Флуктуации заряда и сверхпроводимость в сильно коррелированных электронных системах тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Нгуен Дань Тунг

  • Нгуен Дань Тунг
  • кандидат науккандидат наук
  • 2023, Объединенный институт ядерных исследований
  • Специальность ВАК РФ00.00.00
  • Количество страниц 86
Нгуен Дань Тунг. Флуктуации заряда и сверхпроводимость в сильно коррелированных электронных системах: дис. кандидат наук: 00.00.00 - Другие cпециальности. Объединенный институт ядерных исследований. 2023. 86 с.

Оглавление диссертации кандидат наук Нгуен Дань Тунг

Contents

Introduction

1. Relevance of the topic

2. Purpose and objectives of the thesis

3. The main results of the thesis submitted for defense:

4. Scientific novelty

5. Approbation of the thesis

6. Personal contribution of the author

7. Content of the work

Chapter 1 Conductivity in the half-filled ionic Hubbard model

1.1 Model and formalism

1.2 Numerical results and discussion

1.3 Conclusion

Chapter 2 Static and dynamic charge fluctuations in strongly correlated electronic system

2.1 The model and the dynamical charge susceptibility

2.1.1 The t-J-V model

2.1.2 Memory function formalism

2.2 Numerical results and discussion

2.2.1 Static charge susceptibility

2.2.2 Dynamical charge susceptibility

2.2.3 Static charge susceptibility for electron doping

2.3 Conclusion

Chapter 3 Electronic spectrum and superconductivity in the extended t — J — V

model

3.1 General formulation

3.1.1 Extended t — J — V model

3.1.2 Dyson equation

3.2 Generalized mean-field approximation

3.2.1 Normal state

3.2.2 Superconducting state

3.3 Self-energy calculation

3.3.1 Normal state GF

3.3.2 Superconducting state

3.4 Results and Discussion

3.4.1 Model parameters

3.4.2 Normal state

3.4.3 Superconducting state

3.5 Conclusion

Conclusion

Appendix A Calculation of Gao (w)

Appendix B Calculation of mq and

Appendix C Calculation of the spectrum of e(k)

Appendix D Memory function

Appendix E Self-energy

Appendix F Gap equation in the static approximation

Appendix G Numerical calculation

List of Figures

List of Tables

List of abbreviations

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Флуктуации заряда и сверхпроводимость в сильно коррелированных электронных системах»

Introduction

1. Relevance of the topic

Transition metal oxides (TMOs) form probably one of the most interesting classes of solids, exhibiting a wide variety of structures and properties. The unique electrical and magnetic properties of TMOs have attracted the interest of theoretical physicists and technology developers for their applicability. Recently, experiments have provided observable evidence of many exotic phenomena occurring in TMOs, such as charge density waves (CDW) (e.g. K0 3MoO3), charge ordering (e.g. Fe3O4), and defect ordering (e.g. Ca2Mn2O5, Ca2Fe2O5). TMOs can range from ferromagnetic (e.g. CrO2, La05Sr05MnO3) to antiferromagnetic (AFM) (e.g. NiO, LaCrO3). Many oxide compounds have switchable orientation states such as ferroelectric (e.g. BaTiO3, KNbO3) and ferroelastic [e.g. Gd2(MoO4)3]. Some TMOs have metallic properties (e.g. RuO2, ReO3, LaNiO3), while others have highly insulating properties (e.g. BaTiO3). Several oxides exhibit co-existence of metallic and non-metallic properties (e.g. Lu2Rh2O7). Among them, the phenomenon of high-temperature superconductivity (HTSC) in cuprates is one of the issues of interest to solid-state physicists.

The unusual properties of TMOs are clearly due to the unique nature of the outer d or f electrons. The d electrons are localized, their wavefunctions are restricted in a small space around the atom. They are distributed inside a sphere with small radius, this makes the chance of electrons meeting each other higher than other bands, the on-site Coulomb interaction (CI) is thus larger. Therefore, many TMOs belong to strongly correlated materials which have incompletely filled d or f electron shells with narrow energy bands. In these materials, transition metal can easily combine with oxygen to form covalent bond. It gives all s electrons and some d electrons to oxygen, there are only d or f electrons remaining in its outer shell. If TMOs contain the alkaline or rare earth elements, they can provide additional electrons to oxygen. Depending on atomic radius, they can distort the lattice structure. Therefore, the basic electronic structures of TMOs origin from transition metal d bands as frontier bands, oxygen p bands the second most energetic bands staying at the Fermi level, other bands have less significant impact to the electronic properties of these materials.

The theoretical understanding of the properties of various TMO materials is one of major challenges to the modern condensed matter theory. The behavior of electrons and magnetic excitations in these materials cannot be effectively described by traditional one-electron theories, it requires more modern methods to treat these strongly correlated systems which are the reason for the very rich physical properties in TMOs and represented by complicated phase diagrams. Many theories have been proposed to describe corelation electrons in TMOs, among them the dynamical mean field theory (DMFT) is a numerical method that has proved to be very effective. In addition, the Hubbard model is a very useful model for the general description of corelated materials. In the limit of strong correlations, the Hubbard

model can be reduced to the t — J model and with the intersite Coulomb repulsion V, the so called t — J — V model, it turns out to be an effective model for cuprate HTSC. Therefore understanding of physical properties of highly correlated systems and study microscopic models of strong correlations are the actual tasks.

2. Purpose and objectives of the thesis

The goal of the dissertation is the investigation of several properties of TMOs using models of strongly correlated electron systems: the metal-insulator transition (MIT) in the ionic Hubbard model (IHM), static and dynamic charge fluctuations and HTSC within the microscopic t — J — V model. To achieve this goal, the following tasks have been addressed:

1. Obtaining the phase diagram of the half-filled IHM with the on-site Coulomb repulsion U and the

ionic energy A by mean of the coherent potential approximation (CPA). When the system is in the metallic phase a dependence of the dc conductivity on the model parameters is calculated.

2. Calculation of the static charge susceptibility (SCS) and the dynamic charge susceptibility (DCS) in

strongly correlated electronic systems within the two-dimensional t — J — V model. The spectral density and the spectrum of charge excitations as functions of doping and other model parameters are obtained with the use of the equation of motion method for the relaxation functions in terms of the Hubbard operators (HOs).

3. Application of the extended t — J — V model where the intersite Coulomb repulsion and the electron-

phonon interaction (EPI) are taken into account to investigate electronic spectrum and superconductivity in cuprate HTSC. The Dyson equation for the normal and anomalous (pair) Green functions (GFs) is used in the special form where the self-energy is taken in the self-consistent Born approximation (SCBA). Superconducting Tc dependence on EPI and spin-fluctuation interaction is studied.

3. The main results of the thesis submitted for defense:

1. The phase diagram was investigated using CPA in the half-filled ionic Hubbard model (IHM). The

metallic phase was proved to be sandwiched between the band insulator (BI) phase and the Mott insulator (MI) one. The maximum value of the temperature dependent conductivity amax(T) as a function of on-site Coulomb repulsion U occurs near to U « 2A and o~max(T) decreases with increasing T.

2. The behavior of static and dynamic charge susceptibility have been considered in the framework of

the t — J — V model with the Green function (GF) technique. It is shown that with increasing the intersite Coulomb repulsion V, the static charge susceptibility x(q) grows without limit (i.e. 1/x(q) vanishes), and charge density waves arise in the system either along the diagonal of the unit cell or along the edge of the unit cell.

3. Within the t — J — V model, the damping of dynamic charge fluctuations derived from the calculated

imaginary part of the memory function and the GF technique was analyzed for a large range of

doping ¿,0 <6 < 0.3. The behavior was obtained to change from a broad spectrum of overdamped charge fluctuations at 6 « 0.1 to the Fermi-like behavior for 6 > 0.1.

4. The extended t — J — V model with the electron-phonon interaction was applied to study electronic

spectrum and superconductivity for strongly correlated electron system. The Dyson equation for the normal and anomalous GFs was derived in term of Hubbard operators and the self-energy was obtained in the self-consistent Born approximation.

5. Within the approach defined in the point 4 and applied for normal electronic properties, the calculated

GFs revealed a transition from well defined quasiparticle electron excitations to overdamped broad excitations. The sharp Fermi surface in the mean-field approximation in the form of hole pockets at low doping is accompanied by the transformation to arc Fermi surface.

6. The statement on the dominance of the kinematic interaction in the spin fluctuation mechanism of

superconducting pairing, earlier obtained in t — J model, was reexamined in the framework of the extended t — J — V model including electron-phonon coupling ~ g. The statement was confirmed in a wide range of physically significant parameters V and g.

4. Scientific novelty

Several properties of TMOs have been investigated using appropriate models and theoretical methods. The results are in good agreement with experiments. They are the basis of reference for previous controversies and future speculations. Based on these studies, we can understand the phase diagram of the materials, the conditions for the appearance of CDW and the basis for determining the superconducting temperature of corresponding materials. The calculations can be extended to study other properties of TMOs.

5. Approbation of the thesis

The results of the study are published in the following four articles in peer-reviewed journals included in the list:

1. Nguen Dan Tung and Hoang Anh Tuan, Conductivity in the half-filled ionic Hubbard model [Com-

munications in Physics, Vol. 24, No. 3S2 (2014), pp. 34-38].

2. Dan Tung Nguen and N. M. Plakida, Static charge susceptibility in the t — J — V model, [Theoretical

and Mathematical Physics, 2018, 194:1, 127-141].

3. Nguen Dan Tung and N. M. Plakida, Charge dynamics in strongly-correlated electronic systems,

International Journal of Modern Physics B, 32, No. 29 (2018) 1850327 (22 pages).

4. Nguen Dan Tung, A. A. Vladimirov, N. M. Plakida, Electronic spectrum and superconductivity in

the extended t-J-V model, Physica C: 587, 1353900 (1-16) (2021).

The results of the work are presented at international and all-Russian conferences and schools:

1. The XXII International Scientific Conference of Young Scientists and Specialists (AYSS-2018), 23-27 April 2018, JINR, Dubna, Russia.

2. Meeting of the Programme Advisory Committee for Condensed Matter Physics, 14-15 June 2018,

Dubna, Rusia.

3. XXII Scientific School of Young Scientists and Specialists of JINR (LIPNYA 2018), 20-22 July 2018,

Dubna, Russia.

4. The Helmholtz International Summer School «Modern Colliders - Theory and Experiment 2018»,

22 July-1 August 2018, JINR, Dubna, Russia.

5. XXII Training Course in the Physics of Strongly Correlated Systems, 1-12 October, 2018, Vietri sul

Mare (Salerno), Italy.

6. The XXIIIInternational Scientific Conference of Young Scientists and Specialists (AYSS-2019), 15-19

April 2019, JINR, Dubna, Russia.

7. Autumn School on Correlated Electrons: Topology, Entanglement, and Strong Correlations, 21-25

September 2020, Forschungszentrum Jiilich — Online-Edition.

8. The XXIV International Scientific Conference of Young Scientists and Specialists (AYSS-2020), 9-13

November 2020, Dunba, Russia.

6. Personal contribution of the author

The personal contribution of the applicant is to write computational programs, carrying out theoretical calculations, processing the results, as well as analyzing the obtained data and writing articles with supervisor.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Список литературы диссертационного исследования кандидат наук Нгуен Дань Тунг, 2023 год

Bibliography

[1] J. Hubbard, J.B. Torrance, Phys. Rev. Lett. 47 (1981) 1750.

[2] T. Egami, S. Ishihara, M. Tachiki, Science 261 (1993) 1307.

[3] K. Pozgajcic, C. Gros, Phys. Rev. B 68 (2003) 085106.

[4] D.A. Le, A.T. Hoang, Mod. Phys. Lett. B 26 (2012) 1150016.

[5] N. Paris et al., Phys. Rev. Lett. 98 (2007) 046403.

[6] K. Bouadim et al., Phys. Rev. B 76 (2007) 085112.

[7] K. Byczuk et al., Phys. Rev. B 79 (2009) 121103 (R).

[8] A. Garg, H.R. Krishnamurthy, M. Randeria, Phys. Rev. Lett. 97 (2006) 046403.

[9] L. Craco et al., Phys. Rev. B 78 (2008) 075121.

[10] A.T. Hoang, J. Phys.: Condens. Matter. 22 (2010) 095602.

[11] M. Hücker, N. B. Christensen, A. T. Holmes, E. Blackburn, E. M. Forgan, Ruixing Liang, D. A. Bonn, W. N. Hardy, O. Gutowski, M. v. Zimmermann, S. M. Hayden, and J. Chang, "Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy", Phys. Rev. B 90, (2014) 054514

[12] R. Comin, R. Sutarto, F. He, E. H. da Silva Neto, L. Chauviere, A. Frano, R. Liang, W. N. Hardy, D. A. Bonn, Y. Yoshida, H. Eisaki, A. J. Achkar, D. G. Hawthorn, B. Keimer, G. A. Sawatzky and A. Damascelli, "Symmetry of charge order in cuprates", Nature Materials, 14, (2015) 796-800

[13] R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Yang He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A.Sawatzky, B. Keimer, and A. Damascelli, "Charge order driven by fermi-arc instability in Bi2Sr2_xLaxCuO6+,5", Science, 343, (2014) 390-392.

[14] M. Hashimoto, G. Ghiringhelli, W.-S. Lee, G. Dellea, A. Amorese, C. Mazzoli, K. Kummer, N. B. Brookes, B. Moritz, Y. Yoshida, H. Eisaki, Z. Hussain, T. P. Devereaux, Z.-X. Shen, and L. Braicovich, "Direct observation of bulk charge modulations in optimally doped Bii.5Pbo.6Sri.54CaCu2O8+<5" Phys. Rev. B, 89, (2014) 220511(R).

[15] E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, "Ubiquitous Interplay Between Charge Ordering and High-Temperature Superconductivity in Cuprates", Science, 343, Iss. 6169, (2014) 393-396.

[16] M. H. Hamidian, S. D. Edkins, C. K. Kim, J. C. Davis, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E.-A. Kim, S. Sachdev, and K. Fujita," Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state", Nat. Phys. 12, (2016) 150-155

[17] W. Tabis, Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig, M. Minola, G. Dellea, E. Weschke, M. J. Veit, M. Ramazanoglu, A. I. Goldman, T. Schmitt, G. Ghiringhelli, N. Barisic, M. K. Chan, C. J. Dorow, G. Yu, X. Zhao, B. Keimer and M. Greven, "Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate", Nature Communications, 5, (2014) 5875.

[18] G. Campi, A. Bianconi, N. Poccia, G. Bianconi, L. Barba, G. Arrighetti, D. Innocenti, J. Karpinski, N. D. Zhigadlo, S. M. Kazakov, M. Burghammer, M. v. Zimmermann, M. Sprung and A. Ricci, "Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor", Nature, 25, (2015) 359-362.

[19] J. Hubbard, "Electron correlations in narrow energy bands. IV. The atomic representation", Proc. Roy.Soc. A (London), 285 (1965) 542.

[20] N. Bulut, "dx2-y2 superconductivity and the Hubbard model", Adv. in Phys., 51, (2002) 1587-1667.

[21] M. Eremin, I. Eremin, and S. Varlamov, "Dynamical charge susceptibility in layered cuprates: Beyond the conventional random-phase-approximation scheme", Phys. Rev. B, 64, (2001) 214512 (1-7).

[22] I. Eremin, M. Eremin, S. Varlamov, D. Brinkmann, M. Mali, J. Roos, "Spin susceptibility and pseudogap in YBi^C^Os: An approach via a charge-density-wave instability", Phys. Rev. B, 56 (1997) 11 305.

[23] M. Eremin, S. Varlamov, I. Eremin, "Magnitude of Spin and Charge Density Wave mplitudes in Underdoped Cuprates", Appl. Magn. Reson. 19 (2000) 355-362.

[24] M. V. Eremin and M. A. Malakhov, Dynamic charge susceptibility and softening of longitudinal phonon modes in cuprates, JETP Letters, 100:5, 324-327 , (2014)

[25] H. Mori, "A continued-fraction representation of the time-correlation functions", Prog. Theor. Phys., 34 (1965), 399

[26] D.N. Zubarev, Sov. Phys. Usp. 3 (1960) 320; Nonequilibrium Statistical Thermodynamics, New-York: Consultant Bureau, 1974.

[27] N. M. Plakida, "Projection operator method", in: Theoretical Methods for Strongly Correlated Systems, Eds. A. Avella and F. Mancini (Springer Series in Solid-State Sciences Vol. 171, Springer, Heidelberg, 2011) Chap. 6, pp. 173-202.

[28] A.A. Vladimirov, D. Ihle, and N. M. Plakida, "Dynamic spin susceptibility in the t-J model", Phys. Rev. B, 80 (2009) 104425 (pp. 1-12)

[29] A.A. Vladimirov, D. Ihle, and N. M. Plakida, "Dynamic spin susceptibility of superconducting cuprates: A microscopic theory of the magnetic resonance mode", Phys. Rev. B 83, (2011) 024411 (pp. 1-13)

[30] A.A. Vladimirov, D. Ihle, and N. M. Plakida, "Optical and dc conductivities of cuprates: Spin-fluctuation scattering in the t-J model", Phys. Rev. B, 85, (2012) 224536 (pp. 1-12)

[31] Yu. A. Tserkovnikov, "On a method for solving infinite systems of equations for two-time temperature Green's functions" Teor. Mat. Phys., 49:2, (1981) 219-233; Theor. Math. Phys., 49:2, (1981) 9931002.

[32] W. Gotze and P. Wolfle, "Homogeneous dynamical conductivity of simple metals", Phys. Rev. B, 6, (1972) 1226-1238.

[33] D. Forster, Hydrodynamic fluctuations, Broken Symmetry and Correlation Functions Benjamin, New York, 1975.

[34] G. Jackeli and N. M. Plakida, "Charge dynamics and optical conductivity of the t-J model", Phys. Rev. B 60 (1999), 5266-5275.

[35] N. M. Plakida, V. S. Oudovenko, "Electron spectrum and superconductivity in the t-J model at moderate doping", Phys. Rev. B 59, (1999) 11949-11961.

[36] J. G. Bednorz and K. A. Muller, Z. Phys. B. 64 (1986) 189.

[37] Handbook of High-Temperature Superconductivity. Theory and Experiment, J.R. Schrieffer and J.S. Brooks (Eds.), Springer-Verlag, New York, 2007.

[38] N. M. Plakida, High-Temperature Cuprate Superconductors. Experiment, Theory, and Applications, Springer Series in Solid-State Sciences, Vol. 166, Springer-Verlag, Berlin, 2010, Chap. 7.

[39] P. Fulde, Electronic correlations in molecules and solids, Springer-Verlag, Berlin, 1995.

[40] Strongly Correlated Systems. Theoretical Methods, A. Avella and F. Mancini (Eds.), Springer Series in Solid-State Sciences, Vol. 171,Springer Verlag, Berlin, 2012.

[41] P. W. Anderson, Science 235 (1987) 1196; P. W. Anderson, The theory of superconductivity in the high-Tc cuprates, Princeton University Press, Princeton, 1997.

[42] J. Hubbard, Proc. Roy. Soc. (London) A 276 (1963) 238.

[43] N.N. Bogoliubov, Lektsii z kvantovoi statistiki (in Ukranien), Radz. Shkola, Kiiev, 1949, p. 227. English translation: Lectures on Quantum Statistics, Gordon and Breach, Sci. Publ., Inc., New York, 1967. Vol. 1: Quantum Statistics, p. 250.

[44] L. N. Bulaevskii, E. Nagaev, and D. I. Khomskii, Soviet Phys. JETP 27 (1968) 836.

[45] J. Spalek, A. M. Oles and K. A. Chao, Phys. Rev. B 18 (1978) 3748; phys. stat. sol. (b) 87 (1978) 625.

[46] Yu. A. Izyumov, Physics - Uspekhi 40 (1997) 445.

[47] G. Baskaran, Z. Zou and P.W. Anderson, Sol. State Comn. (1987) 63 973; G. Baskaran and P.W. Anderson, Phys. Rev. B 37 (1988) 580.

[48] F.-C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond, Sci. Technol. 1 (1988) 36.

[49] A. Paramekanti, M. Randeria, and N. Trivedi Phys. Rev. B 70 (2004) 054504.

[50] P.W.Anderson, P.A. Lee, M. Randeria, T.M. Rice, N. Trivedi, and F.C. Zhang, J. Phys.: Condens. Matter 16 (2004) R755.

[51] E. Dagotto, Rev. Mod. Phys. 66 (1994) 763.

[52] J. Jaklic and P. Prelovsek, Adv. Phys. 49 (1999) 1.

[53] Th. Maier, M. Jarrel, Th. Pruschke, and M.H. Hettler, Rev. Mod. Phys. 77 (2005) 1027.

[54] D.J. Scalapino, in Ref. [37], Ch.13, p.495, arXiv:cond.-mat.0610710 (2006). Numerical studies of the 2D Hubbard model.

[55] A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68 (1996) 13.

[56] G. Kotliar, S. Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, and C.A. Marianetti, Rev. Mod. Phys. 78 (2006) 865.

[57] D. Vollhardt, K. Byczuk, and M. Kollar, In: [40], Ch.7, p.203 (2012).

[58] Th. A. Maier, M. Jarrell, and D.J. Scalapino, Phys. Rev. Lett. 96 (2006) 047005; ibid, Phys. Rev. B 74 (2006) 094513.

[59] E. Gull, O. Parcollet, P. Werner, and A. J. Millis, Phys. Rev. B 80 (2009) 245102.

[60] E. Gull, M. Ferrero, O. Parcollet, A. Georges, and A. J. Millis, Phys. Rev. B 82 (2010) 155101.

[61] T. D. Stanescu, M. Civelli, K. Haule and G. Kotliar, Annals of Phys. 321 (2006) 1682.

[62] K. Haule and G. Kotliar, Phys. Rev. B 76 (2007) 104509.

[63] S. S. Kancharla, B. Kyung, D. Senechal, M. Civelli, M. Capone, G. Kotliar, and A.-M. S. Tremblay, Phys. Rev. B 77 (2008) 184516.

[64] M. Civelli, Phys. Rev. B 79 (2009) 195113.

[65] D. Senechal in Ref. [40], Ch.11, p.341 (2012).

[66] C. Gros and R. Valenti, Phys. Rev. B 48 (1993) 418.

[67] D. Senechal, D. Perez, and M. Pioro-Ladriere, Phys. Rev. Lett. 84 (2000) 522.

[68] D. Senechal, D. Perez, and D.Plouffe, Phys. Rev. B 66 (2002) 075129.

[69] D. Senechal, In: [40], Ch.8, p.237 (2012).

[70] V. I. Kuz'min, S. V. Nikolaev, and S. G. Ovchinnikov, Phys. Rev. B 90, (2014) 245104.

[71] M. Kohno, Phys. Rev. B 92 (2015) 085128.

[72] V. I. Kuz'min et al., Phys. Rev. B 101 (2020) 115141.

[73] M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91 (2003) 206402.

[74] M. Potthoff, Eur. Phys. J. B 32 (2003) 429.

[75] M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke Phys. Rev. B 76 (2007) 224509.

[76] Y. Vilk, L. Chen, and A.-M. Tremblay, Phys. Rev. B 49 (1994) 13267.

[77] Y. Vilk and A.-M. Tremblay, J. Phys. Chem. Solids (UK) 56 (1995) 1769.

[78] Y. Vilk and A.-M. Tremblay, J. Phys. I (France) 7 (1997)1309.

[79] A-M.S. Tremblay, B. Kyung and D. Senechal, Low Temp. Phys. 32 (2006) 424.

[80] B. Davoudi and A.-M.S. Tremblay, Phys. Rev. B 76 (2007) 085115.

[81] A.-M. S. Tremblay, In: [40],Ch.13, p.409 (2012).

[82] M.V. Sadovskii, Usp. Phys. Nauk 171 (2001) 539. [Physics-Uspekhi 44 (2001) 515].

[83] M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, Th. Pruschke, and V.I. Anisimov, Phys. Rev. B 72 (2005) 155105.

[84] E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, Pis'ma v Zh. Exp. Teor. Fiz. 82 (2005) 217. [JETP Letters 82 (2005) 198].

[85] E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, Fizika Nizkikh Temperatur (J. Low Temp. Phys.) 32 (2006) 528.

[86] Y. Suzumura,Y. Hasegawa, and H. Fukuyama, J. Phys. Soc. Jpn. 57 (1988) 401.

[87] G. Kotliar and J. Liu, Phys. Rev. Lett. 61 (1988) 1784.

[88] M. Grilli and G. Kotliar, Phys. Rev. Lett. 64 (1990) 1170.

[89] E. Arrigoni, C. Castellani, M. Grilli, R. Raimondi, G.C. Strinati, Phys. Rep. 241 (1994) 291.

[90] P. A. Lee, N. Nagaosa, and X.-G.Wen, Rev. Mod. Phys. 78 (2006) 17.

[91] M. Ogata and H. Fukuyama, Rep. Prog. Phys. 71 (2008) 036501.

[92] S. Feng, Yu Lan, H. Zhao, L. Kuang, L. Qin, and X. Ma, Int. J. Modern Phys. B 29 (2015) 1530009.

[93] A. Sherman and M. Schreiber, Phys. Rev. B 65 (2002) 134520.

[94] A. Sherman and M. Schreiber, Eur. Phys. J. B 32 (2003) 203.

[95] A. Sherman, Phys. Rev. B 70 (2004) 184512.

[96] M. I. Vladimir and V. A. Moskalenko, Theor. Math. Phys. 82 (1990) 428, Theor. Math. Phys. 82 (1990) 301; S. I. Vakaru, M. I. Vladimir, and V. A. Moskalenko, Theor. Math. Phys. 85 (1990) 248, 1185.

[97] A. Sherman, Phys. Rev. B 73 (2006) 155105.

98] A. Sherman, J.Phys.: Condens.Matter 30 (2018) 195601.

99] Rubtsov A. N., Katsnelson M. I. and Lichtenstein A. I., Phys. Rev. B 77 (2008) 033101.

100] H. Hafermann, G. Li, A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and H. Monien, Phys. Rev. Lett. 102 (2009) 206401.

101

102

103

104

105

106

107

108

109

110 111 112

113

114

115

116

117

118

119

120 121 122

Rubtsov A. N., Katsnelson M. I. and Lichtenstein A. I., and A. Georges, Phys. Rev. B 79 (2009) 045133.

E. Quinn, Non-canonical degrees of freedom, ArXiv: 2009.14755 (2021).

E. Quinn and O. Erten, Phys. Rev. B 99 (2019) 245123.

P. M. Slobodyan and I. V. Stasyuk, Teor. Mat. Fiz. 19 (1974) 423, 616. R.O. Zaitsev, Sov. Phys. JETP 43 (1976) 574.

S. G. Ovchinnikov and V. V. Valkov, Hubbard Operators in the Theory of Strongly Correlated Electrons, London: Imperial College Press, 2004.

Yu.A. Izyumov and Yu. N. Scryabin, Statistical Mechanics of Magnetically Ordered Systems, New York: Consultant Bureau, 1989.

R.O. Zaitsev, V.A. Ivanov, Soviet Phys. Solid State, 29 (1987) 2554; Ibid. (1987) 3111; Int. J. Mod. Phys. B 5 (1988) 153; Physcica C 153-155 (1988) 1295.

N.M. Plakida, V.Yu. Yushankhai, and I.V. Stasyuk, Physica C 160 (1989) 80.

V.Yu. Yushankhai, N.M. Plakida, and P. Kalinay, Physica C 174 (1991) 401.

N.M. Plakida and R. Hayn, Z. Physik B 93 (1994) 313.

F. Mancini and A. Avella; Adv. Phys. 53 (2004) 537.

A. Avella and F. Mancini, Phys. Rev. B 75 (2007) 134518.

A. Avella and F. Mancini, J. Phys.: Condens. Matter 19 (2007) 255209.

A. Avella and F. Mancini, In: [40], (2012), Ch. 4, p.103.

V.V. Val'kov, T.A. Val'kova, D.M. Dzebisashvili, and S.G. Ovchinnikov, JETP Letters 75 (2002) 378.

V. V. Val'kov and D. M. Dzebisashvili, JETP Lett. 77 (2003) 381. J. Jedrak and J. Spalek, Phys. Rev. B 81 (2010) 073108. J. Jedrak and J. Spalek, Phys. Rev. B 83 (2011) 104512.

S.G. Ovchinnikov, M.M. Korshunov, and E.I. Shneider, Zh. Eksp. Teor. Fiz. 136 (2009) 898. S.G. Ovchinnikov, I.A. Makarov, and E.I. Shneider, Zh. Eksp. Teor. Fiz. 139 (2011) 334. I.A. Makarov, and S.G. Ovchinnikov, and E.I. Shneider, Zh. Eksp. Teor. Fiz. 141 (2012) 372.

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

Yu.B. Gaididei and V.M.Loktev, phys. status solidi 147 (1988) 307. S.G. Ovchinnikov and E.I. Shneider, Zh. Eksp. Teor. Fiz. 128 (2005) 974.

E.I. Shneider and S.G. Ovchinnikov, Zh. Eksp. Teor. Fiz. 136 (2009) 1177. A.A. Vladimirov, D. Ihle, and N.M. Plakida, Europ. Phys. Jour. B 92 (2019) 6. P. Prelovsek and A. Ramsak, Phys. Rev. B 72 (2005) 012510.

P. Prelovsek, Z. Phys. B: Condens. Matter 103 (1997) 363.

P. Prelovsek and A. Ramsak, Phys. Rev. B 63 (2001) 180506(R).

S. Onoda and M. Imada, J. Phys. Soc. Jpn. 70 (2001) 632.

Yu.A. Izyumov and B.M. Letfulov, J. Phys.: Condens. Matter 3 (1991) 5373.

Yu.A. Izyumov and B.M. Letfulov, Intern. J. Modern Phys. B 6 (1992) 3771.

G. Martinez and P. Horsch, Phys. Rev. B 44 (1991) 317.

Z. Liu and E. Manousakis, Phys. Rev. B 45 (1992) 2425.

N. M.Plakida, V. S. Oudovenko, P. Horsch, and A.I. Liechtenstein, Phys. Rev. B 55 (1997) R11997.

P. Prelovsek and A. Ramsak, Phys. Rev. B 65 (2002) 174529.

I. Sega, Prelovsek and J. Bonca, Phys. Rev. B 68 (2003) 054524.

P. Prelovsek, I. Sega, and J. Bonca, Phys. Rev. Lett. 92 (2004) 027002.

P. Prelovsek and I. Sega, Phys. Rev. B 74 (2006) 214501.

I. Sega and P. Prelovsek, Phys. Rev. B 73 (2006) 092516.

F. Onufrieva and P. Pfeuty, Phys. Rev. B 65 (2002) 054515.

I. Eremin, D.K. Morr, A.V. Chubukov, K. Bennemann, and M.R. Norman, Phys. Rev. Lett. 94 (2005) 147001.

D. J. Scalapino, Phys. Reports 250 (1995) 329. P. Monthoux and D. Pines, Phys. Rev. B 49 (1994) 4261.

T. Moriya and K. Ueda, Adv. in Physics 49 (2000) 555; Rep. Prog. Phys. 66 (2003) 1299.

Ar. Abanov, A.V. Chubukov and J. Schmalian, Adv. in Physics 52, (2003) 119.

A. V. Chubukov, D. Pines, and J. Schmalian, In: The Physics of Conventional and Unconventional Superconductors, Eds. K. H. Bennemann and J. B. Ketterson, Springer-Verlag, Berlin, 2004, Vol. I, p. 495;

Ar. Abanov, A.V. Chubukov, M.R. Norman, Phys. Rev. B 78 (2008) 220507(R). N.M. Plakida and V.S. Oudovenko, JETP 119 (2014) 554.

150

151

152

153

154

155

156

157

158

159

160 161 162

163

164

165

166

167

168

169

170

171

N. M. Plakida, Physica C 531 (2016) 39.

N.M. Plakida V.S. Oudovenko, "Electronic spectrum in high-temperature cuprate superconductors", J. Exp. Theor. Phys., 104 (2007), 230-244.

N. M. Plakida and V. S. Oudovenko, "On the theory of superconductivity in the extended Hubbard model: Spin-fluctuation pairing", Eur. Phys. J. B, 86, (2013), 115 (1-15).

Y. C. Chen, A. Moreo, F. Ortolani, E. Dagotto, and T. K. Lee Phys. Rev. B 50, 655(R) (1994).

N. M. Plakida, "Two-time Green's functions and diagram technique", Theor. Mat. Phys., 168:3, (2011) 518 - 535 [Theor. Math. Phys., 168:3, (2011) 1303 - 1317]

P. A. Volkov, and K. B. Efetov, "Spin-fermion model with overlapping hot spots and charge modulation in cuprates", Phys. Rev. B, 93, (2016) 085131 (1-21).

B. Velicky, S. Kirkpatrick, and H. Ehrenreich Phys. Rev. 175, 747,1968

Masanskii, I.V., Tokar, V.I. Method of y expansions in the electronic theory of disordered alloys. Theor Math Phys 76, 747-757 (1988).

N. Paris et al., Phys. Rev. Lett. 98 (2007) 046403.

K. Bouadim et al., Phys. Rev. B 76 (2007) 085112.

K. Byczuk et al., Phys. Rev. B 79 (2009) 121103 (R).

A. Garg, H.R. Krishnamurthy, M. Randeria, Phys. Rev. Lett. 97 (2006) 046403. L. Craco et al., Phys. Rev. B 78 (2008) 075121.

Nguen Dan Tung and N. M. Plakida, Theor. Math. Phys. 194, 126 (2018). Static charge susceptibility in the t-J-V model.

N. Bulut, Adv. Phys. 51, 1587 (2002).

L.F. Feiner, J.H. Jefferson, and R. Raimondi, "Effective single-band models for the high-Tc cuprates. I. Coulomb interactions", Phys. Rev. B 53:13, (1996) 8751-8773.

J. Jaklic and P. Prelovsek, Phys. Rev. B, 55 (1997) R7307.

G.M. Eliashberg, Zh. Eksp. Teor. Fiz. 38 (1960) 966; ibid 39 (1960) 1437. [Soviet Phys. JETP 11 (1960) 696;ibid 12 (1960) 1000].

R. J. Birgeneau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, P. J. Picone, T. R. Thurston, G. Shirane, Y. Endoh, M. Sato, K. Yamada, Y. Hidaka, M. Oda, Y. Enomoto, M. Suzuki, and T. Murakami, Phys. Rev. B 38 (1988) 6614.

J. Bonca, P. Prelovsek, and I. Sega, Europhys. Lett. 10 (1989) 87.

V.Yu. Yushankhai, G. M. Vujicic and R.B. Zakula, Phys. Lett. A 151 (1990) 254.

M.L. Kulic, Physics Reports 338 2000 1-264.

172

173

174

175

176

177

178

179

180 181 182

183

184

185

186

187

188

189

190

191

A.I. Lichtenstein and M.L. Kulic, Physica C 245, (1995) 186.

R. Zeyher and M. L. Kulic, Phys. Rev. B 53 (1996) 2850.

Nguen Dan Tung and N. M. Plakida, Int. Journal of Modern Phys. B 32 (2018) 1850327.

A. A. Kordyuk et al., Phys. Rev. B 66 (2002) 014502.

K. M. Shen et al., Science 307, (2005) 901.

M. Hashimoto, T. Yoshida, H. Yagi, M. Takizawa, A. Fujimori, M. Kubota, K. Ono, K. Tanaka, D.H. Lu, Z.-X. Shen, S. Ono, and Yoichi Ando, Phys. Rev. B 77 (2008) 094516.

W.S. Lee et al., Nature 450 (2007) 81.

H. Li, X. Zhou, S. Parham, T. J. Reber, H. Berger, G. B. Arnold, and D. S. Dessau, Nat. Commun. 9 (2018) 26.

A. A. Kordyuk, S. V. Borisenko, A. Koitzsch, J. Fink, M. Knupfer, and H. Berger, Phys. Rev. B 71 (2005) 214513.

A. A. Kordyuk, S.V. Borisenko, A. Koitzsch, J. Fink, M. Knupfer, B. Buchner, H. Berger, G. Margaritondo, C.T. Lin, B. Keimer, S. Ono, and Yoichi Ando, Phys. Rev. Lett. 92 (2004) 257006.

V. I. Kuz'min, M. A. Visotin, S. V. Nikolaev, and S. G. Ovchinnikov, Phys. Rev.B 101 (2020) 115141.

E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O.K. Andersen,Phys. Rev. Lett. 87 (2001) 047003.

K. Tanaka, T. Yoshida, A. Fujimori, D. H. Lu, Z.-X. Shen, X.-J. Zhou, H. Eisaki, Z. Hussain, S. Uchida, Y. Aiura, K. Ono, T. Sugaya, T. Mizuno, and I. Terasaki,Phys. Rev. B 70 (2004) 092503.

E. Plekhanov, S. Sorella, and M. Fabrizio, Phys. Rev. Lett. 90 (2003) 187004.

A T Hoang, J. Phys.: Condens. Matter 22 (2010) 095602 (4pp).

Hohenberg P., Kohn W. Inhomogeneous Electron Gas // Phys. Rev. 1964, Vol. 136, P. B864

D. N. Zubarev, V. G. Morozov, G. Repke, Statistical Mechanics of Non-equilibrium Processes, Akademie, Berlin, 1996 [Statistical mechanics of nonequilibrium processes, Fizmatlit, M., 2002]

N.N. Bogolyubov, S. V. Tyablikov, "Lagging and leading functions Green in statistical physics", DAN SSSR, 126 (1959), 53-58; [N.N. Bogoliubov and S.V. Tyablikov, "Retarded and advanced Green functions in statistical physics", Sov. Phys. Dokl., 4, (1959) 604.]

S. V. Tyablikov, Methods quantum theory of magnetism, 2nd ed., Nauka, M., 1975; [English translation: S. V. Tyablikov, Methods in the Quantum Theory of Magnetism, Plenum, New York, 1967.]

S.V. Varlamov, M.V. Eremin, I.M. Eremin, "On the theory of a pseudogap in the spectrum elementary excitations of the normal phase of bilayer cuprates", JETP Lett. 66:8, (1997) 533-538.

M.V. Eremin, M. A. Malakhov, Effective Coulomb interaction of electrons in cuprates, Izvestiya RAN, series physical, 78:9, (2014) 1183-1186.

[193] M.V. Eremin, D.A. Sunyaev, "Temperature dependence of the magnetic field penetration depth in the presence of dispersion in the order parameters of superconductivity and charge waves densities", JETP Lett., 103:3, (2016) 209-213

[194] Yu.A. Izyumov and Yu.N. Scryabin, Statistical Mechanics of Magnetically Ordered Systems, Consultant Bureau, New York, 1989]

[195] Kohn W., Sham L. J. "Self-Consistent Equations Including Exchange and Correlation Effects", Phys. Rev. 1965, Vol. 140, P. A1133.

[196] Jones R. O., Gunnarsson O., "The density functional formalism, its applications and prospects", Rev. Mod. Phys. 1989, Vol. 61, P. 689.

[197] Mattheiss L. F. Electronic band properties and superconductivity in La2-yCwO4, Phys. Rev. Lett. 1987, Vol. 58, P. 1028.

[198] Yu. A. Tserkovnikov, Theor. Math. Fiz. 50, 261 (1982).

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.