Эффекты беспорядка в одномерных квантовых системах тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Баховадинов Мурод Султонович
- Специальность ВАК РФ00.00.00
- Количество страниц 153
Оглавление диссертации кандидат наук Баховадинов Мурод Султонович
Content
Introduction
1 Many-body localization in quantum systems with constraints
1.1 Motivation
1.2 Numerical method and localization measures
1.2.1 Numerical method
1.2.2 Characterization of the MBL transition
1.3 Model I and its symmetries
1.4 Qualitative arguments for MBL in model I
1.5 Numerical results for model I
1.6 Model II and its symmetries
1.7 Qualitative arguments for MBL in model II
1.8 Numerical results for model II
1.9 Conclusions
2 Luttinger-Liquid-Bose glass phase transition for 1D disordered fermions with pair hoppings
2.1 Motivation
2.2 Model and symmetries
2.3 Numerical method and calculated quantities
2.4 Bosonization procedure and GS scenario
2.5 Numerical results: clean case
2.6 Numerical results: disordered case
2.7 Conclusions
3 Effects of a single impurity in the Luttinger liquid with spin-orbit coupling
3.1 Motivation
3.2 Model and methods
3.3 Results and discussion
3.4 Conclusions
Resume
References
Appendices
A Exact form of the conserved charges for the 1D XY model
B Quasiconserved charges in the perturbed XY model with the homogeneous field
C Expressions for new TLL parameters and sound velocities
D Russian translation of the dissertation/Перевод диссертации на русский язык
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Развитие алгебраической теории коллективных движений атомных ядер2020 год, доктор наук Ганев Хубен Ганев
Управление потоками заряда и тепла в наноразмерных квазиодномерных проводниках2022 год, кандидат наук Бубис Антон Владимирович
Моделирование влияния модификации структуры низкоразмерных материалов ZnO, β-C3N4, InSe и однослойного бора на их физические свойства2021 год, кандидат наук Лэй Сюе
Extraordinary optical transmission in holographic and polycrystalline structures/Усиленное оптическое пропускание в голографических и поликристаллических наноструктурах2021 год, кандидат наук Ушков Андрей Александрович
Неклассические методы вероятностного и статистического анализа моделей смеси распределений2022 год, доктор наук Панов Владимир Александрович
Введение диссертации (часть автореферата) на тему «Эффекты беспорядка в одномерных квантовых системах»
Introduction
Theoretical and experimental study of coherent properties of macroscopic systems is one of the main goals of contemporary condensed matter physics. Meanwhile disorder in such systems always is present in the form of defects and impurities with a wide range of concentrations. Therefore, any relevant theoretical study naturally has to include disorder into its framework. Such a study was first performed by P. W. Anderson [1] who has shown that all or part of particle states undergo localization transition at (finite) disorder. Wavefunctions of constituent quantum particles get localized in real space, which becomes dramatic in lower dimensions, d < 3. In the localized phase the transport of charge, spin or heat is suppressed. Realization of this state of matter by the groups of A. Aspect and M. Inguscio [2, 3] in dilute quasi-one-dimensional systems of cold bosonic atoms has refreshed research activities in the domain of disordered systems[4, 5].
Anderson localization is the phenomenon of single-particle physics. The question of whether and how interparticle interactions influence localization remained opened for a long of time. In their seminal work Basko, Aleiner and Altshuler [6] have shown that the isolated disordered quantum systems in the presence of interparticle interactions may exhibit metal-insulator transition at finite energy densities - the phenomenon named as many-body localization (MBL). In this work the authors considered many-body Fock space constructed out of localized single-particle states and asked the question of whether matrix elements of the interparticle interaction are sufficient to cause delocalization within the considered Hilbert space. It was shown that this is indeed the case if one considers finite energy densities. Several years later, the first numerical evidence on support of the perturbative study was demonstrated by A. Pal and D. Huse [7], which made the domain of MBL one of the active research frontiers of the modern condensed matter physics [8, 9].
The topics covered in this Thesis are mainly formulated during the PhD study of the author. All considered problems are quasi-one-dimensional, where effects of quantum fluctuations are the strongest. An interplay of disorder with interparticle interactions in such a systems is an old problem [10, 11, 12, 13]. However, in this Thesis we address localization-delocalization transitions in a family of non-traditional models. The thesis is structured as follows:
Structure of the Thesis.
• The first chapter of the Thesis is dedicated to two interesting models which exhibit many-body localization (MBL) transition although no interaction terms are present in the corresponding Hamiltonians. Instead, they obey imposed constraints on their local degrees of freedom. The first set of models are spin S =1/2 models considered in a ladder geometry, whereas the second
model is the Fermi-Hubbard model in the limit of infinite on-site repulsion. By means of large-scale exact diagonalization calculations we show that both models exhibit MBL transition at finite disorder strength.
• In the second chapter we consider a quasi-1D fermionic disordered model at low temperatures. On top of the disorder term, which is present in every lattice site, the Hamiltonian of the system consists of single particle and pair hopping terms. By means of large-scale numerical Density Matrix Renormalization Group method we first show that the zero-temperature physics of the clean system is well described within the framework of the Tomonaga-Luttinger liquid (TLL) theory. Then we study the role of constituent Hamiltonian terms and show that the pair hopping term can guarantee the survival of the Luttinger liquid phase at finite disorder, if the hopping amplitude is sufficiently large.
• The last chapter is dedicated to the study of a single impurity in a multichannel Luttinger liquid at low temperatures. The TLL is composed of carriers t / I and consequently has two channels: spin and charge. In one dimension these channels are decoupled and carry the corresponding carriers separately. In the presence of spin-orbit interaction the two channels are coupled. In this chapter we study effects of a single impurity in such electronic liquid using bosonization and perturbative renormalization group techniques.
Aims and objectives.
1. Possibility of new quantum phases and transitions in strongly disordered quantum systems with imposed constraints. Obtaining phase diagram of the considered models using the exact diagonalization technique. The study of two-component disorder in the case of the Fermi-Hubbard model with infinite on-site repulsion.
2. Low-temperature phase diagram of the disordered model with pair hoppings in one dimension using the Density-Matrix Renormalization group technique. Possible mechanisms of the Berezinskii-Kosterlitz-Thouless transition which occurs at a finite disorder strength for large pair hopping amplitudes.
3. Effects of a single impurity in the TLL with coupled spin and charge channels using bosonization method. Obtaining Kane-Fisher phase diagram when such a coupling is caused by spin-orbit interactions.
Key aspects to be defended.
1. Many-body localization transition is studied for two 1D quantum systems with imposed constraints on their local degrees of freedom. For the first time we present a family of models which exhibit MBL, although no explicit interaction terms are present in the corresponding Hamiltonians. The first model is the one of hard-core bosons with the nearest and next-nearest neighbor (NNN) hoppings. On the basis of finite-size numerical calculations it is demonstrated that at finite NNN hopping the system is effectively interacting and one observes the MBL transition, although no explicit interaction term is present in the Hamiltonian. For vanishing NNN hoppings, the system undergoes Anderson localization at any finite disoder. The second model is the 1D Fermi-Hubbard model in the regime of infinite on-site repulsion. For this model it is numerically shown that any finite potential disorder drives the system to the Anderson insulator. On the contrary, effects of random magnetic field are two-fold: on the one hand, at small but finite random fields the system remains chaotic, on the other hand, large random fields cause the MBL transition. Interplay between two types of disorder is studied and the finite-size phase diagram of the model is obtained.
2. Effects of disorder are studied in a 1D system of fermions with single particle and pair hoppings. Using large-scale numerical calculations the phase diagram of the model in the clean limit is obtained. It is demonstrated that in the regime of large pair hoppings the disorder term is irrelevant in the renormalization group sense and one has electronic fluid with algebraically decaying correlations at finite but small disorder. At large disorder the system enters the localization phase via the Berezinskii-Kosterlitz-Thouless mechanism. The phase diagram of the disordered model is obtained on the basis of decay of real space correlators and the disorder-averaged liquid parameter K. The found transition occurs via the Giamarchi-Schulz scenario.
3. Effects of a single impurity on Luttinger liquid with coupled spin and charge degrees of freedom are studied using bosonization and perturbative renormalization techniques. The spin-charge coupling is caused by finite spinorbit interactions. The Kane-Fisher phase diagram obtained for the decoupled modes is extended to the case of spin-charge coupling. The obtained results refute previous predictions on the observation of spin-filtering effect in the considered model. The results show that the effects of spin-orbit interaction in the system with a single impurity are the strongest for strongly interacting systems, whereas for a weakly interacting electronic gas the effects are weak. Expressions for the Luttinger liquid parameters and excitation velocites of newly emerging modes are also obtained.
Approbation of the results. The results of the Thesis were reported in the form of posters and oral presentations at the following conferences and workshops:
Third Annual workshop on quantum computations (Sochi, February, 2022), VI International conference on Quantum Technologies (Moscow, July, 2021) and at the VII International conference on Quantum Technologies (Moscow, July, 2023). The papers [A1-A5] are published in peer-reviewed scientific journals. The results are also presented at the local seminars held in Russian Quantum Center. The papers [A6-A8] are not included in the Thesis.
Authors publications
A1. Bahovadinov, M. S., and Matveenko, S. I., Effects of a single impurity in a Luttinger liquid with spin-orbit coupling. Journal of Physics: Condensed Matter, 34, 315601 (2022).
A2. Bahovadinov, M. S., Kurlov, D. V., Matveenko, S. I., Altshuler, B. L., and Shlyapnikov, G. V., Many-body localization transition in a frustrated XY chain. Phys. Rev. B, 106, 075107 (2022).
A3. Bahovadinov, M. S., Kurlov, D. V., Altshuler, B. L., and Shlyapnikov, G. V., Many-body localization of 1D disordered impenetrable two-component fermions. The European Physical Journal D, 76, 116 (2022).
A4. Kurlov, D. V., Bahovadinov, M. S., Matveenko, S. I., Fedorov, A. K., Gritsev, V., Altshuler, B. L., and Shlyapnikov, G. V., Disordered impenetrable two-component fermions in one dimension. Phys. Rev. B, 107, 184202 (2023).
A5. Bahovadinov M. S., Sharipov R. O., Altshuler B. L., and Shlyapnikov G. V., Tomonaga-Luttinger liquid-Bose glass phase transition in a system of 1D disordered fermions with pair hoppings. Phys. Rev. B, 109, 014203 (2024).
A6. Bahovadinov, M. S., Buijsman, W., Fedorov, A. K., Gritsev, V., and Kurlov, D. V., Many-body localization of Z3 Fock parafermions. Phys. Rev. B, 106, 224205 (2022).
A7. Matveenko, S. I., Bahovadinov, M. S., Baranov, M. A., and Shlyapnikov, G. V., Rotons and their damping in elongated dipolar Bose-Einstein condensates. Phys. Rev. A, 106, 013319 (2022).
A8. Bakker, L. R., Bahovadinov, M. S., Kurlov, D. V., Gritsev, V., Fedorov, A. K., and Krimer, D. O., Driven-dissipative time crystalline phases in a two-mode bosonic system with Kerr nonlinearity. Phys. Rev. Lett., 129, 250401 (2022).
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Струнное представление и непертурбативные свойства калибровочных теорий1999 год, кандидат физико-математических наук Антонов, Дмитрий Владимирович
Математическое моделирование гидродинамических задач и их применение в многофазных системах / Mathematical modeling of hydrodynamic problems and their applications in multiphase systems2024 год, кандидат наук Абунаб Ахмед Камал Ибрахим
Магнитная анизотропия оксидных наноархитектур2022 год, кандидат наук Омельянчик Александр Сергеевич
Плазмонные наноструктуры для оптических метаматериалов2022 год, доктор наук Драчев Владимир Прокопьевич
Моделирование геометрической формы, слияния и распределения кислорода в тканевых сфероидах доброкачественной ткани (Geometrical Shape, Coalescence and Oxygen Distribution Modeling in Benign Tissue Spheroids)2024 год, кандидат наук Вилински-Мазур Кэтрин Александровна
Заключение диссертации по теме «Другие cпециальности», Баховадинов Мурод Султонович
Resume
The main results of this Thesis are the following:
Many-body localization transition is studied for two 1D quantum systems with imposed constraints on their local degrees of freedom. For the first time we present models which exhibit MBL, although no explicit interaction terms are present in the corresponding Hamiltonians. The first model is the one of hard-core bosons with the nearest and next-nearest neighbor (NNN) hoppings. On the basis of finite-size numerical calculations it is demonstrated that at finite NNN hopping the system is effectively interacting and one observes the MBL transition, although no explicit interaction term is present in the Hamiltonian. For vanishing NNN hopping, the system undergoes Anderson localization at any finite disoder. The second model is the 1D Fermi-Hubbard model in the regime of infinite on-site repulsion. For this model it is numerically shown that any finite potential disorder drives the system to the Anderson insulator. On the contrary, effects of random magnetic field are two-fold. On the one hand, at small but finite random fields the system remains localized, driven by the finite potential disorder. On the other hand, already moderate random fields cause localization-delocalization transition. Large random magnetic fields eventually localize the system, realizing a re-entrant transition to the localized phase.
Effects of disorder are studied in a 1D system of fermions with single particle and pair hoppings. Using large-scale numerical calculations the phase diagram of the model in the clean limit is obtained. It is demonstrated that in the regime of large pair hoppings the disorder term is irrelevant in the renormalization group sense and one has electronic fluid with algebraically decaying correlations at finite but small disorder. At large disorder the system enters the localization phase via the Giamarchi-Schulz scenario of the Berezinskii-Kosterlitz-Thouless mechanism. The phase diagram of the disordered model is obtained on the basis of decay of real space correlators and the disorder-averaged liquid parameter K.
Effects of a single impurity on Luttinger liquid with coupled spin and charge degrees of freedom are studied using bosonization and perturbative renormalization techniquies. The spin-charge coupling is caused by the spin-orbit interaction. Our obtained results refute previous prediction on observation of spin-filtering effect in our model. The results show that the effects of spin-orbit interaction in the system with a single impurity are the strongest for strongly interacting system, whereas for weakly interacting electronic gas the effects are weak. Expressions for Luttinger liquid parameters and excitation velocites of newly emerging modes are obtained.
Список литературы диссертационного исследования кандидат наук Баховадинов Мурод Султонович, 2024 год
References
1. Anderson, P. W. Absence of Diffusion in Certain Random Lattices / P. W. Anderson // Phys. Rev. — 1958. — Mar. — Vol. 109. — P. 14921505.
2. Direct observation of Anderson localization of matter waves in a controlled disorder / Juliette Billy, Vincent Josse, Zhanchun Zuo [et al.] // Nature. — 2008. —Jun. —Vol. 453, no. 7197. —P. 891-894.
3. Anderson localization of a non-interacting Bose-Einstein condensate / Roati Giacomo, D'Errico Chiara, Fallani Leonardo [et al.] // Nature. — 2008. —Jun. —Vol. 453, no. 7197. —P. 895-898.
4. Evers, F. Anderson transitions / Ferdinand Evers, Alexander D. Mirlin // Rev. Mod. Phys. —2008. —Oct. —Vol. 80. —P. 1355-1417.
5. Segev, M. Anderson localization of light / Mordechai Segev, Yaron Silberberg, Demetrios N. Christodoulides // Nature Photonics. — 2013. — Feb.— Vol. 7, no. 3. —P. 197-204.
6. Basko, D. M. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states /DM Basko, I L Aleiner, B L Altshuler // Ann. Phys. (N. Y.). — 2006. — May.— Vol. 321, no. 5.— P. 1126-1205.
7. Pal, A. Many-body localization phase transition / Arijeet Pal, David A Huse // Phys. Rev. B Condens. Matter Mater. Phys. —2010.— Nov. —Vol. 82, no. 17.
8. Luitz, D. J. The ergodic side of the many-body localization transition / David J Luitz, Yevgeny Bar Lev // Ann. Phys. — 2017. — Jul.—Vol. 529, no. 7. —P. 1600350.
9. Abanin, D. A. Recent progress in many-body localization / Dmitry A Abanin, Zlatko Papic // Ann. Phys. — 2017. — Jul. — Vol. 529, no. 7. —P. 1700169.
10. Giamarchi, T. Quantum physics in one dimension / Thierry Giamarchi. — [S. l.] : Clarendon press, 2003. —Vol. 121.
11. Apel, W. Localisation and interaction in one dimension / W Apel, T M Rice //J. Phys. —1983. —Apr. —Vol. 16, no. 10. —P. L271-L273.
12. Kane, C. Transport in a one-channel Luttinger liquid / CL Kane, Matthew PA Fisher // Physical review letters. — 1992. — Vol. 68, no. 8.— P. 1220.
13. Kane, C. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas / CL Kane, Matthew PA Fisher // Physical Review B. — 1992.— Vol. 46, no. 23. —P. 15233.
14. Luitz, D. J. Many-body localization edge in the random-field Heisenberg chain / David J. Luitz, Nicolas Laflorencie, Fabien Alet // Physical Review B. —2015. —feb. —Vol. 91, no. 8.
15. Giamarchi, T. Localization and interaction in one-dimensional quantum fluids / T Giamarchi, H J Schulz // EPL. — 1987. — Jun. — Vol. 3, no. 12. — P. 1287-1293.
16. Giamarchi, T. Anderson localization and interactions in one-dimensional metals / T Giamarchi, H J Schulz // Phys. Rev. B Condens. Matter. — 1988. —Jan. —Vol. 37, no. 1. —P. 325-340.
17. Runge, K. J. Exact-diagonalization study of the one-dimensional disordered XXZ model / K J Runge, G T Zimanyi // Phys. Rev. B Condens. Matter. — 1994. — Jun.—Vol. 49, no. 21. —P. 15212-15222.
18. Kudo, K. Finite-size scaling with respect to interaction and disorder strength at the many-body localization transition / Kazue Kudo, Tetsuo Deguchi // Physical Review B. —2018.—jun. —Vol. 97, no. 22.
19. Deutsch, J. M. Quantum statistical mechanics in a closed system / J. M. Deutsch // Physical Review A. — 1991. — feb. — Vol. 43, no. 4.— P. 2046-2049.
20. Srednicki, M. Chaos and quantum thermalization / Mark Srednicki // Physical Review E. — 1994. — aug. — Vol. 50, no. 2. — P. 888-901.
21. Bar Lev, Y. Dynamics of many-body localization / Yevgeny Bar Lev, David R Reichman // Phys. Rev. B Condens. Matter Mater. Phys. —
2014. —Jun. —Vol. 89, no. 22.
22. Serbyn, M. Criterion for many-body localization-delocalization phase transition / Maksym Serbyn, Z Papic, Dmitry A Abanin // Phys. Rev. X. —
2015. —Dec. —Vol. 5, no. 4.
23. Luitz, D. J. Extended slow dynamical regime close to the many-body localization transition / David J Luitz, Nicolas Laflorencie, Fabien Alet // Phys. Rev. B. —2016. —Feb. —Vol. 93, no. 6.
24. De Luca, A. Ergodicity breaking in a model showing many-body localization / A De Luca, A Scardicchio // EPL. — 2013. — Feb. — Vol. 101, no. 3. — P. 37003.
25. Anderson localization on the Bethe lattice: nonergodicity of extended states / A De Luca, B L Altshuler, V E Kravtsov, A Scardicchio // Phys. Rev. Lett. —2014. —Jul. —Vol. 113, no. 4. —P. 046806.
26. Bardarson, J. H. Unbounded Growth of Entanglement in Models of Many-Body Localization / Jens H. Bardarson, Frank Pollmann, Joel E. Moore // Physical Review Letters. — 2012.—jul. — Vol. 109, no. 1.
27. Bauer, B. Area laws in a many-body localized state and its implications for topological order / Bela Bauer, Chetan Nayak //J. Stat. Mech. — 2013. — Sep. —Vol. 2013, no. 09. —P. P09005.
28. Serbyn, M. Universal slow growth of entanglement in interacting strongly disordered systems / Maksym Serbyn, Z Papic, Dmitry A Abanin // Phys. Rev. Lett. — 2013. — Jun. — Vol. 110, no. 26. —P. 260601.
29. Buijsman, W. Gumbel statistics for entanglement spectra of many-body localized eigenstates / Wouter Buijsman, Vladimir Gritsev, Vadim Cheianov // Phys. Rev. B.— 2019.— Nov.— Vol. 100, no. 20.
30. Power-law entanglement spectrum in many-body localized phases / Maksym Serbyn, Alexios A Michailidis, Dmitry A Abanin, Z Papic // Phys. Rev. Lett. —2016. —Oct. —Vol. 117, no. 16. —P. 160601.
31. Berkelbach, T. C. Conductivity of disordered quantum lattice models at infinite temperature: Many-body localization / Timothy C Berkelbach, David R Reichman // Phys. Rev. B Condens. Matter Mater. Phys. — 2010. —Jun. —Vol. 81, no. 22.
32. Dynamical conductivity and its fluctuations along the crossover to many-body localization / Osor S Barisic, Jure Kokalj, Ivan Balog, Peter Prelovsek // Phys. Rev. B. — 2016. — Jul.— Vol. 94, no. 4.
33. Bar Lev, Y. Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice / Yevgeny Bar Lev, Guy Cohen, David R Reichman // Phys. Rev. Lett. — 2015. — Mar. — Vol. 114, no. 10. —P. 100601.
34. Prelovsek, P. Self-consistent approach to many-body localization and subdiffusion / P Prelovsek, J Herbrych // Phys. Rev. B. — 2017. — Jul. — Vol. 96, no. 3.
35. Serbyn, M. Local conservation laws and the structure of the many-body localized states / Maksym Serbyn, Z Papic, Dmitry A Abanin // Phys. Rev. Lett. —2013. —Sep. —Vol. 111, no. 12. —P. 127201.
36. Rademaker, L. Explicit local integrals of motion for the many-body localized state / Louk Rademaker, Miguel Ortuño // Phys. Rev. Lett. — 2016. — Jan. —Vol. 116, no. 1. —P. 010404.
37. Constructing local integrals of motion in the many-body localized phase / Anushya Chandran, Isaac H Kim, Guifre Vidal, Dmitry A Abanin // Phys. Rev. B Condens. Matter Mater. Phys. — 2015.— Feb.— Vol. 91, no. 8.
38. Oganesyan, V. Localization of interacting fermions at high temperature / Vadim Oganesyan, David A. Huse // Physical Review B. — 2007. — apr.— Vol. 75, no. 15.
39. Bertrand, C. L. Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition / Corentin L. Bertrand, Antonio M. García-García // Physical Review B.—
2016. —oct. —Vol. 94, no. 14.
40. Khemani, V. Two Universality Classes for the Many-Body Localization Transition / Vedika Khemani, D.N. Sheng, David A. Huse // Physical Review Letters. — 2017. — aug. — Vol. 119, no. 7.
41. Critical Properties of the Many-Body Localization Transition / Vedika Khemani, S.P. Lim, D.N. Sheng, David A. Huse // Physical Review X.—
2017. —apr. —Vol. 7, no. 2.
42. Mace, N. Multifractal Scalings Across the Many-Body Localization Transition / Nicolas Mace, Fabien Alet, Nicolas Laflorencie // Physical Review Letters. —2019. —oct. —Vol. 123, no. 18.
43. Torres-Herrera, E. J. Dynamics at the many-body localization transition / E. J. Torres-Herrera, Lea F. Santos // Physical Review B. — 2015. —jul. — Vol. 92, no. 1.
44. Gray, J. Many-body localization transition: Schmidt gap, entanglement length, and scaling / Johnnie Gray, Sougato Bose, Abolfazl Bayat // Physical Review B. — 2018. — may. — Vol. 97, no. 20.
45. Many-Body Localization Characterized from a One-Particle Perspective / Soumya Bera, Henning Schomerus, Fabian Heidrich-Meisner, Jens H. Bar-darson // Physical Review Letters. — 2015.—jul. — Vol. 115, no. 4.
46. Buijsman, W. Many-body localization in the Fock space of natural orbitals / Wouter Buijsman, Vladimir Gritsev, Vadim Cheianov // SciPost Physics. —
2018. —Jun. —Vol. 4, no. 6.
47. Orito, T. Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective / Takahiro Orito, Ken-Ichiro Imura // Physical Review B. — 2021.—jun. — Vol. 103, no. 21.
48. Pino, M. From ergodic to non-ergodic chaos in Rosenzweig-Porter model / M Pino, J Tabanera, P Serna // Journal of Physics A: Mathematical and Theoretical. —2019. —Oct. —Vol. 52, no. 47. —P. 475101.
49. Realizing dipolar spin models with arrays of superconducting qubits / M Dalmonte, S I Mirzaei, P R Muppalla [et al.] // Phys. Rev. B Condens. Matter Mater. Phys. — 2015. — Nov.— Vol. 92, no. 17.
50. Frustrated magnets without geometrical frustration in bosonic flux ladders / Luca Barbiero, Josep Cabedo, Maciej Lewenstein [et al.]. — 2022. — Dec.— 2212.06112.
51. Mondaini, R. Many-body localization and thermalization in disordered Hub-bard chains / Rubem Mondaini, Marcos Rigol // Physical Review A. — 2015. —Oct. —Vol. 92, no. 4.
52. Zakrzewski, J. Spin-charge separation and many-body localization / Jakub Zakrzewski, Dominique Delande // Physical Review B. — 2018.— Jul. —Vol. 98, no. 1.
53. Bonca, J. Delocalized carriers in the t—J model with strong charge disorder / Janez Bonca, Marcin Mierzejewski // Physical Review B. — 2017. — Jun. — Vol. 95, no. 21.
54. Lemut, G. Complete Many-Body Localization in the t — J Model Caused by a Random Magnetic Field / Gal Lemut, Marcin Mierzejewski, Janez Bonca // Physical Review Letters.— 2017.— Dec.— Vol. 119, no. 24.
55. Kozarzewski, M. Spin Subdiffusion in the Disordered Hubbard Chain / Maciej Kozarzewski, Peter Prelovsek, Marcin Mierzejewski // Physical Review Letters. —2018. —Jun. —Vol. 120, no. 24.
56. Kozarzewski, M. Suppressed energy transport in the strongly disordered Hubbard chain / Maciej Kozarzewski, Marcin Mierzejewski, Peter Prelovsek // Physical Review B. — 2019. — Jun.— Vol. 99, no. 24.
57. Nucleation of Ergodicity by a Single Mobile Impurity in Supercooled Insulators / Ulrich Krause, Theo Pellegrin, Piet W. Brouwer [et al.] // Physical Review Letters. — 2021. — Jan. — Vol. 126, no. 3.
58. Protopopov, I. V. Spin-mediated particle transport in the disordered Hub-bard model / Ivan V. Protopopov, Dmitry A. Abanin // Physical Review B. —2019. —Mar. —Vol. 99, no. 11.
59. Prelovsek, P. Absence of full many-body localization in the disordered Hubbard chain / P. Prelovsek, O. S. Barisic, M. Znidaric // Physical Review B. —2016. —Dec. —Vol. 94, no. 24.
60. Protopopov, I. V. Effect of SU(2) symmetry on many-body localization and thermalization / Ivan V. Protopopov, Wen Wei Ho, Dmitry A. Abanin // Physical Review B. —2017. —Jul. —Vol. 96, no. 4.
/
61. Sroda, M. Instability of subdiffusive spin dynamics in strongly disordered
/
Hubbard chain / M. Sroda, P. Prelovsek, M. Mierzejewski // Physical Review B. —2019. —Mar. —Vol. 99, no. 12.
62. Leipner-Johns, B. Charge- and spin-specific local integrals of motion in a disordered Hubbard model / Brandon Leipner-Johns, Rachel Wortis // Physical Review B. — 2019. — Sep.— Vol. 100, no. 12.
63. Abarenkova, N. I. Correlators of densities in the one-dimensional hubbard model / N. I. Abarenkova, A. G. Izergin, A. G. Pronko // Journal of Mathematical Sciences. —2000. —Oct. —Vol. 101, no. 5. —P. 3377-3384.
64. Disordered impenetrable two-component fermions in one dimension / D. V. Kurlov, M. S. Bahovadinov, S. I. Matveenko [et al.] // Phys. Rev. B. —2023. —May. —Vol. 107. —P. 184202.
65. Shift-invert diagonalization of large many-body localizing spin chains / Francesca Pietracaprina, Nicolas Mace, David J. Luitz, Fabien Alet // Sci-Post Physics. —2018. —Nov. —Vol. 5, no. 5.
66. Many-body localization in large systems: Matrix-product-state approach / Elmer V.H. Doggen, Igor V. Gornyi, Alexander D. Mirlin, Dmitry G. Polyakov // Annals of Physics. — 2021. — Vol. 435. — P. 168437. — Special Issue on Localisation 2020.
67. Many-body localization and delocalization in large quantum chains / Elmer V. H. Doggen, Frank Schindler, Konstantin S. Tikhonov [et al.] // Phys. Rev. B. —2018. —Nov. —Vol. 98. —P. 174202.
68. Chanda, T. Time dynamics with matrix product states: Many-body localization transition of large systems revisited / Titas Chanda, Piotr Sier-ant, Jakub Zakrzewski // Phys. Rev. B. — 2020. — Jan. — Vol. 101. — P. 035148.
69. Kullback, S. On information and sufficiency / Solomon Kullback, Richard A Leibler // The annals of mathematical statistics. — 1951.— Vol. 22, no. 1. —P. 79-86.
70. Fragile extended phases in the log-normal Rosenzweig-Porter model / I. M. Khaymovich, V. E. Kravtsov, B. L. Altshuler, L. B. Ioffe // Physical Review Research. — 2020. — Dec. — Vol. 2, no. 4.
71. Pino, M. From ergodic to non-ergodic chaos in Rosenzweig-Porter model / M Pino, J Tabanera, P Serna // Journal of Physics A: Mathematical and Theoretical. —2019. —Oct. —Vol. 52, no. 47. —P. 475101.
72. Jordan, P. ber das Paulische quivalenzverbot / P Jordan, E Wigner // Eur. Phys. J. A. —1928. —Sep. —Vol. 47, no. 9-10. —P. 631-651.
73. Mott, N. Electrons in disordered structures / N.F. Mott // Advances in Physics. —1967. —Jan. —Vol. 16, no. 61. —P. 49-144.
74. Klein, A. Localization in the ground-state of the one dimensional X — Y model with a random transverse field / Abel Klein, J. Fernando Perez // Communications in Mathematical Physics. — 1990. — Mar. — Vol. 128, no. 1. —P. 99-108.
75. Titvinidze, I. Phase diagram of the spin extended model / I. Titvinidze, G.I. Japaridze // The European Physical Journal B - Condensed Matter. — 2003. —Apr. —Vol. 32, no. 3. —P. 383-393.
76. Matsubara, T. A lattice model of liquid helium, I / Takeo Matsubara, Hirotsugu Matsuda // Progress of Theoretical Physics. — 1956. — Vol. 16, no. 6. —P. 569-582.
77. The one-dimensional Hubbard model / Fabian HL Essler, Holger Frahm, Frank Gohmann [et al.]. — [S. l.] : Cambridge University Press, 2005.
78. Typicality approach to the optical conductivity in thermal and many-body localized phases / Robin Steinigeweg, Jacek Herbrych, Frank Pollmann, Wolfram Brenig // Physical Review B. — 2016. — Nov. — Vol. 94, no. 18.
79. Barisic, O. S. Conductivity in a disordered one-dimensional system of interacting fermions / O. S. Barisic, P. Prelovsek // Physical Review B. — 2010. —Oct. —Vol. 82, no. 16.
80. Sanchez, R. J. Anomalous and regular transport in spin-1/2 chains: ac conductivity / R. J. Sanchez, V. K. Varma, V. Oganesyan // Physical Review B. —2018. —Aug. —Vol. 98, no. 5.
81. Quantum supremacy using a programmable superconducting processor / Frank Arute, Kunal Arya, Ryan Babbush [et al.] // Nature. — 2019. — Oct. —Vol. 574, no. 7779. —P. 505-510.
82. Doty, C. A. Effects of quenched disorder on spin-1/2 quantum XXZ chains / C A Doty, D S Fisher // Phys. Rev. B Condens. Matter. — 1992. — Feb. — Vol. 45, no. 5. —P. 2167-2179.
83. Weak- versus strong-disorder superfluid—Bose glass transition in one dimension / Elmer V H Doggen, Gabriel Lemarie, Sylvain Capponi, Nicolas Laflo-rencie // Phys. Rev. B. — 2017.— Nov.— Vol. 96, no. 18.
84. Phase transition of interacting disordered bosons in one dimension / Zoran Ristivojevic, Aleksandra Petkovic, Pierre Le Doussal, Thierry Gia-marchi // Phys. Rev. Lett. — 2012. — Jul.— Vol. 109, no. 2. —P. 026402.
85. Superfluid/Bose-glass transition in one dimension / Zoran Ristivojevic, Aleksandra Petkovic, Pierre Le Doussal, Thierry Giamarchi // Phys. Rev. B Condens. Matter Mater. Phys. — 2014. — Sep.— Vol. 90, no. 12.
86. Giamarchi, T. Quantum physics in one dimension / Thierry Giamarchi. — [S. l.] : Clarendon press, 2003. —Vol. 121.
87. Phase transition in a system of one-dimensional bosons with strong disorder / Ehud Altman, Yariv Kafri, Anatoli Polkovnikov, Gil Refael // Phys. Rev. Lett. —2004. —Oct. —Vol. 93, no. 15. —P. 150402.
88. Insulating phases and superfluid-insulator transition of disordered boson chains / Ehud Altman, Yariv Kafri, Anatoli Polkovnikov, Gil Refael // Phys. Rev. Lett. —2008. —May. —Vol. 100, no. 17. —P. 170402.
89. Superfluid-insulator transition of disordered bosons in one dimension / Ehud Altman, Yariv Kafri, Anatoli Polkovnikov, Gil Refael // Phys. Rev. B Condens. Matter Mater. Phys. — 2010. — May.— Vol. 81, no. 17.
90. Aleiner, I. L. A finite-temperature phase transition for disordered weakly interacting bosons in one dimension /IL Aleiner, B L Altshuler, G V Shlyap-nikov // Nat. Phys. —2010. —Nov. —Vol. 6, no. 11. —P. 900-904.
91. Pollet, L. Classical-field renormalization flow of one-dimensional disordered bosons / Lode Pollet, Nikolay V Prokof'ev, Boris V Svistunov // Phys. Rev. B Condens. Matter Mater. Phys. — 2013.— Apr.— Vol. 87, no. 14.
92. Pielawa, S. Numerical evidence for strong randomness scaling at a superfluid-insulator transition of one-dimensional bosons / Susanne Pielawa, Ehud Alt-man // Phys. Rev. B Condens. Matter Mater. Phys. — 2013. — Dec. — Vol. 88, no. 22.
93. Pollet, L. Asymptotically exact scenario of strong-disorder criticality in one-dimensional superfluids / Lode Pollet, Nikolay V Prokof'ev, Boris V Svis-tunov//Phys. Rev. B Condens. Matter Mater. Phys. — 2014. — Feb. — Vol. 89, no. 5.
94. Superfluid-insulator transition in strongly disordered one-dimensional systems / Zhiyuan Yao, Lode Pollet, N Prokof'ev, B Svistunov // New J. Phys. —2016. —Apr. —Vol. 18, no. 4. —P. 045018.
95. Anderson localization versus delocalization of interacting fermions in one dimension / P Schmitteckert, T Schulze, C Schuster [et al.] // Phys. Rev. Lett. —1998. —Jan. —Vol. 80, no. 3. —P. 560-563.
96. Urba, L. Density-matrix renormalization-group analysis of the spin-12 XXZchain in anXYsymmetric random magnetic field / Laura Urba, Anders Rosengren // Phys. Rev. B Condens. Matter. — 2003. — Mar. — Vol. 67, no. 10.
97. Poboiko, I. Thermal transport in disordered one-dimensional spin chains / Igor Poboiko, Mikhail Feigel'man // Phys. Rev. B Condens. Matter Mater. Phys. —2015. —Dec. —Vol. 92, no. 23.
98. Carrasquilla, J. Bose-glass, superfluid, and rung-Mott phases of hard-core bosons in disordered two-leg ladders / Juan Carrasquilla, Federico Becca, Michele Fabrizio // Phys. Rev. B Condens. Matter Mater. Phys. — 2011. — Jun. —Vol. 83, no. 24.
99. Phase diagram of hard-core bosons on clean and disordered two-leg ladders: Mott insulator-Luttinger liquid-Bose glass / Francois Crepin, Nicolas Laflo-rencie, Guillaume Roux, Pascal Simon // Phys. Rev. B Condens. Matter Mater. Phys. —2011. —Aug. —Vol. 84, no. 5.
100. Cluster Luttinger liquids of Rydberg-dressed atoms in optical lattices / Marco Mattioli, Marcello Dalmonte, Wolfgang Lechner, Guido Pupillo // Phys. Rev. Lett. —2013. —Oct. —Vol. 111, no. 16. —P. 165302.
101. Cluster Luttinger liquids and emergent supersymmetric conformal critical points in the one-dimensional soft-shoulder Hubbard model / M Dalmonte, W Lechner, Zi Cai [et al.] // Phys. Rev. B Condens. Matter Mater. Phys. — 2015. —Jul. —Vol. 92, no. 4.
102. Kane, C. L. Pairing in luttinger liquids and quantum hall states / Charles L Kane, Ady Stern, Bertrand I Halperin // Phys. Rev. X. — 2017. —Jul. —Vol. 7, no. 3.
103. Emergent mode and bound states in single-component one-dimensional lattice fermionic systems / Yuchi He, Binbin Tian, David Pekker, Roger S K Mong // Phys. Rev. B.— 2019.— Nov.— Vol. 100, no. 20.
104. Ruhman, J. Topological degeneracy and pairing in a one-dimensional gas of spinless fermions / Jonathan Ruhman, Ehud Altman // Phys. Rev. B. — 2017. —Aug. —Vol. 96, no. 8.
105. Two-fluid coexistence in a spinless fermions chain with pair hopping / Lorenzo Gotta, Leonardo Mazza, Pascal Simon, Guillaume Roux // Phys. Rev. Lett. —2021. —May. —Vol. 126, no. 20. —P. 206805.
106. Two-fluid coexistence and phase separation in a one-dimensional model with pair hopping and density interactions / Lorenzo Gotta, Leonardo Mazza, Pascal Simon, Guillaume Roux // Phys. Rev. B. — 2021. — Sep.—Vol. 104, no. 9.
107. White, S. R. Density matrix formulation for quantum renormalization groups /SR White // Phys. Rev. Lett. — 1992. — Nov. — Vol. 69, no. 19.— P. 2863-2866.
108. White, S. R. Density-matrix algorithms for quantum renormalization groups / S R White // Phys. Rev. B Condens. Matter. — 1993. — Oct.— Vol. 48, no. 14. —P. 10345-10356.
109. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states / Ulrich Schollwöck // Ann. Phys. (N. Y.). — 2011.— Jan. —Vol. 326, no. 1. —P. 96-192.
110. The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems / Pietro Silvi, Ferdinand Tschirsich, Matthias Gerster [et al.] // SciPost Phys. Lect. Notes. —2019. —Mar. —no. 8.
111. Kurlov, D. V. Quasiconserved quantities in the perturbed spin- 12 XXX model / Denis V Kurlov, Savvas Malikis, Vladimir Gritsev // Phys. Rev. B. —2022. —Mar. —Vol. 105, no. 10.
112. Many-body localization transition in a frustrated XY chain /MS Baho-vadinov, D V Kurlov, S I Matveenko [et al.] // Phys. Rev. B. — 2022.— Aug. —Vol. 106, no. 7.
113. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain / Pavel Orlov, Anastasiia Tiutiakina, Rustem Sharipov [et al.]. — 2023. — Mar. — 2303.00729.
114. Surace, F. M. Weak integrability breaking perturbations of integrable models / Federica Maria Surace, Olexei Motrunich.— 2023.— Feb.— 2302.12804.
115. Haldane, F. D. M. Spontaneous dimerization in the S =1/2 Heisenberg anti-ferromagnetic chain with competing interactions /FDM Haldane // Phys. Rev. B Condens. Matter. — 1982.— Apr.— Vol. 25, no. 7. —P. 4925-4928.
116. Nomura, K. Phase diagram of S =1/2 Antiferromagnetic XXZ Chain with next-nearest-neighbor interactions / Kiyohide Nomura, Kiyomi Okamoto // J. Phys. Soc. Jpn. —1993. —Apr. —Vol. 62, no. 4. —P. 1123-1126.
117. Hirata, S. Phase diagram of S =1/2 XXZ chain with next-nearest-neighbor interaction / Shunsaku Hirata, Kiyohide Nomura // Phys. Rev. B Condens. Matter. — 2000. — Apr. — Vol. 61, no. 14. —P. 9453-9456.
118. Lecheminant, P. Phase transitions in the one-dimensional spin- S J\ — J2 XY model / P Lecheminant, T Jolicoeur, P Azaria // Phys. Rev. B Condens. Matter. —2001. —Apr. —Vol. 63, no. 17.
119. Sugimoto, T. Chirality in spin-1/2 zigzag XY chain: Low-temperature density-matrix renormalization group study / Takanori Sugimoto, Shige-toshi Sota, Takami Tohyama // Phys. Rev. B Condens. Matter Mater. Phys. —2010. —Jul. —Vol. 82, no. 3.
120. Quantum phases and phase transitions of frustrated hard-core bosons on a triangular ladder / Tapan Mishra, Ramesh V Pai, Subroto Mukerjee, Arun Paramekanti // Phys. Rev. B Condens. Matter Mater. Phys. — 2013. —May. —Vol. 87, no. 17.
121. Gogolin, A. O. Bosonization and strongly correlated systems / Alexander O Gogolin, Alexander A Nersesyan, Alexei M Tsvelik. — [S. l.] : Cambridge university press, 2004.
122. Affleck, I. Universal noninteger "ground-state degeneracy" in critical quantum systems / Ian Affleck, Andreas W W Ludwig // Phys. Rev. Lett.— 1991. —Jul. —Vol. 67, no. 2. —P. 161-164.
123. Holzhey, C. Geometric and renormalized entropy in conformal field theory / Christoph Holzhey, Finn Larsen, Frank Wilczek // Nucl. Phys. B. — 1994. —Aug. —Vol. 424, no. 3. —P. 443-467.
124. Calabrese, P. Entanglement entropy and quantum field theory / Pasquale Calabrese, John Cardy //J. Stat. Mech. — 2004. — Jun. — Vol. 2004, no. 06. —P. P06002.
125. Nishimoto, S. Tomonaga-Luttinger-liquid criticality: Numerical entanglement entropy approach / Satoshi Nishimoto // Phys. Rev. B Condens. Matter Mater. Phys.— 2011.— Nov.— Vol. 84, no. 19.
126. Bipartite fluctuations as a probe of many-body entanglement / H Francis Song, Stephan Rachel, Christian Flindt [et al.] // Phys. Rev. B Condens. Matter Mater. Phys. — 2012. — Jan.— Vol. 85, no. 3.
127. Detecting Quantum Critical Points Using Bipartite Fluctuations / Stephan Rachel, Nicolas Laflorencie, H. Francis Song, Karyn Le Hur // Phys. Rev. Lett. —2012. —Mar. —Vol. 108. —P. 116401.
128. Song, H. F. General relation between entanglement and fluctuations in one dimension / H Francis Song, Stephan Rachel, Karyn Le Hur // Phys. Rev. B Condens. Matter Mater. Phys. —2010. —Jul. —Vol. 82, no. 1.
129. Superfluid density and quasi-long-range order in the one-dimensional disordered Bose-Hubbard model / M Gerster, M Rizzi, F Tschirsich [et al.] // New J. Phys. —2016. —Jan. —Vol. 18, no. 1. —P. 015015.
130. Maslov, D. L. Fundamental aspects of electron correlations and quantum transport in one-dimensional systems / Dmitrii L Maslov // arXiv preprint cond-mat/0506035. — 2005.
131. A note on the spin 1/2 XXZ chain concerning its relation to the Bose gas / A Seel, T Bhattacharyya, F Gohmann, A Klömper //J. Stat. Mech.— 2007. —Aug. —Vol. 2007, no. 08. —P. P08030-P08030.
132. Pozsgay, B. Local correlations in the 1D Bose gas from a scaling limit of the XXZ chain / Balazs Pozsgay // J. Stat. Mech. — 2011. — Nov.—Vol. 2011, no. 11. —P. P11017.
133. Tomonaga, S.-i. Remarks on Bloch's method of sound waves applied to many-fermion problems / Sin-itiro Tomonaga // Progress of Theoretical Physics. — 1950. — Vol. 5, no. 4. — P. 544-569.
134. Luttinger, J. An exactly soluble model of a many-fermion system / JM Luttinger // Journal of mathematical physics. — 1963. — Vol. 4, no. 9. — P. 1154-1162.
135. Gogolin, A. O. Bosonization and strongly correlated systems / Alexander O Gogolin, Alexander A Nersesyan, Alexei M Tsvelik. — [S. l.] : Cambridge university press, 2004.
136. Haldane, F. D. M. 'Luttinger liquid theory' of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas / F D M Haldane. — 1981. —jul. — Vol. 14, no. 19. —P. 2585-2609.
137. Fisher, M. P. Transport in a one-dimensional Luttinger liquid / Matthew PA Fisher, Leonid I Glazman // Mesoscopic Electron Transport. — [S. l.] : Springer, 1997. —P. 331-373.
138. Charge fractionalization in quantum wires / Hadar Steinberg, Gilad Barak, Amir Yacoby [et al.] // Nature Physics. — 2008. — Feb. — Vol. 4, no. 2.— P. 116-119.
139. Fractionalized wave packets from an artificial Tomonaga-Luttinger liquid / H. Kamata, N. Kumada, M. Hashisaka [et al.] // Nature Nanotechnology. — 2014. —Mar. —Vol. 9, no. 3. —P. 177-181.
140. Voit, J. One-dimensional Fermi liquids / Johannes Voit // Reports on Progress in Physics. — 1995. — Vol. 58, no. 9. — P. 977.
141. Jeckelmann, E. Local density of states of the one-dimensional spinless fermion model / E Jeckelmann. — 2012. — dec. — Vol. 25, no. 1. — P. 014002.
142. Furusaki, A. Single-barrier problem and Anderson localization in a one-dimensional interacting electron system / Akira Furusaki, Naoto Nagaosa // Physical Review B. — 1993.— Vol. 47, no. 8. —P. 4631.
143. Circuit Quantum Simulation of a Tomonaga-Luttinger Liquid with an Impurity / A. Anthore, Z. Iftikhar, E. Boulat [et al.] // Phys. Rev. X. — 2018. —Sep. —Vol. 8. —P. 031075.
144. Chang, A. M. Chiral Luttinger liquids at the fractional quantum Hall edge / A. M. Chang // Rev. Mod. Phys. — 2003. — Nov. — Vol. 75. —P. 14491505.
145. Wen, X. G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states / X. G. Wen // Phys. Rev. B. — 1990. — Jun.— Vol. 41. —P. 12838-12844.
146. Luttinger-liquid behaviour in carbon nanotubes / Marc Bockrath, David H. Cobden, Jia Lu [et al.] // Nature. — 1999. — Feb. — Vol. 397, no. 6720. —P. 598-601.
147. Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid / C. Blumenstein, J. Schafer, S. Mietke [et al.] // Nature Physics. — 2011. — Oct. —Vol. 7, no. 10. —P. 776-780.
148. Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid / Y. Jom-pol, C. J. B. Ford, J. P. Griffiths [et al.] // Science. — 2009. — Vol. 325, no. 5940. —P. 597-601.
149. Separation of neutral and charge modes in one-dimensional chiral edge channels / E. Bocquillon, V. Freulon, J.-.. M. Berroir [et al.] // Nature Communications.—2013.—May.—Vol. 4, no. 1. —P. 1839.
150. Waveform measurement of charge- and spin-density wavepackets in a chiral Tomonaga-Luttinger liquid / M. Hashisaka, N. Hiyama, T. Akiho [et al.] // Nature Physics. — 2017. — Jun.— Vol. 13, no. 6. —P. 559-562.
151. Vekua, T. Curvature effects on magnetic susceptibility of 1D attractive two component fermions / T. Vekua, S. I. Matveenko, G. V. Shlyapnikov // JETP Letters. —2009. —Nov. —Vol. 90, no. 4. —P. 289.
152. Brazovskii, S. Spin excitations carry charge currents: one-dimensional Hubbard model / S Brazovskii, S Matveenko, P Nozieres // Journal de Physique I. —1994. —Vol. 4, no. 4. —P. 571-578.
153. Kimura, T. Generation of spin-polarized currents in Zeeman-split Tomonaga-Luttinger models / Takashi Kimura, Kazuhiko Kuroki, Hideo Aoki // Phys. Rev. B. —1996. —Apr. —Vol. 53. —P. 9572-9575.
154. Moroz, A. V. Theory of quasi-one-dimensional electron liquids with spinorbit coupling / A. V. Moroz, K. V. Samokhin, C. H. W. Barnes // Phys. Rev. B. —2000. —Dec. —Vol. 62. —P. 16900-16911.
155. Moroz, A. V. Spin-Orbit Coupling in Interacting Quasi-One-Dimensional Electron Systems / A. V. Moroz, K. V. Samokhin, C. H. W. Barnes // Phys. Rev. Lett. — 2000. — May. — Vol. 84. — P. 4164-4167.
156. Iucci, A. Correlation functions for one-dimensional interacting fermions with spin-orbit coupling / Anibal Iucci // Phys. Rev. B. — 2003. — Aug.— Vol. 68. —P. 075107.
157. Datta, S. Electronic analog of the electro-optic modulator / Supriyo Datta, Biswajit Das // Applied Physics Letters. — 1990. — Vol. 56, no. 7. — P. 665667. —https://doi.org/10.1063/L102730.
158. Spin-orbit qubit in a semiconductor nanowire / S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, L. P. Kouwenhoven // Nature. — 2010.— Dec.— Vol. 468, no. 7327. —P. 1084-1087.
159. Observation of a one-dimensional spin-orbit gap in a quantum wire / C. H. L. Quay, T. L. Hughes, J. A. Sulpizio [et al.] // Nature Physics. — 2010. —May. —Vol. 6, no. 5. —P. 336-339.
160. Signatures of interaction-induced helical gaps in nanowire quantum point contacts / S. Heedt, N. Traverso Ziani, F. Crépin [et al.] // Nature Physics. —2017. —Jun. —Vol. 13, no. 6. —P. 563-567.
161. Oreg, Y. Helical liquids and Majorana bound states in quantum wires / Yu-val Oreg, Gil Refael, Felix Von Oppen // Physical review letters. — 2010. — Vol. 105, no. 17. —P. 177002.
162. Lutchyn, R. M. Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures / Roman M. Lutchyn, Jay D. Sau, S. Das Sarma // Phys. Rev. Lett. — 2010. — Aug. — Vol. 105. —P. 077001.
163. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions / Anindya Das, Yuval Ronen, Yonatan Most [et al.] // Nature Physics. — 2012. — Dec. — Vol. 8, no. 12. — P. 887-895.
164. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices / Vincent Mourik, Kun Zuo, Sergey M Frolov [et al.] // Science. —2012. —Vol. 336, no. 6084. —P. 1003-1007.
165. Direct Measurement of the Spin-Orbit Interaction in a Two-Electron InAs Nanowire Quantum Dot / C. Fasth, A. Fuhrer, L. Samuelson [et al.] // Phys. Rev. Lett. — 2007. — Jun. — Vol. 98. —P. 266801.
166. Majorana Edge States in Interacting One-Dimensional Systems / Suhas Gangadharaiah, Bernd Braunecker, Pascal Simon, Daniel Loss // Phys. Rev. Lett. —2011. —Jul. —Vol. 107. —P. 036801.
167. Sela, E. Majorana fermions in strongly interacting helical liquids / Eran Sela, Alexander Altland, Achim Rosch // Phys. Rev. B. — 2011. — Aug.— Vol. 84. —P. 085114.
168. Interaction effects in topological superconducting wires supporting Majorana fermions / E. M. Stoudenmire, Jason Alicea, Oleg A. Starykh, Matthew P.A. Fisher // Phys. Rev. B. — 2011. — Jul. — Vol. 84. — P. 014503.
169. Stanescu, T. D. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment /TD Stanescu, S Tewari // Journal of Physics: Condensed Matter.— 2013.— may.— Vol. 25, no. 23. —P. 233201.
170. Strong electron-electron interactions of a Tomonaga-Luttinger liquid observed in InAs quantum wires / Yosuke Sato, Sadashige Matsuo, Chen-Hsuan Hsu [et al.] // Phys. Rev. B. — 2019. — Apr.— Vol. 99. —P. 155304.
171. Charge transport of a spin-orbit-coupled Luttinger liquid / Chen-Hsuan Hsu, Peter Stano, Yosuke Sato [et al.] // Phys. Rev. B. — 2019. — Nov. —Vol. 100. —P. 195423.
172. Hamamoto, Y. Numerical study of transport through a single impurity in a spinful Tomonaga-Luttinger liquid / Yuji Hamamoto, Ken-Ichiro Imura, TakeoKato // Phys. Rev. B. — 2008.— Apr.— Vol. 77. —P. 165402.
173. Hikihara, T. Renormalization of impurity scattering in one-dimensional interacting electron systems in magnetic field / T. Hikihara, A. Furusaki, K. A. Matveev // Phys. Rev. B. — 2005. — Jul.— Vol. 72. —P. 035301.
174. Kamide, K. Spin-charge mixing effects on resonant tunneling in a polarized Luttinger liquid / Kenji Kamide, Yuji Tsukada, Susumu Kurihara // Phys. Rev. B. —2006. —Jun. —Vol. 73. —P. 235326.
175. Governale, M. Rashba spin splitting in quantum wires / M. Governale, U. Zülicke // Solid State Communications. — 2004. — Vol. 131, no. 9.— P. 581-589. — New advances on collective phenomena in one-dimensional systems.
176. Governale, M. Spin accumulation in quantum wires with strong Rashba spinorbit coupling / M. Governale, U. Zülicke // Phys. Rev. B. — 2002.— Aug. —Vol. 66. —P. 073311.
177. Kainaris, N. Emergent topological properties in interacting one-dimensional systems with spin-orbit coupling / Nikolaos Kainaris, Sam T. Carr // Phys. Rev. B. —2015. —Jul. —Vol. 92. —P. 035139.
178. Competing Effects of Interactions and Spin-Orbit Coupling in a Quantum Wire / V. Gritsev, G. Japaridze, M. Pletyukhov, D. Baeriswyl // Phys. Rev. Lett. —2005. —Apr. —Vol. 94. —P. 137207.
179. Low-energy theory and RKKY interaction for interacting quantum wires with Rashba spin-orbit coupling / Andreas Schulz, Alessandro De Martino, Philip Ingenhoven, Reinhold Egger // Phys. Rev. B. — 2009. — May.— Vol. 79. —P. 205432.
180. Kainaris, N. Transmission through a potential barrier in Luttinger liquids with a topological spin gap / Nikolaos Kainaris, Sam T. Carr, Alexander D. Mirlin // Phys. Rev. B. — 2018. — Mar.— Vol. 97. —P. 115107.
181. Fisher, M. P. A. Quantum Brownian motion in a periodic potential / Matthew P. A. Fisher, Wilhelm Zwerger // Phys. Rev. B. — 1985. — Nov. — Vol. 32. —P. 6190-6206.
182. Caldeira, A. Quantum tunnelling in a dissipative system / A.O Caldeira, A.J Leggett // Annals of Physics. — 1983.— Vol. 149, no. 2. —P. 374-456.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.