Геномная вариабельность паразитических нематод рода trichinella: клонирование и характеристика RAPD-фрагментов T. spiralis и T. pseudospiralis тема диссертации и автореферата по ВАК РФ 03.00.26, кандидат биологических наук Хрисанфова, Галина Григорьевна

  • Хрисанфова, Галина Григорьевна
  • кандидат биологических науккандидат биологических наук
  • 2000, Москва
  • Специальность ВАК РФ03.00.26
  • Количество страниц 110
Хрисанфова, Галина Григорьевна. Геномная вариабельность паразитических нематод рода trichinella: клонирование и характеристика RAPD-фрагментов T. spiralis и T. pseudospiralis: дис. кандидат биологических наук: 03.00.26 - Молекулярная генетика. Москва. 2000. 110 с.

Оглавление диссертации кандидат биологических наук Хрисанфова, Галина Григорьевна

1. Введение.

2. Обзор литературы.

2.1. Трихинеллы - представители паразитических нематод.

2.1.1. Общая характеристика класса МетМоЛа.

2.1.2. Паразитизм как биологическое явление.

2.1.3. Биология трихинелл. Внутриклеточный паразитизм. Роль трихинелл в биоценозах.

2.1.4. Проблема систематики и идентификации внутри рода ТпсЫпеПа.

2.2. Геном нематод.

2.2.1. Структура и особенности организации генома нематод.

2.2.1.1. Общие сведения о структуре генома.

2.2.1.2. Особенности организации генома нематод.

2.2.2. Митохондриальный геном.

2.2.3. Повторяющиеся последовательности ДНК.

2.2.3.1. Структура генов рРНК нематод.

2.2.3.2. Диспергированные повторы.

2.2.3.3. Структура сателлитной ДНК нематод.

2.2.3.4. Мини- и микросателлитные повторы.

2.2.4. Использование данных о структуре генома нематод в популяционных и филогенетических исследованиях.

2.3. Геном трихинелл.

2.3.1. Структура генома трихинелл.

2.3.2. Структура и вариабельность генов рРНК.

2.3.3. Структура сателлитной ДНК трихинелл.

2.3.4. Анонимные локусы RAPD.

3. Материалы и методы.

3.1. Материалы.

3.2. Методы.

3.2.1. Выделение геномной ДНК.

3.2.1.1. Выделение ДНК из личинок трихинелл.

3.2.1.2.Выделение геномной ДНК из других гельминтов.

3.2.1.3. Выделение геномной ДНК из крови животных-хозяев.

3.2.1.4.Выделение геномной ДНК из тканей позвоночных животных.

3.2.2. Полимеразная цепная реакция.

3.2.2.1. PCR со случайными праймерами (RAPD).

3.2.2.2. Полимеразная цепная реакция со специфическими праймерами.

3.2.3. Электрофоретическое фракционирование фрагментов ДНК.

3.2.4.Клонирование амплификационных фрагментов и анализ рекомбинантных клонов.

3.2.5.Приготовление радиоактивного зонда.

3.2.6.Гибридизация и отмывка фильтров. 50 3.2.7.0пределение нуклеотидной последовательности ДНК. 51 3.2.8. Анализ нуклеотидных последовательностей.

4. Результаты.

4.1. RAPD-изменчивость Т. spiralis и Т. pseudospiralis, выделенных из одного хозяина (крысы).

4.1.1. Изменчивость видов Т. spiralis и Т. pseudospiralis.

4.1.2. Изменчивость "гибридов" Т. spiralis и Т. pseudospiralis.

4.1.3. Изменчивость гельминтов, выделенных из разных особей одного вида хозяина.

4.2. RAPD-изменчивость Т. spiralis и Т. pseudospiralis, выделенных от разных видов животных-хозяев.

4.3. Клонирование тотальных амплификантов Т. spiralis и Т. pseudospiralis.

4.3.1.Первичный анализ клонов.

4.3.2.Идентификация клонированных фрагментов в RAPD-спектрах Т. spiralis и Т. pseudospiralis.

4.4. Молекулярно-генетическая характеристика некоторых клонированных

RAPD- фрагментов.

4.4.1. Гибридизационный анализ.

4.4.2. Анализ нуклеотидных последовательностей клонированных RAPD-фрагментов.

4.5. Разработка тест-диагностических систем на основе клона 514.

5. Обсуждение.

6. Выводы.

Рекомендованный список диссертаций по специальности «Молекулярная генетика», 03.00.26 шифр ВАК

Введение диссертации (часть автореферата) на тему «Геномная вариабельность паразитических нематод рода trichinella: клонирование и характеристика RAPD-фрагментов T. spiralis и T. pseudospiralis»

Нематоды - широко распространенный класс животных, относящийся к одноименному типу первичнополостных червей. Паразитические нематоды составляют одну из самых многочисленных групп паразитов животных и человека. Изучение паразитических червей - гельминтов имеет важное научное и практическое значение. При этом наиболее актуальна ранняя и прижизненная диагностика гельминтозов, которая напрямую связана с четкой идентификацией возбудителей. Однако, для их определения часто оказываются недостаточными многочисленные данные, касающиеся особенностей биологии, морфологии, иммунологии и биохимии паразитов. Поэтому в настоящее время все большее внимание исследователей привлекают молекулярно-генетические методы, обеспечивающие не только более эффективную диагностику заболеваний, но позволяющие на новом уровне решать вопросы, связанные с возникновением и эволюцией различных приспособительных механизмов, оценкой генетической изменчивости и скорости дивергенции геномов паразитических организмов. Современные молекулярно-биологические технологии могут внести существенный вклад в выяснение общих и специфических закономерностей во взаимоотношениях паразита и хозяина, в том числе, выявления генов устойчивости хозяина и факторов, определяющих специфичность паразита по отношению к организму хозяина, определения роли метаболитов паразитов и иммуномодуляторов хозяев, действия сигнальных систем рецепторных белков и т. д.

К одним из наиболее опасных и распространенных возбудителей гельминтозов человека и животных относятся паразитические нематоды рода Trichinella. В настоящее время выделено несколько штаммов трихинелл, паразитирующих на разных животных -Т. spiralis, Т. nativa, Т. nelsoni, Т. britovi, Т. pseudospiralis. Ряд исследователей считают Т. spiralis, Т. nativa, Т. nelsoni, Т. britovi штаммами одного вида Т. spiralis и выделяют внутри рода только два вида - Т. spiralis и T. pseudospiralis (Bessonov, 1998), тогда как другие систематики присваивают всем штаммам видовые названия (Pozio, 1992).

Объектом данной работы являются два вида паразитических нематод рода Trichinella - Т. spiralis и Т. pseudospiralis которые относятся к одним из наиболее распространенных и опасных возбудителей гельминтозов человека и животных. Личинки трихинелл локализуются, как правило, в поперечно-полосатой мускулатуре, мышцах языка и диафрагмы, и могут вызывать различные аллергические реакции и осложнения, связанные с развитием пневмонии, миокардита и менинго - энцефалита.

Основное различие между личинками двух видов - Т. pseudospiralis и Т. spiralis -заключается в формировании последними защитной мышечной капсулы. Помимо этого, круг хозяев для Т. pseudospiralis включает большое число птиц и наземных позвоночных, тогда как Т. spiralis паразитирует исключительно на млекопитающих (Бритов, 1982). Генетические отличия между видами найдены при сравнении изоферментных спектров (Mydynski & Dick, 1985), полиморфизма длины рестриктных фрагментов ДНК (RFLP) (Chambers et al., 1986; Boyd et al., 1989), при сравнении структурных особенностей рибосомных генов (Zarlenga et al., 1992; Zarlenga & Barta, 1990), a также при изучении распределения М13-минисателлитных последовательностей (Romanova et al., 1993).

Развитие методов полимеразной цепной реакции со случайными праймерами значительно расширило возможности изучения генома гельминтов данной группы, позволяя проводить дифференциацию трихинелл как на основании множества анонимных последовательностей (Soûle et al., 1993; Bandi et al., 1995; Rodriguez et al., 1996; Семенова и др., 1998), так и при анализе отдельных известных генов (Wu et al., 1998; Appleyard et al., 1999). Выявляемые RAPD-маркеры обладают видовой и, иногда, штаммовой специфичностью, но молекулярная природа полиморфных ДНК в большинстве случаев остается неизвестной.

Цель настоящего исследования - описание геномной вариабельности двух видов трихинелл - Т. spiralis и Т. pseudospiralis, получение и молекулярно - генетическая характеристика RAPD-маркеров для дифференциации этих видов. В ходе ииследования предполагалось решить следующие задачи.:

1. Разработка условий RAPD-анализа для дифференциации Т. spiralis и Т. pseudospiralis;

2. Клонирование RAPD-фрагментов генома трихинелл Т. spiralis и Т. pseudospiralis;

3. Молекулярно - генетическая характеристика клонированных ДНК;

4. Разработка на основе данных о структуре отдельных участков генома тест-системы для диагностики трихинеллеза.

2. ЛИТЕРАТУРНЫЙ ОБЗОР.

Похожие диссертационные работы по специальности «Молекулярная генетика», 03.00.26 шифр ВАК

Заключение диссертации по теме «Молекулярная генетика», Хрисанфова, Галина Григорьевна

6. выводы.

1. С помощью RAPD-анализа продемонстрирована внутри- и межвидовая изменчивость Т. spiralis и Т. pseudospiralis при паразитировании на одном виде животного-хозяина (крыса), а также наличие межштаммовой изменчивости при паразитировании на разных животных (мышь, крыса, кролик, курица).

2. Клонированы и секвенированы RAPD-фрагменты Т. spiralis и Т. pseudospiralis. Показано, что некоторые из них содержат микросателлитные повторы, открытые рамки считывания, участки гомологии с геномами вирусов, про- и эукариот. Все клонированные ДНК трихинелл обнаруживали значительную гомологию с геномом свободноживущей нематоды С. elegans.

3. Продемонстрировано, что клонированные RAPD-фрагменты обладают свойствами видоспецифичных маркеров в ПДРФ-анализе генома трихинелл.

4. На основании нуклеотидной последовательности клона 514 Г. pseudospiralis разработана диагностическая тест-система, позволяющая детектировать личинок трихинелл в различных тканях зараженного животного.

БЛАГОДАРНОСТИ.

Автор благодарит научных руководителей Рыскова Алексея Петровича и Семенову Серафиму Константиновну за неоценимую помощь и внимание. Огромное спасибо моим коллегам из лаборатории организации генома за доброжелательность и поддержку.

Благодарю также коллег-паразитологов Мовсесяна Сергея Оганесовича, Теренину Надежду Борисовну и Асатряна Ашота Мкртычевича (Институт паразитологии РАН) за многолетнее плодотворное сотрудничество, предоставление биологического материала и живой интерес к данной работе.

Список литературы диссертационного исследования кандидат биологических наук Хрисанфова, Галина Григорьевна, 2000 год

1. Алешин В.В., Владыченская Н.С., Кедрова О.С., Милютина И.А., Петров Н.Б. Сравнение генов 18S рибосомной РНК в филогении беспозвоночных. Молекулярная биология. 1995г. 29(6): стр. 1408-1425.

2. Березанцев Ю.А. Трихинеллез. JI. Медицина. 1974.

3. Бессонов A.C. Трихинеллез. В кн.: Итоги науки и техники. Зоопаразитология. М. ВИНИТИ. 1979. 6: 130-208.

4. Бритов В.А. Возбудители трихинеллеза. М. Наука. 1982.

5. Гинецинская Т.А. и Добровольский A.A. Частная паразитология. Паразитические простейшие и плоские черви. М. Высшая школа. 1979. С. 6-12.

6. Догель В.А. Курс общей паразитологии. Л. 1947.

7. Догель В.А. Зоология беспозвоночных. М. Наука. 1981. С. 210-228.

8. Казаринов А.Г. Об отношении трихины к слизистой оболочке кишечника животных. Дис. . д-ра медицины. СПб. 1898.

9. Калюс В.А. Трихинеллез человека. М. Медгиз. 1952. 247 с.

10. Крамеров Д.А. Организация генома и единицы транскрипции у высших организмов. В кн. Структурная организация и функция генома эукариот. М.: ВИНИТИ. 1982. С. 4. Итоги науки и техники. Биол.химия. Т. 16.

11. Меркушев A.B. Эпизоотология трихинеллеза и вопросы его диагностики. Автореф. дис. д-ра вет. наук. JI. Ленинград, вет. ин-т. 1954.

12. Оксов И.В. Реактивные изменения в скелетных мышцах при инвазии личинками Trichinella pseudospiralis Garcavi, 1972 и Trichinella spiralis Owen, 1835. В сб.: Проблемы тканевого паразитизма. Л. 1985. С. 10-16.

13. Павловский E.H. Руководство по паразитологии человека. Т.1. М.-Л. 1946.

14. Пенькова P.A., Романенко Л.Н. Изучение хромосом трихинелл. Труды Всес. ин-та гельминтологии. М. 1975. 20: с. 133-142.

15. Саики Р., Гиленстен У., Эрлих Г. Полимеразная цепная реакция. В сб.: Анализ генома. Методы. М. Мир. 1990. С. 176-190.

16. Скрябин К. И. и Шульц P.C. Ветеринарная паразитология и инвазионные болезни домашних животных. 4.1. М. 1937.

17. Шульман С.С. и Добровольский A.A. Паразитизм и смежные с ним явления. Паразитологический сборник. ЗИН АН СССР. 1977.

18. Шульц P.C. Гельминтоиммунитет (его специфика и первичный иммунитет). Труды Казахск. НИВИ. Алма-Ата. 1957. 9: с. 359-375.

19. Шульц P.C. О некоторых важных феноменах гельминто-иммунитета. Вести с.-х. науки. 1960. И: с. 30-38.

20. Abad P., Quiles С., Tares S., Piotte С., Castagnnone-Sereno P., Abadon M, Dalmasso A. Sequences homologous to Tc(s) transposable elements of Caenorhabditis elegans are widely distributed in the phylum Nematoda. J Mol Evol. 1991. 33: p. 251-8.

21. Abadon M., Grenier E., Laumond C. and Abad H. A species-specific satellite DNA from the entomopathogenic nematode Heterorhabditis indicus. Genome. 1998. 41: p.148-153.

22. Adoute A., Balavoine G., Lartillot N., de Rosa R. Animal evolution. The end of the intermediate. TIG. 1999. 15(3): p.104-108.

23. Aeby P., Spicher A., de Chastonay Y. et al. Structure and genomic organization of proretrovirus-live elements partially eliminated from the somatic genome of Ascaris lumbricoides. EMBO J. 1986. 5: p. 3353-60.

24. Aguinaldo A.M.A. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature. 1997. 387: p. 489-493.

25. Ajuh P.M., Akue J.P., Boutin P., Everaere S., Egwang T.G. Loa loa: structural diversity of a 15-kDa repetitive antigen. 1995. Exp Parasitol. 81(2): p. 145-53.

26. Anderson R.S. Nematode Parasites of Vertebrates. Their Development and Transmission. 1992. CAB International. Wallingford.

27. Anderson T.J., Komunecki R., Komunecki P.R., Jaenike J. Are mitochondria inherited paternally in Ascaris? Int J Parasitol. 1995. 25(8): p. 1001-4.

28. Arribas B., Siles M., Bolas F., Martinez A.R. Randomly amplified DNA polymorphism within Trichinella species and isolates. In Proceedings of the Eighth Intern. Conf. on Trichinellosis. Orvieto. Italy. 1993. p. 10.

29. Attardi G. Animal Mitochondrial DNA: An Extreme Example of Genetic Economy. Intel. Rev. Cytol. 1985. 93: p.93-145.

30. Avise J.C., Arnold J., Ball R.M., Bermigham E., Lamb T., Neigel J.E., Reeb C.A., Saunders N.C. Intraspectific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann. Rew. Ecol. Syst. 1987. 18: p. 432-446.

31. Back E., Felder H., Muller F. and Tobler H. Chromosomal arrangement of the two main rDNA size classes of Ascaris Lumbricoides. Nucleic Acids Research. 1984(a). 12: p.1333-1347.

32. Back E., Felder H., Muller F. and Tobler H. Structural organization of the two main rDNA classes of Ascaris Lumbricoides. Nucleic Acids Research. 1984(b). 12: p.1313-1332.

33. Bandi C. & Damiani G. Application of RAPD markers in molecular systematics and population biology of Trichinella spp. In Proceedings of the Eighth Intern. Conf. on Trichinellosis. Orvieto. Italy. 1993. P. 11.

34. Bandi C., La Rosa G., Bardin M.G. Arbitrary primed polymerase chain reaction of Trichinella specimens. J Parasit. 1992. 79: p. 437-440.

35. Beck J.L. & Human B.C. Role of sequence amplification in the generation of nematode mitochondrial DNA polymorphism. Curr Genet. 1988. 14: p. 627-36.

36. Benecke M., Epplen J.T., Schierenberg E. (GTG).5 allows the distinction between different isolates of the nematode Caenorhabditis elegans. Electrophoresis. 1996. 17(1): p. 94.

37. Bessonov A.S. The taxonomic position of nematodes in the genus Trichinella Railliet. Med Parasitai. 1998. 1: p. 3-6

38. Birley A.J. & Croft J.H. Mitochondrial DNAs and phylogenetic relationships. In DNA systematics, Vol. I: Evolution (S.K. Dutta, éd.). CRC Press, Boca Raton, Florida. 1986. p. 107138.

39. Bissoffi M., Betschart B. Ascaris suum: Molecular cloning of an intermediate filament. Trop Med Int Health. 1996. 1(5): p.640-5.

40. Blaxter M.L. et al. Structural characterization of an Ascaris myoglobin. J Biol Chem. 1994. 269(48): p.30181-6.

41. Blouin M.S. Mitochondrial DNA diversity in nematodes. J Helminthol. 1998. 72(4): p. 285-9.

42. Blouin M.S., Liu J., Berry R.E. Life cycle variation and the genetic structure of nematode populations. Heredity. 1999. 83 (Pt 3): p. 253-9.

43. Blouin M.S., Yowell C.A., Courtney C.H., Dame J.B. Haemonchus placei and Haemonchus contortus are distinct species based on mtDNA evidence. Int J Parasitol. 1997. 27(11): p. 1383-7.

44. Blouin M.S., Yowell C.A., Courtney C.H., Dame J.B. Host movement and the genetic structure of populations of parasitic nematodes. Genetics. 1995. 141(3): p. 1007-74.

45. Blouin M.S., Yowell C.A., Courtney C.H., Dame J.B. Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Mol Biol Evol. 1998. 15(12): p. 1719-27.

46. Boyd D., de Vos T., Klassen G.R., Dick T.A. Characterization of the ribosomal DNA from Trichinella spiralis. Mol Biochem Parasitol. 1989. 35: p. 67-72.

47. Brezinsky L., Wang G.V.L., Humphreys T. and Hunt J/ The transposable element Uhu from Hawaiian Drosophila-member of the widely dispersed class of 7c/-like transposons. Nucleic Acids Res. 1990. 18:p.2053-9.

48. Britov V.A. & Boev S.N. Taxonomic rank of various strains of Trichinella and their circulation in nature. Vestnik Akademii Nauk Kazakhskoi SSR. 1972. 28: p.27-32.

49. Britten R. J. Active gypsy/Ty3 retransposons or retroviruses in Caenorhabditis elegans. PNAS USA.1995. 92: p. 599-601.

50. Britten R.J., Kohne D.E. Repeated sequences in DNA. Science. 1968. 161: p. 529.

51. Britten R.J., Davidson E.H. Gene regulation for higher cells: a theory. Science. 1969. 165: p. 349.

52. Castagnone-Sereno P., Leroy F., Abad P. Cloning and characterization of on extremely conserved sattellite DNA family from the root-knot nematode Meloidogyne arenaria. Genome. 1999. 28: p.346-53.

53. Castagnone-Sereno P., Leroy H., Semblat J.P., Leroy F., Abad P. and Zijlstra C. Unusual and strongly structured sequence variation a complex satellite DNA family from the nematode Meloidogyne chritwoodi. J Mol Evol. 1998(a)46: p. 225-33.

54. Castagnone-Sereno P., Semblat J.P., Leroy F. and Abad P. A new Alu\ Satellite DNA in the Root-Knot Nematode Meloidogyne fallax: Relationships with Satellites from the Sympatric Species M. halpa and M.chitwoodi. Mol Biol Evol. 1998(b). 15: p. 1115-22.

55. Chambers A.E., Almond N.M., Knight M., Simpson A.J.G., Parkhouse R.M.E. Repetitive DNA as a tool for the identification and comparison of nematode variants: application to Trichinella isolates. Mol Biochem Parasitol. 1986. 21: p. 113-120.45

56. Chung Y.Y. & Ko R.C. A novel cDNA clone encoding a specific excretory/secretory antigen of larval Trichinella pseudospiralis. Parasitol Res. 1999. 85(8-9): p. 685-91.

57. Collins J., Saari B. and Anderson P. Activation of transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature. 1987. 328: p. 726-8.

58. Connolly B., Ingram L.G., Smith D.F. Trichinella spiralis: cloning and characterization of two repetitive DNA sequences. Exp Parasitil. 1995. 80(3): p. 488-98.

59. Connolly B., Trenholme K., Smith D.F. Molecular cloning of a myoD-Wko. gene from the parasitic nematode, Trichinella spiralis. Mol Biochem Parasitol. 1996. 81: p. 137-49.

60. Curran J., Baillib D., Webnier J.M. Use of genomic DNA restriction fragment length differences to identify nematode species. J Parasitol. 1985. 90: p. 137-144.

61. Dame J.B., Yowell C.A., Courtney C.H. and Lindgren W.G. Cloning and characterization of the ribosomal RNA gene repeat from Ostertagia ostertagi. Mol Biochem Parasitol. 1991. 45: p.275-80.

62. Davidson E.H., Britten R.J. Regulation of gene expression: possible role of repetitive sequences. Science. 1979. 204: p. 1052.

63. Dick T.A., Curran J., Klassen G. Genetics and molecular biology of Trichinella. In Proceedings of the 6th international conference on trichinellosis. SUNY Press. New York. 1985. P.l 18-128.

64. Dick T.A., Lu M.C., de Vos T., Ma K. The use polymerase chain reaction to identify porcine isolates of Trichinella. J Parasitol. 1992. 78: p. 145-148.

65. Dreyfus D.H., Emmons S.W. A transposon-related palindromic repetitive sequence from C. elegans. Nucleic Acids Res. 1991. 25;19(8): p.1871-7.

66. Dupouy-Camet J., Robert F., Guillou J.P., Vallet C., Perret C., Soule C. Genetic analyses of Trichinella isolates with random amplified polymorphic DNA markers. In Proceedings of the Eighth Intern. Conf. on Trichinellosis. Orvieto. Italy. 1993. P. 51.

67. Ellis R.E., Sulston J.E., and Coulson A.R. The rDNA of C. elegans: Sequence and structure. Nucleic Acids Research. 1986. 14: p. 2345-64.

68. Ellsworth D. L., Rittenhouse K. D., Honneycutt R. L. BioTechniques. 1993. 14: p. 214-217.

69. Emmons S.W., Klass M.R., and Hirsh D. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. PNAS USA. 1979. 76(3): p. 1333-7.

70. Emmons S.W., Ruan K.S., Levitt A. and Yesner L Regulation of Tel transposable elements in Caenorhabditis elegans. Cold Spring Harbor Symp. Quant. Biol. 1985. 50: p. 313-9.

71. Emmons S.W., Yesner L., Ruan K.S. and Katzenber D. Evidence for a transposon in Caenorhabditis elegans. Cell. 1983. 32: p.55-65.

72. Etter A., Bernard V., Kenzelmann M. Ribosomal heterogeneity from chromatin diminution in Ascaris lumbricoides. Science. 1994. 265: p. 954-6.

73. Felder H., Herzceg A., de Chastonay Y., Aeby P., Tobler H., Muller F. Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. Gene. 1994. 149(2): p. 219-25.

74. Flockhart H.A., Harrison S.E., Dobinson A.R., James E.R. Enzyme polymorphism in Trichinella. Trans R Soc Trop Med Hyg. 1982. 76: p. 541-545.

75. Gabryel P., Gustowska L., Blotna-Filipiak M., Rauhut W. Pathomorphology of mouse tissues during Trichinella pseudospiralis infection. In: Trichinellosis. New England. 1978. P. 281294.

76. Gancarz Z., Wolfram A., Adonajlo A., Wilezynski M. Complex Epidemiologic studies in Foci of Trichinellosis. In: 11 Intern. Conf. on Trichinellosis. Wroclaw. 1969. P. 196-197.

77. Garkavi B.L. Species of Trichinella isolated from wild animals. Veterinariya. 1972. 10: p. 9091.

78. Georgiev G.P. On the structural organization of operon and the egulation of RNA synthesis in animal cells. J. Theor. Biol. 1969. 25: p. 473.

79. Gerbi S.A., Gourse R.L. & Clark C.G. Conserved regions within the ribosomal DNA: locations and some possible functions. In: The Cell Nucleus, Vol. X (Pusch, H. and Rothblum, L.,eds.), 1982. pp. 351-186.

80. Godey C., Pimpinelli S. The occurrence, role and evolution of chromatin diminution in Nematodes. 1993. 9: p.319-32.

81. Grenier E., Laumond C., Abad P. Molecular characterization of two species-specific tandemly repeated DNAs from entomopathogenic nematodes Steinernema and Heterorhabditis(Nematoda: Rhabditida). Mol Biochem Parasitol. 1996. 83: 47-56.

82. Harris L.J, Prasad S., Rose A.M. Isolation and sequence analysis of Caenorhabditis briggsae representative elements related to the Caenorhabditis elegans transposon Tel. J Mol Evol. 1990. 30: p. 359-69.

83. Hoekstra R., Criado -Fornelio A., Fakkeldij J., Bergman J., Roos M.N. Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat. Mol Biochem Parasitol. 1997. 89(1): p. 97-107.

84. Hoekstra R., Otsen M., Tiibben J., Lenstra J.A. Roos M.H. Non-autonomous transposable elements in the genome of the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol. 2000(a). 25; 106(1): p.163-8.

85. Hoekstra R., Otsen M., Tiibben J., Lenstra J.A. Roos M.H. Transposon associated markers from the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol. 2000(b). 105(1): p.127-35.

86. Hoekstra R., Otsen M., Lenstra J.A. Roos M.H. Characterization of a polymorphic Tel-like transposable element of the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol. 1999. 102(1): p. 157-66.

87. Hoste H., Chilton N.B., Gasser R.B., Beveridge I. Differences in the second internal transcribed spacer (ribosomal DNA) between five species of Trichostrongylus (Nematoda: Trichostrongylidae). Int J Parasitol. 25: p. 75-80.

88. HuangY.J., Stoffel R., Tobler H., Muller F. A newly formed telomere in Ascaris suum does not exert a telomere position effect on a nearby gene. Mol Cell Biol. 1996. 16: p. 130-4.

89. Hugall A., Stanton J., Moritz C. Evolution of the AT-rich mitochondrial DNA of the root knot nematode, Meloidogyne hapla. Mol Biol Evol. 1997. 14(1): p. 40-8.

90. Hugall A., Stanton J., Moritz C. Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in the apomictic Meloidogyne. Mol Biol Evol. 1999. 16(2): p. 157-64.

91. Hussey R.S. Biochemical systematics of nematodes. Helminth Abstr. 1979. 48: p. 141-8.

92. Hyman B.C. & Azervedo J.L. Simiral evolutionary patterning among repeated and single copy nematode mitochondrial genes. Mol Biol Evol. 1996. 13(1): p. 221-32.

93. Hyman B.C., Beck J.L., Weiss K.C. Genetics. 1988. 120: p. 707-12.

94. Yao C., McGraw R.A., Prestwood A.K. A complementary DNA encoding an antigen from Trichinella spiralis muscle larvae and its analog from Trichinella T5 of bobcat origin: sequence, cloning and expressions. Int J Parasitol. 1997. 27(4): p. 425-30.

95. Keddie E.M., Higazi T., Boakye D., Merriweather A., Wooten M.C., Unnasch T.R. Onchocerca volvulus'. Limited heterogeneity in the nuclear and mitochondrial genomes. Exp Parasitol. 1999. 93(4): p. 198-206.

96. Keddie E.M., Higazi T., Unnasch T.R. The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol. 1998. 95(1): p. 111-27.

97. Keulen V., Mertz P.M., Loverde P.T., Shi H., Rekosh D.M. Characterization of a 54 nucleotide gap region in the 28S rRNA gene of Schistosoma mansoni. Mol Biochem Parasitol. 1991. 45: p. 205-14.

98. Klassen G.R., Thiessen J.P., Dick T.A. Restriction endonuclease analysis of repetitive sequences in the Trichinella genome. J Parasitol. 1986. 72: p. 772-775.

99. Klassen G.R., Thiessen J.P., Dick T.A. Strain specific 1,7 kilobase repetitive deoxyribonucleic acid sequence family in Trichinella spiralis. Mol Biochem Parasitol. 1986. 21: p. 227-233.

100. Landolt P., Tobler H. Organization of DNA sequences in the genome of the nematode Ascaris lumbricoides before and after chromatin elimination. Mol Cell Biol. 1988. 7: p.33-42.

101. Landolt P., Tobler H. Characterization of inverted repeated sequences in Ascaria nuclear DNA. Eur J Biochem. 1986. 159: p. 435-42.

102. La Rosa G., Pozio G., Rossi P. Biochemical resolution of European and African isolates of Trichinella nelsoni Britov & Boev, 1972. Parasitol Res. 1990. 77: p. 173-177.

103. Link C.D., Graf-Whitsel J., Wood W.B. Isolation and characterization of a nematode transposable element from Panagrellus redivivus. PNAS USA. 1987. 84: p. 5325.

104. LiuL.X., Chi J.Y., Upton M.P., Ash L.R. Eosinophilic enterocolitis associated with larvae of the pinworm Enterobius vermicularis. Lancet. 1995. 346: p. 410-2.

105. Long E.O. & Dawid I.B. Repeated genes in eucaryotes. Ann Rev Biochem. 1980. 49: p.727-764.

106. Lymbery A. J. Interbreeding, monophyly and the genetic yardstics: species concepts in parasites. Parasitol Today. 1992. 8(6): p. 208-211.

107. Malik H.S., Eickbush T.H. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. Genetics. 2000. 154(1): p.193-203.

108. Malik H.S., Eickbush T.H. The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin many SINEs. Mol Biol Evol. 1998. 15(9): p. 1123-34.

109. Martin R.J., Schnurrenberger P.R., Andersen F.L., Hsu Chaokung. Prevalence of T. spiralis in wild animals on the Illinois swine forms. J Parasitol. 1968. 54(1): p. 108-111.

110. MelovS., Lithgow G.J., Fischer D.R., Tedesco P.M., Johson T.E. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res. 1995. 23(8): p. 1419-25.

111. Minchella D.I., Branstetter B.A., Kazacos K.R. Molecular characterization of sylvatic isolates of Trichinella spiralis. J Parasitol. 1989. 75(3): p. 388-392.

112. Moerman D.G., Waterston R.H. Mobile elements in C. elegans and other nematodes. In: Berg D.E., Howe .M.M.(eds) Mobile DNA. American Society for Microbiology. 1989. Washington, DC, p.537.

113. Moritz K.B., Roth G.E. Complexity of germline and somatic DNA in Ascaris. Nature. 1976. 259: p. 55-7.

114. Muller F., Walker P., Aeby P et al. Nucleotide sequence of satellite DNA contained in the eliminated genome of Ascaris lumbricoides. Nucl Acid Res. 1982. 10: p. 7493-510.

115. Murell K.D. Preslaughter control of Trichinosis. Food Technol. 1987. 37: p. 87-90.

116. Mydzynski L.J. & Dick T.A. Use of enzyme polymorphisms to identify genetic differences in the genus Trichinella. J Parasitol. 1985. 71: p. 671-673.

117. Nadler S.A. Molecular approaches to studying helminth population genetics and phylogeny. Int J Parasitol. 1990. 20: p. 11-29.

118. Nadler S.A., Hudspeth D.S. Philogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol. 2000. 86(2):. p. 380-93.

119. Nelson D.W. and Honda B.M. Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegans. Gene. 1985. 38: p.245-51.

120. Nelson G.S. & Mukundi J. A strain of Trichinella from Renya of low infectivity of rats and domestic pigs. J Helminth. 1963. 37(4): p. 329-338.

121. Neuhaus, H., Muller F., Etter A. and Tobler H. Type I-like intervening sequences are found in the rDNA of the nematode Ascaris lumbricoides. Nucleic Acids Res. 1987. 15: p. 76897707.

122. Nilsen T.W. Trans-splicing of nematode premessenger RNA. 1993. Annu. Rev. Microbiol. 47: p.413-40.

123. Pilgrim D. CeRep25B froms chromosome-specific minisatellite arrays in Caenorhabditis elegans. Genome Res. 1998. 8(11): p. 1192-201.

124. Powers T.O., Platcer E.G., Hyman B.C. Curr Genet. 1986. 11: p. 71-77.

125. Pozio E. & La Rosa G. Characterization of Trichinella isolates. J Helmint. 1991. 28 (2-3): p. 49-50.

126. Ransohoff R.M., Denke J.A., Takacs A.M., Hannon G.H., Nilsen T.W. Organization and expression of 5S rRNA genes in the parasitic nematode Brugia malayi. Nilsen T.W. Nucleic Acids Res. 1989. 17: p. 3777-83.

127. Rodriguez E., Nieto J., Castillo J.A., Garate T. Characterization of Spanish Trichinella isolates by random amplified polymorphic DNA(RAPD). J Helminthol. 1996. 70(4): p. 33543.

128. Rosenzweig B., Liao L., Hirsh D. Sequence of the C. elegans transposable element Tel. Nucleic Acids Res. 1983. 11: p. 4201 -9.

129. Stratford R. and Shields R. A trans-spliced leader RNA sequence in plant parasitic nematodes. Mol Biochem Parasitol. 1994. 67: p.147-155.

130. Tares S., Lemontey J.M., de Guiran G., Abad P. Cloning and characterization of a highly conserved satellite DNA sequence specific for the phytoparasitic nematode Bursaphelenchus xylophilus. Gene. 1993. 129(2): 269-73.

131. Tautz D. Nucl. Acids Res. 1989. 17: p. 4127-4138.

132. Teschke C., Solleder G., Moritz K.B. The highly variable pentameric repeats of the AT-rich germline limited DNA in Parascaris univalens are the telomeric repeats of the somatic chromosomes. NAR.1991. 19(10): p.2677-84

133. Tighe P.I., Goyal P.K., Wilson L.A., Wakelin D., Pritchard D.I. Analysis of genetic variation in isolates of Trichinella using random amplified polymorphic DNA. Mol Biochem Parasitol. 1994. 63(1): p. 175-178.

134. Thiery M., Mugniery D. Microsatellite loci in the phytoparasitic nematode Globodera. Genome. 2000. 43(1): p. 160-5.

135. Tobler H. The differentiation of germ and somatic line in nematodes. Results and problems in differentiation. Ed. Henning W.N.Y. 1986. 13: p. 1-70.

136. Tobler H., Etter A., Muller F. Chromatin diminution in nematode development. Trends of Genet. 1992. 8: p. 427-32.

137. Underwood A.P., Supali T., Wu Y., Bianco A.E. Two microsatellite loci from Brugia malayi show polymorphisms among isolates from Indonesia and Malaysia. Mol Biochem Parasitol. 2000. 106(2): 299-302.

138. Unnasch T.R., Williams S.A. The genomes of Onchocerca volvulus. Int J Parasitol. 2000. 30(4): p. 543-52.

139. Van der Eycken W. Et al. Identification and analysis of a cuticular collagen encoding gene from the plant-parasitic nematode Meloidogyne incognita. Gene. 1994. 151(1-2): p. 273-42.

140. Vos T. de , Klassen G.R., Dick T.A. Sequence analysis of a 1,6 kb element from a porcine isolate of Trichinella spiralis. NAR. 1988. 16: p. 3114.

141. Vos T. de , Klassen G.R., Dick T.A. Stain-specific 1.7 kilobase repetitive deoxyribonucleic acid sequence family in Trichinella spiralis. Mol Biochem Parasitol. 1986. 21: 277-33.

142. Welsh J. & McClelland M. Fingerprinting genomes using PCR with arbitrary primers. NAR. 1990. 18: p. 7213-7218.

143. Williams J.G.K., Kubelik A.R., Livar K.J., Rafalsky A., Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. NAR. 1990. 18: p. 6531-6535.

144. Wilson D.A., Thomas C.A. Palindromes in chromosomes. J Mol Biol. 1974. 84 (1): p. 115.

145. Winnepenninckx B. et al. 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol Biol Evol. 1995. 12: p. 1132-1137.

146. Wolstenholme D.R., McFarlane J.L., Okimoto R., Clary D.O., Wahleithner J.A. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. PNAS USA. 1987. 84: p. 1324-8.

147. Wo Z., Nagano I., Pozio E., Takahashi Y. Polymerase chain reaction primers to identify Trichinella spiralis or T. pseudospiralis. Parasitology International. 1997. 46: p. 149-54.

148. Xie H. and Williams S.A. Molecular phylogenetic studies on filarial parasites based on 5S ribosomal spacer sequences. Parasite. 1994. 1: p. 141-51.

149. Yokogawa T., Watanabe Y., Yotsumoto Y., Kumazawa Y., Ueda T., Hirao I., Miura R., Watanabe K. Structure of mitochondrial tRNA. Nucleic Acids Symp Ser. 1991. (25): p. 175-6.

150. Zarlenga D.S., Al-Yaman F. Minchella D.G., La Rosa G. A repetitive DNA probe specific for a North American sylvatic genotype of Trichinella. Mol Biochem Parasitol. 1991. 48(2): p.131-7.

151. Zarlenga D.S. & Dame J.B. The identification and characterization of break within large subunite ribosomal RNA of Trichinella spiralis: comparison of gap sequences within the genus. Mol Biochem Parasitol. 1991. 51(2): p. 281-289.

152. Zarlenga D.S. & Barta J.R. DNA analysis in the diagnosis of infection and in the speciation of nematode parasites. Rev sei tech Off int Epiz. 1990. 9(2): p. 533-554.

153. Zarlenga D.S. & Gamble H.R. Molecular cloning and expression of a immunodominant 53-kDa excretory-secretory antigen from Trichinella spiralis muscle larvae. Mol Biochem Parasitol. 1990. 42(2): p. 165-74.

154. Zarlenga D.S., Al-Yaman F., Minchella D., La Rosa G. A repetitive DNA specific for a North American sylvatic genotype of Trichinella. Mol Biochem Parasitol. 1991.48: p. 131-8.

155. Zarlenga D.S., Aschenbrenner R.A., Lichtenfels J.R. Variations in microsatellite sequences provide evidence for population differences and multiple ribosomal gene repeats within Trichinellapseudospiralis. J Parasitol. 1996. 82(4): p. 534-8.

156. Zarlenga D.S., Chute M.B., Martin A., Kapel C. A single, multiplex PCR for the differentiation of 7 genotypes of Trichinella. 1999.

157. Zarlenga D.S., Gasbarre L.S., Boyd P., Leighton E., Lichtenfels J.R. Identification and semi-quantitation of Ostertagia ostertagi eggs by enzymatic amplification of ITS-1 sequences. Veterinary Parasitology. 1998. 77: p. 245-57.

158. Zarlenga D.S., Lichtenfels J.R., Stringfellow F. Cloning and sequence analysis of the small subunit ribosomal RNA gene from Nematodirus battus. J Parasitol. 1994a. 80: p. 342-344.

159. Zeng W., Alarcon C.M. Donelson J.E. Many transcribed regions of the Onchocerca volvulus genome contain the spliced leader sequence of Caenorhabditis elegans. Mol. Cell. Biol. 1990. 10: p. 2765-73.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.