansatz for the Gaudin model by Kashiwara crystals and description of the monodromy of the solutions in combinatorial terms.

The results of the present thesis were published in the following articles:

1. L. Rybnikov, Uniqueness of higher Gaudin hamiltonians, Reports on Mathematical Physics 61 (2008) No 2, pp. 247-252. [R08]

2. A. Chervov, G. Falqui, L. Rybnikov, Limits of Gaudin Systems: Classical and Quantum Cases, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 5 (2009), 029 [CFR09]

3. B. Feigin, E. Frenkel, L. Rybnikov, Opers with irregular singularity and spectra of the shift of argument subalgebra, Duke Mathematical Journal 155 (2010), No 2, pp. 337-363. [FFR10]

4. A. Chervov, G. Falqui, L. Rybnikov, Limits of Gaudin algebras, quantization of bending flows, Jucys-Murphy elements and Gelfand-Tsetlin bases, Letters in mathematical physics 91 (2010), No 2, pp. 129-150. [CFR10]

5. L. Rybnikov, Cactus group and monodromy of Bethe vectors, International Mathematics Research Notices 2018 No 1, pp. 202-235. [R18]

6. L. Rybnikov, A proof of the Gaudin Bethe Ansatz conjecture, International Mathematics Research Notices 2020 No 22, pp. 8766-8785. [R20]

7. I Halacheva, J Kamnitzer, L Rybnikov, A Weekes, Crystals and monodromy of Bethe vectors, Duke Mathematical Journal 169 (2020) No 12, pp. 2337-2419. [HKRW]

The thesis consists of the Introduction, the list of references and the papers (1-7) from the above list. The rest of the Introduction is organized as follows. In Section 1 we introduce the Gaudin algebras, show how they help to construct quantum integrals of Hamiltonian systems and outline the uniqueness result of [R08]. In Section 2 we state the Bethe ansatz conjecture for Gaudin model in the Feigin-Frenkel form and explain its proof following [FFR10, R20]. In Section 3 we explain the compactification procedure for the parameter space of Gaudin algebras and extend Bethe ansatz conjecture to this compactification, following [CFR09, CFR10, R18]. In Section 4 we describe the monodromy of solutions of Bethe ansatz along the compactified parameter space, following [HKRW]. In Section 5 we outline some directions of further development of the results of [HKRW].

Похожие диссертационные работы по специальности «Математическая логика, алгебра и теория чисел», 01.01.06 шифр ВАК

Список литературы диссертационного исследования доктор наук Рыбников Леонид Григорьевич, 2021 год

References

[1] L. AGUIRRE, G. EELDER, and A. P. VESELOV, Gaudin subalgebras and stable rational

curves, Compos. Math. 147 (2011), no. 5,1463-1478. MR 2834729. DOI 10.1112/S0010437X11005306. (2339)

[2] -, Gaudin subalgebras and wonderful models, Selecta Math. (N.S.) 22 (2016),

no. 3,1057-1071. MR 3518545. DOI 10.1007/s00029-015-0213-y. (2341, 2386)

[3] B. BAKALOV and A. A. KIRILLOV, JR., Lectures on Tensor Categories and Modular

Functors, Univ. Lecture Ser. 21, Amer. Math. Soc., Providence, 2001. MR 1797619. (2340,2357)

[4] A. BERENSTEIN and A. N. KIRILLOV, Groups generated by involutions,

Gel'fand-Tsetlin patterns, and combinatorics of Young tableaux (in Russian), Algebra i Analiz 7 (1995), no. 1, 92-152; English translation in St. Petersburg Math. J. 7 (1996), no. 1,77-127. MR 1334154. (2342, 2367)

[5] C. BONNAFÉ, Cells and cacti, Int. Math. Res. Not. IMRN 2016, no. 19, 5775-5800.

MR 3567259. DOI 10.1093/imrn/rnv324. (2343)

[6] C. BONNAFÉ and R. ROUQU1ER, Cellules de Calogero-Moser, preprint,

arXiv:1302.2720v: [math.RT], (2343)

[7] M. DAVIS, T. JANUSZKIEWICZ, and R. SCOTT, Fundamental groups of blow-ups, Adv.

Math. 177 (2003), no. 1, 115-175. MR 1985196.

DOI 10.1016/S0001-8708(03)00075-6. (2338, 2348, 2353)

[8] C. DE CONCINI and C. PROCESI, Hyperplane arrangements and holonomy equations,

Selecta Math. (N.S.) 1 (1995), no. 3,495-535. MR 1366623. DOI 10.1007/BF01589497. (2348, 2386)

[9] -, Wonderful models ofsubspace arrangements, Selecta Math. (N.S.) 1 (1995),

no. 3, 459-494. MR 1366622. DOI 10.1007/BF01589496. (2344, 2346, 2349)

[10] V. G. DRINFEL'D, "Quantum groups" in Proceedings of the International Congress of

Mathematicians, Vol. I, II (Berkely, CA, 1986), ICM 1, Amer. Math. Soc., Providence, 1986,798-820. MR 0934283. (2354)

[11] B. FEIGIN, E. FRENKEL, and L. RYBNIKOV, Opers with irregular singularity and

spectra of the shift of argument subalgebra, Duke Math. J. 155 (2010), no. 2, 337-363. MR 2736168. DOI 10.1215/00127094-2010-057. (2341, 2377, 2397, 2399,2401)

[12] B. FEIGIN, E. FRENKEL, and V. TOLEDANO LAREDO, Gaudin models with irregular

singularities, Adv. Math. 223 (2010), no. 3, 873-948. MR 2565552. DOI 10.1016/j.aim.2009.09.007. (2340, 2377, 2379, 2381)

[13] G. FELDER, Y. MARKOV, V. TARASOV, and A. VARCHENKO, Differential equations

compatible with KZ equations, Math. Phys. Anal. Geom. 3 (2000), no. 2, 139-177. MR 1797943. DOI 10.1023/A: 1009862302234. (2381)

[14] E. FRENKEL, Langlands Correspondence for Loop Groups, Cambridge Stud. Adv.

Math. 103, Cambridge Univ. Press, Cambridge, 2007. MR 2332156. (2339, 2375)

[15] B. FRESSE, Modules over Operads and Functors, Lecture Notes in Math. 1967,

Springer, Berlin, 2009. MR 2494775. DOI 10.1007/978-3-540-89056-0. (2349, 2350)

[16] V. GINZBURG and M. KAPRANOV, Koszul duality for operads, Duke Math. J. 76

(1994), no. 1, 203-272. MR 1301191. DOI 10.1215/S0012-7094-94-07608-4. (2349)

[17] I. HALACHEVA, Alexander type invariants of tangles, skew Howe duality for crystals

and the cactus group, Ph.D. dissertation, University of Toronto, Toronto, 2016.

MR 3653607. (2369)

[18] A. HENRIQUES and J. KAMNITZER, Crystals and coboundary categories, Duke Math.

J. 132 (2006), no. 2,191-216. MR 2219257.

DOI 10.1215/S0012-7094-06-13221-0. (2338, 2354, 2355, 2367)

[19] S.-J. KANG, M. KASHIWARA, K. C. MISRA, T. MIWA, T. NAKASHIMA, and A.

NAKAYASHIKI, "Affine crystals and vertex models" in Infinite Analysis, Pari A, B (Kyoto, 1991), Adv. Ser. Math. Phys. 16, World Sci. Publ., River Edge, NJ, 1992, 449-484. MR 1187560. DOI 10.1142/s0217751x92003896. (2364)

[20] M. KASHIWARA, Crystal bases of modified quantized enveloping algebra, Duke Math.

J. 73 (1994), no. 2, 383^113. MR 1262212. DOI 10.1215/S0012-7094-94-07317-1. (2369)

[21] S. KEEL, Intersection theory of moduli space of stable n-pointed curves of genus zero,

Trans. Amer. Math. Soc. 330 (1992), no. 2, 545-574. MR 1034665. DOI 10.2307/2153922. (2349)

[22] F. KNOP, A Harish-Chandra homomorphismfor reductive group actions, Ann. of

Math. (2) 140 (1994), no. 2, 253-288. MR 1298713. DOI 10.2307/2118600. (2372)

[23] F. F. KNUDSEN, The projectivity of the moduli space of stable curves, II: The stacks

MgtTl, Math. Scand. 52 (1983), no. 2, 161-199. tfR 0702953. DOI 10.7146/math.scand.a-12001. (2351)

[24] B. KOSTANT, Lie group representations on polynomial rings, Amer. J. Math. 85

(1963), 327-404. MR 0158024. DOI 10.2307/2373130. (2371)

[25] I. LOSEV, Wall-crossing functors for quantized symplectic resolutions: Perversity and

partial Ringel dualities, Pure Appl. Math. Q. 13 (2017), no. 2, 247-289. MR 3858010. DOI 10.4310/PAMQ.2017.vl3.n2.a3. (2343)

[26] -, Cacti and cells, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 6,1729-1750.

MR 3945740. DOI 10.4171/JEMS/871. (2342)

[27] A. S. MlSCENKO and A. T. FOMENKO, Euler equation on finite-dimensional Lie groups

(in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 2, 396-415; English translation in Math. USSR-Izv. 12 (1978), no. 2, 371-389. MR 04828: . (2382)

[28] E. MUKHIN, V. TARASOV, and A. VARCHENKO, Schubert calculus and representations

of the general linear group, J. Amer. Math. Soc. 22 (2009), no. 4, 909-940. MR 2525775. DOI 10.1090/S0894-0347-09-00640-7. (2342)

[29] A. PAKHAREV, Closure of the family ofBethe subalgebras in the universal enveloping

algebra (in Russian), undergraduate thesis, NRU HSE, Moscow (2015) (2397)

[30] D. I. PANYUSHEV and O.S. YAKIMOVA, The argument shift method and maximal

commutative subalgebras ofPoisson algebras. Math. Res. Lett. 15 (2008), no. 2, 239-249. MR 2385637. DOI 10.4310/MRL.2008.vl5.n2.a3. (2382)

[31] L. RYBNIKOV, Centralizers of some quadratic elements in Poisson-Lie algebras and a

method for the translation of invariants (in Russian), Uspekhi Mat. Nauk 60 (2005), no. 2, 173-174; English translation in Russian Math. Surveys 60 (2005), no. 2, 367-369. MR 2152960. DOI 10.1070/RM2005v060n02ABEH000840. (2383)

[32] -, The shift of invariants method and the Gaudin model (in Russian),

Funktsional. Anal, i Prilozhen. 40 (2006), no. 3, 30-43; English translation in

Funct. Anal. Appl. 40 (2006), no. 3,188-199. MR 2265683.

DOI 10.1007/sl0688-006-0030-3. (2340, 2375, 2379, 2382, 2392)

[33] -, Cactus group and monodmmy ofBethe vectors, Int. Math. Res. Not. IMRN

2018, no. 1, 202-235. MR 3801430. DOI I0.1093/imrn/rnw259. (2339, 2340, 2342, 2376, 2377, 2394)

[34] -, A proof of the Gaudin Bethe ansatz conjecture, Int. Math. Res. Not. IMRN,

published online 25 October 2018. DOI 10.1093/imrn/rny245. (2339, 2377, 2397, 2400)

[35] V. V. SHUVALOV, On the limits of Mishchenko-Fomenko subalgebras in Poisson

algebras ofsemisimple Lie algebras (in Russian), Funktsional. Anal, i Prilozhen.

36 (2002), no. 4, 55-64; English translation in Funct. Anal. Appl. 36 (2002), no. 4, 298-305. MR 1958995. DOI 10.1023/A:1021713927119. (2341, 2382, 2383, 2387, 2390)

[36] D. E. SPEYER, Schubert problems with respect to oscillating flags of stable rational

curves, Algebr. Geom. 1 (2014), no. 1,14-45. MR 3234112. DOI 10.14231/AG-2014-002. (2341, 2342)

[37] A. A. TARASOV, The maximality of some commutative subalgebras in Poisson algebras

ofsemisimple Lie algebras (in Russian), Uspekhi Mat. Nauk 57 (2002), no. 5(347), 165-166; English translation in Russian Math. Surveys 57 (2002), no. 5,1013-1014. MR 1992097. DOI 10.1070/RM2002v057n05ABEH000567. (2382, 2383, 2384, 2385)

[38] V. TOLEDANO LAREDO, A Kohno-Drinfeld theorem for quantum Weyl groups, Duke

Math. J. 112 (2002), no. 3, 421-451. MR 1896470. DOI 10.1215/S0012-9074-02-11232-0. (2342)

[39] -, Quasi-Coxeter quasitriangular quasibialgebras and the Casimir connection,

preprint, rXiv:1601.04076vl [math.QA], (2342)

[40] A. VARCHENKO, Asymptotic solutions to the Knizhnik-Zamolodchikov equation and

crystal base, Comm. Math. Phys. 171 (1995), no. 1, 99-137. VlR 1341696. (2340)

[41] E. B. VINBERG, Some commutative subalgebras of a universal enveloping algebra (in

Russian), Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 1, 3-25; English translation in Izv. Math. 36 (1991), no. 1, 1-22. MR 1044045. DOI 10.1070/IM1991 v036n01ABEH001925. (2382)

[42] N. WHITE, The monodromy of real Bethe vectors for the Gaudin model, J. Comb.

Algebra 2 (2018), no. 3,259-300. MR 3845719. DOI 10.4171/JCA/2-3-3. (2340, 2342)

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.