Функциональная топография транспортно-матричной РНК тема диссертации и автореферата по ВАК РФ 02.00.10, доктор химических наук Шпанченко, Ольга Валерьевна

  • Шпанченко, Ольга Валерьевна
  • доктор химических наукдоктор химических наук
  • 2010, Москва
  • Специальность ВАК РФ02.00.10
  • Количество страниц 221
Шпанченко, Ольга Валерьевна. Функциональная топография транспортно-матричной РНК: дис. доктор химических наук: 02.00.10 - Биоорганическая химия. Москва. 2010. 221 с.

Оглавление диссертации доктор химических наук Шпанченко, Ольга Валерьевна

СПИСОК СОКРАЩЕНИЙ.

ВВЕДЕНИЕ.

ОБЗОР ЛИТЕРАТУРЫ.

Транспортно-матричная РНК.

Вторичная структура тмРНК.

Процессинг предшественника тмРНК.

Модифицированные основания в тмРНК.

Аминоацилирование тмРНК.

Белок БтрВ.

Пространственная организация белка БтрВ.

Структура комплекса тРНК-подобной области тмРНК с белком ЭтрБ.

Структурная организация комплексов тмРНК и белка ЭтрВ с рибосомой.

Транс- трансляция.

Аминоацилирование тмРНК, её взаимодействие с белками БтрВ и ЕБ-Ти, а также связывание этого комплекса с рибосомой.

Причины появления свободного А-участка в транслирующих рибосомах.

Распознавание «арестованных» рибосом и свободного А-сайта.

Переключение на матричную область, узнавание кодона продолжения синтеза.

Элонгация и терминация.

Деградация белка и мРНК.

Биологическая роль /и/7ш/с-трансляции.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ.

Неканоническое взаимодействие тмРНК с элонгационным фактором Ти.

Синтез модифицированной тмРНК.

Формирование и анализ ковалентного соединения тмРНК с белками Б100 экстракта.

Комплекс деацилированной тмРНК с элонгационным фактором Ти в присутствии вТР или вБР.

Модель взаимодействия тмРНК с рибосомой.

Двухдоменная организация тмРНК.

Поиск элемента тмРНК, обеспечивающего узнавание А-участком рибосомы

Исследование роли некоторых консервативных нуклеотидов тмРНК.

Поиск интрамолекулярных супрессоров для летальных мутаций ЦА85,86СС иЦАЗ()0,301СС.

Мутации нуклеотидов тРНК-подобной части, затрагивающие активность тмРНК.

Выделение комплексов транспортно-матричной РНК с рибосомой.

Анализ РНК, входящих в состав выделенных комплексов.

Анализ белкового состава выделенных комплексов.

Исследование комплексов тмРНК с рибосомой методом химического пробинга.

Исследование комплекса тмРНК-4 с рибосомой методом криоэлектронной томографии.

Моделирование структуры комплексов тмРНК с рибосомой.

МАТЕРИАЛЫ И МЕТОДЫ.

Реактивы и биопрепараты.

Буферы и растворы.

Олигодезоксирибонуклеотиды и штаммы.

Фотоаффинное химическое сшивание тмРНК.

Синтез тмРНК с помощью Т7-РНК-полимеразы.

Синтез тмРНК, содержащей 4-тиоуридин, с помощью Т7-РНК-полимеразы

То-фингерпринты.

Комплексообразование и фотоактивируемое химическое сшивание тмРНК

Анализ белкового компонента «сшивки».

Определение позиции «сшивки» в тмРНК.

Футпринтинг.

Внутримолекулярное фотоаффинное^химическое сшивание тмРНК.

Анализ продуктов сшивания с помощью реакции обратной транскрипции

Гидролиз тмРНК с помощью РНКазы Н.

Измерение констант ассоциации комплексов тмРНК и тРНК с EF-Tu.

Манипуляции с ДНК.

Приготовление компетентных клеток Е. coli для трансформации с помощью теплового шока.

Трансформация компетентных клеток Е. coli с помощью теплового шока 163 Приготовление компетентных клеток Е. coli для электротрансформации

Электротрансформация клеток Е. coli.

Выделение плазмидной ДНК.164

Определение концентрации ДНК в растворе.

Разделение фрагментов ДНК в агарозном геле.

Выделение фрагментов ДНК из агарозного геля.

Приготовление векторов и вставок.

Лигирование.

Сайт-направленный мутагенез.

Создание штамма Е. coli SKZl(Assr./4).

Клонирование гена, кодирующего тмРНК.

Создание плазмиды pR для генетической системы определения активности тмРНК.

Конструирование плазмиды pGEMstra.

Сайт-направленный мутагенез тмРНК.

Клонирование гена репортёрного пептида в плазмиды семейства pGEM.

Случайный мутагенез тмРНК in vivo и анализ мутантов.

Определение первичной структуры ДНК по Сэнгеру.

Анализ активности молекул тмРНК.

Анализ активности молекул тмРНК с помощью «генетической» системы. 173 Определение активности молекул тмРНК с помощью гибридного фага

XimmP22.

Аминоацилирование тмРНК.

Анализ положения пептида в комплексе.

Выделение и анализ комплексов тмРНК с рибосомой.

Выделение комплексов.

Анализ РНК-состава комплекса.

Анализ белкового состава комплекса.

Изучение комплексов тмРНК с рибосомой методом химического пробинга.184 Определение структуры комплекса рибосомы с тмРНК-4 методом криоэлектронной томографии.

Моделирование структуры комплексов тмРНК с рибосомой.

ВЫВОДЫ.

Рекомендованный список диссертаций по специальности «Биоорганическая химия», 02.00.10 шифр ВАК

Заключение диссертации по теме «Биоорганическая химия», Шпанченко, Ольга Валерьевна

выводы

1. Элонгационный фактор Tu и тмРНК участвуют во взаимодействии нового типа. В отличие от канонического комплекса между ацилированным тРНК-подобным доменом тмРНК и EF-Tu*GTP деацилированная тмРНК образует комплекс с EF-Tu*GDP за счёт взаимодействия со спиралью 2 и псевдоузлом 4.

2. Белок SrapB входит в состав тмРНК-рибосомных комплексов на всех стадиях транс-трансляции. Элонгационные комплексы содержат по одной молекуле белка SmpB, связанной с каноническим участком взаимодействия на TLD тмРНК.

3. Молекула тмРНК в растворе существует в виде двух компактно свернутых доменов, между которыми уложена одноцепочечная мРНК-подобная область. В ходе транс-трансляции домены, не изменяя своей структуры, занимают определённые сайты на рибосоме, в то время как матричная область перемещается по ней в экспонированной форме.

4. Экспериментальная проверка двухдоменной модели с помощью химических, физических и биоинформационных подходов позволяет построить динамическую модель транс-трансляции, адекватную всей совокупности имеющихся на' сегодняшний день данных. Согласно этой модели структурные элементы тмРНК (псевдоузлы, спирали, арка вокруг головы 30S рибосомной субчастицы, сформированная псевдоузлами), сохраняются в процессе шранотрансляции. Основные изменения при прохождении MLD тмРНК через рибосому затрагивают район мРНК-подобной области и спирали 5 тмРНК.

5. Правильное позиционирование ко дона возобновления синтеза в А-участке рибосомы задается структурным элементом, сформированным белком SmpB, псевдоузлом 1 и петлёй А79-А86 тмРНК, который совершает поворот при транслокации TLD тмРНК из А-участка рибосомы в Р-участок.

Список литературы диссертационного исследования доктор химических наук Шпанченко, Ольга Валерьевна, 2010 год

1. Lee S.Y., Bailey S.C., Apirion D. 1978. Small stable RNAs from Escherichia colt evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J. Bacteriol. 133, 1015-1023.

2. Jentch, S. 1996. When proteins receive deadly message at birth. Science. 271, 955-956.

3. Inouye M., Delihas N. 1988. Small RNAs in the prokaryotes: a growing list of diverse roles. Cell. 53, 5-7.

4. Jain S.K., Gurevitz M., Apirion D. 1982. A small RNA that complements mutants in the RNA processing enzyme ribonuclease P. J. Mol. Biol. 162, 515-533.5. http://rnp .uthct.edu/rnp/tmRDB/tmRDB .html

5. Komine Y., Inokuchi H. 1991. Physical map locations of the genes that encode small stable RNAs in Escherichia coli. J. Bacteriol. 173, 5252.

6. Chauhan A.K., Apirion D. 1989. The gene for a small stable RNA (lOSa RNA) of Escherichia coli. Mol. Microbiol. 3, 1481-1485.

7. Komine Y., Kitabatake M., Yokogawa Т., Nishikawa K., Inokuchi H. 1994. A tRNA-like structure is present in lOSa RNA, a small stable RNA from Escherichia coli. Proc. Natl. Acad. Sci. USA. 91, 9223-9227.

8. Keiler K.C., Shapiro L., Williams K.P. 2000. tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caidobacter. Proc. Natl. Acad. Sci. USA. 97, 7778-7783.

9. Mao C., Bhardwaj K., Sharkady S.M., Fish R.I., Driscoll Т., Wower J., Zwieb C., Sobral B.W., Williams K.P. 2009. Variations on the tmRNA gene. RNA Biol. 6, 355-361.

10. Moore S.D., Sauer R.T. 2005. Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol. Microbiol. 58,456-466.

11. Hallier M., Ivanova N., Rametti A., Pavlov M., Ehrenberg M., Felden B. 2004. Pre-binding of small protein B to a stalled ribosome triggers /raws-translation. J. Biol. Chem. 279, 25978-25985.

12. Karzai A.W., Susskind M.M., Sauer R.T. 1999. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBOJ. 18,3793-3799.

13. Hanawa-Suetsugu K., Takagi M., Inokuchi H., Himeno H., Muto A. 2002. SmpB functions in various steps of /ram-translation. Nucleic Acids Res. 30, 1620-1629.

14. Keiler K.C., Shapiro, L. 2003. TmRNA is required for correct timing of DNA replication in Caulobacter crescentus. J. Bacteriol 185, 573-580.

15. Hong S.J., Tran Q.A., Keiler K.C. 2005. Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Mol. Microbiol. 57, 565-575.

16. Oh B.K., Apirion D. 1991. lOSa RNA, a small stable RNA of Escherichia coli, is functional. Mol. Gen. Genet. 229, 52-56.

17. Huang C„ Wolfgang M.C., Withey J., Koomey M., Friedman D.I. 2000. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J. 19, 1098-1107.

18. Hutchison C.A., Peterson S.N., Gill S.R., Cline R.T., White O., Fräser C.M., Smith H.O., Venter J.C. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science. 286, 2165-2169.

19. Akerley B.J., Rubin E.J., Novick V.L., Amaya K., Judson N., Makalanos J.J. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sei. USA. 99, 966971.

20. Thibonnier M., Thiberge J.M., De Reuse H. 2008. Irajw-translation in Helicobacter pylori: essentiality of ribosome rescue and requirement of protein tagging for stress resistance and competence. PLoS One. 3(1 l):e3810.

21. Zwieb C., Wower I., Wower J. 1999. Comparative sequence analysis of tmRNA. Nucleic Acids Res. 27, 2063-2071.

22. Williams K.P., Bartel D.P. 1996. Phylogenetic analysis of tmRNA secondary structure. RNA. 2, 1306-1310.

23. Felden B., Himeno H., Muto A., McCutcheon J.P., Atkins J.F., Gesteland R.F. 1997. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA. 3, 89-103.

24. Felden B., Himeno H., Muto A., Atkins J. F., Gesteland R. 1996. Structural organization of Escherichia coli tmRNA. Biochimie. 78, 979-983.

25. Gaudin C., Zhou X., Williams K.P., Felden B. 2002. Two-piece tmRNA in cyanobacteria and its structural analysis. Nucleic Acids Res. 30, 2018-2024.

26. Sharkady S.M., Williams K.P. 2004. A third lineage with two-piece tmRNA. Nucleic Acids Res. 32, 4531-4538.

27. Ulve V.M., Cheron A., Trautwetter A., Fontenelle C., Barloy-Hubler F. 2007. Characterization and expression patterns of Sinorhizobium meliloti tmRNA (ssrA). FEMS Microbiol. Lett. 269, 117-123.

28. Gueneau de Novoa P., Williams K.P. 2004. The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts. Nucleic Acids Res. 32, D104-D108.

29. Lin-Chao S„ Wei C.L., Lin Y.T. 1999. RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc. Natl. Acad. Sei. USA. 96, 12406-12411.

30. Li Z., Pandit S., Deutscher M.P. 1998. 3' exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc. Natl. Acad. Sei. USA. 95, 2856-2861.

31. Ray B.K., Apirion D. 1979. Characterization of 10S RNA: a new stable RNA molecule from Escherichia coli. Mol. Gen. Genet. 174, 25-32.

32. Felden B., Hanawa K., Atkins J.F., Himeno H., Muto A., Gesteland R.F., McCloskey J.A., Crain P.F. 1998. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBOJ. 17, 3188-3196.

33. Felden B., Atkins J.F., Gesteland R.F. 1996. tRNA and mRNA both in the same molecule. Nat. Struct. Biol. 3, 494.

34. Suddath F.L., Quigley G.J., McPherson A., Sneden D., Kim J.J., Kim S.H., Rich A. 1974. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0 angstroms resolution. Nature. 248, 20-24.

35. Kealey J.T., Santi D.V. 1994. High-level expression and rapid purification of tRNA (m5U54)-methyltransferase. Protein Expr. Purif. 5, 149-152.

36. Nurse K., Wrzesinski J., Bakin A., Lane B.G., Ofengand J. 1995. Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA. 1, 102-112.

37. Cusack S., Hartlein M., Leberman R. 1991. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 19, 3489-3498.

38. Francklyn C., Schimmel P. 1989. Aminoacylation of RNA minihelices with alanine. Nature. 337, 478-481.

39. Beuning P.J., Yang F., Schimmel P., Musier-Forsyth K. 1997. Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase. Proc. Natl. Acad. Sei. USA. 94, 10150-10154.r • I

40. Shi J.P., Schimmel P. 1991. Aminoacylation of alanine minihelices. "Discriminator" base modulates transition state of single turnover reaction. J. Biol. Chem. 266, 2705-2708.

41. Hou Y.M., Schimmel P. 1988. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 333, 140-145.

42. McClain W.H., Foss K. 1988. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science. 240, 793796.

43. Nameki N., Tadaki T., Muto A., Himeno H. 1999. Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro. J. Mol. Biol. 289, 1-7.

44. Barends S., Karzai A.W., Sauer R.T., Wower J., Kraal B. 2001. Simultaneous and functional binding of SmpB and EF-Tu-GTP to the alanyl acceptor arm of tmRNA. J. Mol. Biol 314, 9-21.

45. Rudinger-Thirion J., Giege R., Felden B. 1999. Aminoacylated tmRNA from Escherichia coli interacts with prokaryotic elongation factor Tu. RNA. 5, 989992.

46. Corvaisier S., Bordeau V., Felden B. 2003. Inhibition of transfer messenger RNA aminoacylation and /raws-translation by aminoglycoside antibiotics. J. Biol. Chem. 278, 14788-14797.

47. Miczak A., Chauhan A.K., Apirion D. 1991. Two new genes located between 2758 and 2761 kilobase pairs on the Escherichia coli genome. J. Bacteriol. 173, 3271-3272.

48. Sundermeier T.R., Dulebohn D.P., Cho H.J., Karzai A.W. 2005. A previously uncharacterized role for small protein B (SmpB) in transfer messenger RNA-mediated /raws-translation. Proc. Nail. Acad. Sci. USA. 102, 2316-2321.

49. Jacob Y., Sharkady S.M., Bhardwaj K., Sanda A., Williams, K.P. 2005. Function of the SmpB tail in transfer-messenger RNA translation revealed by a nucleus-encoded form. J. Biol. Chem. 280, 5503-5509.

50. Dong G., Nowakowski J., Hoffman D.W. 2002. Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue. EMBOJ. 21, 1845-1854.

51. Gutmann S., Haebel P.W., Metzinger L., Sutter M., Felden B., Ban N. 2003. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature. 424, 699-703.

52. Stagg S.M., Frazer-Abel A.A., Hagerman P.J., Harvey S.C. 2001. Structural studies of the tRNA domain of tmRNA. J. Mol. Biol. 309, 727-735.

53. Valle M„ Gillet R., Kaur S., Henne A., Ramakrishnan V., Frank J. 2003. Visualizing tmRNA entry into a stalled ribosome. Science. 300, 127-130.

54. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B.F., Nyborg J. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 270, 1464-1472.

55. Wimberly B.T., Brodersen D.E., Clemons W.M., Morgan-Warren R.J., Carter A.P., Vonrhein C., Hartsch T., Ramakrishnan V. 2000. Structure of the 30S ribosomal subunit. Nature. 407, 327-339.

56. Yusupov M.M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H., Noller H.F. 2001. Crystal structure of the ribosome at 5.5 A resolution. Science. 292, 883-896.

57. Valle M., Sengupta J., Swami N.K., Grassucci R.A., Burkhardt N., Nierhaus K.H., Agrawal R.K., Frank J. 2002. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBOJ. 21, 3557-3567.

58. Valle M., Zavialov A., Li W., Stagg S.M., Sengupta J., Nielsen R.C., Nissen P., Harvey S.C., Ehrenberg M., Frank J. 2003. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899-906.

59. Knudsen B., Wower J., Zwieb C., Gorodkin J. 2001. tmRDB (tmRNA database). Nucleic Acids Res. 29, 171-172.

60. Stark H., Rodnina M.V., Wieden H.J., Zemlin F., Wintermeyer W., van Heel M. 2002. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9, 849-854.

61. Haebel P.W., Gutmann S., Ban N. 2004 Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs. Curr. Opin. Struct. Biol. 14, 58-65.

62. Kaur S., Gil let R., Li W„ Gursky R., Frank J. 2006. Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc. Natl. Acad. Sci. USA. 103, 16484-16489.

63. Metzinger L., Hallier M., Felden B. 2005. Independent binding sites of small protein B onto transfer-messenger RNA during /raws-translation. Nucleic Acids Res. 33, 2384-2394.

64. Ivanova N., Pavlov M.Y., Bouakaz E., Ehrenberg M., Schiavone L.H. 2005. Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA. Nucleic Acids Res. 33, 3529-3539.

65. Cheng K., Ivanova N., Scheres S.H., Pavlov M.Y., Carazo J.M., Hebert H., Ehrenberg M., Lindahl M. 2010. tmRNA-SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes. J. Struct. Biol. 169, 342348.

66. Weis F., Bron P., Rolland J.P., Thomas D., Felden B., Gillet R. 2010. Accomodation of tmRNA-SmpB into stalled ribosomes: a cryo-EM study. RNA. 16, 299-306.

67. Hallier M., Desreac J., Felden B. 2006. Small protein B interacts with the large and the small subunits of a stalled ribosome during /ram-translation. Nucleic Acids Res. 34, 1935-1943.

68. Gillet R., Kaur S., Li W., Hallier M., Felden B., Frank J. 2007. Scaffolding as an organizing principle in ¿raws-translation. The roles of small protein B and ribosomal protein SI. J. Biol. Chem. 282, 6356-6363.

69. Tu G.F., Reid G.E., Zhang J.G., Moritz R.L., Simpson RJ. 1995. C-terminal extension of truncated recombinant proteins in Escherichia coli with a lOSa RNA decapeptide. J. Biol. Chem. 270, 9322-9326.

70. Keiler K.C., Sauer R.T. 1996. Sequence determinants of C-terminal substrate recognition by the Tsp protease. J. Biol Chem. 271, 2589-2593.

71. Keiler K.C., Waller P.R., Sauer R.T. 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 271, 990-993.

72. Withey J., Friedman D. 1999. Analysis of the role of ¿raws-translation in the requirement of tmRNA for lambdaimmP22 growth in Escherichia coli. J. Bacteriol 181, 2148-2157.

73. Gottesman S., Roche E., Zhou Y., Sauer R.T. 1998. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338-1347.

74. Herman C„ Thevenet D., Bouloc P., Walker G.C., D'Ari R. 1998. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12, 1348-1355.

75. Metzinger L., Hallier M., Felden B. 2008. The highest affinity binding site of small protein B on transfer messenger RNA is outside the tRNA domain. RNA. 14, 1761-1772.

76. Konno T., Kurita D., Takada K., Muto A., Himeno H. 2007. A functional interaction of SmpB with tmRNA for determination of the resuming point of iraws-translation. RNA. 13, 1723-1731.

77. Ivanova N., Lindell M., Pavlov M., Holmberg Schiavone L., Wagner E.G., Ehrenberg M. 2007. Structure probing of tmRNA in distinct stages of transtranslation. RNA. 13, 713-722.

78. Sundermeier T.R., Karzai A.W. 2007. Functional SmpB-ribosome interactions require tmRNA. J. Biol. Chem. 282, 34779-34786.

79. Abo T., Inada T., Ogawa K., Aiba H. 2000. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J. 19, 3762-3769.

80. Ujiie H, Matsutani T, Tomatsu H, Fujihara A, Ushida C, Miwa Y, Fujita Y, Himeno H, Muto A. 2009. 7ra/«-translation is involved in the CcpA-dependent tagging and degradation of TreP in Bacillus subtilis. J. Biochem. 145, 59-66.

81. Yamamoto Y., Sunohara T., Jojima K., Inada T., Aiba H. 2003. SsrA-mediated /ram-translation plays a role in mRNA quality control by facilitating degradation of truncated mRNAs. RNA. 9, 408-418.

82. Ueda K., Yamamoto Y., Ogawa K., Abo T., Inokuchi H„ Aiba H. 2002. Bacterial SsrA system plays a role in coping with unwanted translational readthrough caused by suppressor tRNAs. Genes Cells. 7, 509-519.

83. Abo T., Ueda K., Sunohara T., Ogawa K., Aiba H. 2002. SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia co/i. Genes Cells. 7, 629-638.

84. Li X., Hirano R., Tagami H., Aiba H. 2006. Protein tagging at rare codons is caused by tmRNA action at the 3' end of nonstop mRNA generated in response to ribosome stalling. RNA. 12, 248-255.

85. Roche E.D., Saue R.T. 1999. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 18, 4579-4589.

86. Hayes C.S., Bose B., Sauer R.T. 2002. Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc. Natl. Acad. Set USA. 99, 3440-3445.

87. Li X., Yagi M., Morita T„ Aiba H. 2008. Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Mol. Microbiol '. 68, 462-473.

88. Hayes C.S., Sauer R.T. 2003. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell. 12, 903-911.

89. Roche E.D., Sauer R.T. 2001. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J. Biol. Chem. 276, 28509-28515.

90. Collier J., Binet E., Bouloc P. 2002. Competition between SsrA tagging and translational termination at weak stop codons in Escherichia coli. Mol. Microbiol. 45, 745-754.

91. Hayes C.S., Bose B., Sauer R.T. 2002. Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. J. Biol. Chem. 277, 33825-33832.

92. Sunohara T., Abo T., Inada T., Aiba H. 2002. The C-terminal amino acid sequence of nascent peptide is a major determinant of SsrA tagging at all three stop codons. RNA. 8, 1416-1427.

93. Li X., Yokota T., Ito K., Nakamura Y., Aiba H. 2007. Reduced action of polypeptide release factors induces mRNA cleavage and tmRNA tagging at stop codons in Escherichia coli. Mol. Microbiol. 63, 116-126.

94. Muto H., Ito K. 2008. Peptidyl-prolyl-tRNA at the ribosomal P-site reacts poorly with puromycin. Biochem. Biophys. Res. Commim. 366, 1043-1047.

95. Garza-Sanchez F., Janssen B.D., Hayes C.S. 2006. Prolyl-tRNA(Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfermessenger RNA. J. Biol. Chem. 281, 34258-34268.

96. Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C. 2005. Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol. Cell. 19, 333-343.

97. Sunohara T., Jojima K., Yamamoto Y., Inada T., Aiba H. 2004. Nascent-peptide-mediated ribosome stalling at a stop codon induces rnRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA. 10, 378-386.

98. Asano K., Kurita D., Takada K., Konno T., Muto A., Himeno H. 2005. Competition between trans-translation and termination or elongation of translation. Nucleic Acids Res. 33, 5544-5552.

99. Crandall J., Rodriguez-Lopez M., Pfeiffer M., Mortensen B., Buskirk A. 2010. Ribosomal RNA mutations that inhibit transfer-messenger RNA activity on stalled ribosomes. J. Bacteriol. 192, 553-559.

100. Holberger L.E, Hayes C.S. 2009. Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli. J. Biol. Chem. 284, 32188-32200.

101. Ogle J.M., Ramakrishnan V. 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129-177.

102. Garza-Sánchez F., Shoji S., Fredrick K., Hayes C.S. 2009. RNase II is important for A-site mRNA cleavage during ribosome pausing. Mol. Microbiol. 73, 882-897.

103. Ivanova N., Pavlov M.Y., Felden B., Ehrenberg M. 2004. Ribosome rescue by tmRNA requires truncated mRNAs. J. Mol. Biol. 338, 33-41.

104. Yusupova G.Z., Yusupov M.M., Cate J.H., Noller H.F. 2001. The path of messenger RNA through the ribosome. Cell. 106, 233-241.

105. Jenner L., Romby P., Rees B., Schulze-Briese C., Springer M., Ehresmann C., Ehresmann B., Moras D., Yusupova G., Yusupov M. 2005. Translational operator of mRNA on the ribosome: How repressor proteins exclude ribosome binding. Science. 308,120-123.

106. Ivanova N., Pavlov M.Y., Ehrenberg M. 2005. tmRNA-induced release of messenger RNA from stalled ribosomes. J. Mol. Biol. 350, 897-905.

107. Williams K.P., Martindale K.A., Bartel D.P. 1999. Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J. 18, 54235433.

108. Lim V.I., Garber M.B. 2005. Analysis of recognition of transfer-messenger RNA by the ribosomal decoding center. J. Mol. Biol. 346, 395-398.

109. Miller M.R., Healey D.W., Robison S.G., Dewey J.D., Buskirk A.R. 2008. The role of upstream sequences in selecting the reading frame on tmRNA. BMC Biol. 6, 29.

110. Watts T., Cazier D., Healey D., Buskirk A. 2009. SmpB contributes to reading frame selection in the translation of transfer-messenger RNA. J. Mol. Biol. 391, 275-281.

111. O'Connor M. 2007. Minimal translation of the tmRNA tag-coding region is required for ribosome release. Biochem. Biophys. Res. Commim. 357, 216281.

112. Weber-Ban E.U., Reid B.G., Miranker A.D., Horwich A.L. 1999. Global unfolding of a substrate protein by the HsplOO chaperone ClpA. Nature. 401, 90-93.

113. Kim Y.I., Burton R.E., Burton B.M., Sauer R.T., Baker T.A. 2000. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell. 5, 639-648.

114. Wiegert T., Schumann W. 2001. SsrA-mediated tagging in Bacillus subtilis. J. Bacteriol. 183, 3885-3889.

115. Farrell C.M., Grossman A.D., Sauer R.T. 2005. Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol. 57, 1750-1761.

116. Bohn C., Binet E., Bouloc P. 2002. Screening for stabilization of proteins with a /ram-translation signature in Escherichia coli selects for inactivation of the ClpXP protease. Mol. Genet. Genomics. 266, 827-831.

117. Baker T.A., Sauer R.T. 2006. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31, 647-653.

118. Flynn J.M., Levchenko I., Seidel M., Wickner S.H., Sauer R.T., Baker T.A. 2001. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. USA. 98, 1058410589.

119. Levchenko I., Grant R.A., Wah D.A., Sauer R.T., Baker T.A. 2003. Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol. Cell. 12, 365-372.

120. Flynn J.M., Levchenko I., Sauer R.T., Baker T.A. 2004. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18, 22922301.

121. Levchenko I., Seidel M., Sauer R.T., Baker T.A. 2000. A specificity-enhancing factor for the ClpXP degradation maphine. Science. 289, 23542356.

122. Wah D.A., Levchenko I., Rieckhof G.E., Bolon D.N., Baker T.A., Sauer R.T. 2003. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell. 12, 355-363.

123. Lessner F.H., Venters B.J., Keiler K.C. 2007. Proteolytic adaptor for transfermessenger RNA-tagged proteins from alpha-proteobacteria. J. Bacteriol. 189, 272-275.

124. Dougan D.A., Reid B.G., Horwich A.L., Bukau B. 2002. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell. 9, 673-683.

125. Ito K., Akiyama Y. 2005. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59, 211-231.

126. Herman C., Prakash S., Lu C.Z., Matouschek A., Gross C.A. 2003 Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell. 11, 659-669.

127. Choy J.S., Aung L.L., Karzai A.W. 2007. Lon protease degrades transfermessenger RNA-tagged proteins. J. Bacteriol. 189, 6564-6571.

128. Mehta P., Richards J., Karzai A.W. 2006. tmRNA determinants required for facilitating nonstop mRNA decay. RNA. 12, 2187-2198.

129. Richards J., Mehta P., Karzai A.W. 2006. RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol. Microbiol. 62, 1700-1712.

130. Karzai A.W., Sauer R.T. 2001. Protein factors associated with the SsrA.SmpB tagging and ribosome rescue complex. Proc. Natl. Acad. Sci. USA. 98, 30403044.

131. Baumler A.J., Kusters J.G., Stojiljkovic I., Heffron F. 1994. Salmonella fyphimnrium loci involved in survival within macrophages. Infect. Immim. 62, 1623-1630.

132. Wiegert T., Schumann W. 2001. SsrA-mediated tagging in Bacillus subtilis. J. Bacteriol 183, 3885-3889.

133. Olcan N.A., Bliska J.B., Karzai A.W. 2006. A Role for the SmpB-SsrA system in Yersinia pseudotuberculosis pathogenesis. PLoS Pathog. 2, e6.

134. Muto A., Fujihara A., Ito K.I., Matsuno J., Ushida C., Himeno H. 2000. Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells. 5, 627-635.

135. Julio S.M., Heithoff D.M., Mahan M.J. 2000. ssrA (tmRNA) plays a role in Salmonella enterica serovar Typhimurium pathogenesis. J. Bacteriol. 182, 1558-1563.

136. Braud S., Lavire C., Bellier A., Mazodier P. 2006. Effect of SsrA (tmRNA) tagging system on translational regulation in Streptomyces. Arch. Microbiol. 184, 343-352.

137. Shin J.H., Price C.W. 2007. The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J Bacteriol. 189, 3729-3737.

138. Singh N.S., Varshney U. 2004. A physiological connection between tmRNA and peptidyl-tRNA hydrolase functions in Escherichia coli. Nucleic Acids Res. 32, 6028-6037.

139. Szaflarski W., Vesper O., Teraoka Y., Plitta B., Wilson D.N., Nierhaus K.H. 2008. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J. Mol. Biol. 380, 193-205.

140. Kuroha K., Horiguchi N., Aiba H., Inada T. 2009. Analysis of nonstop mRNA translation in the absence of tmRNA in Escherichia coli. Genes Cells. 14, 739-749.

141. Janssen B.D., Hayes C.S. 2009. Kinetics of paused ribosome recycling in Escherichia coli. J. Mol. Biol. 394, 51-67.

142. Christensen S.K., Gerdes K. 2003. RelE toxins from Bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol. Microbiol. 48, 1389-1400.

143. Christensen S.K., Pedersen K., Hansen F.G., Gerdes K. 2003. Toxin-antitoxin loci as stress-response element: ChpAK/MazF and ChpBK cleave translated mRNA and are counteracted by tmRNA. J. Mol. Biol. 332, 809-819.

144. Pedersen K., Zavialov A.V., Pavlov M.Y., Elf J., Gerdes K., Ehrenberg M. 2003. The bacterial toxin RelE displays codon-speciflc cleavage of mRNAs in the ribosomal A site. Cell. 112, 131-140.

145. Munavar H., Zhou Y., Gottesman S. 2005. Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants. J. Bacterial. 187, 47394751.

146. Ranquet C., Geiselmann J., Toussaint A. 2001. The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc. Natl. Acad. Sci. USA. 98, 10220-10225.

147. Billington S.J., Johnston J.L., Rood J.I. 1996. Virulence regions and virulence factors of the ovine footrot pathogen, Dichelobacter nodosus. FEMS Microbiol Lett. 145, 147-156.

148. Ebeling S., Kundig C., Hennecke H. 1991. Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J. Bacteriol. 112>, 63736382.

149. Keiler K.C., Shapiro L. 2003. tmRNA in Caulobacter crescentus is cell cycle regulated by temporally controlled transcription and RNA degradation. J. Bacteriol. 185, 1825-1830.

150. Hong S.J., Lessner F.H., Mahen E.M., Keiler K.C. 2007. Proteomic identification of tmRNA substrates. Proc. Natl. Acad. Sci. USA. 104, 1712817133.

151. Hayes C.S., Keiler K.C. 2010. Beyond ribosome rescue: tmRNA and co-translational processes. FEBSLett. 584, 413-419.

152. Campo N., Tjalsma H., Buist G., Stepniak D., Meijer M., Veenhuis M., Westennann M., Miiller J.P., Bron S., Kok J., Kuipers O.P., Jongbloed J.D. 2004. Subcellular sites for bacterial protein export. Mo I. Microbiol. 53, 15831599.

153. Russell J.H., Keiler K.C. 2009. Subcellular localization of a bacterial regulatory RNA. Proc. Natl. Acad. Sci. USA. 106, 16405-16409.

154. Shiomi D., Yoshimoto M., Homma M., Kawagishi I. 2006. Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol. Microbiol. 60, 894-906.

155. Sprinzl M., Kucharzewski M., Hobbs J.B., Cramer F. 1977. Specificity of elongation factor Tu from Escherichia coli with respect to attachment to the amino acid to the 2' or 3' hydroxyl group of the terminal adenosine of tRNA. Biochemistry. 78, 55-61.

156. Homung V., Hoffman H.P., Sprinzl M. 1998. In vitro selected RNA molecules that bind to elongation factor Tu. Biochemistry. 37, 7260-7267.

157. Moazed D., Robertson J.M., Noller H.F. 1988. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 334, 362-364.

158. Munishkin A., Wool I.G. 1997. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. Proc. Natl. Acad. Set USA. 94, 12280-12284.

159. Stark H., Rodnina M.V., Rinke-Appel J., Brimacombe R., Wintermeyer W., van Heel M. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature. 389,403-406.

160. Stepanov V.G., Nyborg J. 2003. tmRNA from Thermus thermophilus. Interaction with alanyl-tRNA synthetase and elongation factor Tu. Eur. J. Biochem. 270, 463-475.

161. Сергиев П.В., Донцова О.А., Богданов A.A. 2001. Изучение структуры прокариотической рибосомы биохимическими методами: Судный день. Молекулярная биология. 35, 559-583.

162. Karzai A.W., Roche E.D., Sauer R.T. 2000. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7, 449-455.

163. Wower I., Zwieb C., Guven S., Wower J. 2000. Binding and cross-linking of tmRNA to ribosomal protein SI, on and off the Escherichia coli ribosome. EMBOJ. 19, 6612-6621.

164. Nissen P., Thirup S., Kjeldgaard M., Nyborg J. 1999. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure Fold Des. 7, 143-156.

165. Nissen P., Kjeldgaard M., Thirup S., Clark B.F.C., Nyborg J. 1996. The ternary complex of aminoacylated tRNA and EF-Tu-GTP. Recognition of a bond and a fold. Biochimie. 78, 921-933.

166. Nierhaus K.H. 1990. The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry. 29, 4997-5008.

167. Ogle J.M., Brodersen D.E., Clemons W.M. Jr., Tarry M.J., Carter A.P., Ramakrishnan V. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 292, 897-902.

168. Steitz J.A., Jakes K. 1975. How ribosomes select initiator regions in mRNA: Base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in E. coli. Proc. Natl. Acad. Sei. USA. 72, 4734-4738.

169. Lim V.I., Curran J.F. 2001. Analysis of codon:anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure. RNA. 7, 942-957.

170. Retallack D.M., Johnson L.L., Friedman D.I. 1994. Role for lOSa RNA in the growth of lambda-P22 hybrid phage. J. Bacteriol. 176, 2082-2089.

171. Retallack D.M., Friedman D.I. 1995. A role for a small stable RNA in modulating the activity of DNA-binding proteins. Cell. 83, 227-235.

172. Bjomsson A., Isaksson L.A. 1996. Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res. 24, 1753-1757.

173. Hanawa-Suetsugu K., Bordeau V., Himeno H., Muto A., Felden B. 2001. Importance of the conserved nucleotides around the tRNA-like structure of Escherichia coli transfer-messenger RNA for protein tagging. Nucleic Acids Res. 29, 4663-4673.

174. Gaudin C., Nonin-Lecomte S., Tisne C., Corvaisier S., Bordeau V., Dardel F., Felden B. 2003. The tRNA-like domains of E. coli and A. aeolicus transfermessenger RNA: structural and functional studies. J. Mol. Biol. 331, 457-471.

175. Srisawat C., Engelke D.R. 2001. Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA. 7, 632-641.

176. Jurica M.S., Licklider L.J., Gygi S.R., Grigorieff N., Moore M.J. 2002. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA. 8, 426-439.

177. Leonov A.A., Sergiev P.V., Bogdanov A.A., Brimacombe R., Dontsova O.A. 2003. Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation. J. Biol. Chem. 278, 25664-25670.

178. Green N.M. 1990. Avidin and streptavidin. Methods Enzymol. 184, 51-67.

179. Nameki N., Tadaki T., Himeno H., Muto A. 2000. Three of four pseudoknots in tmRNA are interchangeable and are substitutable with single-stranded RNAs. FEBSLett. 470, 345-349.

180. Roche E.D., Sauer R.T. 2001. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J. Biol. Chem. 276, 28509-28515.

181. Mukherjee S., Shukla A., Guptasarma P. 2003. Single-step purification of a protein-folding catalyst, the SlyD peptidyl prolyl isomerase (PPI), from cytoplasmic extracts of Escherichia coli. Biotechnol. Appl. Biochem. 37, 183186.

182. Pedersen K., Zavialov A.V., Pavlov M.Y., Elf J:, Gerdes K., Ehrenberg M. 2003. The bacterial toxin RelE displays codon-specific cleavage of mRNA in the ribosomal A site. Cell. 112, 131-140.

183. Kalkum M., Lyon G.J., Chait B.T. 2003. Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc. Natl. Acad. Sci. USA. 100, 2795-2800.

184. Rohl R., Nierhaus K.H. 1982. Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA. 79, 729-733.

185. Moazed D., Stern S., Noller H. 1986. Rapid chemical probing of conformation in 16S ribosomal rRNA and 30S subunits using primer extension. J. Mol. Biol. 187, 399-416.

186. Tate W., Greuer B., Brimacombe R. 1990. Codon recognition in polypeptide chain termination: site directed crosslinking of termination codon to Escherichia coli release factor-2. Nucleic Acids Res. 18, 6537-6544.

187. Frank J. 2006. Electron tomography: methods for three-dimensional visualization of structures in the cell. New York: Springer Science.

188. Yusupova G., Jenner L., Rees B., Moras D., Yusupov M. 2006. Structural basis for messenger RNA movement on the ribosome. Nature. 444, 391-394.

189. Valle M., Zavialov A., Sengupta J., Rawat U., Ehrenberg M., Frank, J. 2003. Locking and unlocking of ribosomal motions. Cell. 114, 123-134.

190. Harms J., Schluenzen F., Zarivach R., Bashan A., Gat S., Agmon I., Baitels H., Franceschi F., Yonath A. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell. 107, 679-688.

191. Wower I.K., Zwieb C., Wower J. 2009. Escherichia coli tmRNA lacking pseudoknot 1 tags truncated proteins in vivo and in vitro. RNA. 15, 128-137.

192. Tanner D.R., Dewey J.D., Miller M.R., Buskirk A.R. 2006. Genetic analysis of the structure and function of transfer messenger RNA pseudoknot 1. J. Biol. Chem. 281, 10561-10566.

193. Krutchinsky A.N., Kalkum M., Chait B.T. 2001. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal. Chem. 73, 5066-5077.

194. Inoue H., Nojima H., Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene. 96, 23-28.

195. Mullis K.B., Faloona F.A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335-350.

196. Sambrook J., Russell D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY.: Cold Spring Harbor Laboratory Press.

197. Piatt Т., Mueller-Hill В., Miller J. H. 1972. In: Experiments in Molecular Genetics. Ed Miller J. H. Cold Spring Harbor, NY.: Cold Spring Harbor Laboratory Press, pp. 352—355.

198. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685.

199. Schagger H., von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem, 166, 368-379.

200. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.

201. Moazed D., Noller H.F. 1986. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell. 47, 985-994.

202. Adrian M., Dubochet J., Lepault J., McDowall A.W. 1984. Cryo-electron microscopy of viruses. Nature. 308, 32-36.

203. Skoglund U., Ofverstedt L.G., Burnett R.M., Bricogne G. 1996. Maximum-entropy three-dimensional reconstruction with deconvolution of the contrasttransfer function: a test application with adenovirus. J. Struct. Biol. 117, 173188.

204. Rullgard H., Oktem O., Skoglund U. 2007. A component-vise iterated relative entropy regularization method with updated prior and regularization parameter. Inverse Problems. 23, 2121-2139.

205. DeLano, W.L. 2002. The PyMOL Molecular Graphics System on World Wide Web http://www.pymol.org226. http://www.vim.org

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.