Геометрическое моделирование задач анализа и прогнозирования в экономике и алгоритмов их решения тема диссертации и автореферата по ВАК РФ 05.01.01, кандидат технических наук Охотникова, Марина Леонидовна

  • Охотникова, Марина Леонидовна
  • кандидат технических науккандидат технических наук
  • 2004, Москва
  • Специальность ВАК РФ05.01.01
  • Количество страниц 182
Охотникова, Марина Леонидовна. Геометрическое моделирование задач анализа и прогнозирования в экономике и алгоритмов их решения: дис. кандидат технических наук: 05.01.01 - Инженерная геометрия и компьютерная графика. Москва. 2004. 182 с.

Оглавление диссертации кандидат технических наук Охотникова, Марина Леонидовна

Введение

Начертательная геометрия — база построения

Глава 1. проективно, аффинно и метрически полных моделей 12 экономических зависимостей

1.1. Типовые экономические задачи и методы их решения

Геометрическая интерпретация статистических

1.2. 24 показателей работы дистрибъютерного центра

Содержание и структура геометрической базы

1.3. 33 моделирования экономических зависимостей

Многомерное проективное пространство, его аффинизация ^ и метризация

Теоретические аспекты построения проективно, аффинно и ^ метрически полных моделей многомерных пространств Выводы

Геометрическое обеспечение моделирования

Глава 2. многомерных временных рядов

Анализ способов моделирования детерминированной 1 • составляющей одномерного временного ряда

2.1.1. Геометрические модели тренда

Геометрические модели сезонной и циклической

2.1.2. 59 компонент

Сложение и умножение графиков функций как способ 2.2. 62 конструирования многопараметрических кривых

2.2.1. Сложение (вычитание) графиков

2.2.2. Умножение (деление) графиков

Преобразования графиков функций как способ управления 2.3. положением и формой конструируемых кривых

2.3.1. Преобразования движения

2.3.2. Аффинные преобразования

Нелинейные расслояемые преобразования плоскости с

2.3.3. 77 несобственным центром

Алгебраические альтернативы трансцендентных моделей ^ тренда

2.4.1. Алгебраические альтернативы экспоненциальной функции

Алгебраическая альтернатива s -образным

2.4.2. 89 трансцендентным моделям тренда

Геометрические основы построения многомерных ^ временных рядов

2.5.1. Многомерные ряды с одним аргументом

2.5.2. Многомерные ряды с несколькими аргументами 103 Выводы

Геометрические модели задач анализа, планирования и

Глава 3. оптимизации

Дисперсионный анализ влияния таксационных

3.1. 109 характеристик на продуктивность липняков

Регрессионно-корреляционный анализ товаро- и

3.2. 112 нектаропродуктивности липняков

Временной ряд корреляционной связи товаро- и ^ ^ нектаропродуктивности липняков

Определение возраста главной рубки липняков товарной ^^ секции построением двумерного временного ряда

Прогнозирование финансовых показателей работы 3.5. предприятия построением временных рядов

Выводы

Рекомендованный список диссертаций по специальности «Инженерная геометрия и компьютерная графика», 05.01.01 шифр ВАК

Введение диссертации (часть автореферата) на тему «Геометрическое моделирование задач анализа и прогнозирования в экономике и алгоритмов их решения»

Актуальность темы исследования. Математическое моделирование представляет собой мощный аппарат познания внешнего мира, а также прогнозирования и управления [74]. Оно сводит исследование явлений внешнего мира к математическим задачам, занимает ведущее место среди других методов исследования, особенно в связи с всеобщей компьютеризацией. Корректные математические модели позволяют проектировать новые технические средства, работающие в оптимальных режимах, создавать энергосберегающие технологические процессы. Они применяются в различных областях знания, являются важным элементом автоматизированных систем управления, проектирования и технологической подготовки производства.

Применение математических методов моделирования в экономических исследованиях привело к появлению нового направления — эконометрики [40]. Основной ее задачей является количественное описание закономерностей и взаимосвязей экономических объектов и процессов на основе теоретических представлений об их важнейших, определяющих факторах с помощью математических, в частности геометрических моделей и статистических методов обработки данных [9,28,75]. Для эконометрики характерно предположение о проявлении в неявном виде изучаемых закономерностей в измеряемых и используемых в экономической статистике и прогнозировании показателях на фоне действия второстепенных, случайных факторов.

В эконометрике используются понятия, формулировки, методы решения задач из многих разделов современной математики, таких как математическая статистика, теория вероятностей, математическое программирование, численные методы решения систем нелинейных уравнений и т.д. В практических исследованиях эконометрические методы применяются в процессе создания всевозможных моделей, использующих нормативные, оптимизационные и имитирующие подходы к моделированию.

Построение таких моделей, учитывающих множество факторов, как детерминированных, так и стохастических, возможно при широком использовании методов наглядного представления исходных: данных, понимания конструктивной (геометрической) сущности алгоритмов решения, геометрически наглядной интерпретации полученных результатов. Обеспечение наглядности можно достичь представлением исходных данных, существующих между ними зависимостей или требующих изучения, выявления в виде линейных или (и) нелинейных подпространств многомерного пространства и отношений (проективных, аффинных, метрических) между ними.

Такое представление полезно как разработчикам моделей, так и их пользователям. Например, чтобы решить какие методы анализа статистических данных необходимо использовать в каждом конкретном случае и насколько удовлетворительны полученные результаты, полезно наглядное их представление. Такое представление обеспечивается набором средств визуализации путем построения графиков, двух- и трехмерных диаграмм, использованием средств деловой графики. Такие возможности имеют большинство универсальных пакетов статистического анализа данных (STADIA, ЭВРИСТА, SPSS и др.)

Разработчиками таких пакетов являются большие сложившиеся коллективы, включающие специалистов разных направлений и гармонически дополняющих друг друга. Пользователи этих пакетов, будучи, как правило, выпускниками экономических факультетов ВУЗов, лишены таких возможностей и могут рассчитывать лишь на знания, полученные в ВУЗе и приобретаемые в процессе практической деятельности и самообразования. Поэтому в системе высшего образования важно рациональное, обоснованное сочетание фундаментальных, обеспечивающих и специальных дисциплин.

С этих позиций необходимо обосновать содержание и структуру курса начертательной геометрии для студентов экономических факультетов, согласовать с другими математическими дисциплинами, чтобы они могли обеспечить изучение таких спецкурсов как математическая статистика, моделирование экономических процессов и др. Начертательная геометрия наряду с другими обеспечивающими курсами (линейная алгебра и аналитическая геометрия, математическое программирование и др.) должна заложить базу для понимания сущности и наглядного геометрического представления типовых экономических задач анализа, планирования и прогнозирования, а также основных способов их решения, составляющих основу эконометрики.

Вышеизложенное определило цель и основные задачи настоящего исследования, выполненного в соответствии с планом научно-исследовательских работ кафедры прикладной геометрии МАИ (ГТУ), а также договорами о содружестве с кафедрой таксации Марийского государственного университета им. М.Горького и Йошкар-Олинским предприятием ОАО «Фармстандарт- Марбиофарм».

Цель работы — геометрическое моделирование задач анализа и прогнозирования в экономике, конструктивно-аналитических алгоритмов их решения, основанных на схеме расслоения многомерного пространства.

Для достижения этой цели в диссертации сформулированы и решены следующие основные задачи:

1) обосновать содержание и структуру геометрической базы, необходимой для понимания сущности и наглядного геометрического представления типовых экономических задач анализа и прогнозирования, а также алгоритмов их решения;

2) разработать способ построения детерминированных составляющих многомерных временных рядов, основанный на их представлении как совокупности одно-, дву-,., А:-мерных рядов, принадлежащих пучкам (к +1) -плоскостей;

3) применить предложенный способ построения временных рядов для моделирования задач анализа, планирования и оптимизации.

Методики выполнения работы. Способы и алгоритмы решения сформулированных задач основаны на методах алгебраической, аналитической и начертательной геометрии, математической статистики и теории временных рядов, а также теории алгебраических кривых и нелинейных преобразований.

Общей теоретической базой настоящего исследования послужили работы ученых и специалистов по прикладной геометрии, теории кривых линий и поверхностей, нелинейных преобразований: Валькова К.И. [15], Волкова В .Я. [18], Глаголева Н.А. [21], Джапаридзе И. С. [26], Иванова Г.С. [31,32,36], Котова И.И. [44,45], Первиковой В.Н. [63], Савелова А.А. [68], Филиппова П.В. [79], Четверухина Н.Ф. [84,85], Юркова В.Ю. [88], Hudson Н. [92], Loria G. [95], Sommerville D.M. [97,98], Wieleitner H. [99] и др.;

В области математической статистики, теории временных рядов, математических методов моделирования экономических процессов: Айвазяна С.А. [2,3,4], Баласанова Ю.Г. [10], Джонстона Дж. [27], Длина A.M. [28], Кэндалла М. И Стюарта А. [42,43], Лукомского Я. и [51], Тюрина Ю.Н. и Макарова А.А. [75] и многих других.

Научную новизну выполненного исследования составляют следующие результаты:

1) основные требования к содержанию и структуре геометрической базы моделирования экономических зависимостей и реализующая их примерная программа курса начертательной геометрии для студентов экономических специальностей;

2) способ конструирования многопараметрических кривых, основанный на суммировании и умножении графиков элементарных функций и предназначенный для построения аддитивных и мультипликативных моделей одномерных временных рядов;

3) два нелинейных преобразования с несобственным центром, расслаивающиеся в пучке прямых соответственно на параллельные переносы и сжатия (растяжения) и эквивалентные операциям суммирования и умножения двух однозначных функций;

4) геометрические основы построения многомерных временных рядов, базирующиеся на использовании принципа расслоения пространства и нелинейных преобразований, расслаивающихся последовательно в пучках подпространств.

Практическая ценность выполненного исследования заключается в:

1) замене трансцендентных кривых (экспоненты, логистической кривой, кривой Гомперца), применяемых при моделировании тренда, альтернативными алгебраическими кривыми, упрощающими модель детерминированной составляющей одномерного временного ряда;

2) применении дисперсионного анализа для определения влияния таксационных характеристик на продуктивность липняков и обнаружения грубых ошибок наблюдений;

3) выявлении двух (вместо одного) возможных интервалов возраста главной рубки липняков построением двумерного временного ряда корреляционной связи товаро- и нектаропродуктивности липняков;

4) разработке методики определения оптимального возраста главной рубки липняков товарной секции при известных почвенно-климатических условиях региона и конъюнктуры рынка;

5) обосновании совместного учета тренда и сезонной составляющей временного ряда при прогнозировании финансовых показателей работы предприятия.

На защиту выносятся результаты, определяющие научную новизну и имеющие практическую ценность:

- примерная программа курса начертательной геометрии для студентов экономических специальностей, обеспечивающая наряду с другими математическими дисциплинами спецкурсы по математическому моделированию экономических процессов;

- способ конструирования посредством нелинейных преобразований многопараметрических кривых, реализующий операции суммирования и умножения графиков элементарных функций и эквивалентный известным схемам построения аддитивных и мультипликативных моделей одномерных временных рядов;

- схема построения многомерных временных рядов с одним и более аргументами, основанная на использовании принципа расслоения пространства и нелинейных преобразований, также расслаивающихся в пучках его подпространств;

- альтернативы в виде алгебраических кривых невысокого порядка, некоторых трансцендентных кривых, используемых при моделировании трендов одномерных временных рядов, упрощающие модели детерминированных составляющих многомерных рядов;

- методика определения оптимального возраста главной рубки липняков товарной секции, основанная на построении двумерного временного ряда зависимости стоимости сортиментов ликвидной древесины от таксационных характеристик древостоя;

- предложение о совместном использовании тренда и сезонной составляющей при прогнозировании финансовых показателей работы предприятия построением временных рядов.

Реализация результатов исследования выполнена в виде: примерной программы курса начертательной геометрии для студентов экономических специальностей; методики определения возраста главной рубки липняков товарной секции, основанная на учете стоимости сортиментов и их выходе в зависимости от таксационных характеристик древостоя; способа прогнозирования финансовых показателей работы предприятия, основанного на совместном учете тренда и сезонной составляющей.

Апробация работы. Основные результаты диссертационной работы доложены и обсуждены на следующих семинарах и научно-технических конференциях:

1) на аспирантских семинарах кафедры прикладной геометрии МАИ (ГТУ) (2001-2004 гг.)

2) на V Всероссийской научно-методической конференции «Актуальные вопросы обучения молодежи графическим дисциплинам», г.Рыбинск, июнь 2003г.

3) на Всероссийской научно-методической конференции по прикладной геометрии и инженерной графике, г.Саратов, 2003г.

4) на международной конференции "Baltgraf-7", Литва, г. Вильнюс, май 2004г.

Публикации. По теме диссертации опубликовано 4 работы, в которых достаточно полно отражены теоретические и прикладные результаты выполненных исследований.

Структура и объем работы. Диссертация состоит из введения, трех глав, заключения, списка использованной литературы, включающего 99 наименований, и пяти приложений. Она содержит 150 страниц машинописного текста, 35 рисунков и 9 таблиц.

Похожие диссертационные работы по специальности «Инженерная геометрия и компьютерная графика», 05.01.01 шифр ВАК

Заключение диссертации по теме «Инженерная геометрия и компьютерная графика», Охотникова, Марина Леонидовна

Выводы

В этой главе, посвященной построению геометрических моделей задач анализа, прогнозирования и оптимизации при определении возраста главной рубки липняков и изучении финансово-хозяйственной деятельности предприятия в виде многомерных временных рядов, получены следующие результаты:

1. Выполненным дисперсионным анализом математически подтверждено влияние таксационных характеристик на продуктивность липняков и предложен математически обоснованный способ устранения грубых ошибок в наблюдениях.

2. На основе регрессионно-корреляционного анализа товаро- и нектаропродуктивности липняков выявлено существование их тесной линейной зависимости от таксационных характеристик яруса и основного элемента леса.

3. Построением двумерного временного ряда корреляционной связи товаро- и нектаропродуктивности липняков показано существование двух возрастных интервалов (вместо одного общепринятого) главной рубки липняков.

4. Предложена методика определения оптимального возраста главной рубки липняков товарной секции на основе построения двумерного временного ряда. Методика базируется на оценке стоимости сортиментов ликвидной древесины в зависимости от их выхода из одного ствола таксационных характеристик древостоя.

5. Показано, что прогнозирование финансовых показателей работы предприятия построением временных рядов будет более достоверным при совместной оценке тренда и сезонной составляющей.

139

Заключение

В выполненном исследовании, посвященном геометрическому моделированию задач анализа и прогнозирования в экономике, разработке конструктивно-аналитических алгоритмов их решения, основанных на схеме расслоения многомерных пространств, получены следующие научные и практические результаты.

1. Обосновано содержание и структура геометрической базы, необходимой для понимания сущности и наглядного геометрического представления типовых экономических задач анализа, планирования и прогнозирования, а также методов их решения, изучаемых студентами экономических факультетов.

2. С целью построения геометрических моделей- экономических зависимостей рассмотрены основные линейные формы многомерного проективного пространства и отношения между ними; обсуждены подходы к его аффинизации и метризации, построения их проективно, аффинно и метрически полных изображений.

3. Изучены теоретико-конструктивные вопросы получения многопараметрических кривых способами суммирования и умножения графиков элементарных функций как базы аддитивных и мультипликативных моделей детерминированной составляющей одномерных временных рядов. Предложены два нелинейных преобразования с несобственным центром, расслаивающиеся соответственно на параллельные переносы и сжатия (растяжения), эквивалентные операциям суммирования и умножения двух однозначных функций.

4. На основе использования принципа расслоения пространства и, как следствие, применения преобразований пространства, расслаивающихся последовательно в пучках подпространств разработаны геометрические основы построения многомерных временных рядов. Предложено конструировать каркас одномерных образующих трендов таких рядов из дуг только рациональных алгебраических кривых, для чего построены альтернативы соответствующих трансцендентных кривых (экспоненты, кривой Гомперца, логистической кривой).

5. На основе дисперсионного и регрессионно-корреляционного анализов товаро- и нектаропродуктивности липняков показано существование их тесной линейной зависимости от таксационных характеристик яруса и основного элемента леса. Построение двумерного временного ряда выявило существование двух возрастных интервалов (вместо одного общепринятого) главной рубки липняков.

6. Предложена методика определения оптимального возраста главной рубки липняков товарной секции на основе построения двумерного временного ряда стоимости сортиментов в зависимости от их выхода из одного ствола и таксационных характеристик древостоя.

7. Показано, что прогнозирование финансовых показателей работы предприятия построением временных рядов будет более достоверным при совместной оценке тренда и сезонной составляющей.

8. Реализация результатов исследования выполнена в виде:

• примерной программы курса начертательной геометрии для студентов экономических специальностей;

• методики определения возраста главной рубки липняков товарной секции;

• способа прогнозирования финансовых показателей работы предприятия.

Список литературы диссертационного исследования кандидат технических наук Охотникова, Марина Леонидовна, 2004 год

1. Агаева Р.Г. Проекционные способы задания мгновенных преобразований и конструирование поверхностей. Автореферат дисс. . канд. техн. наук М., МАИ, 1972, - 22с.

2. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: исследование зависимостей. М., Финансы и статистика, 1985, -471с.

3. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: классификация и снижение размерности. М., Финансы и статистика, 1989, - 607с.

4. Айвазян С.А., Енюков И.С.,Мешалкин Л.Д. Прикладная статистика: основы моделирования и первичная обработка, данных М., Финансы и статистика, 1983, 471с.

5. Алберг Дж., Нильсон Э., Уоми Дж. Теория сплайнов и ее приложения. М., Мир, 1972, - 316с.

6. Алексеев Ю.Н. Анализ процессов обработки металлов давлением, прокаткой и резанием в многомерных пространствах. // Самолетостроение и техника воздушного флота. Вып.13, Харьков, 1968, с. 124-126.

7. Алексеев Ю.Н. Исследование процессов импульсного деформирования путем введения многомерных пространств. // Самолетостроение и техника воздушного флота. Вып. 17, Харьков, 1970, с.90-91.

8. Аносов В.Я. О расчете смесей по методу векториального многоугольника (спиральных координат). // Изв. АН СССР. сер. хим. №4, 1938, с.855-864.

9. Афифи А., Эйзен С. Статистический анализ. Поход с использованием ЭВМ. М., Мир, 1982, - 488с.

10. Баласанов Ю.Г., Дойников А.Н., Королев М.Ф., Юровский А.Ю. Прикладной анализ временных рядов с программой ЭВРИСТА. Центр СП «Диалог», МГУ, 1991, 329с.

11. Беллман Р. Динамическое программирование. М., Мир, 1960,230с.

12. Боровиков И.Ф. Конструирование сопрягающих гиперповерхностей на основе расслояемых преобразований. Автореферат дисс. . канд. техн. наук. М., МАИ, 1985, - 18с.

13. Боровиков И.Ф. Нелинейные расслояемые преобразования в НИРС по начертательной геометрии. // Сборник научно-методических статей по начертательной геометрии и инженерной графике. Вып. 13, М., Высшая школа, 1985, с. 10-13.

14. Буземан Г., Келли П. Проективная геометрия и проективные метрики. М., изд-во иностранной литературы, 1957, 410с.

15. Вальков К.И. К определению формы геометрических объектов четырехмерного пространства. // Докл. XX научной конф. ЛИСИ. — Л.,1962, с. 11-16.

16. Винн Р., Холден К. Введение в прикладной эконометрический анализ. М., Мир, 1981, - с.

17. Вирченко Н.А., Ляшко И.И., Швецов К.М. Графики функций (справочник). Киев, Наукова думка, 1979, - 320с.

18. Волков В.Я. Теория параметризации и моделирования геометрических объектов многомерных пространств и ее приложения. -Автореферат дисс. . доктора техн. наук, М., МАИ, 1981, - 32с.

19. Вольберг О.А. Лекции по начертательной геометрии. — М.,- Л., Учпедгиз, 1947, 348с.

20. Вопросы современной начертательной геометрии. // Сборник статей под ред. Н.Ф. Четверухина. М., ГИТТЛ, 1947, - 334с.

21. Глаголев Н.А. Проективная геометрия. М., Высшая школа,1963, 344с.

22. Гордевский Д.З., Лейбин А.С. Популярное введение в многомерную геометрию. Харьков, 1964, - 191с.

23. Грицюк Н.А. Использование методов графического отображения n-мерного пространства для решения общей задачи линейного программирования. // Прикладная геометрия и инженерная графика. Вып.7., Киев, 1968, с. 155-161.

24. Даффинн Р., Питерсон Э., Зепер К. Геометрическое программирование. М., Мир, 1972, - 312с.

25. Демидович Б.П., Марон И.А. Основы вычислительной математики. М., Наука, 1970, - 664с.

26. Джапаридзе И.С. Начертательная геометрия в свете геометрического моделирования. Тбилиси, Ганатлеба, 1983, - 208с.

27. Джонстон Дж. Эконометричекие методы. М., Мир, 1980, - с.

28. Длин A.M. Математическая статистика в технике. — М., Советская наука, 1951, 292с.

29. Завьялов Ю.С., Квасов Б.И., Мирошниченко B.JI. Методы сплайн-функций. М., Наука, 1980, - 352с.

30. Замотайлов В.В. Линейные преобразования и конструирование каркасных поверхностей. Автореферат дисс. . канд. техн. наук М., МТИПП, 1974, - 27с.

31. Иванов Г.С. Взаимосвязь графических и аналитических способов решения позиционных задач. // Труды П-й международной конференции по компьютерной графике и инженерной геометрии. «Графикон- 2001». Нижний Новгород, 2001, с.275-278.

32. Иванов Г.С. Классификация начертательных геометрий по виду проецирования. // Сборник трудов «Совершенствование подготовки учащихся и студентов в области графики, конструирования и стандартизации», Саратов, 1997, с.5-8.

33. Иванов Г.С. Конструирование технических поверхностей. М., Машиностроение, 1987,-188с.

34. Иванов Г.С. Методы нелинейной начертательной геометрии в моделировании технических кривых и поверхностей. // Электронный журнал «Прикладная геометрия», МГАИ (ТУ), вып.З. №4, 2001г.

35. Иванов Г.С. Начертательная геометрия. — М., Машиностроение, 1995, 224с.

36. Иванов Г.С. О содержании курса начертательной геометрии в свете современных требований. // Сборник трудов СПбГТУ «Геометрическое моделирование и компьютерная графика», №454, СПб, 1995, с.24-29.

37. Иванов Г.С. Сочетание графических и аналитических способов решения задач в преподавании начертательной геометрии. // Межвузовский сборник научно-методич. трудов «Наукоемкие технологии образования», Т.6, Таганрог, ТРТУ, 2001, с. 126-128.

38. Иванов Г.С. Теоретические основы начертательной геометрии. — М., Машиностроение, 1998, 158с.

39. Иванов Г.С., Охотникова M.JL Суммирование и умножение графиков однозначных функций как нелинейные преобразования с несобственным центром. // Engineering Graphics Baltgraf-7, Vilnius, Technica, 2004, p. 15-20/

40. Канторович Л.В., Ершов Э.Б. Эконометрия // Математическая энциклопедия, Т.5, М., Советская энциклопедия, 1984, с.948-951

41. Карманова И.В. Математические методы изучения роста и продуктивности растений. — М., Наука, 1976, 224с.

42. Кендэлл М., Стюарт А. Многомерный статистический анализ и временные ряды. М., «Наука», 1976г, - 736с. с илл.

43. Кендэлл М., Стюарт А. Статистические выводы и связи. — М., Наука, 1973,-899с.

44. Котов И.И. Комбинированные изображения. М., МАИ, 1951,542с.

45. Котов И.И. Мгновенные алгебраические преобразования и их возможные приложения.// Кибернетика, графика и прикладная геометрия поверхностей. Вып.З, М., МАИ, 1969, с.71-83.

46. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. Математическое программирование, М., Высшая школа, 1980, - 300с.

47. Куликов С.М. Введение в начертательную геометрию многомерного пространства. М., Машиностроение, 1970, - 84с.

48. Ламбин JI.H. Полнота изображений в многомерной начертательной геометрии и приложения к многокомпонентным системам. Автореферат дисс. . канд. техн. нук. - М., МТИПП, 1963, -13с.

49. Логистика: Учебное пособие / под ред. Б.А. Аникина. — М., Инфра-М, 1998, 218с.

50. Лоран П.Ж. Аппроксимация и оптимизация. — М., Мир, 1975,496с.

51. Лукомский Я.И. Теория корреляций. М., МАИ, 1948, - 98с.

52. Маневич В.А., Котов И.И., Зенгин А.Р. Аналитическая геометрия с теорией изображений. М., Высшая школа, 1969, 304с.

53. Маневич М.А. Образование и исследование поверхностей коллинеарных сечений на основе плоской коллинеарно-изменяемой системы и их применение в технике. Автореферат дисс. . канд. техн. наук М., МАИ, 1969, - 12с.

54. Мантуров О.В., Солнцев Ю.К., Соркин Ю.И., Федин Н.Г. Толковый словарь математических терминов. М., Просвещение, 1965, -539с.

55. Миролюбова Т.И. Геометрические модели фасонных элементов однорукавных каналовых поверхностей. — Автореферат дисс. . канд. техн. наук. М., МАИ (ГТУ), 2004. - « .

56. Михайлова О.И. Введение в логистику. Учебное пособие. — М, Дашков и К, 1999, 104с.

57. Монж Г. Начертательная геометрия. М., изд. АН СССР, 1947,291с.

58. Охотникова М.Л. О специализации курса начертательной геометрии для экономистов. // Межвузовский научно-методичсекий сборник «Совершенствование графической подготовки учащихся и студентов», -Саратов: СГТУ, 2004г.

59. Первикова В.Н. Теоретические основы построения чертежей многомерных фигур в синтетическом и векторном изложении с применением для исследования многокомпонентных систем. — Автореферат дисс. . доктора техн. наук, М., МТИПП, 1974, -31с.

60. Погорелов А.В. Геометрия. М., Наука, 1984, 288с.

61. Поспелова Н.В. Вопросы технологии создания информационной системы «Начертательная геометрия». Автореферат дисс. . канд. техн. наук. - М., МАИ (ГТУ) 2002, - 26с.

62. Пошехонов Б.Л. Графоаналитическая геометрия в применении к оптическим задачам. М., Машиностроение, Л., 1967, 158с.

63. Рокафеллар Р. Выпуклый анализ. — М., Мир, 1973, 469с.

64. Савелов А.А. Плоские кривые. М., Физматгиз, 1960, - 294с.

65. Саульев В.К. Прикладная и вычислительная математика, вып.З. М., МАИ, 1971, -200с.

66. Смогоржевский А.С., Столова Е.С. Справочник по теории плоских кривых третьего порядка. — М., Физматгиз, 1961, 263с.

67. Снедкер Дж.У. Статистические методы в применении к исследованиям в сельском хозяйстве и биологии. М., Мир, 1961, - 542с.

68. Соколов П.А. Состояние и теоретические основы формирования липняков. Йошкар-Ола, 1978, - 208с.

69. Технический отчет кафедры таксации МГУ.

70. Тихонов А.Н. Математическая модель. // Математическая энциклопедия, т.З, М., Советская энциклопедия, 1982, с.574-575.

71. Тюрин Ю.Н., Макаров А.А. Статистический анализ данных на компьютере. М., Инфра-М, 1998, -528с.

72. Факторный, дискриминантный и кластерный анализ. — М., Финансы и статистика, 1989, -215с.

73. Федоров М.В., Короев Ю.И. Объемно-пространственная композиция в проекте и в натуре. М., Госстройиздат, 1961, - 148с.

74. Фиакко А., Мак-Кормик Г. Нелинейное программирование. Методы последовательной безусловной минимизации. — М., Мир, 1972, -240с.

75. Филиппов П.В. Начертательная геометрия многомерного пространства и ее приложения. Л., ЛГУ, 1979, -280с.

76. Фишер Ф. Проблема идентификации в эконометрии. М., Мир, 1978,- с.

77. Фокс А., Пратт М. Вычислительная геометрия. — М., Мир, 1982,304с.

78. Хартман Г. Современный факторный анализ. — М., Статистика, 1972, 278с.

79. Хедли Дж. Нелинейное и динамическое программирование. — М., Мир, 1967, -320с.

80. Четверухин Н.Ф. Проективная геометрия. М., Учпедгиз, 1969,368с.

81. Четверухин Н.Ф. Формы высших ступеней в многомерном расширенном евклидовом пространстве. // Прикладная геометрия и инженерная графика. Вып. 12, Киев, 1971, с.3-5.

82. Эльясберг Е.Е. Определение формы и размеров сооружений по центральным проекциям. Автореферат дисс. . канд. техн. наук.- JL, ЛИСИ, 1956,- 16с.

83. Юдин Д.Б., Гольштейн Е.Г. Линейное программирование, М., Физматгиз, 1963, - 776с.

84. Юрков В.Ю. Основы исчислительно-конструктивной теории алгебраических соответствий многомерных пространств и ассоциированных с ними проекционных систем. — Автореферат дисс. . доктора техн. наук, М., МГУПП, 2000, - 35с.

85. Яглом И.М. Геометрические преобразования. — М., ГИТТЛ, т.2, 1956,-612с.

86. Bohne Е, Klix W.-D. Geometrie: Grundlagen Шг Anwendungen. — Leipzig-Koln, Fachbuchverlag, 1995, 366s.

87. Burau W. Mehrdimensionale projective und nohere Geometrie. — Berlin, 1961,-436s.

88. Hudson H. Cremona transformations in plane and space. — Cambridge, 1921, -433p.

89. Ivanov G. S. The history and perspectives of development of applied geometry in Russia. // Proceedings of the 10-th International Conference on Geometry and Graphics, vol.1. Kyiv, Ukraine, 2002, p.6-7.

90. Ivanov G. S. The history and perspectives of development of applied geometry in Russia. // Journal for Geometry and Graphics, vol.6 (2002) No.2, p. 191-194.

91. Loria G. Sperielle algebraische und transzendente ebene Kurven. — Leipzig, Teubner, 1902, s.

92. Schoute P.H. Mehrdimensionale Geometrie. T.l, Leipzig, 1902,295s.

93. Sommerville D.M.Y. An introduction to the geometry of n dimensions. London, 1929, p.

94. Sommerville D.M.Y. Classification of geometries with projective metrics. // Proceedings of Edinburgh Mathematical Society, v.28, 1910-11, p.25-41.

95. Wieleithner H. Theorie der ebenen algebraischen Kurwen hoherer Ordnung. Leipzig, 1905, - 313c.4Л

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.