Формирование математического мышления будущего учителя математики в вузе тема диссертации и автореферата по ВАК РФ 13.00.08, кандидат педагогических наук Ежова, Валентина Сергеевна
- Специальность ВАК РФ13.00.08
- Количество страниц 151
Оглавление диссертации кандидат педагогических наук Ежова, Валентина Сергеевна
Введение.
ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ МАТЕМАТИЧЕСКОЙ КУЛЬТУРЫ СТУДЕНТОВ - БУДУЩИХ УЧИТЕЛЕЙ МАТЕМАТИКИ В ВУЗЕ.
1.1. Теоретические подходы к определению понятия «Математическая культура будущих учителей математики».
1.2. Определение компонентов математической культуры будущих учителей математики.
Выводы по первой главе.
ГЛАВА 2. МОДЕЛЬ МЕТОДИЧЕСКОЙ СИСТЕМЫ ФОРМИРОВАНИЯ МАТЕМАТИЧЕСКОЙ КУЛЬТУРЫ У СТУДЕНТОВ - БУДУЩИХ УЧИТЕЛЕЙ МАТЕМАТИКИ МЕТОДОМ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ.
2.1. Теоретические основы педагогического моделирования.
2.2. Модель формирования математической культуры студентов - будущих учителей математики.
2.3. Математическое моделирование в формировании математической культуры будущих учителей математики.
Выводы по второй главе.
ГЛАВА 3. ПЕДАГОГИЧЕСКИЙ ЭКСПЕРИМЕНТ ПО РЕАЛИЗАЦИИ И ПРОВЕРКЕ МОДЕЛИ ЭФФЕКТИВНОСТИ ФОРМИРОВАНИЯ МАТЕМАТИЧЕСКОЙ КУЛЬТУРЫ БУДУЩИХ УЧИТЕЛЕЙ МАТЕМАТИКИ.
3.1. Общая характеристика педагогического эксперимента.
3.2. Анализ результатов опытно-экспериментальной работы.
Выводы по третьей главе.
Рекомендованный список диссертаций по специальности «Теория и методика профессионального образования», 13.00.08 шифр ВАК
Формирование педагогической культуры будущего учителя математики в образовательном процессе вуза2009 год, кандидат педагогических наук Заглядина, Ольга Николаевна
Формирование коммуникативной компетенции студентов - будущих учителей математики в процессе обучения началам математического анализа2011 год, кандидат педагогических наук Кириллова, Надежда Александровна
Формирование риторической компетенции студентов-нефилологов в системе профессиональной подготовки в педагогическом вузе2007 год, доктор педагогических наук Горобец, Людмила Николаевна
Формирование историко-математической компетентности будущих учителей математики в процессе профессиональной подготовки в вузе2010 год, кандидат педагогических наук Головина, Ольга Владимировна
Формирование готовности будущего учителя математики к реализации дополнительного математического образования школьников2013 год, кандидат педагогических наук Кочегарова, Ольга Сергеевна
Введение диссертации (часть автореферата) на тему «Формирование математического мышления будущего учителя математики в вузе»
Актуальность исследования. Современный этап развития высшей школы в России характеризуется существенными изменениями содержания обучения и воспитания специалистов. Общество сегодня требует от образования формирования самостоятельной, ответственной личности, способной к решению педагогических и социальных проблем в соответствии с нормами новой образовательной парадигмы; личности, способной максимально полно раскрыться в жизни, привнося в нее творчество и индивидуальность. Социальные ожидания нашего государства - это появление учителя, обладающего потребностью и способностью творчески решать сложные профессиональные задачи, владеющего высокой профессиональной культурой.
Профессиональная культура учителя состоит из общекультурной, общенаучной и профессионально-педагогической составляющих.
Как показывает анализ литературы, понятие «культура» в общефилософском плане рассматривается в работах К.А. Абульхановой-Славской, А.И. Арнольдова, М.М. Бахтина, B.C. Библера, М.С. Кагана, J1.H. Когана, Э.С. Маркаряна, М.К. Мамардашвили, А.И. Громова, Ю.И. Ефимова, Э.В. Соколова, В.Б. Чурбанова, О.В. Хановой и др.
Заслуживает внимания научное направление, исследователи которого рассматривают культуру как проблему изменения самого человека, становления его как творческой личности (Е.М. Бабосов, Б.С. Библер, Н.С. Злобин, JI.H. Коган, А.Н. Леонтьев, В.М. Межуев, Л.Б. Сохонь, Э.В. Соколов, И.А. Ильяева, В.Б. Чурбанов и др.). Данный подход открывает широкие возможности в плане исследования проблемы формирования личности, взаимодействия культуры и личности, культуры и творчества, развития индивидуального стиля профессиональной деятельности и т.д.
Проблемам профессиональной культуры учителя посвящены исследования В.А. Сластенина, В.И. Слободчикова, Л.И.Новиковой, Н.Б. з
Крыловой, И.Я. Лернера, Е.В. Бондаревской, В.В. Серикова, О.В. Заславской, H.A. Шайденко, A.A. Орлова, A.B. Мудрика, Д.Г. Левитеса, Л.А. Байковой и Др.
В течение многих столетий математика является неотъемлемым элементом системы образования во всем мире. Объясняется это уникальными возможностями учебного предмета «математика» в формировании личности учителя и учащегося. Образовательный, воспитательный и развивающий потенциал математики огромен и до конца не изучен. Математика обучает, воспитывает, развивает, готовит к продолжению образования в средних профессиональных или высших учебных заведениях.
Проблемам совершенствования математического образования и профессиональной направленности образования посвящены работы В.А. Герлингер, В.А. Далингер, Г.А. Луканкина, И.А. Новик, М.А. Родионова и др.
Термин «математическая культура» появился в 20—30-е годы XX века. Позднее некоторые авторы начали рассматривать математическую культуру как систему знаний и умений. В 40—50-е годы XX века проблема формирования математической культуры рассматривалась в свете появления работ по теории поэтапного формирования умственных действий. Исследованием названной проблемы занимались как математики, останавливаясь на математическом аспекте проблемы, так и педагоги, рассматривая проблему в педагогическом плане. К концу 80-х годов математическую культуру понимают уже не только как знания, умения, навыки и свободное оперирование ими, но начинают включать такие компоненты, как математическое мышление и математический язык.
Эта проблема приобретает в настоящее время особенно важное значение, т.к. по результатам исследования PISA (международная программа по оценке подготовки 15-летних школьников) в 2009 году российские учащиеся оказались в группе стран, результаты которых существенно ниже результатов стран ОЭСР. Средний балл российских учащихся составил 468 4 баллов (по странам ОЭСР - 496), что соответствует 38-40 местам среди 65 стран-участниц.
Невысокие результаты российских учащихся в исследовании PISA еще раз демонстрируют, что давно поставленная перед российской школой цель подготовить выпускников к свободному использованию математики в повседневной жизни в значительной степени не достигается на уровне требований международных тестов PISA, оценивающих сформированность математической грамотности. Причины этого кроются в крайностях реализации академической направленности школьного курса математики, что приводит к уменьшению внимания к практической составляющей обучения математике в школе.
Вопросам формирования математической культуры в условиях профессиональной подготовки студентов вуза посвящено диссертационное исследование Т.Г. Захаровой. О.В. Артебякина в своем исследовании рассматривает формирование математической культуры у студентов педагогических вузов. Исследование З.С. Акмановой посвящено развитию математической культуры студентов университета в процессе профессиональной подготовки. Е.В. Путилова рассматривает вопросы формирования математической культуры студентов гуманитарных факультетов педагогических вузов как общедидактической задачи.
Диссертационных исследований, посвященных проблеме формирования математической культуры будущих учителей математики в педагогическом вузе, нами не обнаружено.
Анализ психолого-педагогической и методической литературы, диссертаций, изучение опыта работы высшей школы, собственной деятельности в качестве преподавателя математики в средней и высшей школе позволил выявить основные противоречия между:
- потребностью общества в преподавателях школы, обладающих высокой математической культурой, конкурентоспособных на рынке труда, и недостаточным уровнем сформированности данной культуры у студентов будущих учителей математики в вузе;
- потребностями практики в научно-методическом обеспечении процесса формирования математической культуры будущего учителя математики и недостаточной разработанностью указанного процесса в педагогической науке.
Выявленные противоречия позволяют определить проблему исследования: какова должна быть модель формирования математической культуры у студентов - будущих учителей математики в педагогическом вузе?
Цель исследования состоит в разработке и реализации модели формирования математической культуры у студентов - будущих учителей математики.
Объектом исследования является процесс обучения студентов -будущих учителей математики педагогического вуза.
Предметом исследования процесс формирования математической культуры студентов - будущих учителей математики в вузе.
Гипотеза исследования: процесс подготовки студентов педагогического вуза - будущих учителей математики к их профессионально-педагогической деятельности наиболее эффективен, если:
- определены сущность и содержание понятия «математическая культура студентов - будущих учителей математики»;
- выделены компоненты математической культуры студентов -будущих учителей математики;
- разработана модель формирования математической культуры студентов - будущих учителей математики.
В соответствии с объектом, предметом и целью исследования для решения проблемы и проверки достоверности сформулированной гипотезы необходимо решить следующие задачи:
1. Провести теоретический анализ современного состояния профессиональной подготовки будущих учителей математики. 6
2. Выявить сущность понятия «математическая культура будущего учителя математики» применительно к условиям профессионального педагогического образования.
3. Определить структуру математической культуры студентов педагогического вуза - будущих учителей математики.
4. Разработать модель формирования математической культуры студентов - будущих учителей математики, состоящую из целевого, содержательного, процессуального, результативно-оценочного компонентов.
5. Провести экспериментальную проверку эффективности модели формирования математической культуры у студентов.
Методологической основой исследования являются:
- методологии педагогики, психологии и методики педагогического исследования (Б.С. Гершунский, В.В. Давыдов, В.В. Краевский, А.Н. Леонтьев, A.M. Новиков, М.Н. Скаткин и др.);
- теория системного (В.Г. Афанасьев, Ф.Ф. Королев, Н.В. Кузьмина, ЮЛ. Кустов, К.К. Платонов, А.И. Субетто, Г.П. Щедровицкий, Ю.И. Тарский, В. Хубка, У. Эшби, В.А. Якунин и др.), личностно-ориентированного (TTТ. А Амонашвили, М.А. Викулина, Л.Г. Вяткин, Г.И. Железовская, Г.П.Корнев, В.В. Сериков, В.С, Сухомлинский, И.С. Якиманская, и др.), компетентностного (В.И. Байденко, В.А. Болотов, Н.И. Максимов, H.H. Матушкин, Ю.Г. Татур, A.B. Хуторской, В.Д. Шадриков и др.) и деятельностного (A.A. Вербицкий, П.Я. Гальперин, В.В. Давыдов, И.А. Зимняя, А.Н. Леонтьев, С.Л. Рубинштейн, Н.Ф. Талызина и др.) подходов.
Теоретической основой исследования являются:
1) теория основных принципов развития отечественного образования (A.M. Новиков, Б.А. Сазонов, H.A. Селезнева, А.И. Субетто и др.);
2) теория педагогической деятельности (Ю.К. Бабанский, Н.В. Кузьмина, В.А. Сластенин и др.), теория педагогического управления (С.И.
Архангельский, В.И. Загвязинский, М.М. Поташник и др.);
3) теория непрерывного образования и педагогической интеграции (B.C. Безрукова, А.П. Беляева, А.Я. Журкина, A.M. Новиков, А.А, Червова и др-);
4) концепция моделирования и конструирования педагогического процесса (С.А. Архангельский, B.C. Безрукова, В.П. Беспалько, В.М. Кларин, Г.Е. Муравьева, Н.Ф. Талызина, Ю.К. Чернова, П. Юцявичене и др.);
5) теория отбора содержания образования (Ю.К. Бабанский, С .Я. Батышев, В.И. Гинецинский, В.В. Давыдов, E.H. Дмитриева, Г.А. Ильин, В. Ильенков, Г.П. Корнев, Ю.В. Кустов, B.C. Леднев, В.В. Мултановский, В.Г. Разумовский, М.Н. Скаткин, В.А. Фабрикант, Г.Ф. Хасанова и др.);
Для проверки гипотезы и решения поставленных задач был применен комплекс методов исследования, дополняющих друг друга:
- теоретические: анализ и синтез философской (аксиологической), социологической, культурологической, педагогической, психологической литературы; терминологический анализ, классификация, моделирование;
- эмпирические: наблюдение, анкетирование, тестирование, беседа, изучение продуктов деятельности, эксперимент.
Исследование проводилось поэтапно.
На первом этапе (2008 - 2009 г.) осуществлялось изучение и анализ философской, естественнонаучной, психолого-педагогической и научно-методической литературы по теме исследования с целью определения теоретических основ формирования математической культуры студентов педагогического вуза - будущих учителей математики, изучалось состояние проблемы в практике обучения, проводилась проверка актуальности выбранной темы, разработка гипотезы исследования, определение задач, постановка цели исследования.
На втором этапе (2009-2010 гг.) разрабатывалась модель формирования математической культуры студентов - будущих учителей математики, определялись критерии и уровни сформированности математической культуры.
На третьем этапе (2010-2011 гг.) проводилась апробация разработанной модели формирования математической культуры студентов - будущих учителей математики, проводились анализ и обобщение результатов экспериментального исследования, осмысление и формулировка выводов, оформление диссертационного исследования.
Научная новизна работы состоит в том, что:
1. Определена сущность математической культуры будущих учителей математики, под которой понимается целостное образование личности, характеризующееся высоким уровнем овладения ими математическими знаниями и умениями, сформированным ценностным отношением к получаемым знаниям, развитой способностью к рефлексии своей педагогической деятельности, владением специальным способом приближенного описания некоторой проблемы, позволяющим при её анализе применять формально-логический аппарат математики, и технологией обучения этому способу на различных уровнях образования.
2. Выявлена структура математической культуры будущих учителей математики, представленная единством мотивационного, процессуально-деятельностного, технологического, коммуникационного, рефлексивного компонентов:
Мотивационный компонент характеризуется пониманием роли и значения педагогического образования в будущей педагогической деятельности учителя математики; знакомством с особенностями педагогической деятельности, связанной с организацией речевого взаимодействия в процессе обучения математике, педагогического общения, информационного обмена.
Когнитивный компонент представляет собой совокупность знаний в области математики.
Коммуникативный компонент характеризуется умением построить взаимодействие, разрешить коммуникативные ситуации в педагогическом общении, умение организовать информационный обмен, общение для достижения творческих продуктов педагогической деятельности.
Технологический компонент характеризуется владением педагогических технологий при обучении математики, адекватным выбором методом, форм и средств в процессе обучения математике.
Рефлексивный компонент характеризуется способностью будущего учителя математики прогнозировать и адекватно оценивать результаты своих действий, обучающего, диагностического и воспитательного характера.
3. Выделены четыре этапа формирования математической культуры будущих учителей математики, обусловленные последовательностью обучения будущих учителей математики различным дисциплинам математического цикла в педагогическом вузе.
4. Выявлены критерии, показатели и уровни сформированности математической культуры студентов:
Низкий уровень характеризуется теоретической осведомленностью на минимально необходимом уровне первоначальными знаниями, умениями и навыками, профессионально-важными качествами личности, необходимыми для последующего, более широкого и глубокого образования, уровень владения специальным способом приближенного описания некоторой проблемы, позволяющий при её анализе применять формально-логический аппарат математики низкий, решение типовых задач и построение моделей только по уже известному алгоритму.
Средний уровень характеризуется значительным объемом, широтой и глубиной знаний, умений и навыков, способов деятельности; уровень владения специальным способом приближенного описания некоторой проблемы, позволяющий при её анализе применять формально-логический аппарат математики средний, решение задач и построение моделей с помощью преподавателя.
Высокий уровень характеризуется сформированностью графических, проектировочных, моделирующих, информационных компетенций, которые позволяют будущему учителю математики реализовать себя в профессиональной деятельности; уровень владения специальным способом приближенного описания некоторой проблемы, позволяющий при её анализе применять формально-логический аппарат математики высокий, решение творческих задач и построение моделей студентом самостоятельно.
5. Разработана и апробирована модель формирования математической культуры будущих учителей математики в вузе, состоящая из целевого (цель и задачи формирования математической культуры будущих учителей математики в вузе), содержательного (содержание дисциплин математического профиля, система задач), процессуального (формы, методы, средства и технологии формирования математической культуры будущих учителей математики в вузе) и результативно-оценочного (критерии и уровни сформированности математической культуры будущих учителей математики в вузе) компонентов.
6. Экспериментально доказана эффективность разработанной формирования математической культуры будущих учителей математики в вузе.
Теоретическая значимость исследования заключается в том, что его результаты дополняют теорию и методику профессионального образования, а именно в:
- уточнении понятия «математическая культура студентов» применительно к будущим учителям математики.
- раскрытии структуры математической культуры будущих учителей математики.
- обосновании подходов (личностно-ориентированный подход, системный подход, интегративный подход, деятельностный подход) к модели формирования математической культуры студентов - будущих учителей математики.
- теоретическом обосновании модели формирования математической культуры студентов - будущих учителей математики.
Практическая значимость исследования заключается в том, что выводы и рекомендации экспериментально-педагогической работы позволили:
- показать эффективность разработанной модели;
- разработать систему специальных задач по формированию представлений о математическом моделировании реальных процессов, в частности, задач, связанных с моделированием процессов, встречающихся в профессиональной деятельности выпускников, которые могут быть использованы преподавателями при работе со студентами педагогических вузов.
- разработать систему показателей и критериев по определению уровней сформированности математической культуры будущих учителей математики.
Достоверность и обоснованность проведенного исследования, полученных в исследовании результатов и выводов обеспечивается опорой на основные положения современных методологических, психолого-педагогических и научно-методических исследований, результатами обработки данных проведенного эксперимента, использованием методов исследования адекватных цели и задачам исследования.
Апробация и внедрение результатов исследования
Теоретические идеи и материалы исследования обсуждались на заседаниях научно-исследовательской лаборатории поствузовского образования ФГБОУ ВПО «Шуйский государственный педагогический университет», на конференциях различного уровня: Всероссийской научнопрактической конференции «Подготовка учителя для XXI века: теория и практика» (Н.Новгород, 2011г.); Международной научно-практической конференции «Теория и практика педагогической науки в современном мире: традиции, проблемы, инновации» (Кузбасс, 2010 г.), Международной
12 научной конференции «Шуйская сессия студентов, аспирантов, молодых ученых» (Шуя - Москва, 2009, 2010, 2011 гг.); научно-практической конференции «Сохранение и развитие культурного и образовательного потенциала Ивановской области» (Иваново, 2009, 2010 гг.); опубликованы в трех статьях в журналах, рекомендованных ВАК МОиН РФ (Москва, Красноярск) и межвузовском сборнике научных трудов с международным участием «Проблемы теории и практики подготовки современного специалиста» (Нижний Новгород, НГЛУ, 2010, 2011 гг.).
Результаты исследования внедрены в ФГБОУ ВПО "Пензенский государственный педагогический университет" (г. Пенза), о чем имеется акт о внедрении.
На защиту выносятся следующие положения:
1. Уточненное определение понятия «Математическая культура студентов педагогических вузов будущих учителей математики», под которой понимается целостное образование личности, характеризующееся высоким уровнем овладения ими математическими знаниями и умениями, сформированным ценностным отношением к получаемым знаниям, развитой способностью к рефлексии своей педагогической деятельности, владением специальным способом приближенного описания некоторой проблемы, позволяющим при её анализе применять формально-логический аппарат математики, и технологией обучения этому способу на различных уровнях образования.
2. Структура математической культуры студентов педагогического вуза, состоящая из следующих компонентов:
Мотивационный компонент характеризуется пониманием роли и значения педагогического образования в будущей педагогической деятельности учителя математики; знакомством с особенностями педагогической деятельности, связанной с организацией речевого взаимодействия в процессе обучения математике, педагогического общения, информационного обмена.
Когнитивный компонент представляет собой совокупность знаний в области математики.
Коммуникативный компонент характеризуется умением построить взаимодействие, разрешить коммуникативные ситуации в педагогическом общении, умение организовать информационный обмен, общение для достижения творческих продуктов педагогической деятельности.
Технологический компонент характеризуется владением педагогических технологий при обучении математики, адекватным выбором методом, форм и средств в процессе обучения математике.
Рефлексивный компонент характеризуется способностью будущего учителя математики прогнозировать и адекватно оценивать результаты своих действий, обучающего, диагностического и воспитательного характера.
3. Модель формирования математической культуры студентов педагогических вузов - будущих учителей математики представляющая полиструктурное и полифункциональное единство и механизм взаимодействия инвариантных компонентов, среди которых в качестве
ЛЛЦЛППСТУ ТЭГЛ П<=> ТТ^ЧИТ ТТ<=»ТТР>ПГ>ТЛ ГТ>ТТРЧЛМ/С!Т<=>ГТ11ЛТТЙ ТТГ\Г»ТТР>Г,Г,Л7С| гтший тт
IVи 1 1 и и!^.^^ 1 ' и 1 1 } ^Л V1Ъ<Л ^ 1 1 ^ ч^у 11Л117|11 XX результативно-оценочный компоненты, каждый из которых, оставаясь элементом целостности, имеет собственное содержательное наполнение и функциональное своеобразие.
Похожие диссертационные работы по специальности «Теория и методика профессионального образования», 13.00.08 шифр ВАК
Формирование коммуникативной культуры студентов-математиков педагогического вуза2005 год, кандидат педагогических наук Кузьменко, Ирина Васильевна
Дидактическая модель билингвального обучения математике в высшей педагогической школе2008 год, доктор педагогических наук Салехова, Ляйля Леонардовна
Предметная подготовка учителя математики в условиях гуманитаризации образования2004 год, кандидат педагогических наук Горчакова, Алла Валентиновна
Педагогические условия формирования предметной компетентности будущего учителя математики2011 год, кандидат педагогических наук Казачек, Наталья Анатольевна
Методика формирования коммуникативных умений и навыков в профессиональной подготовке будущих учителей математики2003 год, кандидат педагогических наук Османова, Ирина Маиловна
Заключение диссертации по теме «Теория и методика профессионального образования», Ежова, Валентина Сергеевна
Основные результаты исследования состоят в следующем.
1. Проведенный анализ научной психолого-педагогической литературы, личный опыт работы в качестве преподавателя математики в школе и педагогическом вузе позволили сформулировать авторское определение математической культуры будущих учителей математики -целостное образование личности, характеризующееся высоким уровнем овладения ими математическими знаниями и умениями, сформированным ценностным отношением к получаемым знаниям, развитой способностью к рефлексии своей педагогической деятельности, владением специальным способом приближенного описания некоторой проблемы, позволяющим при её анализе применять формально-логический аппарат математики, и технологией обучения этому способу на различных уровнях образования.
2. Определена структура математической культуры студентов -будущих учителей математики, состоящая из компонентов:
Мотивационный компонент характеризуется пониманием роли и значения педагогического образования в будущей педагогической деятельности учителя математики; знакомством с особенностями педагогической деятельности, связанной с организацией речевого взаимодействия в процессе обучения математике, педагогического общения, информационного обмена.
Когнитивный компонент представляет собой совокупность знаний в области математики.
Коммуникативный компонент характеризуется умением построить взаимодействие, разрешить коммуникативные ситуации в педагогическом общении, умение организовать информационный обмен, общение для достижения творческих продуктов педагогической деятельности.
Технологический компонент характеризуется владением педагогических технологий при обучении математики, адекватным выбором методом, форм и средств в процессе обучения математике.
Рефлексивный компонент характеризуется способностью будущего учителя математики прогнозировать и адекватно оценивать результаты своих действий, обучающего, диагностического и воспитательного характера.
3. Обоснована, разработана и реализована модель формирования математической культуры будущих учителей математики, раскрывающая логику обучения, включающая в себя цель, содержание, организационные формы, методы, средства, результат обучения, определяющий уровни формирования математической культуры будущих специалистов, содержащая компоненты: целевой, содержательный, процессуальный, результативно-оценочный.
4. В процессе экспериментального исследования доказана эффективность модели формирования математической культуры будущих учителей математики. На завершающем этапе высокий уровень математической культуры сформирован у 18,2 % студентов, только 4,2 % обучающихся остались на низком уровне, в то время как в контрольной группе 36,6 % остались на низком уровне сформированности математической культуры и 4,3% достигли высокого уровня, что свидетельствует об эффективности предложенной модели формирования математической культуры будущих учителей математики.
Основные положения и выводы, содержащиеся в диссертации, дают основание считать, что гипотеза и задачи исследования решены. Поставленная цель достигнута, а результаты внедрения позволяют утверждать, что исследование имеет реальную научную, теоретическую и практическую ценность.
Полученные результаты не исчерпывают всех аспектов обозначенной темы и открывают перспективы для дальнейшего исследования проблемы формирования математической культуры будущих учителей математики и развитии математической культуры учителей математики в процессе их педагогической деятельности.
ЗАКЛЮЧЕНИЕ
Список литературы диссертационного исследования кандидат педагогических наук Ежова, Валентина Сергеевна, 2011 год
1. Абульханова-Славская К.А. Деятельность и психология личности. -М.: Наука, 1980.-330 с.
2. Акманова 3. С. Развитие математической культуры студентов университета в процессе профессиональной подготовки: дис. . канд. пед. наук: 13.00.08 / 3. С. Акманова. — Магнитогорск, 2005.
3. Амосов Н.М. Моделирование сложных систем. Киев: Наукова думка, 1968.- 88с.
4. Артебякина, О. В. Формирование математической культуры у студентов педагогических вузов: дис. . канд. пед. наук: 13.00.08 / О. В. Артебякина. — М.: РГБ, 2002.
5. Архангельский С.И. Лекции по научной организации учебного процесса в высшей школе. М.: Высшая школа, 1976. - 200с.
6. Архангельский С.И. Лекции по теории обучения в высшей школе. М.: Высшая школа, 1974. - 384с.
7. Архангельский С.И. Учебный процесс в высшей школе, его закономерные основы и методы: Учеб.-метод, пособие. М.: Высшая школа, 1980,- 368с.
8. Асеева Н.Д. Тестовая диагностика в системе компьютерной профессиональной подготовки будущего специалиста. Автореф. дисс.канд. пед. наук. Н. Новгород, 2001. - 24 с.
9. Асланов P.M. Гуманитарный потенциал курса дифференциальных уравнений. М.: Прометей, 1996. - 129с.
10. Баврин И.И. Начала анализа и математические модели в123естествознании // Математика в школе. 1993.- №4. - С. 43-48.
11. Балашов М.М. Физика. Пробный учебник для 9 класса средней школы. М.: Просвещение, 1993. - 208с.
12. Баловнев Г.Г. Математические модели в общеинженерном курсе // Вестник высшей школы. -1973. № 6. - С. 28-30.
13. Бартоломью Д. Стохастические модели социальных процессов. М.: Финансы и статистика, 1985. - 295с.
14. Баториев К.Б. Аналоги и модели в познании. Новосибирск: Наука. Сибирское отд-е, 1981. - 319с.
15. Бахвалов C.B., Моденов П.С., Пархоменко A.C. Сборник задач по аналитической геометрии. М.: Наука, 1964.- 440с.
16. Берман Т.Н. Сборник задач по курсу математического анализа. М.: Наука, 1997.-416с.
17. Биджиев, Джашарбек Умарович Организационно-педагогические условия формирования математической культуры у студентов университета-будущих учителей : автореферат дис. . кандидата педагогических наук : 13.00.01 / Сев.-Осет. гос. ун-т им. K.JI. Хетагурова
18. Беспалько В.П. Основы теории педагогических систем: Проблемы и методы психол.-пед. обеспечения технических обучающих систем Воронеж: Изд-во Воронеж, ун-та, 1977. - 304с.
19. Бирюков Б.В., Гастев Ю.А., Геллер Е.С. Моделирование // Большая советская энциклопедия: В 30 тт. Т. 16 / Гл. ред. А.М. Прохоров. М.: Сов. энциклопедия, 1974. - С. 393-395.
20. Блехман И.И, Мышкис А.Д., Пановко Я.Г. Механика и прикладная математика: Логика и особенности приложений математики. М.: Наука,1983.- 328с.
21. Блох А.Я., Виленкин Н.Я., Мышкис А.Д., Роговская Е.Б. Проблемы прикладной направленности школьного курса математики // Проблемы преподавания математики в школе / Сост. А.Я. Блох. М.: Просвещение,1984.-С.5-25.
22. Бобровская A.B. Обучение методу математического моделирования средствами курса геометрии педагогического института: Дис. канд. пед. наук. СПб, 1996. -232с.
23. Бондаревская, Н.В. Педагогическая культура как общественная и личностная ценность / Е.В. Бондаревская // Педагогика. 1999. - № 3. - с. 43 -49.
24. Буслова М.К. Моделирование в процессе познания. Минск: Наука и техника, 1975. - 160с.
25. Буш Р., Мостеллер Ф. Стохастические модели обучаемости: Пер. с англ. / Под ред. Ю.А. Шрейдера. М.: Физматгиз, 1962. - 483с.
26. Былков B.C. Обучение школьников некоторым элементам математического моделирования // Математика в школе. 1986. - № 1. - С. 53-55.
27. Былков B.C. Формирование понятия о математическом моделировании средствами курса алгебры и начал математического анализа 9 и 10 классов: Автореф. дис.канд. пед. наук. М., 1986. - 16с.
28. Вазина К.Я. Модель саморазвития человека. Н.Новгород: ВГИПИ, 1999.-256с.
29. Вартофский М. Модели: Репрезентация и научное понимание. М.: Прогресс, 1988. - 507с.
30. Введение в научное исследование по педагогике: Учеб. пособие для студентов пед. ин-тов / Ю.К. Бабанский, В.И. Журавлёв, В.К. Розов и др.; Под ред. В.И. Журавлёва. М.: Просвещение, 1988. - 239с.
31. Веников В.А., Веников Г.В. Теория подобия и моделирования. М.:1251. Высш. шк., 1984. -439с.
32. Веников В.А. Некоторые методологические вопросы моделирования // Вопросы философии. 1964. - № 11. - С. 73-84.
33. Веников В.А. О моделировании. М.: Знание, 1974. - 63с.
34. Веников В.А. Принципы моделирования и высшее образование // Вестник высшей школы. 1972. - № 11.- С.29-34.
35. Вентцель B.C. Исследование операций: задачи, принципы, методология: 2-е изд., стер. М.: Наука, 1988. - 208с.
36. Вентцель Е.С. Методологические особенности прикладной математики на современном этапе // Математики о математике: Сб. статей / Сост. Н.Я.Виленкин. М.: Знание, 1984. - С. 37-55.
37. Виноградов, В. Подготовка специалиста как человека культуры / В. Виноградов, А. Синкж // Высшее образование в России.- № 2. 2004. С. 46 -52.
38. Викулина М.А. Проектирование и реализация личностно-ориентированного процесса подготовки педагогов в вузе: Автореф. дисс.докт. пед. наук. Оренбург, 2001. - 40 с.
39. Виленкин Н.Я., Дуничев К.И., Калужнин A.A., Столяр А=А= Современные основы школьного курса математики: Пособие для студ. пед. инст. М.: Просвещение, 1980. - 240с.
40. Виленкин Н.Я. Современные проблемы школьного курса математики и их исторические аспекты // Математика в школе. 1988. - № 4. - С.7-14.
41. Виленкин Н.Я. Функции в природе и технике. Книга для внеклассного чтения IX-X кл. М.: Просвещение, 1978. - 192с.
42. Вольтерра В. Математическая теория борьбы за существование: Пер. с фран. / Под ред. Ю.М. Свирежева. М: Наука, 1976. - 286с.
43. Выготский JI.C. Педагогическая психология / Под ред. В.В.Давыдова. -М.: Педагогика-Пресс, 1999. 536 с.
44. Выготский JI.C. Собрание сочинений: В 6 тт. Т.З. Проблемы развития психики / Под ред. A.M. Матюшкина. М.: Педагогика, 1983. - 368 с.126
45. Высшая математика для экономистов: Учебник для вузов: 2-е изд., перераб. и доп. / Сост. Н.Ш.Кремер, Б.А.Путко, И.М.Гришин, М.Н.Фридман; Под ред. проф. Н.Ш.Кремера. М.: Банки и биржи, ЮНИТИ, 1998. - 471с.
46. Габдреев Р.В. Моделирование в познавательной деятельности студентов. Казань: Из-во Казанского университета, 1983. - 112с.
47. Галилей Г. Пробирных дел мастер. М.: Наука, 1987. - 271 с.
48. Гальперин П.Я. Введение в психологию: Учебное пособие для вузов. -М.: Книжный дом "Университет", 1999. 332 с.
49. Гамезо М.В. Роль знаковых моделей в формировании умственных действий//Вопросы психологии.-1975.-№ 6.
50. Гарднер М. Есть идея! М.: Мир, 1982. - 305с.
51. Гастев Ю.А. Модель // Большая советская энциклопедия: В 30 тт. Т. 16 / Под ред. A.M. Прохоров. М.: Сов. Энциклопедия, 1974. - С.399-400.
52. Гастев Ю. Модель //Философская энциклопедия. Т. 3. / Глав. ред. Ф.В. Константинов. М.: Сов. энциклопедия, 1964. - С. 481-483.
53. Гершунский Б.С. Философия образования для XXI века (В поисках практико-ориентированных образовательных концепций) / Б.С. Гершунский. -М.: Изд-во «Совершенство», 1998. 608 с.
54. Гершунский Б.С. Федеральная программа развития профессионального образования в России. М.: Высш. шк., 1993. - 312с.
55. Гершунский Б.С. Философско-методологические основания стратегии развития образования в России. -М.: Высш. шк., 1993. 160с.
56. Гмурман В.Г. Теория вероятностей и математическая статистика: Учеб. пособие для вузов. Изд. 7-е, стер. М.: Высшая школа, 2000. - 479с.
57. Гнеденко Б.В. Математика и математическое образование в современном мире. М.: Просвещение, 1985. - 192с.
58. Гнеденко Б.В. Математика в современном мире и математическое образование // Математика в школе. 1991. - № 1.- С.2-4.
59. Гнеденко Б.В. Математика и научное познание. М.: Знание, 1983. -64с.
60. Гнеденко Б.В. Математическое образование в вузах: Учеб.-метод. пособие. М.: Высшая школа, 1981. - 174с.
61. Гончаров B.JI. Математика как учебный предмет / Вопросы общей методики математики. Труды института методов обучения / Отв. ред. H.H. Никитин / Известия АПН РСФСР, вып. 92. М.: АПН РСФСР, 1958. - С. 3766.
62. Горстко А.Б. Познакомьтесь с математическим моделированием. М.: Знание, 1991.- 160 с.
63. Грабарь М.И., Краснянская К.А. Применение математической статистики в педагогических исследованиях. Непараметрические методы. -М.: Педагогика, 1977.- 136 с.
64. Грес П.В. Математика для гуманитариев: Учебное пособие. М.: Юрайт, 2000.- 112с.
65. Григорьева Т.П., Иванова Т.А., Кузнецова Л.И., Перевощикова E.H. Основы технологии развивающего обучения математике: Учебное пособие. -Н.Новгород: НГПУ, 1997,- 134с.
66. Деркач, A.A. Акмеология: Пути достижения вершин профессионализма / A.A. Деркач, Н.В. Кузьмина. М.: Высшая школа, 1993. - 345с.
67. Давыдов В.В. Виды обобщения в обучении: Логико-психологические проблемы построения учебных предметов. М.: Педагогическое общество России, 2000. - 480 с.
68. Дадоджанов Я. Формирование действия моделирования в учебной деятельности (на материале геометрии): Автореф. дисс.канд. психол. наук. -М., 1981.- 19 с.
69. Далингер В.А. Межпредметные связи математики и физики: Пособие для учителей и студентов. Омск: Обл. ИУУ, 1991. - 94 с.
70. Ежова B.C. Сущность понятия «профессиональное становление будущего учителя в вузе» . Наука и школа. - М: Mill У. - 2010.- №5. - С. 19-20.
71. Ежова B.C. Математическая культура студентов педагогических вузов128будущих учителей математики. Школа будущего. - 2011. - № 6 . - С. 29-32.
72. Ежова B.C. Представление об идеальном педагоге у учащихся и учителей. Шуйская сессия студентов, аспирантов, молодых ученых: Сборник трудов III Межвузовской научной конференции. - Москва-Шуя: Изд-во ГОУ ВПО «ШГПУ», 2009. - С. 43-46.
73. Ежова B.C. Категориальный аппарат профессионально-личностного становления будущего учителя. Шуйская сессия студентов, аспирантов, молодых ученых: Сборник трудов III Межвузовской научной конференции. -Москва-Шуя: Изд-во ГОУ ВПО «ШГПУ», 2010. - С. 62-65.
74. Ежова B.C. Содержание этапов личности профессионала. Проблемы теории и практики подготовки современного специалиста: межвузовский сборник научных трудов с международным участием. - Н.Новгород: ННГЛУ им. H.A. Добролюбова, Вып. 12. - 2010. - С. 103-107.
75. Ежова B.C. Содержание этапов становления личности профессионала. -Проектирование в педагогической деятельности: межвузовской сборник научных трудов. Шуя, Изд. ГОУ ВПО «ШГПУ», 2010. - С. 148-151.
76. Ежова B.C. Личностно-профессиональный рост как цель и результат самообразования учителя. Подготовка учителя для XXI века: теория и практика: материалы всероссийской научно-практической конференции. -Н.Новгород: НГПУ, 2011. - С. 95-98
77. Захарова, Т. Г. Формирование математической культуры в условиях профессиональной подготовки студентов вуза Электронный ресурс.: дис. . канд. пед. наук: 13.00.08 / Т. Г. Захарова. — М.: РГБ, 2005.
78. Зимняя, И.А. Культура. Образованность. Профессионализм специалиста / И.А. Зимняя // Проблемы качества, его нормирования и стандартов в образовании: Сборник научных статей. М.: Исслед. центр проблем качества подготовки специалистов, 1998. - с. 31 - 37
79. Зеер Э.Ф. Профессиональное становление личности инженера-педагога. — Свердловск: Изд-во Урал. гос. ун-та, 1988.-120 с.
80. Земляков А.Н. Примерное тематическое планирование факультативного курса "Математика в приложениях" // Математика в школе.-1981.-№3.- С. 48-51.
81. Зиновкина М. Креативная технология образования // Высшее образование в России. 1999. - № 3. - С. 101.-104.130
82. Икрамов, Дж. И. Теория и практика развития математической культуры школьников Текст. / Дж. И. Икрамов. — Ташкент: Изд-во ТашГПИ им. Низами, 1983. — 123 с.
83. Каган М. С. Философия культуры / М. С. Каган. — СПб.: Петрополис, 1996. —416 с.
84. Каган М.С. Системный подход и гуманитарные знание. Д., 1991.
85. Карпов JI.H. Моделирование как метод научного познания. Каунас: Каунас, политех, ин-т, 1975. - 22с.
86. Коган JI. Н. Теория культуры. Екатеринбург, 1993. С. 141.
87. Колмакова Н.Р. Прикладные задачи как средство пропедевтики основных понятий математического анализа в школе: Автореф. Дис.канд. пед. наук. М., 1992.- 16с.
88. Колягин Ю.М., Оганесян В.А., Саннинский В.Я., Луканин Г.А. Методика преподавания математики в средней школе. Общая методика. М.: Просвещение, 1975. - 426с.
89. Кондауров М.Т., Тарасова H.A. Практические занятия по теории вероятностей: Учебное пособие для вузов. Н. Новгород: ВГИПИ, 2000. -134с.
90. Коссов Б.Б. Личность: Теория, диагностика и развитие: Учебно-методическое пособие для высших учебных заведений. М: Академический Проект, 2000. - 240 с.
91. Кочергин А.Н. Моделирование мышления. М.: Политиздат, 1969.-224с.
92. Крапивенский С.Э. Общий курс философии: Учебник для студентов и аспирантов нефилософских специальностей. Волгоград: Изд-во Волгогр. гос. унив., 1998. -472с.
93. Крылова, Н.Б. Формирование культуры будущего специалиста: Методич. пособие / Н.Б. Крылова. М.: высшая школа, 1990. - 142 с.
94. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. М.: ЮНИТИ-ДАНА, 2000. - 543с.
95. Крутецкий В.А. Математические способности и личность / Хрестоматия по психологии: Учеб. пособие для студентов пед. ин-тов: 2-е изд., пере- раб. и доп. / Сост. В.В. Мироненко; Под ред. A.B. Петровского. -М.: Просвещение, 1987,- С. 293-298.
96. Крутецкий В.А. Психология математических способностей школьников. М., 1968.-431 с.
97. Крутихина М.В. Обучение элементам моделирования при решении сюжетных задач в курсе алгебры 8-летней школы как путь реализации прикладного направления школьного курса математики: Автореф. дис.канд. пед. наук. Ленинград, 1986. - 16с.
98. Кудрявцев Л.Д. Современная математика и её преподавание: Учебное пособие для вузов: 2-е изд., доп. М.: Наука, 1985. - 176с.
99. Кузнецова И.А. Обучение моделированию студентов-математиков педвуза в процессе изучения курса "Математическое моделирование и численные методы": Автореф. дис.канд. пед. наук. Саранск, 2002. - 18с.
100. Куликова И.Л. Формирование системы качеств прикладных знаний приобучении студентов математике: Автореф. дисс.канд. пед. наук. -Калининград, 1996. 16с.
101. Кузьмина, Н.В. Профессионализм личности преподавателя и мастера производственного обучения / Н.В. Кузьмина М.: Высшая школа 1990. -119с.
102. Лабораторные и практические работы по методике преподавания математики: Учеб. пособие для студентов физ.-мат. спец. пед. ин-тов / Сост. Е.И. Лященко, К.В. Зобкова, Т.Ф. Кириченко и др.; Под ред. Е.И. Лященко. -М.: Просвещение, 1988.-223с.
103. Лапина C.B. Моделирование в системе социологического познания: Дис. .докт. социол. Наук. Минск, 1994. - 333с.
104. Леонтьев А.Н. Деятельность. Сознание. Личность. М.: Политиздат, 1975.-304с.
105. Леонтьев А.Н. К вопросу о моделировании и математизации в психологии / Вопросы психологии.-1973.-№3.
106. Леонтьев А.Н. Понятие отражения и его значение для психологии / Хрестоматия по психологии: Учеб. пособие для студентов пед. ин-тов /Сост. В.В. Мироненко; Под ред. A.B. Петровского. М.: Просвещение, 1987.- С. 18-25.
107. Майер Р. О гуманитаризации математического образования в школе // Математика, еженедельное учебно-методическое приложение к газете "Первое сентября". 1996. - № 47. - С.2.
108. Максимова В.Н. Межпредметные связи в процессе обучения. М.: Просвещение, 1988,- 191с.
109. Максимова В.Н. Межпредметные связи и совершенствование процесса обучения: Кн. для учителя. М.: Просвещение, 1984.-143с.
110. Малахов Н.В. Картографические сведения на уроках математики в V-VI классах // Математика в школе. 1981.- №3. - С. 25.
111. Малкова Т.В., Монахов В.М. Математическое моделирование -необходимый компонент современной подготовки школьника // Математикав школе. 1984.- №3. - С. 46-49.
112. Малкова Т.В. Проблема обучения школьников построению двойственных математических моделей: Автореф. Дисс.канд. пед. наук. -М., 1979.-20с.
113. Мамиконов А.Г. Принятие решений и информация. М.: Наука, 1983.-184с.
114. Маркова А.К. Психология труда учителя: Книга для учителя. М.: Просвещение, 1993. - 192 с.
115. Маркова С.М. Теоретические основы проектирования образовательных систем в условиях многоуровневого непрерывного профессионального образования: Автореф. дисс.докт. пед. наук. СПб, 2002. - 50с.
116. Марченко Т.С. Методика использования моделей при изучении числовых множеств в курсе математики 5-6 классов (на примере положительных рациональных чисел): Авт. дис.канд. пед. наук. СПб, 1996.
117. Маркушевич А.И. Об очередных задачах преподавания математики в школе // На путях обновления школьного курса математики. М.: Просвещение, 1978.-С. 29-48.
118. Маслов П.П. Моделирование в социологических исследованиях // Вопросы философии. 1962.- №3.- С. 62-78.
119. Маслов П.П. Социальные модели // Социология в СССР. М.: Мысль, 1966. - 532с.
120. Математика в современном мире: Пер. с англ. М.: Мир, 1967.-206с.
121. Математика в экономике: Учебно-методическое пособие для вузов/ Под ред. проф. Н.Ш. Кремера / ВЗФЭИ. М.: Финстатинформ, 1999. - 94с.
122. Методика преподавания математики в средней школе: Частная методика: Учеб. пособие для студентов пед. ин-тов по физ.-мат. спец. / А.Я. Блох, В.А. Гусев, Г.В. Дорофеев и др.; Сост. В.И. Мишин. М.: Просвещение, 1987. - 416с.
123. Методика преподавания математики. Общая методика / Сост. Р.С.Черкесов, А.А.Столяр. М.: Просвещение, 1985. -336с.134
124. Минорский В.П. Сборник задач по высшей математике: Учеб. пособие для втузов: 13-е изд. М.: Наука, 1987.- 352с.
125. Моделирование в биологии: Сборник статей: Пер. с англ. / Под ред. чл.-кор. АМН СССР проф. H.A. Бернштейна. М.: Изд. Иностр. лит. 1963. -299с.
126. Моисеев H.H., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. -М.: Наука, 1978. 352с.
127. Моисеев H.H. Математические задачи системного анализа. М.: Наука, 1981.-С.488.
128. Монахов В.М., Беляева Э.С., Краснер Н.Я. Методы оптимизации. Применение математических методов в экономике: Пособие для учителей. -М.: Просвещение, 1978. 175с.
129. Монахов В.М., Любичева В.Ф., Малкова Т.В. Преподавание математики и экономическая подготовка учащихся профтехучилищ: Метод, пособие преподавателей ПТУ. М.: Высшая школа, 1989. -104с.
130. Мордкович А.Г. Курс алгебры в образовательной школе // Математика. Еженедельное учебно-методическое приложение к газете "Первое сентября".-1997.-№44. С. 1-2.
131. Мордкович А.Г. Новая концепция школьного курса алгебры // Математика в школе. 1996.- №6.- С.28-33.
132. Мордкович А.Г. Профессионально-педагогическая направленность специальной подготовки учителей математики в педагогическом институте. ДДпН. МГЗПИ. М„ 1986.
133. Морозов Г.М. Проблема формирования умений, связанных с применением математики: Автореф. дис.канд. пед. наук. М., 1978. - 22с.
134. Мышкис А.Д. О прикладной направленности школьного курса элементов математического анализа // Математика в школе. 1990. - №6. - С. 7-11и.
135. Мышкис А.Д. Математика для втузов. Специальные курсы: Учебное пособие для втузов. М.: Наука, 1971. - 632с.
136. Мышкис А.Д., Шамсутдинов М.М. К методике прикладной направленности обучения математике // Математика в школе. -1988,- №2.- С. 12-14.
137. Надеев А.Т. Основы системного анализа: Учебное пособие. Н. Новгород: Изд-во Волго-Вятского кадрового центра, 1993.-136с.
138. Неймарк Ю.И. Математические модели естествознания и техники: Цикл лекций. Вып. 1. Н. Новгород: Изд-во ННГУ, 1994,- 84 с.
139. Немов P.C. Психология: Учеб. для студентов высш. пед. учеб. заведений: В 3 кн. Кн. 3: Экспериментальная педагогическая психология и психодиагностика. М.: Просвещение: ВЛАДОС, 1995. - 512с.
140. Низамов P.A. Дидактические основы активизации учебной деятельности студента. Казань: Изд-во КГУ, 1975. -302с.
141. Новик И.Б. Гносеологическая характеристика кибернетических моделей // Вопросы философии. 1963. - №8. - С. 92-103.
142. Новик И.Б. О моделировании сложных систем. М: Мысль, 1965.-335с.
143. Новик И.Б. Кибернетика. Философские и социологические проблемы.136
144. M.: Госполитиздат, 1963.- 207c.
145. Новик И.Б. Философские вопросы моделирования психики. М.: Наука, 1969.- 174с.
146. Новиков П.Н. Задачи с межпредметным содержанием СПТУ. Минск: Вышейш. шк., 1987. - 144с.
147. Новикова И.С. Совершенствование методики преподавания раздела "Линейные дифференциальные уравнения с постоянными коэффициентами" в курсе высшей математики военно-учебных заведений: Автореф. дисс.канд. пед. наук. М., 2000. - 22с.
148. Ноздрин H.H., Степаненко И.М., Костюк Л.К. Прикладные задачи по высшей математике. Издательское объединение "Вища школа", 1976. -176с.
149. Ожегов С.И., Шведова Н.Ю. Толковый словарь русского языка / Русская Академия наук, Институт русского языка. Российский фонд культуры. М.: АЗЪ, 1993.-960 с.
150. Пинский A.A. Математическая модель в системе межпредметных связей / Межпредметные связи естественно-математических дисциплин М.: Просвещение, 1980.-С. 108-119.
151. Пойа Д. Математика и правдоподобные рассуждения: Пер. с англ. Изд. 2-е, испр. / Под ред. С.А. Яновской. М.: Наука, 1975. - 464с.
152. Полякова С.Ю. Обучение математическому моделированию общественных процессов как средство гуманитаризации математического образования: Дис.канд. пед. наук. Омск, 1999 - 173с.
153. Пономарев Я. А. Психология творчества. М.: Наука, 1976. - 304с.
154. Постников М. В плену случайных метафор // Литературная газета. — 1980.-С.11.
155. Профессиональная педагогика: Учебник для студентов, обучающихся по педагогическим специальностям и направлениям / Под ред. Батышева С.Я. и др. М.: Ассоциация "Профессиональное образование", 1997.-512с.
156. Психология: Словарь: 2-е изд., испр. и доп. / Под общ. ред. A.B. Петровского, М.Г. Ярошевского. М.: Политиздат, 1990. - 494с.
157. Путилова, Е. В. Формирование математической культуры студентов гуманитарных факультетов педагогических вузов как общедидактическая задача Электронный ресурс.: дис. . канд. пед. наук: 13.00.01 / Е. В. Путилова. — М.: РГБ, 2003.
158. Рубинштейн C.JI. Основы общей психологии. СПб.: ЗАО "Издательство "Питер", 1999. - 720с.
159. Рубинштейн СЛ. О мышлении и путях его исследования. М.: Изд- во Акад. наук СССР, 1958. - 148с.
160. Рузавин Г.И. Методология научного исследования: Учеб. пособие для вузов. М.: ЮНИТИ-ДАНА, 1999. - 317с.
161. Русский космизм: Антология философской мысли / Сост. С.Г. Семёнова, А.Г.Грачева. М.: Педагогика-Пресс, 1993. - 368с.
162. Салмина Н.Г. Знак и символ в обучении. М.: Изд-во Моск. ун-та, 1988.-288с.
163. Самарский A.A., Моисеев H.H., Петров A.A. Математическое моделирование. Процессы в сложных экономических и экологических системах. М.: Наука, 1986. -239с.
164. Самарский A.A. Эксперимент ведет математика // Известия. 28 апреля 1984.-С.З.
165. Самарский А. Современная прикладная математика и вычислительный эксперимент // Коммунист. 1983.- №18.- С. 31-42.138
166. Саранцев Г.И. Методология методики обучения математике. Саранск: Крас. Okt, 2001.-144с.
167. Селевко Г.К. Современные образовательные технологии: Учебное пособие. М.: Народное образование, 1998. -256с.
168. Скаткин М.Н. Школа и всестороннее развитие детей. Книга для учителей и воспитателей. М.: Просвещение, 1980. -144с.
169. Славин A.B. Проблема возникновения нового знания. М.: Наука, 1976.-296с.
170. Сластенин В.А. и др. Педагогика: Учеб. пособие для студ. высш. пед. учеб. заведений / Под ред. В.А. Сластенина. М.: Академия, 2002. - 576с.
171. Смирнов, Е. И. Дидактическая система математического образования студентов педагогических вузов: дис. . д-ра пед. наук: 13.00.08, 13.00.02 / Е. И. Смирнов. —Ярославль, 1998. — 358 с.
172. Советский энциклопедический словарь / Под ред. A.M. Прохорова -М.: Советская энциклопедия, 1986. 1600 с.165.
173. Соловов, А. Информационные технологии обучения в профессиональной подготовке / А. Соловов // Высшее образование в России, 1995. №2. С. 31-35.
174. Смирнов A.A. Психология запоминания. М.: Изд-во АПН РСФСР,1391948,- 328с.
175. Сластенин В.А. Формирование личности учителя советской школы в процессе профессиональной подготовки. М.: Просвнщение, 1976. -160с.
176. Скаткин М.Н. Совершенствование процесса обучения. М.: Педагогика, 1971.-200с.
177. Сластенин В.А. К вопросу о профессиограмме учителя общеобразовательной школы// Советская педагогика. 1973. №5. - с.72-80.
178. Соколов В.А., Тарасова H.A. Математические задачи системного анализа (задачи оптимизации, ч.2.): Метод, реком. к прак. занят. Н. Новгород: ВГИПИ, 2000.-19с.
179. Соколов В.А., Тарасова H.A. Математические задачи системного анализа (задачи оптимизации, ч.З): Метод, реком. к практ. занят. Н. Новгород: ВГИПИ; 2000. - 27с.
180. Соколов В.А., Тарасова H.A. Математические задачи системного анализа (задачи оптимизации, ч.4): Метод, реком. к прак. занят. Н. Новгород: ВГИПИ, 2000. - 20с.
181. Соколов В.А., Тарасова H.A. Формирование оптимизационного образа мышления у студентов в процессе профессиональной подготовки // Высокие технологии в пед. процессе: Тез. докл. межвуз. науч.-метод. конф. Н. Новгород: ВГИПИ, 2000. -С. 116-119.
182. Сычкова, Н.В. Исследовательская подготовка студентов университета / Н.В. Сычкова Магнитогорск: МаГУ, 2002. - 223 с.200. Спиркин А.Г. Философия: Учебник. - М.: Гардарики, 2000.-816с.
183. Столяр A.A. Педагогика математики: Курс лекций. Минск: Высшейш. школа, 1969. - 368с.
184. Стукалов В.А. Использование представлений о математическом моделировании в обучении математике: Автореф. дис.канд. пед. наук. М., 1975.-31с.
185. Сухорукова Е.Ф. Развитие математического мышления учащихся на основе использования математического моделирования // Тез. докл. федерал,140науч.-практ. конф. Н. Новгород: НГПУ, 1997. - С. 57-58.
186. Талызина Н.Ф. Управление процессом усвоения знаний. М.: МГУ, 1975. -344с.
187. Тарасов А., Мордкович А. Концепция математического образования в модели «Экология и диалектика» // Математика. Еженедельное учебно-методическое приложение к газете «Первое сентября». 1965.- №7. - С. 1,3.
188. Тарасова H.A. Задачи оптимизации: Методические рекомендации. Н. Новгород: ВГИПА, 2002. - 33с.
189. Тарасова H.A. Из опыта организации самостоятельной работы студентов // Инновационные технологии в педагогике и на производстве: Тез. докл. VI науч.-практ. конф. мол. ученых и спец. - Екатеринбург: Изд-во Урал, гос. проф.-пед. ун-та, 2000. - С. 63-64.
190. Тарасова H.A. Комплект методического обеспечения по предмету «Моделирование природных и социально-экономических процессов».-Н.Новгород: ВГИПА, 2002. 59с.
191. Тарасова H.A. Преподавание математики менеджерам / Инновационные процессы в высшей школе // Материалы VII Всероссийской науч.-практ. конф. Краснодар: Кубан. гос. технол. ун-т, 2000. - С. 88-89.141
192. Татур Ю.Г. Компетентность в структуре модели качества подготовки специалиста. М.: Высшее образование сегодня, 2004, № 3.
193. Терешин H.A. Прикладная направленность школьного курса математики: Кн. для учителя. М.: Просвещение, 1990. - 96с.
194. Терешин H.A. Пути формирования научного мировоззрения учащихся в процессе преподавания математики // Методика преподавания избранных тем школьного курса математики. Балашов, 1995.-С. 4-26.
195. Тихонов А.Н., Костомаров Д.П. Вводные лекции по прикладной математике: Учеб. пособие для студ, вузов, обуч. по спец. "Прикладная математика". М.: Наука, 1984. -192с.
196. Тихонов А.Н., Костомаров Д.П. Рассказы о прикладной математике. -М.: Наука, 1974.-206с.
197. Тихонов А.Н. Математическая модель // Математическая энциклопедия. Т. 3 / Под ред. И.М. Виноградов. М.: "Советская энциклопедия", 1982.- Стб. 574-575.
198. Торокин А. Высшее образование: системный подход // Высшее образование в России. 1999. - №4. - С.42-48.
199. Трояновский В.М. Математическое моделирование в менеджменте: Учебное пособие. М.: Русская Деловая Литература, 1999. -240с.
200. Улимаева А.Т. Роль и место задач на оптимизацию в обучении математике: Автореф. дисс.канд. пед. наук. М., 1977. - 24с.
201. Уемов А.И. Логические основы метода моделирования. М.: Мысль, 1971.-311с.
202. Федорова С.И. Профессионально-прикладная направленность обучения математическому анализу студентов технических вузов связи: Автореф.142дисс.канд. пед. наук. М., 1997.- 24с.
203. Философия: Учеб. пособие: 4-е изд., испр. и доп. / Под ред. Н.И. Жукова. Мн.: НТЦ "АПИ", 1999.-367с.
204. Философский словарь / Под ред. И.Т. Фролова. М.: Политиздат, 1991.-560с.
205. Фоминых Ю.Ф. Теоретические основы научного мировоззрения учащихся средней школы в системе математического образования: Дисс. . докт. пед. наук. М., 1993. -322 с.
206. Фоминых Ю.Ф. Факультативный курс "Математическое моделирование форм растений // Математика. Еженедельное учебно-методическое приложение к газете "Первое сентябряГ. 1998. - № 48.- С.5.
207. Формирование модели деятельности специалиста с высшим образованием. Сборник типовых методик / Е.С. Смирнова. Томск: Изд-во Томск, унта, 1984. - 199с.
208. Формирование системного мышления в обучении: Учеб. пособие для вузов / Под ред. проф. З.А. Решетовой. М.: ЮНИТИ-ДАНА, 2002. - 344с.
209. Фридман JI.M. Методика обучения решению математических задач// Математика в школе. -1991.- №5. С.59-63.
210. Фридман JI.M. Психолого-педагогические основы обучения математике в школе: Учителю математики о пед. психологии. М.: Просвещение, 1983. -160с.
211. Фридман JI.M. Теоретические основы методики обучения математике: Пособие для учителей, методистов и педагогических высших учебных заведений. М.: Московский Психолого-социальный институт: Флинта, 1998.143- 224с.
212. Фролов И.Т. Очерки методологии биологического исследования. М., "Мысль", 1965. - 286с.
213. Худяков, В. Н. Формирование математической культуры учащихся начального профильного образования Текст.: дис. . д-ра пед. наук: 13.00.01 / В. Н. Худяков. — Магнитогорск, 2002. — 120 с.
214. Червова A.A. Педагогические основы совершенствования преподавания физики в высших военных учебных заведениях. Дисс. . д.п.н.1. М.:ИОСО РАО, 1996.
215. Чернилевский Д.В. Дидактические технологии в высшей школе: Учеб. пособие для вузов. М.: ЮНИТИ-ДАНА, 2002. - 437с.
216. Чернилевский Д.В., Филатов O.K. Технология обучения в высшей школе. Учебное издание / Под ред. Д.В. Чернилевского. М.: «Экспедитор», 1996.-288с.
217. Черчмен У., Акоф Р., Арноф JI. Введение в исследование операций: Пер. с англ. / Под ред. А .Я. Лернера. М.: Наука, 1967. - 488с.
218. Шапиро И.М. Использование задач с практическим содержанием в преподавании математики: Кн. для учителя. М.: Просвещение, 1990. - 96с.
219. Шевцова, Е.В. Взаимосвязь профессиональной и коммуникативной культуры личности будущего специалиста / Е.В. Шевцова // Сборник научных трудов: серия «Гуманитарные науки», выпуск № Ю.^Ставрополь: СевКавГТУ, 2003. http: www.//ncstu.ru
220. Шрейдер Ю.А., Шаров A.A. Системы и модели. М.: Радио и связь, 1982.- 152с.
221. Штофф В.А. Роль моделей в познании. JL: Изд-во Ленингр. ун-та, 1963.-128с.
222. Штофф В.А. Моделирование и познание / Под ред. В.А. Штофф. -Минск: Наука и техника, 1974. -211с.
223. Штофф В.А. Введение в методологию научного познания: Учеб. пособие. Л.: Изд-во Ленингр. ун-та, 1972.-191с.
224. Штофф В.А. Моделирование и философия. М.-Л.: Наука, 1966. -301с.
225. Штофф В.А. Моделирование как гносеологическая проблема // Диалектика и логика научного познания. Материалы Совещания по современным проблемам материалистической диалектики, 7-9 апреля 1965 г. / Отв. ред. Ф.В. Константинов. М.: Наука, 1966.- С.383-397.
226. Штофф В.А. Модель и эксперимент // Некоторые вопросы методологии научного исследования. Вып. 1 / Отв. ред. проф. В.И. Свидерский. Л.: Изд-во Ленинградского университета, 1965.- С. 101-136.
227. Щукина Г.И. Педагогические проблемы формирования познавательных интересов учащихся. М.: Педагогика, 1988. - 208с.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.