Фотоэлектронная спектроскопия и квантово-химические расчеты в приближении теории функционала плотности железотрикарбонильных π-комплексов тема диссертации и автореферата по ВАК РФ 01.04.05, кандидат физико-математических наук Крауклис, Ирина Валерьевна

  • Крауклис, Ирина Валерьевна
  • кандидат физико-математических науккандидат физико-математических наук
  • 2006, Санкт-Петербург
  • Специальность ВАК РФ01.04.05
  • Количество страниц 129
Крауклис, Ирина Валерьевна. Фотоэлектронная спектроскопия и квантово-химические расчеты в приближении теории функционала плотности железотрикарбонильных π-комплексов: дис. кандидат физико-математических наук: 01.04.05 - Оптика. Санкт-Петербург. 2006. 129 с.

Оглавление диссертации кандидат физико-математических наук Крауклис, Ирина Валерьевна

Введение

Глава 1. Обзор литературы

1.1. Анализ современных квантово-химических методов расчета потенциалов ионизации.

1.2. Природа химической связи в Г)4-железотрикарбонильных комплексах.

Глава 2. Методы исследования

2.1. Теория функционала плотности

2.1.1. Истоки теории функционала плотности (статистическая модель атома Томаса-Ферми).

2.1.2. ТФП как теория многих тел: теоремы Хоэнберга-Кона.

2.1.3. ТФП как эффективное одноэлектронное приближение: уравнения Кона-Шема.

2.1.4. Одноэлектронные уравнения Кона-Шема как приближение к квазичастичным уравнениям Дайсона.

2.1.5. Методы теории функционала плотности.

2.2. Метод фотоэлектронной спектроскопии

2.2.1. Физические основы метода ФЭ спектроскопии.

2.2.2. Фотоэлектронный спектрометр ЭС 3201.

2.2.3. Методика получения Не1-фотоэлектронных спектров паров труднолетучих соединений.

2.2.3. Методы оценки сечений фотоионизации.

Глава 3. Фотоэлектронная спектроскопия и расчеты в приближении

ТФП железотрикарбонильных я-комплексов

3.1 Геометрия исследуемых железотрикарбонильных комплексов.

3.2. Фотоэлектронные спектры железотрикарбонильных комплексов.

3.3. МО анализ и интерпретация ФЭ спектров.

3.4. Определение относительных сечений фотоионизации.

3.5. Дефект Купманса.

3.6. Калибровочный метод оценки вертикальных ПИ.

Рекомендованный список диссертаций по специальности «Оптика», 01.04.05 шифр ВАК

Введение диссертации (часть автореферата) на тему «Фотоэлектронная спектроскопия и квантово-химические расчеты в приближении теории функционала плотности железотрикарбонильных π-комплексов»

Постановка задачи. Диссертация направлена на решение актуальной задачи физики возбужденных состояний молекулярных ионов - исследование энергетики электронных состояний ионов ^-комплексов переходных металлов, в частности - определение энергии, природы и последовательности электронно-возбужденных состояний положительных ионов железотрикарбонильных л-комплексов с помощью молекулярной фотоэлектронной спектроскопии (ФЭС) и квантово-химических расчетов в приближении теории функционала плотности (ТФП).

Поскольку многие физико-химические процессы связаны со способностью молекулы отдавать (донировать) электрон, то знание основных энергетических характеристик этого процесса - первого и более высоких потенциалов ионизации (ПИ) - необходимо для понимания механизмов протекания процессов и построения адекватных моделей. Экспериментальное определение вертикальных ПИ не всегда возможно из-за низкой летучести большинства сложных органических и металлоорганических соединений. В таких случаях расчетные методы оценки ПИ становятся особенно востребованными. Для органических молекул, как правило, вполне успешной оказывается оценка вертикальных ПИ в рамках теоремы Купманса [1] в приближении Хартри-Фока (ХФ). Однако не существует надежного и доступного способа определения вертикальных ПИ для молекулярных систем с атомами переходных металлов. Пост-хартри-фоковские методы расчета, учитывающие электронную корреляцию, не могут быть использованы для оценки ПИ многоатомных систем из-за своей высокой масштабируемости. В рамках традиционных хартри-фоковских неэмпирических и полуэмпирических методов не учитывается энергия корреляции, что часто приводит к искажению правильной последовательности валентных молекулярных орбиталей даже при учете эффектов орбитальной релаксации. В данной диссертационной работе показано, что фотоэлектронные (ФЭ) спектры сложных железотрикарбонильных 71-комплексов могут быть интерпретированы с помощью квантово-химических расчетов в приближении теории функционала плотности. Кроме того, предложена относительно простая калибровочная процедура для оценки вертикальных ПИ металлоорганических соединений различными методами ТФП.

В последние годы теория функционала плотности [2,3] получила широкое распространение для квантово-химических расчетов многоатомных систем. Методы ТФП включены во все современные пакеты квантово-химических программ, такие как GAMESS, Gaussian, Jaguar, NWChem. Такая популярность ТФП объясняется прежде всего непосредственным учетом энергии динамической корреляции и низкой масштабируемостью (числом рассчитываемых интегралов перекрывания) по сравнению с традиционными неэмпирическими и пост-хартри-фоковскими методами. Известно, что методы ТФП хорошо воспроизводят не только геометрию [4-9], но и многие фундаментальные свойства молекул в основном состоянии, такие как теплоты образования [7, 10-12], активационные барьеры [13-16], энергии диссоциации связей [17-19]. Однако использование ТФП в одноэлектронном приближении Кона-Шема (КШ) для оценки ионизационных потенциалов существенно затруднено из-за отсутствия теоретической строгости в вопросе толкования физического смысла орбитальных энергий КШ. Общепринято полагать, что орбитали КШ являются вспомогательными, исключительно математическими конструкциями для построения электронной плотности системы, а орбитальные энергии КШ, кроме энергии высшей занятой молекулярной орбитали (ВЗМО), не имеют определенного физического смысла [2,3]. Вместе с тем, согласно современным теоретическим воззрениям [20-23], в рамках ТФП существует аналог классической теоремы Купманса, что позволяет рассматривать орбитальные энергии Кона-Шема как приблизительные вертикальные ПИ. Справедливость последнего утверждения была проверена рядом авторов на примере некоторых атомов, простых неорганических и органических молекул [22-29]. Однако систематического сравнения экспериментальных ПИ и энергий КШ для металлоорганических соединений фактически не проводилось.

Основной задачей диссертации является комплексное исследование электронного строения железотрикарбонильных (ЖТК) я-комплексов с диеновыми органическими лигандами методами теории функционала плотности SVWN/6-3 lG(d), ВР86/6-31 G(d), B3LYP/6-31G(d) и УФ фотоэлектронной спектроскопии с целью нахождения взаимно-однозначного соответствия между орбитальными энергиями КШ и экспериментальными вертикальными ПИ. Выбранный для изучения класс железотрикарбонильных гс-комплексов является достаточно сложным для изучения по ряду причин. Во-первых, это комплексы с низкой симметрией, поэтому возбужденные состояния ионов невырождены и в фотоэлектронных спектрах этих соединений наблюдается сильное перекрывание ФЭ полос. Кроме того, эффекты орбитальной релаксации в я-комплексах железа могут достигать величин ~5-8 эВ [30]. Всё это в значительной степени затрудняет интерпретацию ФЭ спектров изучаемых соединений и требует дополнительной информации из квантово-химических расчетов. Экспериментальные ФЭ спектры ЖТК комплексов были получены в лаборатории отдела фотоники НИИФ им. В.А.Фока при СПбГУ, а также частично были использованы литературные данные. С целью повышения достоверности и однозначности интерпретации полос ФЭ спектров была проведена оценка относительных сечений фотоионизации (ФИ) валентных орбиталей КШ для изучаемых комплексов в рамках модели невзаимодействующих центров (модель Гелиуса) [31]. Согласно этой модели сечение ФИ, связанное с удалением электрона из данной молекулярной орбитали (МО), определяется только сечениями ФИ тех оболочек атомов или атомных орбиталей (АО), которые составляют эту МО. Такой подход позволяет привлечь результаты квантово-химических расчетов для вычисления соответствующих вкладов АО в конкретную МО, а сравнение рассчитанных сечений ФИ с экспериментальными площадями полос выступает дополнительным критерием пригодности методов ТФП для интерпретации ФЭ спектров.

Большое внимание в диссертации уделено изучению дефекта Купманса в приближении ТФП. Понятие дефекта Купманса (Д^) общепринято использовать в теории Хартри-Фока, имея в виду отклонение рассчитанных орбитальных энергий £•, от экспериментальных ПИDK = ПИ^е^. Однако оно может быть применено и для расчетов методами ТФП. Фактически величина дефекта Купманса включает в себя все погрешности, связанные с уровнем используемого приближения. Так, в приближении ХФ дефект Купманса определяется в основном поправками, связанными с пренебрежением эффектов электронной корреляции (Re>0) и орбитальной релаксации (Ro<0), а также с ограниченностью базисного набора. Для валентной ионизации органических молекул обычно выполняется соотношение R* » - Ro, поэтому дефект Купманса для этих соединений близок к нулю, и теорема Купманса дает верную оценку ПИ. В случае металлоорганических соединений из-за сильных эффектов орбитальной релаксации приведенное соотношение обычно не работает, и требуются дополнительные усилия для воспроизведения правильной последовательности ионных состояний. Традиционным методом учета орбитальной релаксации в приближении ХФ считается метод АССП [32], однако он не всегда оправдан по конечному результату. В приближении ТФП в принципе могут быть учтены все вышеуказанные поправки, что делает её привлекательной для расчетов ионизационных потенциалов. В данной диссертации исследуются функциональные зависимости величины дефекта Купманса от типа приближенных обменно-корреляционных потенциалов и от характера локализации орбиталей КШ. Обнаруженные закономерности послужили основой для разработки калибровочного метода оценки первых и более высоких ПИ металлоорганических соединений с экспериментальной точностью, что демонстрируется в диссертации на примере ЖТК ти-комплексов.

Объекты исследования. Выбранные для изучения 12 железотрикарбо-нильных л-комплексов имеют общую формулу L-Fe(CO)3 и могут быть условно разделены на три группы по типу координированного л-лиганда L:

1) ЖТК комплексы с бутадиеновыми производными (рисЛа):

- 1,3-бутадиенжелезотрикарбонил 1,3-С4НбРе(СО)3 (I),

- 2-метил-1,3-бутадиенжелезотрикарбонил 2-СНз-1,3-С4Н5Ре(СО)з (II),

- 1,3-пентадиенжелезотрикарбонил l,3-C5H8Fe(CO)3 (III),

- 2,3-диметил-1,3-бутадиенжелезотрикарбонил 2,3-(СН3)2-1,3-С4Н4ре(СО)з (IV);

2) ЖТК комплексы с лигандами, имеющими ароматические кольца (рис.16):

- а-метилстиролжелезотрикарбонил С6Н5СзН5Ре(СО)з (V),

- ортохинодиметанжелезотрикарбонил C8H8-Fe(CO)3 (VI),

- 1-винилнафталинжелезотрикарбонил Ci2HioFe(CO)3 (VII)

- 2-винилнафталинжелезотрикарбонил Ci2Hi0Fe(CO)3 (VIII);

3) ЖТК комплексы с циклическими диеновыми лигандами (рис. 1 в):

- циклобутадиенжелезотрикарбонил С4Н4ре(СО)з (IX),

- циклогексадиенжелезотрикарбонил СбН8Ре(СО)з (X),

- циклогептадиенжелезотрикарбонил C7Hi0Fe(CO)3 (XI),

- циклооктатетраенжелезотрикарбонил C8H8Fe(CO)3 (XII). Характерной структурной особенностью изучаемых ЖТК комплексов является селективная, или фрагментная, координация группы Fe(CO)3 на г|4-фрагменте С1-С2-С3-С4 органического л-лиганда (см. рис. 1а, 16, 1 в). Понятие фрагментной координации впервые было введено в работах [33,34] при изучении несимметрично-построенных ареновых комплексов переходных металлов. В частности, было показано [34], что при образовании комплексов типа (rj4-apeH)Fe(CO)3 в ароматической молекуле происходит нарушение делокализации и формирование "бутадиенового" фрагмента, по которому происходит координирование группы Fe(CO)3. Атом Fe как бы "вычленяет" г|4-фрагмент из ароматической молекулы.

В плане изучения электронных характеристик молекул класс железотрикарбонильных комплексов с диеновыми лигандами представляет определенный интерес в связи с возможностью практического применения в области современной молекулярной наноэлектроники [35,36]. Эти комплексы

III iv

Рис. la. Геометрическая структура (вид сверху) железотрикарбонильных комплексов с бутадиеновыми производными. Атомы углерода тс-лигандов пронумерованы. Группа Fe(CO)3 координируется на диеновом фрагменте

С1-С2-С3-С4.

О -Н

О-с

VII VIII

Рис.16. Геометрическая структура (вид сверху) железотрикарбонильных комплексов с диеновыми лигандами, имеющими ароматические кольца. Атомы углерода ти-лигандов пронумерованы, начиная с диенового фрагмента С1-С2-С3-С4, на котором координируется группа Fe(CO)3.

XI XII

Рис.1 в. Геометрическая структура (вид сверху) железотрикарбонильных комплексов с циклическими диеновыми лигандами. Атомы углерода л-лигандов пронумерованы, начиная с диенового фрагмента С1-С2-С3-С4, на котором координируется группа Fe(CO)3. удобны для детального исследования TC-d-взаимодействий между органической молекулой и металлическим центром. Свободные органические лиганды являются стабильными, хорошо изученными различными методами соединениями, что уменьшает неопределенность в выводах. По сравнению с обычными а-связями 7Г-взаимодействия являются слабыми, поэтому не требуют больших энергетических затрат и жестких условий проведения эксперимента при изучении обусловленных ими свойств. Например, электронные переходы с переносом заряда металл-лиганд осуществляются при поглощении света в видимой области или в области ближнего УФ. Эта особенность привлекает внимание к фотохимии возбужденных состояний л-комплексов переходных металлов [37]. Кроме того, изучение тс-связи в металлоорганических комплексах играет большую роль для понимания механизмов катализа и адсорбции органических молекул на поверхности металлов и их оксидов.

Структура диссертации. Глава 1 содержит сравнительный анализ современных квантово-химических методов расчета, используемых для оценки потенциалов ионизации металлоорганических соединений. В этот раздел также включен обзор известных исследований, касающихся природы химической связи в г|4-железотрикабонильных комплексах. Глава 2 посвящена описанию применяемых нами теоретических и экспериментальных методов исследования электронного строения изучаемых ЖТК комплексов. Она включает в себя подробный обзор по теории функционала плотности и УФ фотоэлектронной спектроскопии. В главе 3 приведены основные результаты исследований. В частности, здесь представлены и интерпретированы на основании квантово-химических расчетов ФЭ спектры изучаемых я-комплексов железа, оценены экспериментальные и теоретические относительные сечения ФИ валентных орбиталей. Методами теории функционала плотности SVWN, ВР86 и B3LYP в базисе 6-31G(d) рассчитаны геометрические, энергетические и орбитальные характеристики изучаемых комплексов, проанализированы последовательности и состав валентных МО. Для каждого из трех обменно-корреляционных функционалов установлены корреляционные зависимости между массивами данных по орбитальным энергиям КШ и экспериментальными ПИ изучаемых комплексов, а также исследованы функциональные зависимости величины дефекта Купманса от типа приближенных обменно-корреляционных потенциалов и от характера локализации орбиталей КШ. Обобщая эти закономерности, мы предложили калибровочный метод оценки первых и более высоких ПИ металлорганических соединений, который апробируется на примере изучаемых ЖТК ^-комплексов. Основные выводы по диссертационной работе сформулированы в Заключении. Сводные таблицы оптимизированной геометрии, потенциалов ионизации, орбитальных энергий Кона-Шема и другие расчетные характеристики исследуемых ЖТК комплексов приведены в Приложении. Положения, выносимые на защиту:

• Не(1)-фотоэлектронные спектры ряда Г|4-железотрикарбонильных комплексов, полученные с помощью фотоэлектронного спектрометра ЭС 3201;

• интерпретация полученных ФЭ спектров изучаемых комплексов, основанная на анализе экспериментальных и расчетных данных, включающем оценку относительных сечений фотоионизации валентных орбиталей;

• геометрические и электронные характеристики изучаемых ЖТК комплексов, установленные с помощью квантово-химических расчетов методами теории функционала плотности SVWN/6-31G(d), BP86/6-31G(d) и B3LYP/6-31G(d);

• линейная зависимость, обнаруженная между орбитальными энергиями Кона-Шема и вертикальными ПИ для изучаемых комплексов, что позволяет рассматривать орбитальные энергии Кона-Шема как приблизительные вертикальные ПИ;

• функциональные зависимости дефекта Купманса от типа обменно-корреляционных функционалов и характера локализации МО;

• калибровочный метод оценки вертикальных ПИ для сложных металлоорганических систем, апробированный на изучаемом классе железотрикарбонильных я-комплексов.

Похожие диссертационные работы по специальности «Оптика», 01.04.05 шифр ВАК

Заключение диссертации по теме «Оптика», Крауклис, Ирина Валерьевна

Основные выводы по результатам диссертационной работы сформулированы ниже:

1. Получены Не1-фотоэлектронные спектры шести Г|4-железотрикарбонильных комплексов: 1,3-бутадиенжелезотрикарбонила, а-метилстиролжелезотри-карбонила, ортохинодиметанжелезотрикарбонила, циклооктатетраенжелезо-трикарбонила, 1-винилнафталинжелезотрикарбонила и 2-винилнафталин-железотрикарбонила.

2. Проведены квантово-химические расчеты методами теории функционала плотности SVWN, ВР86 и B3LYP в базисе 6-31G(d) основного состояния вышеуказанных комплексов с полной оптимизацией их геометрии.

3. На основании проведенных квантово-химических расчетов в приближении теории функционала плотности интерпретированы ФЭ спектры изучаемых комплексов. Анализ спектральных и расчетных данных показал, что характерной особенностью образования химической связи в исследуемом классе соединений является донорно-акцепторное взаимодействие верхнего 2е-уровня группы Fe(CO)3 с разрыхляющей тс*-НСМО и высшей занятой 7I-MO лиганда, что приводит к появлению в комплексе тс-ВЗМО с большим вкладом АО Fe. Установлено, что металлические 3d-MO сгруппированы в узкой области энергий, что является типичным для других тг-комплексов переходных металлов.

4. Показано, что квантово-химический расчет основного состояния изучаемых железотрикарбонильных л-комплексов методами теории функционала плотности SVWN/6-31G(d), ВР86/6-3 lG(d) и B3LYP/6-31G(d) не только хорошо воспроизводит геометрию этих молекул, но и правильно описывает последовательность основных и возбужденных электронных состояний молекулярных ионов в диапазоне энергий 7-12 эВ.

5. В рамках модели Гелиуса рассчитаны относительные сечения фотоионизации валентных орбиталей изучаемых железотрикарбонильных ти-комплексов. Эти значения хорошо согласуются с экспериментальными относительными сечениями фотоионизации, полученными из прямой оценки площадей полос фотоэлектронных спектров, что подтверждает правильность предложенной интерпретации ФЭ спектров.

6. Установлены функциональные зависимости дефекта Купманса от энергии Кона-Шема для трех обменно-корреляционных функционалов на массиве из 43 экспериментальных потенциалов ионизации изучаемых г|^железотрикарбонильных комплексов:

DK =-0.27-еш-0.15, эВ -для функционала SVWN;

DK = -0.31 • скш + 0.49, эВ - для функционала ВР86;

В случае ВЗЬУР-расчетов дефект Купманса постоянен и зависит от характера локализации валентных молекулярных орбиталей: DK(7i-MO) = 1.92 ±0.18 эВ, для орбиталей л-типа DK(3d-MO) =1.48 + 0.19 эВ. для 3d-MO

7. Предложен калибровочный метод определения вертикальных потенциалов ионизации, который заключается в использовании одноэлектронных энергий Кона-Шема в качестве вертикальных ПИ в соответствии с уравнением:

ПИ, = -Ej + DK, где энергетическая поправка DK является калибровочной функцией или калибровочной константой в зависимости от выбранного обменно-корреляционного функционала. Тем самым, подтвержден физический смысл одноэлектронных орбитальных энергий Кона-Шема как приблизительных вертикальных потенциалов ионизации.

8. Доказана работоспособность калибровочного метода на ряде родственных железотрикарбонильных комплексов со следующими 47г-лигандами: 2-метил-1,3-бутадиеном, 1,3-пентадиеном, 2,3-диметил-1,3-бутадиеном, циклобутадиеном, циклогексадиеном и циклогептадиеном. Квантово-химические расчеты методами теории функционала плотности SVWN/ 6-31G(d), BP86/6-31G(d) и B3LYP/6-31G(d) электронного строения этих соединений показали, что калибровочная процедура с точностью, близкой к экспериментальной (~0.2 эВ), воспроизводит их первые и более высокие потенциалы ионизации. Установлено, что калибровка по методу B3LYP более проста в практическом приложении, и поэтому предпочтительна.

ЗАКЛЮЧЕНИЕ

Список литературы диссертационного исследования кандидат физико-математических наук Крауклис, Ирина Валерьевна, 2006 год

1. Koopmans Т. Uber die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Electronen eines Atoms // Physica (Amsterdam), 1934, Vol. 1, P. 104.

2. Kohn W., Hohenberg P. Inhomogeneous electron gas //Phys. Rev. B, 1964, Vol. 136, P. 864-871.

3. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects // Phys. Rev. A, 1965, Vol. 140, P. 1133.

4. Jursic B.S. Theoretical investigation of thionyl and sulfuryl dihalide structures using density functional theory methods // J. Molec. Struct. (Theochem), 1997, Vol. 389, P. 75-81.

5. Jursic B.S. The determination of the equilibrium structures of oxygen, ozone, and hydrogen peroxide using the ab initio and density functional theory methods // J. Molec. Struct. (Theochem), 1997, Vol.389, P.251-256.

6. Jursic B.S. Density functional theory studies of the structures of some compounds having 12 valence electrons with a central sulfur atom // J. Molec. Struct. (Theochem), 1997, Vol. 418, P. 165-169.

7. Mayor-Lopez M.J., Weber J. DFT calculations of binding energy of metallocenes // Chem. Phys. Lett., 1997, Vol. 281, P. 226-232.

8. Chermette H. Density functional theory. A powerful tool for theoretical studies in coordination chemistry// Coordination Chemistry Reviews, 1998, Vol. 178-180, P. 699-721.

9. Fernanda M., Carvalho N.N., Amelia M., Lemos N.D.A., Veiros L.F., Stephenson. G.R. Mechanism of the electrochemical reduction of Fe(r|5-C6H7)(CO)3][PF6] — a theoretical approach to the intermediates // J. Organometal. Chem., 2001, Vol. 632, P.49-57.

10. Jursic B.S. A density functional theory estimation of the heat of formation for FOOC1 //

11. J. Chem. Phys., 1997, Vol. 106, P. 2555-2556.

12. Jursic B.S. Computation of the heats of formation of cyclopropane and cyclobutane derivativesusing density functional theory methods// J. Mol. Struc. (Theochem), 1997, Vol. 391, P. 75-83.

13. Jursic B.S. A B3LYP hybrid density functional theory study of structural properties, energies, andheats of formation for silicon-hydrogen compounds // J. Molec. Struct. (Theochem), 2000, Vol.497, P. 65-73.

14. Jursic B.S. Ab initio and density functional theory study of the ethylene cycloaddition reaction to4H-Pyrazole // J. Org. Chem., 1995, Vol. 60, P. 4721-4724.

15. Jursic B.S. Density functional theory and ab initio study of CH3NC and HNC isomerization // Chem. Phys. Lett., 1996, Vol. 256, P. 213-219.

16. Jursic B.S. Density functional study of N-methylpyrrole transformation into N-methylisoindole through cycloaddition-elimination reactions // J. Mol. Struct. (Theochem), 1996, Vol. 370, P. 85-91.

17. Jursic B.S., R.Martin R. Calculation of bond dissociation energies for oxygen containing molecules by ab initio and density functional theory methods // Int. J. Quant. Chem., 1996, Vol. 59, P. 495-501.

18. Jursic B.S., Timberlake J.W., Engel P.S. Computation of bond dissociation energies of substitutedmethanes with density functional theory // Tetrahedron Lett., 1996, Vol. 37, P. 6473-6474.

19. Jursic B.S. Computation of bond dissociation energy for sulfides and disulfides with ab initio anddensity functional theory methods // Int. J. Quant. Chem., 1997, Vol. 62, P. 291-296.

20. Gritsenko O.V., Baerends E.J. The analog of Koopmans' theorem in spin-density functional theory // J.Chem.Phys., 2002 Vol. 117, P. 9154-9159.

21. Chong D.P., Gritsenko O.V.,Baerends E.J. Interpretation of the Konh-Sham orbital energies as approximate vertical ionization potentials // J.Chem.Phys., 2002, Vol. 116 , P. 1760-1772.

22. Hamel S., Duffy P., Casida M.E., Salahub D.R. Konh-Sham orbitals and orbital energies: fictitious constructs but good approximations all the same // J. Electron. Spectr. Relat. Phenom., 2002, Vol. 123, P. 345-363.

23. Arduengo A.J, Bocks H., Chen H., Denk M., Dixon D.A., Green J.C., Herrmann W.A, Jones N.L,

24. Wagner M., West M.J. Photoelectron spectroscopy of a carbene: silylene, germylene series // J.Am.Chem.Soc., 1994, Vol. 116, P. 6641-6649.

25. Rademacher P., Marzinzik A.L., Kowski K., Weiss M.E. Photoelectron spectra, electronic structures, and conformational properties of (£)-stilbene, styrylthiophenes, and (thienylethenyl)-pyridines // Eur.J.Org.Chem., 2001, Vol. 1, P. 121-130.

26. Molder U., Pikver R., Koppel I.I., Burk P., Koppel I.A. Photoelectron spectra molecules: vinyl,allyl, and phenyl ethers and sulphides // J. Molecul. Struct. (Theochem), 2002, Vol. 579, P. 205-220.

27. Jellinek J., Acioli P.H. Converting Konh-Sham eigenenergies into electron binding energies // J.Chem.Phys., 2003, Vol.118 , P.7783-7796.

28. Plashkevych O., Agren H., Karlsson L., Pettersson L.G.M. Calculation of valence electron binding energies using Kohn-Sham theory and transition potentials // J. Elec. Spectr. Relat. Phenom., 2000, Vol. 106, P. 51-63.

29. Bohm M.C. On the importance of orbital relaxation and correlation in the photoelectron spectraof transition metal complexes // J.Phys.B: At.Mol.Phys., 1984, Vol. 17, P. 3103-3116.

30. Gelius U., Siegbahn K. ESCA studies of molecular core and valence levels in the gas phase // Faraday Discuss. Chem.Soc., 1972, Vol. 54, P. 257-268.

31. Bagus P.S.Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions //

32. Phys.Rev., 1965, Vol. 139, P. 619.

33. Борисов Ю.А , Крицкая И.И.Теоретическое изучение я-комплексов переходных металлов сфрагментами ароматических циклов // Изв. АН СССР, Сер.Хим., 1984, №3, С. 576-581.

34. Зоркий П.М., Лубнина И.Е. Супрамолекулярная химия: возникновение, развитие, перспективы // Вест. Моск. Ун-та, Сер.2. Химия, 1999, Т. 40, №5, С. 300-307.

35. Лен Ж.-М. Супрамолекулярная химия масштабы и перспективы: Молекулы -супрамолекулы - молекулярные устройства. Новое в жизни, науке и технике. Сер. "Химия". - М.: Знание, №2,1989.

36. Сизова О.В. Межфрагмелтные электронные взаимодействия в химии полиядерных и супрамолекулярных металлокомплексов. Дисс. на соискание уч.ст.дхн, СП6ГУ,1998, 372 с.

37. Jursic B.S. A density fuctional theory evaluation of the ionization energies of alkanes, cycloalkanes and their unsaturated analogs // J. Molecul. Struc. (Theochem), 1998, Vol. 452, P. 145-152.

38. Bohm M.C. The electronic structure of transition metal tricarbonyl derivatives in the ground stateand cationic hole-states. A semiempirical INDO MO investigation based on the Green's function formalism // J. Molec. Struct., 1983, Vol. 92, P. 73-92.

39. Bohm M.C., Gleiter R. The electronic structure and the He(I) photoelectron spectrum of tricarbonylcyclooctatetraene-iron // Z. Naturforsch., 1980, Vol. 35, P. 1028-1030.

40. Parr R.G., Yang W. Density Functional Theory of Atoms and Molecules. Oxford University Press,1. New York, 1989.

41. Perdew J.P., Parr R.G., Levy M., Balduz J.L. Density-functional theory for fractional particle number: Derivative discontinuities of the energy // Phys. Rev. Lett., 1982, Vol. 49, P. 16911694.

42. Levy M., Perdew J.P., Sahni V. Exact differential equation for the density and ionization energyof a many-particle system // Phys. Rev. A, 1984, Vol. 30, P. 2745-2748.

43. Perdew J.P., Levy M. Comment on "Significance of the highest occupied Kohn-Sham eigenvalue"

44. Phys. Rev. B, 1997, Vol. 56, P. 16021-16028.

45. Janak J.F. Proof that partial] E / [partial] = epsilon in density-functional theory // Phys. Rev. B, 1978, Vol. 18, P. 7165-7168.

46. Savin A., Umrigar C.J., Gonze X. Relationship of Kohn-Sham eigenvalues to excitation energies // Chem. Phys. Lett., 1998, Vol. 288, P. 391-395.

47. Williams A.R., de Groot R.A., Sommers C.B. Generalization of Slater's transition state concept // J. Chem. Phys., 1975, Vol. 63, P. 628-631.

48. Chong D.P. Accurate calculation of core-electron binding energies by the density-functional method // Chem. Phys. Lett., 1995, Vol. 232, P. 486-490.

49. Chong D.P. Density-functional calculation of core-electron binding energies of C, N, O, and F // J. Chem. Phys., 1995, Vol. 103, P. 1842-1845.

50. Chong D.P. Accurate density funtional calculation of core-electron binding energies of Ci to C4hydrocarbons // Chin. J. Physics, 2000,Vol. 38, P. 57-63.

51. Triguero L., Plashkevich O., Petterson L.G.M., Agren H.Separate state vs. transition state Konh

52. Sham calculations of X-ray photoelectron binding energies and chemical shifts // J. Electr. Spectr. Relat. Phenom., 1999, Vol. 104, P. 195-207.

53. Slater J.C. Statistical exchange-correlation in the self-consistent field // Advances in Quantum Chemistry, 1972, Vol. 6, P. 1-92.

54. Slater J.C., Johnsson K.H. Self-consistent-field X-alpha cluster method for polyatomic moleculesand solids // Phys. Rev. В , 1972, Vol. 5, P. 844-853

55. Kostic N.M., Fenske R.F. Xa SW study of bonding, ptotoelectronic spectra and photoioniza-tiontransition states of cyclobutadiene-iron tricarbonyl HChem. Phys. Lett., 1982, Vol.90, P.306-309.

56. Grabo Т., Gross E.K.U. Density-functional theory using an optimized exchange-correlation potential // Chem.Phys.Lett., 1995, Vol. 240, P. 141-150.

57. Chen J., Krieger J.B., Li Y., Iafrate G.J. Kohn-Sham calculations with self-interaction-correctedlocal-spin-density exchange-correlation energy functional for atomic systems // Phys. Rev. A, 1996, Vol. 54, P. 3939-3947.

58. Rienstra-Kiracofe J.C., Tschumper G.S., Schaefer H.F., Nandi S., Ellison G.B. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations // Chem. Rev., 2002, Vol. 102, P. 231-282.

59. Берсукер И.Б. Электронное строение и свойства координационных соединений. -JI.: Химия, 1986.

60. Минкин В.И., Симкин Б.Я., Миняев P.M. Теория строения молекул. -Ростов-на-Дону:Феникс, 1997. -560 с.

61. Elian М., Hoffmann R. Bonding capabilities of transition metal carbonyl fragments. Inorg.Chem.,1975, Vol. 14, P. 1058.

62. Elian M., Chen M.M.L., Mingos D.P.M., Hoffmann R. Comparative bonding study of conical fragments I/Inorg. Chem., 1976, Vol.15, P. 1148-1155.

63. Чижов Ю.В., Тимошенко M.M., Клейменов В.И., Борисов Ю.А., Зольникова Г.П., Кравцов

64. Д.Н., Крицкая И.И. Исследование методом фотоэлектронной спектроскопии механизма фрагментной координации ароматических молекул с переходными металлами: железотрикарбонильные комплексы // ЖСХ, 1986, Т. 27, №3, С. 69-75.

65. Cotton F.A, Wilkinson G. Advansed Inorganic Chemistry (Wiley), 1973.

66. Dewar M.J.S., Worley S.D. Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation // J.Chem.Phys., 1969, Vol. 50, P. 654-667.

67. Mills O.S., Robonson G. Studies of some carbon compounds of the transition metals. IV. The structure of butadiene irontricarbonyl II Acta Cryst., 1963, Vol. 16, P. 758-761.

68. Davis M.I., Speed C.S. Gas-phase electron diffraction studies of some iron carbonyl complexes // J.Organometal.Chem., 1970, Vol. 21, P. 401-413.

69. Hillier I.H., Saunders V.R. Ab initio molecular orbital calculations of transition-metal complexes II Molecular Physics, 1971, Vol. 22, P. 1025-1034.

70. Tatsumi K., Fueno T. Modified INDO calculations of the electronic structure of transition metalcarbonyl compounds // Bull. Chem. Soc. Jap., 1976, Vol. 49, P. 929-932.

71. Rossi A., Hoffman R. Transition metal pentacoordination // Inorg. Chem., 1975, Vol. 14, P. 365-374.

72. Albright T.A., Hoffmann P., Hoffmann R. Conformational preferences and rotational barriers inpolyene-ML3 transition metal complexes // J. Am. Chem. Soc., 1977, Vol. 99, P. 7546-7557.

73. Hoffmann R., Albright T.A., Thorn D.L. Theoretical aspects of the coordination of molecules to transition metal centers // Pure Appl. Chem., 1978, Vol. 50, P. 1.

74. Chizhov Yu.V., Ovchinnikova N.K., Shakleina I.V., Loza O.A. Theoretical and experimental studies of transition-metall л-complexes. Modeling Complex Systems, 6-th Granada Lectures on Computational Physics, 4-6 September, Granada, Spain, 2000.

75. Schrodinger E. Квантование как задача о собственных числах. // Annalen der Physik (Leipzig),1926, Vol. 79, P. 361.

76. Thomas L.H. The calculation of atomic fields // Proc. Camb. Phil. Soc., 1927, Vol. 23, P. 542.

77. Fermi E. A statistical method for determining some properties of the atom. Rend // Accad. Nazi.1.ncei, 1927, Vol. 6, P. 602-607.

78. Fermi E. Eine statistische methode sur bestimmung ciniger eigenschaften des atoms und ihrer anwendung auf die theorie des periodischen systems der elementa // Zeits. f. Physik, 1928, Vol. 48, P. 7.

79. Гомбаш П. Проблема многих частиц в квантовой механике (теория и методы решения).

80. М.: Изд. Иностр. литературы, 1952. 280 с.

81. Fermi Е., Amaldi Е. // Mem. Асс. Italia, 1934, Vol. 6, P. 117.

82. Dirac P.A.M. Theory of quantum mechanics // Proc. Roy. Soc. (London), 1926, Vol. A112, P. 661-677.

83. Jensen H. Uber die Giiltigheit des Virialsatzes in der Thomas-Fermischen Theorie // Zeits. f. Phys., 1933, Vol. 81, P. 611.

84. Gombas P. Die Statistische Theorie des Atoms und ihre Anwendung (Springer-Verlag, Berlin,1949).

85. Fermi E. Zur Quantelung des idealen einatomigen Gases // Zeits. f. Phys., 1926, Vol. 36, P. 902.

86. Dirac P.A.M. Theory of quantum mechanics // Proc. Roy. Soc. (London), 1926, Vol. A112, P. 661-677.

87. Кон В. Электронная структура вещества волновые функции и функционалы плотности (нобелевская лекция) // Успехи физических паук, 2002, Т. 172, №3, С. 336-348.

88. Baerrends E.J., Gritsenko O.V. A quantum chemical view of density functional theory // J. Phys.

89. Chem. A, 1997, Vol. 101, P. 5383-5403.

90. Kohn W. Highlights of Condensed-matter Theory. Amsterdam: North-Holland, 1985.

91. Kato T. On the eigenfunctions of many-particle systems in quantum mechanics // Commun. Pure Appl. Math, 1957, Vol. 10, P. 151-177.

92. Capelle K., Vignale G. Nonuniqueness of the potentials of spin-density-functional theory // Phys.

93. Rev. Lett., 2001, Vol. 86, P. 5546-5549.

94. Capelle K., Vignale G. Nonuniqueness and derivative discontinuities in density-functional theories for current-carrying and superconducting systems // Phys. Rev. В , 2002, Vol.65, P.l 13106.

95. Eschrig H., W.E.Pickett. Density functional theory of magnetic systems revisited // Solid State Commun., 2001, Vol. 118, P. 123-127.

96. Argaman N., Makov G. Thermodynamics as an alternative foundation for zero-temperature density-functional theory and spin-density-functional theory // Phys. Rev. B, 2002, Vol. 66, P. 052413.

97. Panin A.I. Approximate solution of the representability problem // International Journal of Quantum Chemistry, 2001, Vol. 85, P. 1-17.

98. Panin A.I. Pure representability problem and new models of the electron fack space // International Journal of Quantum Chemistry, 2002, Vol. 87, P. 23-36.

99. Levy M. Electron densities in search of Hamiltonians // Phys. Rev. A, 1982, Vol. 26, P. 12001208.

100. Lieb E.H. Density Functional Methods in Physics, edited by R.M.Dreizler and J. da Providencia,1. Plenum, New York, 1985.

101. Capelle K. A bird's-eye view of density functional theory. Preprint http://arxiv.org/abs/cond-mat/0211443].

102. Абаренков И.В., Братцев В.Ф., Тулуб A.B. Начала квантовой химии. М.: Высшая школа,1989.-303 с.

103. Economou E.N. Green's Functions in Quantum Physics. Springer, New York, 1979.

104. Gross E.K.U, Runge E., Heinonen O. Many Particle Theory. Adam Hilger, 1992.

105. Фок B.A. Начала квантовой механики. M.: Наука, 1976.

106. Casida М.Е. Generalization of the optimized effective potential model to include electron correlation: a variational derivation of the Sham-Schluter equation for the exact exchange-correlation potential II Phys. Rev. A, 1995, Vol. 51, P. 2005-2013.

107. Ziegler T. Density functional theory as a practical tool in studies of organometallic energetics and kinetics // Canadian J. Chem., 1995, Vol. 73, P. 743.

108. Slater J.C. Quantum theory of molecular and solids. Vol.4: The self-consistent field for molecular and solids. McGraw-Hill, New York, 1974.

109. Wigner E.P. Effects of electron interaction on the energy levels of electrons in metal // Trans. Faraday Soc., 1938, Vol. 34, P. 678-685.

110. Carr W.J., Colwell-Hersfall R.A., Fein A.E.// Phys. Rev., 19611, Vol. 24, P. 747.

111. Gell-Mann M., Brueckner K.A. // Phys. Rev., 1957, Vol. 106, P. 364.

112. GordonR.G.,.Kim Y.S // J. Chem. Phys, 1972, Vol. 56, P. 3122.

113. Ceperly D.M. Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions // Phys. Rev. B, 1978, Vol. 18, P. 3126-3138.

114. Vosko S.H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis // Canadian J. Phys., 1980, Vol. 58, P. 12001211.

115. Perdew J.P. , Zunger A. Self-interaction correction to density-functional approximations for many-electron systems // Phys. Rev. B, 1981, Vol.23, P. 5048-5079.

116. Perdew J.P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy II Phys. Rev. B, 1992, Vol. 45, P. 13244-13249.

117. Perdew J.P, Burke K, Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett., 1996, Vol. 77, P. 3865-3868.

118. Filippi C, Umrigar C.J, Taut M. Comparison of exact and approximate density functionals for an exactly soluble model II J. Chem. Phys., 1994, Vol. 100, P. 1290-1296.

119. Ziesche P, Kurth S, Perdew J.P. Density Functionals from LDA to GGA // Сотр. Mat. Sci., 1998, Vol. 11, P. 122.

120. Patton D.C., Pederson M.R. Application of the generalized-gradient approximation to rare-gas dimers II Phys. Rev. A, 1997, Vol. 56, P. 2495-2498.

121. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys., 1993, Vol. 98, P. 5648-5652.

122. Perdew J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas // Phys .Rev. B, 1986, Vol. 33, P. 8822-8824.

123. Perdew J.P., in Electronic Structure of Solids 1991, edited by P. Ziesche and H. Eschrig (Academie Verlag, Berlin, 1991).

124. Perdew J.P., Burke K., Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system // Phys. Rev. B, 1996, Vol. 54, P. 16533-16539.

125. Becke A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals II J. Chem. Phys., 1997, Vol. 107, P. 8554- 8560.

126. Tozer D.J., Handy N.C. The development of new exchange-correlation functionals // J. Chem. Phys., 1998, Vol. 108, P. 2545-2555.

127. Van Voorhis Т., Scuseria G.E. A novel form for the exchange-correlation energy functional II J. Chem. Phys., 1998, Vol. 109, P. 400-410.

128. Perdew J.P., Kurth S., Zupan A., Blaha P. Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation // Phys. Rev. Lett., 1999, Vol. 82, P. 2544-2547.

129. Becke A.D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing// J. Chem. Phys., 1996, Vol.104, P. 1040- 1046.

130. Акопян M.E., Головин А.В., Родин А.А. Фотоиоиизациоппая спектроскопия молекул. -СПб.: Изд. С.-Петербургского университета, 1996, 316 с.132. «Техническое описание электронного спектрометра ЭС3201», СКБ АП АН СССР, Ленинград, 1985.

131. Samson A. R., Cairns R. B. Photoelectron Spectroscopy of the Rare Gases // Phys. Rev., 1968,1. Vol. 173, P. 80-85.

132. Turner D. W. Photoelectron Spectroscopy // Annual Review of Physical Chemistry, 1970, Vol.21, P. 107-128.

133. Rabalais J.W. «Principles of UV photoelectron spectroscopy», Wiley-Interscience, New York, 1977.

134. Turner D.W., Baker С., Baker A.D., Bundle C.R. «Molecular Photoelectron Spectroscopy», Wiley-Interscience, New York, 1970.

135. Purcell E.M. The Focusing of Charged Particles by a Spherical Condenser // Phys. Rev, 1938, Vol.54, P.818-826.

136. Roy D, Delage A.and Carette J. -D. Description and performance of a high resolution electron spectrometer II J. Phys. E: Sci. Instrum., 1975, Vol. 8, P. 109-114.

137. Королев Б.И. «Основы вакуумной техники» М, 1978.

138. Green J.C, Decleva P. Photoionization cross-section: a guide to electron structure // Coord. Chem. Reviews, 2005, Vol. 249, P. 209-228.

139. Stener M, Fronzoni G, Furlan S, Decleva P. Photoionization of (г|-СбНб)2Сг] with the explicit continuum B-spline density-functional method II J. Chem. Phys., 2001, Vol. 114, P. 306-319.

140. Brennan J.G, Cooper G, Green J.C, Kaltsosyannis К.// Chem. Phys., 1992, Vol. 164, P. 271.

141. Schmidt V. // Phys.Lett. A, 1973, Vol. 45, P. 63.

142. Grosh P.K. Introdution to Photoelectron Spectroscopy. Wiley, New York, 1983.

143. Manson S.T, Dill D. The photoionization of atoms, Cross-Sections and Photoelectron Angular

144. Distributions // Academic Press, New York, 1978, Vol. 2, P. 157.

145. Yeh J.J, Lindau I. At. Data Nucl. Data Tables, 1985, Vol. 32, P. 1.

146. Worley S.D, Webb T.R, Gibson D.H, and Ong T.S. The photoelectron spectra of some iron tricarbonyl complexes of 47t-electron donor ligands II J. Electr. Spectrosc. Relat. Phenom., 1980, Vol. 18, P. 189-198.

147. Крауклис И.В, Лоза О.А,Чижов Ю.В. Доклад "О проблеме физической интерпретации орбитальных энергий Кона-Шема" на 5-ой сессии фоковской школы-конференции по квантовой и компьютерной химии. Тезисы конференции, с. 58, Великий Новгород, 2002.

148. Krauklis I.V, Chizhov Yu.V. Kohn-Sham energies and vertical ionization potentials: DFT study of irontricarbonyl complexes. 7-th (Internet) Session of the V.A. Fock school on Quantum and Computational Chemistry, Novgorod the Great, Russia, 2003.

149. Крауклис И.В, Чижов Ю.В. Фотоэлектронная спектроскопия молекулярных систем и квантовохимические расчеты в рамках теории функционала плотности: 7г-комплексы железа L-Fe(CO)3 // Оптика и спектроскопия, 2004, Т.96, №1, С. 55-64.

150. Крауклис И.В.,Чижов Ю.В. Фотоэлектронная спектроскопия и расчеты методом функционала плотности железотрикарбонильных комплексов винилнафталинов // Оптика и спектроскопия, 2005, Т.98, №3, С. 379-386.

151. Адрианов В.Г., Стручков Ю.Т., Бабахина Г.М., Крицкая И.И., Кравцов Д.Н. Молекулярная структура а-метилстиролжелезотрикаронила // Изв. АН СССР, Сер.хим.,1984, №3, С. 590593.

152. Бацанов А.С., Зольникова Г.П., Стручков Ю.Т., Крицкая И.И. Кристаллическая структура о-ксиленжелезотрикарбонила//Координ. Химия, 1987, Т. 13, С. 1551-1553.

153. Dickens В., Lipscomb W.N. Molecular structure of C8H8Fe(CO)3 // J. Am. Chem. Soc., 1961, Vol. 83, P. 4862-4863.

154. Gorelsky S.I., P.Lever A.B. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods // J. Organometal. Chem., 2001, Vol. 635, P. 187-196.

155. Ros P., Schuit G.C.A. // Theor. Chim. Acta. , 1966, Vol. 4, P. 1.

156. Verner D.A., Ferland G. J., Korista К. Т., Yakovlev D.G. // Astrophys. J., 1996, Vol. 465, P. 487.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.