Дистанционные методы оценки таксационных показателей насаждений на переувлажненных почвах с использованием ГИС-технологий: на примере Лисинского аэрокосмического полигона тема диссертации и автореферата по ВАК РФ 06.03.02, кандидат сельскохозяйственных наук Ум Токи Жозеф
- Специальность ВАК РФ06.03.02
- Количество страниц 162
Оглавление диссертации кандидат сельскохозяйственных наук Ум Токи Жозеф
СПИСОК СОКРАЩЕНИЙ
ВВЕДЕНИЕ
ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИОННОГО ИССЛЕДОВАНИЯ
1 СОСТОЯНИЕ ИЗУЧЕННОСТИ ПРОБЛЕМЫ
1.1 Краткий обзор истории развития лесоустройства в России
1.2 Краткая характеристика болот и избыточно увлажненных земель лесного фонда в Ленинградской области
1.3 • Особенности гидролесомелиоративного применения дистанционных методов и ГИС-технолопш
1.4. Современный этап в развитии выборочных методов инвентаризации лесного и гидролесомелиоративного фонда
2 ПРОГРАММА И МЕТОДОЛОГИЧЕСКИЕ ПОДХОДЫ К РЕШЕНИЮ ЗАДАЧ ИССЛЕДОВАНИЯ
2.1 Программа исследования
2.2 Задачи исследования
2.3 Методика полевых исследований
2.4 Методика обработки полевых материалов, анализа и представления результатов обработки
2.5 Объем и характеристика исходных материалов
2.6 Оценка и коррекция качества оцифрованных аэро- и космических снимков
3 МЕТОДИКА ОБРАБОТКИ ИСХОДНЫХ МАТЕРИАЛОВ, АНАЛИЗА И ПРЕДСТАВЛЕНИЯ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ
3.1 Методика обработки исходных материалов
3.2 Картографический метод анализа материалов обработки
3.3 ГИС-технология анализа и представления результатов
4 ДИСТАНЦИОННЫЕ МЕТОДЫ ОЦЕНКИ СТРОЕНИЯ И ДИНАМИКИ ТАКСАЦИОННЫХ ПОКАЗАТЕЛЕЙ НАСАЖДЕНИЙ НА ИЗБЫТОЧНО УВЛАЖНЕННЫХ ПОЧВАХ ЛУОЛХ
4.1 Особенности обработки и анализа цифровых и оцифрованных сканированием изображений
4.2 Оценка возможностей использования элементов спектрального и фрактального анализа для дешифрирования насаждений на избыточно увлажненных почвах по материалам дистанционных съемок
4.3 Оценка возможностей использования элементов фрактального анализа для контурного дешифрирования насаждений на избыточно увлажненных почвах по материалам дистанционных съемок
4.4 Результаты практической реализации интерактивных методов обработки- изображений для дешифрирования таксационных показателей исследуемых насаждений в динамике и статике
Рекомендованный список диссертаций по специальности «Лесоустройство и лесная таксация», 06.03.02 шифр ВАК
Дистанционный мониторинг таежных лесов с использованием ГИС-технологий обработки цифровых и архивных аналоговых аэро и космических изображений2012 год, кандидат сельскохозяйственных наук Ердяков, Сергей Васильевич
Дистанционный мониторинг состояния лесных экосистем южной и средней тайги с использованием ГИС-технологий2012 год, кандидат географических наук Любимов, Дмитрий Александрович
Совершенствование теории инвентаризации лесов в новых социально-экономических условиях: На примере особо охраняемых природных территорий2001 год, доктор сельскохозяйственных наук Любимов, Александр Владимирович
Разработка и исследование технологии мониторинга динамики лесных экосистем по материалам дистанционного зондирования2007 год, кандидат технических наук Никитина, Юлия Владимировна
Выявление, учет и оценка текущих изменений в лесном фонде по космическим изображениям: На примере сплошнолесосечных вырубок2000 год, кандидат сельскохозяйственных наук Шаталов, Алексей Викторович
Введение диссертации (часть автореферата) на тему «Дистанционные методы оценки таксационных показателей насаждений на переувлажненных почвах с использованием ГИС-технологий: на примере Лисинского аэрокосмического полигона»
Материалы современных дистанционных (аэрокосмических) методов сбора информации о различных категориях земель лесного фонда успешно применяются для изучения удаленных и относительно труднодоступных объектов. Обзорность и детальность — вот те качества, которые делают материалы дистанционных съемок последних поколений незаменимыми при оценке современного состояния и динамики земель лесного фонда в пространстве и времени.
В настоящее время аэрофотоснимки, космоснимки и нефотографические изображения являются технической основой инвентаризации лесов и мониторинга за их состоянием вне зависимости от их географического полос жения и доступности. Методика и техника использования АКФС при устройстве и инвентаризации лесов давно и успешно разрабатывалась российскими и зарубежными специалистами. Результатом их исследований и опытно -практических работ стали методики контурного, ландшафтного и таксационного визуального дешифрирования материалов дистанционных съемок, в основу которых были положены принципы аналитического дешифрирования снимков, разработанные профессором Г. Г. Самойловичем, его коллегами, учениками и последователями.
В настоящее время появились новые (нефотографические) методы съемки с регистрацией изображений в виде электронных файлов и программно - вычислительные комплексы для хранения, обработки, анализа и представления информации о лесах в виде картографических произведений, таблиц, списков и описаний. Это вызвало необходимость разработки методики и техники использования электронных (аналоговых и оцифрованных) изображений для решения актуальных задач при инвентаризации и мониторинга лесов. Данная работа посвящена разработке рекомендаций по использованию методов автоматизированного таксационного дешифрирования насаждений.
ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИОННОГО
ИССЛЕДОВАНИЯ
Актуальность темы. Концепция развития российского лесоустройства предусматривает решение таких масштабных задач, как кадастровая оценка земель лесного фонда, определение экологического и ресурсного потенциала лесов, создание комплекса программно-методического обеспечения системы проведения мониторинга лесов в целях его внедрения в приоритетном порядке на участках особо ценных насаждений, в том числе характеризующихся важными природоохранными функциями.
В современных условиях необходима объективная и непрерывная оценка лесных ресурсов на землях, отданных под управление лесной службе России. Особое внимание необходимо уделить методике и технике комплексной оценки лесных земель пониженной производительности и болот. Разработанная на основе анализа строения и динамики этих сравнительно простых с точки зрения таксации объектов методика может быть использована для дешифрирования и других категорий земель лесного фонда
Полученные результаты могли бы стать основой непрерывной инвентаризации земель лесного фонда, объективной оценки законности производства и потребления лесных ресурсов, охраны лесов, сохранения и улучшения окружающей среды. Таким образом, тема диссертационного исследования, направленная на научное обоснование и разработку методов и техники автоматизированной таксации насаждений на основе ДМ и ГИС-технологий, является актуальной.
Цель работы заключается в создании банка данных эталонов (БДЭ) для обеспечения возможности использования современных технических средств и методов дешифрирования лесов по материалам ДЗ всех уровней; обновления лесных электронных карт, а также актуализации баз данных с таксационными описаниями и лесохозяйственной информацией.
Разработка научно обоснованных методов и технических приемов интерактивного дешифрирования на примере насаждений на переувлажненных почвах и болот позволит создать новую технологию инвентаризации земель лесного фонда и оценки динамики таксационных показателей насаждений под воздействием естественных и антропогенных факторов. В основу исследования положен ландшафтный подход к классификации земель лесного фонда, математико-статистические методы анализа электронных записей спектральных характеристик (преобразования Фурье), а также использование всех пригодных для решения поставленной задачи ДМ и ГИС-технологий. Основные задачи исследования:
1. Оценить пригодность материалов дистанционных съемок и ГИС для выявления и тематического картографирования избыточно увлажненных земель лесного фонда; создать совокупность эталонов для дешифрирования исследованных объектов;
2. Оценить пригодность эталонов для определения таксационных показателей и разработать методы и технические приемы интерактивного эталонного дешифрирования таксационных показателей насаждений на переувлажненных почвах и болот по оцифрованным АКФС и нефотографическим снимкам;
3. Обосновать рекомендуемые приемы инвентаризации насаждений, основанные на рациональном сочетании наземной таксации с интерактивным эталонным дешифрированием материалов дистанционных съемок;
Научная новизна диссертационного исследования заключается в разработке методики и техники интерактивного эталонного дешифрирования таксационных показателей насаждений на избыточно увлажненных почвах и болот по материалам ДЗ с использованием ГИС-технологий. Для реализации цели исследования впервые были составлены совокупности эталонов спектральной оптической плотности для различных категорий земель лесного фонда Лисинского аэрокосмического полигона. Впервые был разработан алгоритм дешифрирования таксационных показателей по эталонам на АКФС с учетом всех стадий работы с оцифрованными изображениями (от выбора снимков и выравнивания их качества до получения таксационной информации о землях лесного фонда в динамике и статике). Исследованы изменения в изображениях земель лесного фонда в зависимости от естественных факторов и антропогенных воздействий. Разработанные в результате данного диссертационного исследования системы показателей, параметров, коэффициентов, индексов и уравнений, характеризующие земли лесного фонда, позволяют достоверно определять таксационные характеристики отдельных насаждений и их изменение во времени.
Положения, выносимые на защиту:
1. Методика и техника интерактивного эталонного дешифрирования насаждений на избыточно увлажненных почвах и болот по крупно- и среднем асштабным цветным спектрозональным аэрофотоснимкам, а также космическим снимкам высокого разрешения фотографического и нефотографического происхождения;
2. Параметры, коэффициенты и индексы для определения таксационных показателей насаждений и болот по АФС М 1:10000;
3. Результаты оценки таксационных показателей насаждений на избыточно увлажненных почвах Лисинского аэрокосмического полигона;
4. Рекомендации по использованию материалов дистанционных съемок при инвентаризации земель лесного фонда и мониторинга за их состоянием.
Практическая значимость работы. Теоретические наработки и разработанные на их основе практические рекомендации могут быть использованы в деятельности Северо-Западного лесоустроительного предприятия и организаций, связанных с изучением и использованием ресурсов земель лесного фонда, а также в учебном процессе ВУЗов лесотехнического профиля. Особое значение имеют разработанные рекомендации для научнообоснованного выделения и мониторинга систем ООПТ на избыточно увлажненных землях, экологических троп и маршрутов общеобразовательного и профессионального экологического туризма.
Личный вклад. Основные этапы исследования выполнены лично автором. Автор принимал участие в сборе полевого материала: работал на пробных площадях, заложенных на территории Лисинского учебно-опытного лесхоза и Лисинского лесного колледжа. Классификация, обработка и анализ данных были выполнены лично автором с использованием материальной базы СПбГУ, Севзаллеспроект, ГГИ и ГГО имени Воейкова. Результаты были представлены с использованием ГИС, Excess и Excel.
Обоснованность и достоверность результатов исследования подтверждаются практически полным совпадением материалов контрольного дешифрирования с данными, полученными таксацией пробных площадей, выделов уточненной таксации и профилей, использованных для сверки таксационных и дешифровочных показателей. Использование современных методов сбора и обработки информации, объема исходных данных, необходимого и достаточного для обеспечения заданной точности результатов исследования, позволили получить обоснованные и достоверные результаты.
Апробация и публикация результатов работы. Основные результаты исследования были опубликованы в 6 научных статьях и обсуждены на 2 научно-технических конференциях СПбГЛТА (секция лесной таксации, лесоустройства и ГИС). Все важнейшие вопросы исследования неоднократно обсуждались с ведущими специалистами в области лесной таксации, лесоустройства и ГИС.
Структура и объем работы. Диссертация состоит из введения и 6 глав, включая выводы и практические рекомендации. Объем работы составляет 160 страниц, в том числе 15 таблиц и 54 рисунка. Библиографический список включает 211 наименований, в том числе 6 статей, опубликованных автором.
Похожие диссертационные работы по специальности «Лесоустройство и лесная таксация», 06.03.02 шифр ВАК
Совершенствование мониторинга лесопользования на основе материалов космических съёмок в условиях Республики Марий Эл2007 год, кандидат сельскохозяйственных наук Ануфриев, Максим Александрович
Разработка методики тематической обработки спутниковых снимков таёжных лесов на основе структурного моделирования2013 год, кандидат технических наук Алешко, Роман Александрович
Дистанционные методы оценки состояния лесов1998 год, доктор сельскохозяйственных наук Жирин, Василий Михайлович
Повышение эффективности мониторинга земель лесного фонда Белгородской области методами дистанционного зондирования2011 год, кандидат географических наук Терехин, Эдгар Аркадьевич
Дистанционные методы при изучении и учете лесов Сибири1998 год, доктор сельскохозяйственных наук Кармазин, Александр Устинович
Заключение диссертации по теме «Лесоустройство и лесная таксация», Ум Токи Жозеф
Результаты исследования позволяют утверждать, что по спектрозональ-ным космическим снимкам масштабов 1:200000, 1:100000, 1:50000 и равноценным КС новых поколений с достаточной достоверностью можно выделять объекты, имеющие различное гидрологическое состояние, и в первую очередь - избыточно увлажненные насаждения и болота. Вероятности оптабок дешифрирования (г) перечисленных категорий земель варьировали в следующих пределах в зависимости от масштабов космических фотоснимков, сложности объектов и количества привлекаемых признаков:
- для оригинального масштаба 1:200000 г = 0,0 - 0,577;
- для увеличенного в 2 раза масштаба 1:100000 г = 0,0 - 0,530;
- для увеличенного в 4 раза масштаба 1:50000 г = 0,0 - 0,673
Данные распределения вероятностей признаков и пошагового анализа позволили составить таблицы признаков аналитического дешифрирования избыточно увлажненных насаждений и болот и базы эталонов этих категорий потенциального гидролесомелиоративного фонда.
6. Рекомендации по организации дистанционного мониторинга за состоянием избыточно увлажненных земель лесного фонда и болот
Устойчивое состояние лесных экосистем в условиях Ленинградской области должно базироваться на неистощительном и многоцелевом (экологически безопасном) использовании всех видов лесных ресурсов.
В работе рассматривается проблема, связанная с использованием в перв-цю очередь водорегулирующих (природозащитных функций избыточно увлажненных лесов и болот), а традиционно важное для других категорий насаждений имеет подчиненное значение.
Для организации дистанционного мониторинга за состоянием исследуемых объектов в пределах вновь образованных лесничеств, административных районов и области в целом сформировать базы данных, совместимые с форматами профессиональных ГИС, которые характеризовали бы размещение избыточно увлажненных насаждений и болот с их классификацией по лесо-хозяйственному и природоохранному принципам.
Классификация предполагает разнесение избыточно увлажненных насаждений и болот на ряд категорий. В частности, следует выделять участки осушенные и неосушенные, отнесенные к особо защитным участкам и особо охраняемых территориям, землям, имеющим особое значение для рекреации; а также территории, на которых возможна и целесообразна лесозаготовительная деятельность.
В пределах сформированных категорий необходимо организовать базы данных второго порядка, классифицирующие участки по типам болот, группам преобладающих пород (хвойные, лиственные, кустарники) и группам производительности (типам леса и классам бонитета: насаждения III, IV и Va - V6 классов бонитета).
Важнейшей частью базы данных создаваемых геоинформационных систем должна быть проектная лесоустроительная и лесохозяйственная подсистемы, которые исключат профессиональную «однобокость» чисто лесоустроительных или лесохозяйственных информационных систем. Разработанные ГИС - основа дистанционного мониторинга за состоянием исследованных объектов и лесопользования в них.
В процессе дистанционного мониторинга за состоянием избыточно увлажненных насаждений и болот, а также использования ресурсов данных экосистем предлагается с помощью созданной ГИС и материалов аэрокосмических съёмок решать следующие задачи:
1. Контроль выполнения предначертаний лесоустройства (реализации проекта организации и ведения хозяйства на землях лесного фонда данных категорий). Контроль должен выполняться два раза в ревизионный период. Кроме того, для своевременного предупреждения пользователя и контролирующего о необходимости проведения намеченных мероприятий ГИС-технологией предусмотрена установка «флажков» - сигналов о невыполнении намеченного мероприятия и материалы космических съёмок с пространственным разрешением не хуже 30 м (типа IRS, Монитор-Э, SPOT, Landasat
7), по которым можно проследить состояние и динамику контролируемых экосистем.
2. Выявление незаконных сплошнолесосечных, промышленно выборочных и проходных рубок. Данные объекты оперативно выявляются наложением картографических слоев с проектными данными с систематически получаемыми материалами космической съемки высокого и сверхвысокого разрешения. Особенно эффективным для периодического контроля является использование космических снимков, полученных на начало и конец ревизионного периода. Космические снимки должны иметь разрешение не хуже 30 м (IRS, Монитор-Э, SPOT, Landasat-7). Снимки должны обеспечивать выявление выделов площадью 0,2-0,5 га и более.
3. Контроль за эффективностью ранее проведенного осушения (динамика накопления биомассы на осушенных объектах по сравнению с неосушенны-ми участками, относящимися к одинаковым исходным условиям местопроизрастания). Наличие достоверных лесоустроительных данных существенно упрощает эту задачу. Обеспечивая наличие своеобразных эталонов.
4. Детальная оценка мест рубок, ветровалов, буреломов и гарей, оценка недорубов последних лет и деконцентрированного лесного фонда: пространственное положение участков, количества и качества сохраненного подроста, степени повреждения почвенного покрова, количество и качество невывезен-ной древесины и пр. При необходимости отдельные объекты повышенного интереса могут быть оценены по материалам выборочной крупномасштабной аэросъёмки (лучше цифровой) с разрешением не хуже 10 см, или по материалам крупномасштабной съемки с использованием беспилотных летательных аппаратов. Обобщенные характеристики объектов могут быть получены при дешифрировании КС с разрешением 0,5 -1м (типа Ikonos, QuickBird).
5. Оценка динамики таксационных показателей избыточно увлажненных насаждений и болот, как в естественном состоянии, так и после их осушения. Решение данной задачи может быть обеспечено средствами ГИС и ДМ с привлечением материалов базы лесоустроительных и лесохозяйственных данных. сформированных на каждое лесничество, а также материалов многоспектральных и гиперспектральных космических съёмок с разрешением не хуже 1-5 м (типа Ikonos, QuickBird, IRS).
6. Слежение за состоянием и динамикой рекреационного фонда, особо защитных участков и особо охраняемых природных территорий. Данная задача может быть безусловно решена средствами ГИС на основе актуализированных баз данных лесоустроительной информации и данных дешифрирования космических снимков с разрешением 5 - 30 м.
Описывая какое-либо явление или территорию, очень важно соблюдать порядок от общего к частному, т.е. дать характеристику основных, определяющих черт, затем детально проанализировать отдельные особенности и частности. В заключение четко формулируется выводы.
Основные принципы, которым должно удовлетворять научное описание, составляемое по картам и снимкам: логичность, упорядоченность и последовательность описания; ® отбор и систематизация фактов;
• введение в описание элементов сравнения, аналогии, сопоставления с использованием количественных показателей; в оценка описываемых явлений или процессов с точки зрения конкретных задач исследования; четкая формулировка выводов и рекомендаций.
Описания по картам широко используются на всех стадиях исследования для общего ознакомления с изучаемым объектом, планирования исследования, определения рациональной методики, выбора исходных картографических материалов. Описание совершенно необходимо и на заюиочитель-ном этапе, когда требуется дать содержательную интерпретацию полученных результатов.
Помимо описания, используются более конкретные приемы такие как: графические, графоаналитические, приемы математического анализа, математической статистики, теории информации. Графические приемы анализа карт состоят в построении по ним профилей, разрезов, графиков, эпюр, диаграмм и блок-диаграмм. Основное назначение этой группы приемов — дать наглядное двух- или трехмерное изображение изучаемых явлений.
Профили, разрезы. Главное достижение профилей — их наглядность. Некоторые особенности поверхностей, изображенных на картах и снимках, удобно выявлять с помощью совмещенных профилей.
Графики, эпюры. Графшси составляются чаще всего для выявления зависимости между явлениями. При изучении разновременных карт и снимков обращаются к составлению графиков, показывающих динамику развития явлений и процессов. Особым видом графика является эпюра, совмещающая на плоскости различные пространственные преобразования.
Диаграммы. Данные, снятые с карты и снимков, удобно анализировать с помощью различных диаграмм: линейных, площадных, объемных диаграмм, которые подобно графикам иллюстрируют зависимость между явлениями или динамику их развития. В исследовательских целях были использованы розы- диаграммы, которые передают господствующие и подчиненные направления явлений, локализованных на линиях.
Блок-диаграммы — трехмерные рисунки, совмещающие перспективное изображение какой-либо поверхности, продольные и поперечные профили.
Графоаналитические приемы анализа карт используют для измерения и исчисления по картам различных количественных величин. Различают несколько видов измерений: • измерения плановых координат объектов или явлений в географической, прямоугольной, полярной или условной системах; « измерения аппликат явлений, изображенных на картах, что связано с определением абсолютных и относительных высот, глубин, мощностей, т.е. вертикальных составляющих явлений; ® линейные измерения, т.е. определение длин прямых, ломаных, кривых линий и расстояний; ® измерение объемов различных объектов и явлений; ® измерение площадей плоских поверхностей; угловые измерения, связанные с определением по картам и снимкам горизонтальных, вертикальных и других углов и направлений. Картометрические приемы. На картах и снимках крупных и средних масштабов длины прямых и ломаных линий измеряется с помощью циркуля-измерителя и поперечного масштаба с точностью, близкой к предельной для данной карты. Трудности возникают при измерении длин извилистых линий: рек, береговых линий морей и озер, контуров, горизонталей. Для вычисления таких величин применяется курвиметр, но не всегда его точность удовлетворяет задачи исследования. Для более точных измерений применяются разные приемы вычисления. В частности, карты и снимки могут быть зарегистрированы в оболочке одной из ГИС, а все измерения (в том числе и площадей) могут быть сделаны с помощью встроенных инструментов и программ. Приемы математического анализа. Аппроксимации. Приемы математического анализа применяются для создания пространственных математических моделей изучаемых явлений. Многие явления и процессы, изображаемые на картах связаны функциональными зависимостами между собой и могут быть представлены функциями пространства и времени с использованием приемов математической статистики.
На картах статистических совокупностей образуют статистические поверхности, которые обычно изображаются изолиниями или картограммами. Статистические поверхности имеют максимумы (гребни), минимумы (ложбины), склоны. Они обладают «статистическим картографическим рельефом».
Приемы теории информации используются для оценки степени однородности и взаимного соответствия явлений, изучаемых по картам и снимкам.
3.3. ГИС-технология анализа и представления результатов
Одна из задач данного исследования состояла в разработке рекомендаций по ГИС-технологии представления результатов дешифрирования избыточно увлажненных насаждений по материалам дистанционных съемок в виде картографических произведений, таблиц, списков и описаний.
В качестве основных инструментов исследования были использованы оболочки профессиональных ГИС Maplnfo и IDRISI for Windows. Первоначальная ступень работы с базами лесоустроительных данных (Petrolespro) выполнялась с использованием WinGIS и PLP, а после извлечения и преобразования атрибутивных данных в современные форматы они экспортировались в базу данных Maplnfo (снимки в виде растров - в ISRISI).
При дешифрировании изображений и анализе результатов были использованы такие программно-логические модули ГИС, как "Analysis", "Reformat" и "Data Entry". Оценка соответствия результатов дешифрирования наземным данным производилась с помощью модуля "Decision Support". Представление результатов исследования выполнялось с использованием блока "Cristal Report" ГИС Maplnfo.
4. ДИСТАНЦИОННЫЕ МЕТОДЫ ОЦЕНКИ СТРОЕНИЯ И ДИНАМИКИ ТАКСАЦИОНН ЫХ ПОКАЗАТЕЛЕЙ НАСАЖДЕНИЙ НА ПЕРЕУВЛАЖНЕННЫХ ПОЧВАХ ЛУОЛХ
При использовании дистанционных методов оценки строения и динамики таксационных показателей насаждений на переувлажненных почвах был принят пошаговый алгоритм исследования, в основе которого лежит принцип последовательного приближения или движения от простого к сложному:
• Анализ особенностей изображения крон отдельных деревьев на цветных спектрозональных аэрофотоснимках М 1:10000 - 15000;
• Анализ спектральной оптической плотности групп деревьев, обособленных в пологе исследуемых древо сто ев (анализ биогрупп); в Изучение спектральной оптической плотности полога насаждений на переувлажненных почвах и поверхностей других категорий земель лесного фонда;
• Исследование динамики изображений насаждений на переувлажненных почвах на цветных спектрозональных аэрофотоснимках 1954 -2003 гг с оценкой связей между показателями спектральной оптической плотности, таксационными и дешифровочными показателями насаждений (оценка временных рядов); Оценка возможностей использования мелкомасштабных изображений из космоса для оценки состояния и динамики таксационных показателей насаждений на переувлажненных почвах в целом;
4.1. Особенности обработки и анализа цифровых и оцифрованных сканированием изображений
4.1.1. Геометрическая коррекция изображений
Каждое изображение ландшафтной оболочки Земли, полученное методами аэрофотосъемки, фотографической съемки из космоса или нефотографическими методами съемки имеет различные геометрические и радиометрические искажения.
При визуально - измерительных методах дешифрирования изображений наибольшее значение приобретают геометрические искажения объектов: длин, площадей и углов. Обычно такого рода искажения возникают из-за отклонения главной оптической оси съемочного устройства от вертикального положения, разномасштабности (искажения из-за непредсказуемых изменений высоты съемки) и из-за выраженного рельефа. При исследовании насаждений на переувлажненных почвах последний вид искажения не имеет значения.
Традиционные методы исправления искажений сложны и трудоемки. В данном исследовании использованы современные технологии геопозиционирования объектов: GPS и GIS. Возможность использования современных технологий обеспечивает наличие стандартизированной государственной электронной карты — основы (топографическая электронная карта М 1:200000) и приемников сигналов GPS. В данном случае был использован навигатор "GARMIN-Legend". Согласно расчетам совместное использование электронной карты, зарегистрированной в системе координат «Пулково-42» и навигаторов GPS, предназначенных для определения координат опорных точек, могут обеспечить заданную точность привязки изображений и регистрации картографических слоев.
Для оценки точности регистрации изображений была исследована точность привязки всех видов использованных в работе изображений. На территории Лисинского учебно-опытного лесхоза были измерены координаты 200 основных опорных точек, положение которых с абсолютной точностью определяется как на топографической электронной карте, так и на всех материалах дистанционных съемок. Схема размещения основных опорных точек приведена на рис. 4.1.
Основные опорные точки были использованы для привязки мелкомасштабных изображений, покрывающих всю или значительную часть аэрокосмического полигона. Кроме того, они были использованы как связующие при взаимной увязке АФС мелкомасштабных космических снимков.
Рисунок 4.1. Схема размещения основных (красные) и дополнительных (синие) опорных точек для привязки Л КФС и КС на АК полигоне.
Для каждой опорной точки (основной и дополнительной) были определены географические координаты с использованием навигаторов GPS и электронной топографической карты-основы. Кроме того, по лесоустроительным планшетам были определены прямоугольные координаты опорных точек и измерены расстояния между ними. Эти совокупности данных позволили произвести разностороннюю оценку точности регистрационных и дешифро-вочных работ с использованием различных методов и материалов дистанционных съемок. Созданные совокупности данных послужили своеобразной метрологической основой для оценки точности результатов исследования. Пример совокупности географических координат, определенных для одного из кластеров ЛУОЛХ приведен в таблице 4.1.
Список литературы диссертационного исследования кандидат сельскохозяйственных наук Ум Токи Жозеф, 2009 год
1. Алексеев А. С., Бабиков Б. В. Оценка и прогноз состояния древостоев на осушенном верховом болоте // Эксперимент и математическое моделирование в изучении биогеоценозов лесов и болот. Доклады Всесоюзного совещания. М., 1987, С.77-80.
2. Алексеев А. С., Р. Ф. Трейфельд, В. Н. Минаев, С. В. Тетюхин. Информационные технологии в непрерывном лесоустройстве. Материалы НТК: СПбЛТА, 1999, с. 63-66.
3. Алексеев А. С., С. Келломяки, А. В. Любимов и др. Устойчивое управление лесным хозяйством: научные основы и концепции. Учебное пособие / Под общей редакцией Селиховкина А. В. СПбЛТА, 1998. 222 с.
4. Алексеев А.С. Математические модели и методы в лесном хозяйстве. Л.: Изд-воЛТА, 1988. 88 с.
5. Алексеев А.С., Бабиков Б. В. Оценка изменений состояния сосны на осушенных болотах // Лесной журнал, 4,1991, с. 16-22.
6. Бабиков Б. В. Гидротехнические мелиорации лесных земель . М.: Экология, 1993. 224 с.
7. Березин В. И., Данюлис Е. П., Константинов В. К. Гидролесомелиоративный мониторинг, его информационная база и принципы организации // Гидролесомелиоративный мониторинг и эксплуатация лесоосупштельных систем: Сб. н. т. / ЛенНИИЛХ, Л.:1991, с. 3-16.
8. Березин В.И„ Нгуен Чунг Тхонг„ Ум Токи Жозеф. .Особенности дешифрирования среднемаспггабных АФС. Вестник"МАНЕБ", том 13, №2,2008.
9. Березин В.И., Соколова Т.Н„ Котов Н., Ум Токи Жозеф. Таксационное геоботаническое дешифрирование. Вестник "МАНЕБ"том 13 № 2, 2008.
10. Бобров Р. В. Лесная школа в Лисино. СПб.: ФСЛХР. 1994. 83 с.
11. Великанов Г. Б. Масштабы современного заболачивания земель лесного фонда в Ленинградской области. С. 39-40. В кн.: Болота и заболоченные леса в свете задач устойчивого природопользования. Материалы совещания. М.: ГЕОС, 1999. 392 с.
12. Великанов Г.Б. Ландшафтно-экологическое обоснование гидролесомелиорации в Ленинградской области: Дис. к. с.-х.н. — СПб.: СПбНИИЛХ, 1988 (Науч. рук. д.с.-х. н. В. К. Константинов, науч. консулт, к.э.н. В. А. Ильин).
13. Вомперский С. Э. Биосферная роль болот, заболоченных лесов и проблемы их устойчивого использования. С. 166-172. В кн.: Болота и заболоченные леса в свете задач устойчивого природопользования. Материалы совещания. М.: ГЕОС, 1999. 392 с.
14. Выгодская Н.Н., Горшкова И.Л. Использование модели Гоудриана для изучения закономерности отражения системы растительность почва в оптическом диапазоне. Исследование Земли из Космоса. 1984. № 4, с.61 - 70.
15. Гарбук С. В., Гершензон В. Е. Космические системы дистанционного зондирования Земли. М.: Изд-во А и Б, 1997.
16. Гарелик И. С., Грин А. М., Цветков Д. Г. Космические полигоны. Задачи исследований и состав наземных наблюдений. В кн.: Космические исследования земных ресурсов. М.: Наука, 1976, с. 333-347.
17. Громцев А. Н. Коренные леса Запада таежной зоны России: природные особенности, современное состояние и проблемы сохранения, с. 343-345. В кн.: Биотическая регуляция природной среды. Петрозаводск, 1998. 472 с.
18. Громцев А. Н. Ландшафтные закономерности структуры и динамики средне-таежных сосновых лесов Карелии. Петрозаводск: Кар. ТПД РАН, 1993, 160 с.
19. Дмитриев И. Д., Мурахтанов Е. С., Сухих В. И. Лесная авиация и аэрофотосъемка. М.: Агропромиздат. 1989. с. 366.
20. Елизаров А. М., Березин В. И. Гидролесомелиоративный ландшафтно экологический профиль как метод изучения эффективности осушения // Гидролесомелиоративный мониторинг и эксплуатация лесоосунштельных систем: Сб. ЛенНИИЛХ, Л.: 1991. с. 71-82.
21. Енс Федер. Фракталы. М.: Мир, 1991 (1988 - оригинал).
22. Жигунов А. В. Опытное лесное хозяйство "Сиверский лес". В кн.: Наука и ведение хозяйства в лесах Лен. области. СПб.: СПбНИИЛХ. 1995. с. 16-20.
23. Жирин В. М., В. И. Сухих, С. П. Эйдлина. Динамические значения вегетационного индекса и ландшафтные особенности растительного покрова. «Исследование Земли из космоса», 1996,4, с. 29-41.
24. Жирин И. М. Приближенная оценка фитомассы лесного (растительного) покрова с использованием значений вегетационного индекса. С. 119-122. В сб.: АКМ и ГИС в лесоведении и лесном хозяйстве. Материалы П Всероссийского совещания. М., 1998.
25. Жиров А. И., Кирюшкин В.Н. Динамические структуры болотных систем севера Русской равнины. —СПб.: СПбГУ, 2003. -138 с.
26. Инструкция по проведению лесоустройства в лесном фонде России. М.: ВНИИЦлесресурс, 1995. с. 290. Приказ Рослесхоза от 15. 12. 94 г. № 65.
27. Инструкция по проведению лесоустройства в едином государственном лесном фонде СССР. М. 1986.212 с.
28. Инструкция по устройству и обследованию лесов государственного значения Союза ССР. М, 1952. 406 с.
29. Исаев А., В. Сухих, В. Жирин и др. Изучение характеристик лесов по данным съемки с космических систем национальной безопасности. С. 129-131. В сб.: АКМ и ГИС в лесоведении и лесном хозяйстве. Материалы П Всерос. совещания. М., 1998.
30. Исаченко А. Г. и др. Ландшафтное районирование и типология ландшафтов Ленинградской области. В кн.: Общие принципы стратегии лесопользования и лесовыращивания на ландшафтно-ишол. основе. СПбНИИЛХ, 1996, с. 11-25.
31. Исаченко А. Г. Физико-географическая характеристика региона. В кн.: Состояние окружающей среды Северо-Западного и Северного регионов России. СПб.: Наука. 1995, с. 7-31.
32. Киреев Д. М. Ландшафтный метод изучения лесов по аэроснимкам / Автореферат диссертации на соискание ученой степени доктора с.-х. наук: Красноярск, 1975, 57 с.
33. Киреев Д. М. Методы изучения лесов по аэроснимкам. Новосибирск: Наука, 1977.212 с.
34. Киреев Д. М. Основные задачи и перспективы использования многоцелевой базы данных для Лисинского научно-исследовательского полигона. Материалы НТК/СПб.: СПбЛТА, 1999, с. 70-75.
35. Киреев Д. М. Эколого-географические термины в лесоведении (словарь -справочник). Новосибирск: Наука. 1984. 182 с.
36. Киреев Д. М., Сергеева В. Л. Изучение лесных земель и ресурсов на постоянной природной основе. В сб.: Полевые эксперименты для устойчивого землепользования. Труды третьего международного коллоквиума. Т. 1. СПб. 1999, с. 185-187.
37. Киреев Д. М., Сергеева В. Л. Ландшафтно-морфологическое картографирование лесов. СПб. -М., Изд-во ВНИИЦлесресурс. 1992, с. 57.
38. Киреев ДМ. Лесное ландшафтоведение. -СПб.:СПбГЛТА, 2002.-238 с.
39. Книжников Ю.Ф., Кравцова В.И. Многоканальная аэрокосмическая съемка и ее применение при изучении окружающей среды. Обнинск, 1973. 47с.
40. Кондратьев К. Я. (ред.). Альбедо и угловые характеристики отражения подстилающей поверхности и облаков. Л.: Гидрометеоиздат, 1981. 232 с.
41. Кондратьев К.Я., Федченко П. П. Спектральная отражательная способностьи распознавание растительности. Д.: Гидрометеоиздат, 1982. 215 с.
42. Константинов В. К., Кирюшкин В. Н. Восстановление болотных ландшафтов в лесной зоне как основа сохранения экологического равновесия // Генезис, эволюция и роль болот в биосферных процессах: Тез. докл. МК./АНБ. Минск, 1994, с. 19-21.
43. Константинов В. К., Порошин А. А., Состояние гидролесомелиоративных систем и их реконструкция, СПбНИИЛХ, СПб., 2007. 135 с.
44. Константинов В.К. Мелиоративная энциклопедия. Вып. 2. Гидролесомелиорация. СПб.: СПбНИИЛХ, 1999. - 329 с; То же, 2000. - 417с.
45. Константинов В.К. Осушение лесов в России // Лесное хозяйство.- 1994. -№1.-С. 36-38.
46. Константинов В.К. Оценка влияния гидролесомелиорации на состояние водных объектов. СПб.: СПбНИИЛХ, 2004.- 71 с.
47. Константинов В.К., Великанов Г.Б., Добрынин Ю.А. Реконструкция и эксплуатация лесоосушительных систем. СПб.: СПбНИИЛХ, 1995.-112 с.
48. Концепция развития лесоустройства (Проект). ФСЛХР, М.: 1999. 12 с.
49. Королев Ю. К., Ю. Б. Баранов. Методы обработки данных дистанционного зондирования. ГИС-технологии, 5. 1997, с. 51-55.
50. Кринов Е.Л. Спектральная отражательная способность природных образований. Л-М.: Изд-во АН СССР, 1947. 138 с.
51. Кронберг П. Дистанционное изучение Земли. М.: Мир, 1988. 343 с.
52. Кудряшев А.В. Формирование высокопродуктивных хвойных древостоев на оптимально осушенных торфяных почвах: Дис. к.с.- х.н. -СПб.: СПбГЛТА, 2003 (Науч. рук. д.с.-х.н. Н.А.Красильников).
53. Кузьмин Г.Ф. Болота и их исследование: Сб. науч. тр. СПб.: ВНИИТП, 1993.-Вып. 70. -141 с.
54. Лебедев П. А. Картографическая информационная система многоцелевого использования (на базе ЛУОЛХ). Матер. НТК/СПб.: СПбЛТА, 1999, с. 75-76.
55. Любимов А. В. Исследование динамики морфологических показателей древостоев и полога избыточно увлажненных ельников. Л.: ЛТА. 1977. 27 с.
56. Любимов А. В. Научные основы инвентаризации и устройства особо охраняемых лесов на ключевых ландшафтах европейской тайги. СПб.; ЛТА, 1999. 264 с.
57. Любимов А. В., Дмитриев И. Д., Вавилов С. В. Обобщенные корреляционные уравнения связи таксационных и дешифровочных показателей для еловых и березовых насаждений. В сб.: JIX, JI и ДО пром-ность. JI,: ЛТА. 1976. с. 24-26.
58. Любимов А. В., Дмитриев И. Д., Вавилов С. В. Статистическая модель насаждения и возможности ее применения в таксационном дешифрировании. В сб.: ЛТ и ЛУ. Межвуз. н. тр. Красноярск: 1978, вып. 4, с. 116-123.
59. Любимов А. В., Ксенофонтов Н. И., Колесников Ю. И. Дешифрирование и интерпретация материалов аэрокосмических съемок для совершенствования инвентаризации особо охраняемых лесов. Учебное пособие. СПб.: СПбЛТА, 2001. 192 с.
60. Любимов А. В., М. М. Кудряшов, Р. Пяйвинен и др. Леса Ленинградской области: современное состояние и пути возможного развития. Учебное пособие: СПб ЛТА, 1998, 84 с.
61. Любимов А. В., Салминен Э. О., Вавилов С. В., ГИС в отраслях лесного комплекса. Программное обеспечение профессиональной ГИС «IDRISI for Windows». Учебное пособие. СПб., ЛТА, 1999. 132 с.
62. Любимов А. В., Э. О. Салминен, С. В. Вавилов. Использование GPS для повышения точности ввода картографических данных в ГИС лесного комплекса. Материалы НТК/СПб.: СПбЛТА, 1999, с. 85-89.
63. Медведева В.М. Формирование лесов на осушенных землях средне таежной подзоны. - Петрозаводск: Карелия, 1989. — 168 с. Мелиорация, ведение лесногохозяйства и лесовыращивание: Материалы Всероссийского симпозиума (Санктi
64. Петербург, г. Кировск, пос. Лисино-Корпус, 5-7 июля 2006 г.). СПб ФГУ «СПбНИИЛХ», 2006, 303 с.
65. Минаев В. Н., Вавилов С. В., Любимов А. В. Использование материалов аэровидеосъемок для целей лесного дешифрирования. Изв. СПбЛТА. СПб.: 1994, с. 33-79.
66. Минаев В. Н., Вавилов С. В., Любимов А. В. Использование материалов аэровидеосъемок для целей лесного хозяйства. Изв. СПбЛТА.: 1994. с. 55-56.
67. Минкевич И. И. Многообразие лесорастительных условий и их влияние на фитопатологическую ситуацию. Тезисы докладов НПК «Состояние и перспективы развития особо охраняемых природных территорий», СПб ЛТА, СПб, 1997, с. 11-12.
68. Мирзаев Г.Г., Иванов Б. А., Щербаков В. М. Картографический метод исследований в инженерной экологии. Учебное пособие. РИО ЛГИ, 1988, 95 с.
69. Морозов А. Д. Введение в теорию фракталов. Москва Ижевск, Институт компьютерных исследований. 2002,160 с.
70. Наставление по отводу и таксации лесосек в лесах РФ (М., 1993). Утв. приказом Рослесхоза от 15.06.1993. № 55.
71. Нгуен Чунг Тхонг, Ум Токи Жозеф, Васильева Н.В. Действующие проектируемые системы мониторинга лесов Ленинградской области. Вестник "МА-НЕБ", том 13 №2,2008.
72. Об утверждении критериев и индикаторов устойчивого управления лесами Российской Федерации. Приказ Федеральной службы лесного хозяйства № 21 от 05.02.1998.
73. Общесоюзные нормативы для таксации лесов / В. В. Загреев, В. И. Сухих, А. 3. Швиденко, Н. Н. Гусев, А. Г. Мошкалев. М.: Колос, 1992. 495 с.
74. Общие принципы стратегии лесопользования и лесовыращивания на ландшафтно-типологической основе: Сб. науч.тр./ Под. общ. ред. акад. РАСХН Д.П.Столярова. СПб.: СПбНИИЛХ, 1994. - 135 с.
75. Определение эффективности осушения в лесах европейской части РСФСР / Н.А.Красильников, А.А.Книзе, Е.Д.Сабо; ЛенНИИЛХ. 1990.-63 с.
76. Пахучий В. В. Водный режим в хвойных древостоях на староосушенныхторфяниках. JI.: Наука, 1985.-72 с.
77. Писаренко А. И., Страхов В. В., Филипчук А. Н. Роль модельных лесов в стратегии устойчивого управления лесами. / Лесное хозяйство. 1995,4, с. 14-16.
78. Практическая гидролесомелиорация / Под общ. ред. В .К. Константинова. -СПб.: СПбНИИЛХ, 2005, -128 с.
79. Применение материалов аэрокосмических фотосъемок при гидролесомелиорации: Метод, указ. / Сост.: В. И. Березин, Е .П.Данюлис, В. И. Сухих, В. К. Константинов, И. А. Суворов; ЛенНИИЛХ. Л.: 1986. - 68 с.
80. Программа встречи "Использование экологических профилей и стационаров при проведении научно-исследовательских работ в государственных заповедниках". М.: ВДНХ СССР, 1987.
81. Пятин Г.М. Естественное облесение осушаемых верховых и переходных болот на Северо-Западе РСФСР: Дис. к. с.-х. н. Минск: БТИ.1988 (Научн. рук. д. с.-х. н. В. К. Константинов).
82. Рачкулик В.Л., Ситникова М.В. Отражательные свойства и состояние растительного покрова. Л.: Гидрометеоиздат, 1981 287с.
83. Редько Г. И. (ред.). 200 лет лесному опытному делу в Лисинском учебно-опытном лесхозе. Учебное пособие. СПб.: СПб ЛТА. 1998.
84. Рекомендации по определению и использованию типов леса при лесоустройстве (на примере Ленинградской области)/В. Л. Федорчук, Ю. И. Бурнев-ский. ЛенНИИЛХ. Л.; 1986. - 71 с.
85. Рекомендации по практической гидролесомелиорации / Под общей редакцией В. К. Константинова. СПб.: СПбНИИЛХ., 2006. - 118 с.
86. Росс С. К. Радиационный режим и архитектоника растительного покрова. JI.:, Гидрометеоиздат. 1975, 342с.
87. Саковец В.И., Гаврилов В.Н. Лесообразовательные процессы на осушенных болотах Карелии. Петрозаводск: Ин-т леса Карельского НЦ РАН, 1994.102 с.
88. Салшцев К. А. Картография: Учебник для геогр. спец. ун-тов, 3-е изд., пе-рераб. и доп. М.: Высшая школа, 1982. 272 с.
89. Самойлович Г. Г. Применение аэрофотосъемки и авиации в лесном хозяйстве. М., Лесная промышленность, 1964. 486 с.
90. Семенов В. И., В. И. Сухих. Принципы автоматизации мониторинга и картографирования лесов. С. 87-91. В сб.: Аэрокосмические методы и ГИС в лесоведении и лесном хозяйстве. Материалы П Всероссийского совещания. М., 1998.
91. Сеннов С. Н. Итоги 60-летних наблюдений за естественной динамикой леса. СПб ЛТА, 1999, 98 с.
92. Сеннов С. Н. Опыты с рубками ухода за лесом. В кн.: Наука и ведение хозяйства в лесах Ленинградской области. СПб.: СПбНИИЛХ. 1995. с. 20-23.
93. Сергеева В. Л. Использование ландшафтной основы при изучении лесных недревесных ресурсов по космическим снимкам / Аэрокосмические методы исследования лесов // Тезисы докл. Всесоюзн. конф. Красноярск, 1984. с. 96-97.
94. Синькевич Е. И. К экологической роли болотных массивов, с. 104-106. В кн.: Биотическая регуляция окружающей среды (международный семинар). Петрозаводск. 1998. 472 с.
95. Смирнов А.П. Лесорастительный потенциал осушенных торфяно болотных почв и его рациональное использование: Дис. д.с.-х.н. - СПб.: СПбГЛТА, 2003.
96. Страхов В. В., Филипчук А. Н. и др. Государственное регулирование лесопользования, воспроизводства и охраны частных лесов в зарубежных странах. М.: ВНИИЦлесресурс. 1994, с. 48
97. Сухих В. И. Аэрокосмические методы и геоинформационные системы в ле соведении и лесном хозяйстве современной России. С. 27-32. В сб.: Аэрокосмические методы и ГИС в лесоведении и лесном хозяйстве. Материалы П Всероссийского совещания. М., 1998.
98. Сухих В. И. Лесопользование в России в начале XXI века. «Лесное хозяйство», 1999, 6.
99. Сухих В. И. Мониторинг лесов: состояние и проблемы. В кн.: Проблемы мониторинга и моделирование динамики лесных экосистем. МИЛ, ЦЕПЛ РАН, ЭКОЛЕС, М., 1995, с. 5-23.
100. Сухих В. И. Структура и функции геоинформационной системы непрерывного лесоустройства. «Лесное хозяйство», 1996, 5, с. 40-44.
101. Сухих В. И., В. М. Жирин, Т. А. Зиемелис, А. В. Шаталов. Оценка информативности космических снимков высокого разрешения для инвентаризации лесов. «Исследование Земли из космоса», 1996. 2, с. 45-56.
102. Сухих В. И., М. Д. Брейдо, В. А. Марков, А. В. Шаталов. Аэрокосмический автоматизированный контроль за лесопользованием. «Лесоведение», 1989. 5, с. 3-12.
103. Сухорученко А. Н., Разработка и исследование методики локального струк турно-спектрального анализа оптических изображений морской поверхности. Автореферат диссертации на соискание ученой степени к.т.н., МИИГАИК, М., 2006, с. 22.
104. Тараканов A.M. Рост осушенных лесов и ведение хозяйства в них. Архангельск: СевНИИЛХ, 2004. - 228 с.
105. Тетюхин С. В., В. Н. Минаев, А. В. Любимов. Система управления базами данных как основа работы с ГИС-технологиями в лесном комплексе. Материалы НТК/СПб.: СПбЛТА, 1999, с. 89-91.
106. Тетюхин С. В., Минаев В. Н., Любимов А. В. Зависимость ошибок определения запаса от основных таксационных показателей древостоев. Информационные материалы МНГК «Лес-2000». Вып. 1 Брянск; РИО БГИТА, 2000. 106 с.
107. Тихонов С. В. Оценка лесоводственной эффективности облесения мелиорируемых болот сфагновой группы на основе их мониторинга (на примере Северо-Запада европейской России): Дис. к.с.-х.н. СПб.: СПбНИИЛХ, 2003 (Науч. рук. д.с.-х.н. В.К.Константинов).
108. Толчельников B.C. Оптические свойства ландшафта (применительно к аэросъемке). Л.: Наука, 1974. 252 с.
109. Трейфельд Р. Ф. Лесоустроительные геинформационные системы, как информационная основа лесного хозяйства и лесопользования. Материалы НТК/СПб.: ЛТА, 1999, с. 11-15.
110. Трейфельд Р. Ф. Устройство лесов на основе аэрокосмических методов и ГИС-технологий. С. 92-99. В сб.: Аэрокосмические методы и ГИС в лесоведении и лесном хозяйстве. Материалы II Всероссийского совещания. М., 1998.
111. Третьяков Н. В., Горский П. В., Самойлович Г. Г. Справочник таксатора. М.: Лесная пром-ность.1965. 458 с.
112. Труды СПбНИИЛХ. Вып. 2(15) «Лесоводственная эффективность осушения и освоения переувлажненных лесных земель». СПб., 2006. - С. 89-166.
113. Ум Токи Жозеф. Особенности лесохозяйственного и лестаксационогорайонирования лесов Ленинградской области. Известия Санкт Петербургской лесотехнической академии, выпуск 183, СПб, 2008.
114. Федер Е. Фракталы. Пер. с англ.-М.: Мир,1991.-254с. (Jens Feder, Plenum Press, NewYork, 1988)
115. Федорчук В. Н., Дыренков С. А., Мельницкая Г.Б. и др. Определитель и схема типов леса Ленинградской области. Л., 1978. 50 с.
116. Филиппов Г. В. Особенности динамики древостоев по массовым данным лесоустройства. В кн.: Общие принципы стратегии лесопользования и лесовыращивания на ландшафтно-типологической основе. СПб.: СПбНИИЛХ, 1994, с. 51-66.
117. Филипчук А. Н. Кризис в области применения дистанционных методов. С. 35-40. В сб.: Аэрокосмические методы и ГИС в лесоведении и лесном хозяйстве. Материалы П Всероссийского совещания. М., 1998.
118. Филипчук А. Н., В. В. Страхов, В. К. Тепляков. Обзор методов инвентаризации лесов в зарубежных странах. М.: ВНИИЦлесресурс. 1995, 72 с.
119. Фракталы вокруг нас: http://www.eclectasy.com/fractovia/
120. Харнн Н. Г., О. Б. Бутусов. Попиксельный анализ сканерных изображений МСУ-Э для целей классификации и дешифрирования лесов. С. 159-162.
121. Цветков М. А. Изменение лесистости Европейской России с конца ХУЛ столетия по 1914 год. М., 1957. 214 с.
122. Чапурский Л. И. Отражательные свойства природных объектов в диапазоне 400-2500 нм. МО СССР. 1986.160 с.
123. Шутов И. В. Становление устойчивого лесоуправления. В кн.: Устойчивое лесоуправление и критерии его оценки в период перехода к рыночной экономике. Под научной редакцией И. В. Шутова. СПб.: СПб НИЙЛХ, 1998. с. 7-40.
124. Шутов И. В. Этический аспект рубок и восстановления лесов. В кн.: Устойчивое лесоуправление и критерии его оценки в период перехода к рыночной экономике. Под научной редакцией И. В. Шутова. СПб.: СПб НИИЛХ, 1998. с. 192-199.
125. Ярмишко В. Т. Растительный мир (включая леса).В кн.: Состояние окружающей среды в Сев.-Западном и Северном Регионах России. СПб.: Наука. 1995. с. 183-205.
126. Ahem, F. L, et al., 1991. A Quantitative Relationship between Forest Growth Rates and Thematic Mapper Reflectance Measurements, International Journal of Remote Sensing, vol. 12, no. 3, 1991, pp. 387-400.
127. Akca, A., T. Beisch, and F. Eilerman. 1997. Two-phased sampling method using regression estimators and small-scale aerial IR-photographs in volume and increment estimation., pp. 255-264.
128. American Society of Photogrammetry (ASP). Mannual of remote Sensing, 2nd ed., ASP, Falls Church, VA, 1984.
129. AronofF, S., GIS: A Management Perspective, WDL Publications, Ottawa, 1989. 289 p.
130. Badhwar. G. D., R. B. MacDonald, and N. C. Mehta, Satellite-derived Leaf/Area-Index and Vegetation Maps as Input to Global Carbon Cycle Models: A Hierarchical Approach," International Journal of Remote Sensing, vol. 7, no. 2, 1986, pp. 265-281.
131. Berry, J. K., Fundamental Operations in Computer-assisted Analysis. International Journal of Geographical Information Systems, 1:119-136, 1987.
132. Bolstad, P. V., and Т. M. Lillesand, Semi-Automated Training Approaches for Spectral Class Definition," International Journal of Remote Sensing, vol. 13, no.16, 1992, pp. 3157-3166.
133. Bouman, В. A. M., Accuracy of Estimating the Leaf Area Index from Vegetation Indices Derived from Crop Reflectance Characteristics, a Simulation Study, International Journal of Remote Sensing, vol. 13, no. 16, 1992, pp. 3069-3084.
134. Brockhaus, J. A., and S. Khorram, "A Comparison of SPOT and Landsat-TM Data for Use in Conducting Inventories of Forest Resources," International Journal of Remote Sensing, vol. 13, no. 16, 1992, pp. 3035-3043.
135. Burrough, P. A., Principles of GIS for land resources assessment. Oxford university Press, New York, 1986. 185 p.
136. Carper, W. 1, Т. M. Lillesand, and R. W. Kiefer, "The Use of Intensity-Hue-Saturation Transformations for Merging SPOT Panchromatic and Multispectral Image Data," Photogrammetric Engineering and Remote Sensing, vol. 56, no. 4, 1990, pp. 459-467.
137. Chavez, P. S., S. C. Sides, and J. A. Anderson, Comparison of Three Different Methods to Merge Multiresolution and Multispectral Data: Landsat TM and SPOT Panchromatic," Photogrammetric Engineering and Remote Sensing, vol. 57, no. 3, 1991, pp. 295-303.
138. Chavez, P. S., Jr., Radiometric Calibration of Landsat Thematic Mapper Multispectral Images, Photogrammetric Engineering and Remote Sensing, vol. 55, no. 9, 1989, pp. 1285-1294.
139. Chuvieco, E., and R. G. Congalton, "Using Cluster Analysis to Improve the Selection of Training Statistics in Classifying Remotely Sensed Data,"
140. Photogrammetric Engineering and Remote Sensing, vol 54, no. 9, 1988, pp. 1275-1281.
141. Cifflar, L, L. St-Laurent, and J. Dyer, "Relation between the Normalized Difference Vegetation Index and Ecological Variables," Remote Sensing of Environment, vol. 35, no. 1, 1991, pp. 279-298.
142. Congalton, R. G., "A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data," Remote Sensing of Environment, vol. 37, no. 1, 1991, pp. 35-46.
143. Coppin et al., 1996. Remote Sensing Reviews, 13: 207-234.
144. Czaplewski, R. L., "Misclassification Bias in Areal Estimates," Photogrammetric Engineering and Remote Sensing, vol. 58, no. 2, 1992, pp. 189-192.
145. DeFries, R. S. and R. G. Townshend, 1994, NDVI-derived land cover classification at a global scale, International Journal of Remote Sensing, 15:3567-3586.
146. Dicks, S. E., and Т. H. C. Lo, Evaluation of Thematic Map Accuracy in a Land-Use and Land-Cover Mapping Program, Photogrammetric Engineering and Remote Sensing, vol. 56, no. 9, 1990, pp. 1247-1252.
147. Duguay, C. R., and E. F. Le Drew, "Estimating Surface Reflectance and Albedo from Landsat-5 Thematic Mapper over Rugged Terrain," Photogrammetric Engineering and Remote Sensing, vol. 58, no. 5, 1992, pp. 551-558.
148. Fung, Т., and E. LeDrew, "Application of Principal Components Analysis to Change Detection," Photogrammetric Engineering and Remote Sensing, vol. 53, no. 12,1987, pp. 1649-1658.
149. Fung, Т., and E. LeDrew, "The Determination of Optimal Threshold Levels for Change Detection Using Various Accuracy Indices," Photogrammetric Engineering and Remote Sensing, vol. 54, no. 10, 1988, pp. 1449-1454.
150. Gaspar, J., and D. A. Miller. 1997. Global Positioning Systems and TM data for providing forest inventory information., pp. 490-499.
151. Gaspar, J. J. 1994. Integrating Global Positioning Systems and Satellite imagery for providing forest inventory information, MSc Thesis, Aberdeen University, Aberdeen, 122 p.
152. Gorpal, S., Woodcock, C., Srtahler, A., 1996, Fuzzy ARTMAP classification of global land cover from AVHRR data set, Proceedings of 1996 International Geoscience and remote sensing symposium, Lincoln, Nebraska, USA, 27-31 May 1996, pp. 538-540.
153. Goward, S., Markham, В., Dye, D., Dulaney, W., Yang, L, 1991, Normalized difference vegetation index measurements from the advanced very liigh resolution radiometer, Remote Sensing of the Environment, 35:257-277.
154. Gutman, G. G., "Vegetation Indices from AVHRR: An Update and Future Prospects," Remote Sensing of Environment, vol. 35, nos. 2 & 3, 1991, pp.121-136.
155. Hame, Т., 1991. Spectral interpretation of change in forest satellite images. Acta Forestallia Fennica, 222, 1-11.
156. Holopainen, M, Wang, G. 1996. Calibration of Digitized Aerial Photographs for Forest Inventory. University of Helsinki. Department of Forest Resource management. Manuscript.
157. Holopainen, M., and G. Wang. Regression Calibration of Digitized Aerial Photos. 1998. Application of Remote Sensing in European Forest Monitoring., pp. 457-464.
158. Hord, R. M., Digital Image Processing of Remotely Sensed Data, Academic, NY. 1992.1.risi for Windows. User's Guide. Version 1.0, 1995, revision 2, January 1996. 237 p.
159. Kalensky, L, and D. A. Wilson, "Spectral Signatures of Forest Trees," Proceedings: Third Canadian Symposium on Remote Sensing, 1975, pp. 155-171.
160. Koch, В., R. Fritz, T. Kremmers. 1998. Possibilities to Integrate High Resolution satellite Data in forest Inventories. In: Application of Remote Sensing in European forest Monitoring., pp. 27-32.
161. Koch, N. E., Kennedy, J. J., 1991, Multiple-use forestry for social values, Ambio, 20(7), 330-3331.llesand, Т. M., and R. W. Keifer. 1994. Remote Sensing and Image Interpretation. John Willey and Sons, New York, 750 p.
162. McGwire, К. C., Analysis Variability in Labeling of Unsupervised Classifications," Photogrammetric Engineering and Remote Sensing, vol. 58, no. 12, 1992, pp. 167-1677.
163. Miller, D., C. Quine, and M. Broadgate. 1998. Application of Digital Photogrammetry for Monitoring Forest Stands. In: Application of RS in European forest Monitoring., pp. 57-77.
164. Olson, H. 1995. Changes in satellite-measured reflectance caused by thinning cuttings in boreal forest. Remote Sensing of Environment. 50:221-230.
165. Peng, S., 1987. On the combination of multitemporal satellite and field data for forest inventories. Acta Forestalia Fennica, 200: 1-95.
166. Peterson, D. L., et al., "Relationship of Thematic Mapper Simulator Data to Leaf Area Index of Temperate Coniferous Forests," Remote Sensing of Environment, vol. 22, no. 3, 1987, pp. 323-341.
167. Photogrammetric Engineering and Remote Sensing, Special Issue: Integration of Remote Sensing and GIS, vol. 57, no. 6, 1991.
168. Photogrammetric Engineering and Remote Sensing, Special issue: Knowledge Based Expert Systems, vol. 56, no. 6, 1990.
169. Rosenfield, G. H., Analysis of Thematic Map Classification Error Matrices. Photogrammetric Engineering and Remote Sensing, vol. 52, no. 5, 1986, pp.681-686.
170. Rosenfield, G. H., and K. Fitzpatrick-Lins, "A Coefficient of Agreement as a Measure of Thematic Classification Accuracy," Photogrammetric Engineering and Remote Sensing, vol. 52, no. 2, 1986, pp. 223-227.
171. Second International Symposium on Spacial Accuracy Assessment in Natural Resources and Environmental Sciences. May 21-23, 1996, Colorado SU, Fort Collins, CO, USA.
172. Slater, P. N., Survey of Multispectral Imaging Systems for Earth Observations," Remote Sensing of Environment, vol. 17, no. 1, 1985, pp. 85-102.
173. Stehman, S. V., "Comparison of Systematic and Random Sampling for Estimating the Accuracy of Maps Generated from Remotely Sensed Data," Photogrammetric Engineering and Remote Sensing, vol. 58, no. 9, 1992, pp. 1343-1350.
174. Tarpley, J., S. Schneider, R. Money, "Global Vegetation Indices from the NOAA-7 Meteo Satellite," J. of Climate and Applied Meteorology, vol. 23, no. 3, 1984, pp. 491-494.
175. Tom, С. H., and L. D. Miller. 'An Automatic Land-Use Mapping Comparison of the Bayesian Maximum Likelihood and Linear Discriminant Analysis Algorithms," Photogrammetric Engineering and Remote Sensing, vol. 50, no. 2, 1984, pp. 193-207.
176. Tomlin, C. D., Geographic Information Systems and Geographic Modeling, Prentice-Hall, Englewood Cliffs, NJ, 1990. 253 p.
177. Trimble Navigation, L. 1992. General reference for the GPS Pathfinder TM system. Trimble Navigation, Ltd, Sunnyvale. 117 p.
178. Vaijo, J. Controlling continuously updated forest data by satellite remote sensing. Int. J. Remote Sensing. 1996. Vol. 17. No. 1, 43-67.
179. Vogelmann, J. E., "Comparison between Two Vegetation Indices for Measuring Different Types of Forest Damage in the North-eastern United States," International Journal of Remote Sensing, vol. 11, no. 12, 1990, pp. 2281-2297.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.