Динамика формирования межклеточных адгезионных контактов и перестроек актинового цитоскелета нетрансформированных и трансформированных клеток тема диссертации и автореферата по ВАК РФ 14.01.12, кандидат биологических наук Айолло, Дмитрий Владимирович

  • Айолло, Дмитрий Владимирович
  • кандидат биологических науккандидат биологических наук
  • 2011, Москва
  • Специальность ВАК РФ14.01.12
  • Количество страниц 113
Айолло, Дмитрий Владимирович. Динамика формирования межклеточных адгезионных контактов и перестроек актинового цитоскелета нетрансформированных и трансформированных клеток: дис. кандидат биологических наук: 14.01.12 - Онкология. Москва. 2011. 113 с.

Оглавление диссертации кандидат биологических наук Айолло, Дмитрий Владимирович

1. Список сокращений.

2. Введение.

2.1. Актуальность проблемы.

2.2. Цели и задачи работы.

2.3. Научная новизна и практическая значимость работы.

3. Обзор литературы.

3.1 Кадхерины и их функции в нормальных и трансформированных клетках.

3.1.1. Классические кадхерины.И

3.1.2. Кадхерины других типов.

3.1.3. Молекулярная организация кадхерин-содержащих АК.

3.1.4. Процесс сборки АК.

3.1.5. Нарушения межклеточной адгезии при неопластической трансформации.

3.2. Актиновый цитоскелет нормальных и трансформированных клеток.

3.2.1 Актиновая сеть клеточного края.

3.2.2. Актин-связывающие белки.

3.2.3. Стресс-фибриллы.

3.2.4. Организация актинового цитоскелета фибробластов.

3.2.5. Организация актинового цитоскелета эпителиальных.

3.2.6. Участие актинового цитоскелета в построении АК.

3.2.7. Изменения актинового цитоскелета при неопластической трансформации.

3.3. Вклад малых ГТФаз семейства Rho в регуляцию динамики актинового цитоскелета и сборки межклеточных адгезионных контактов.

3.3.1. Малые ГТФазы семейства Rho.

3.3.2. Rae.

3.3.3. Rho.

3.3.4. Роль малых ГТФаз Rho и Rae в формировании АК.

3.3.5. Изменение регуляторной функции малых ГТФаз семейства Rho при неопластической трансформации.

4. Материалы и методы.

4.1. Реагенты.

4.2. Клеточные линии и трансфекция.

4.3. Анализ формирования межклеточных контактов в узкой ране.

4.4. Выделение малых ГТФаз Rho и Rae и их введение в клетки.

4.5. РНК интерференция.

4.6. Флуоресцентное окрашивание и микроскопия.

4.7. Видеосьёмка и анализ видеоизображений.

4.8. Вестерн-блоттинг.

5. Результаты.

5.1. Организация АК и актинового цитоскелета ^трансформированных эпителиоцитов IAR-2 и трансформированных эпителиоцитов IAR-6-1.

5.2. Анализ динамики Е-кадхерин-содержащих АК.

5.2.1. Анализ динамики АК в редкой культуре.

5.2.2. Динамика формирования АК при схождении узкой раны.

5.2.3. Исследование аккумуляции актина и при формировании АК.

5.2.4. Исследование аккумуляции зиксина при формировании АК.

5.2.5. Исследование аккумуляции а-актинина при формировании АК трансформированных эпителиоцитов IAR-6-1.

5.3 Регуляция формирования АК ^трансформированных и трансформированных эпителиоцитов малыми ГТФазами семейства Rho.

5.3.1 Влияние введения СЗ трансферазы на формирование различных типов АК.

5.3.2. Влияние ингибитора ROCK V-27632 на сборку АК.

5.3.3. Действие ингибитора АТФазы миозина блеббистатина на сборку

5.3.4. Количественная оценка влияния Y-27632 и блеббистатина на аккумуляцию кадхерина в АК различных типов клеток.

5.3.5. Влияние подавления экспрессии mDial на формирование АК.

5.3.6. Влияние введения N17Rac на формирование АК.

6. Обсуждение.

Рекомендованный список диссертаций по специальности «Онкология», 14.01.12 шифр ВАК

Введение диссертации (часть автореферата) на тему «Динамика формирования межклеточных адгезионных контактов и перестроек актинового цитоскелета нетрансформированных и трансформированных клеток»

2.1. Актуальность проблемы.

Межклеточные адгезионные контакты (АК) образованы кадхеринами, которые через сложный белковый комплекс адгезионной бляшки ассоциированы с актиновыми микрофиламентами. АК нормальных эпителиальных клеток играют важнейшую роль в поддержании целостности эпителиальных пластов, обеспечивая механическое соединение клеток. При опухолевой трансформации клеток эпителиального происхождения разрушается стабильная межклеточная адгезия. Одним из следствий нарушений межклеточной адгезии является приобретение трансформированными клетками способности к инвазии. Во многих карциномах наблюдается эпигенетическое подавление экспрессии гена Е-кадхерина СЭН1. Однако описаны некоторые опухоли эпителиального происхождения, в которых сохраняется экспрессия Е-кадхерина. Из этого можно сделать вывод, что межклеточная адгезия может нарушаться без подавления экспрессии Е-кадхерина. Исследования трансформированных эпителиальных линий, клетки которых экспрессируют Е-кадхерин, могут прояснить механизмы нарушения межклеточной адгезии при опухолевой трансформации.

Хорошо известны различия в организации актинового цитоскелета и АК клеток двух тканевых типов: эпителиоцитов и фибробластов. АК эпителиоцитов образованы Е-кадхерином, имеют тангенциальную организацию и связаны с » периферическим актиновым пучком. Нормальные фибробласты имеют радиальную организацию АК, ориентированных перпендикулярно межклеточной границе и ассоциированных с прямыми актиновыми пучками (Уопетига еЬ а1., 1995). Формирование АК фибробластов существенным образом зависит от контрактильности актина-миозина (СЪивЬапкоуа et а1., 1998, М1уаке, 2006). Вместе с тем до сих пор не были исследованы закономерности формирования АК трансформированных эпителиоцитов, не были исследованы межклеточные взаимодействия эпителиоцитов, сохранивших при трансформации экспрессию Е-кадхерина. Помимо этого остаётся невыясненным функциональное значение изменений актинового цитоскелета, особенно потери краевого актинового пучка, в ослаблении межклеточной адгезии при трансформации эпителиоцитов.

На современном этапе общепризнанной считается роль малых ГТФаз семейства Rho в регуляции перестроек актинового цитоскелета (Heasman and Ridley, 2008). Имеются также данные о вкладе Rho ГТФаз в построение АК эпителиальных клеток. Сравнительные исследования роли ГТФаз Rho и Rac в трансформированных и трансформированных эпителиоцитах могут прояснить их вклад в разрушение стабильной межклеточной адгезии при трансформации.

В последнее время использование рекомбинантных внутриклеточных белков, меченных флуоресцентными красителями, позволило проводить исследования динамики формирования АК и структур актинового цитоскелета в живых клетках. Изучение распределения флуоресцентно меченных белков АК трансформированных и ^трансформированных эпителиоцитов при формировании межклеточных контактов может предоставить важные данные о самых ранних этапах формирования АК. Также, это может выявить различия в белковой организации АК ^трансформированных и трансформированных эпителиоцитов.

Таким образом, изучение динамики формирования АК, её связи с перестройками актинового цитоскелета и малыми ГТФазами семейства Rho и её изменений в результате неопластической трансформации является одной из важнейших задач современной экспериментальной онкологии.

Похожие диссертационные работы по специальности «Онкология», 14.01.12 шифр ВАК

Заключение диссертации по теме «Онкология», Айолло, Дмитрий Владимирович

8. Выводы.

1. При исследовании эпителиоцитов линии IAR-6-1, трансформированных диметилнитрозамином, впервые обнаружено, что неопластическая трансформация клеток эпителиального происхождения может вызывать перестройку пространственной организации Е-кадхерин-содержащих межклеточных адгезионных контактов (АК): превращение тангенциальных АК, ассоциированных с периферическим актиновым пучком, в радиальные АК, связанные с прямыми актиновыми пучками и ориентированные перпендикулярно межклеточной границе.

2. При неопластической трансформации реорганизация АК и актинового цитоскелета сопровождается разрушением стабильной межклеточной адгезии: Е-кадхерин-содержащие АК трансформированных эпителиоцитов IAR-6-1 являются динамичными структурами и претерпевают постоянный ремоделинг.

3. АК ^трансформированных и трансформированных эпителиоцитов формируются по-разному. Начальные точечные АК ^трансформированных эпителиоцитов претерпевают латеральное расширение и формируют зрелый тангенциальный АК вдоль межклеточной границы. В случае трансформированных эпителиоцитов, начальные точечные АК растут и превращаются в индивидуальные радиальные АК.

4. Формирование АК в нетрансформированных и трансформированных эпителиоцитах требует активности малой ГТФазы Rho.

5. Формирование тангенциальных АК нетрансформированных эпителиоцитов IAR-2 зависит от эффектора Rho mDial и не зависит от активности ROCK, другого эффектора Rho. Формирование радиальных АК трансформированных эпителиоцитов IAR-6-1, напротив, не зависит от mDial, но требует активности ROCK и индуцируемой ею контрактильности актина-миозина.

6. Формирование тангенциальных АК нетрансформированных эпителиоцитов зависит от активности малой ГТФазы Rae. Напротив, формирование радиальных АК трансформированных эпителиоцитов может происходить и в условиях ингибирования активности Rae.

7. Заключение.

В целом, сравнительные исследования ^трансформированных и трансформированных эпителиоцитов IAR показали, что неопластическая трансформация эпителиальных клеток ведёт к значительной реорганизации актинового цитоскелета, тесно связанных с ним АК и, как следствие, к разрушению стабильной межклеточной адгезии. При трансформации эпителиальные клетки утрачивают краевой актиновый пучок, а стабильные тангенциальные АК заменяются динамичными радиальными АК. Можно предположить, что отличия между тангенциальными и радиальными АК, образованными Е-кадхерином, связаны, прежде всего, с различиями во взаимодействии АК ^трансформированных и трансформированных эпителиоцитов со структурами актинового цитоскелета. При формировании тангенциальных АК ^трансформированных эпителиоцитов играет роль полимеризация F-актина, регулируемая mDial и Rae. В то же время формирование радиальных АК трансформированных эпителиоцитов определяется их взаимодействием с актин-миозиповыми пучками, контрактильность которых регулируется ROCK.

По итогам настоящей работы сформулирована гипотеза, предполагающая, что перестройка тангенциальных АК эпителиальных клеток в радиальные АК во время неопластической трансформации определяется реорганизацией актинового цитоскелета, приводящей к изменениям в направлении натяжения в зоне межклеточного контакта. Исчезновение краевого актинового пучка в эпителиальных клетках при трансформации является ключевым событием, приводящим к перестройке АК. В трансформированных клетках отсутствие тангенциального натяжения в зоне межклеточного контакта препятствует развитию контактного паралича, а наличие центростремительного натяжения приводит к сборке прямых актиновых пучков и образованию радиальных АК, которые гораздо динамичнее и менее стабильны, чем тангенциальные АК ^трансформированных эпителиальных клеток. Такие контакты могут играть важную роль в коллективной миграции трансформированных эпителиоцитов. Изменения в активности малых ГТФаз семейства Иго, которые характерны для трансформированных клеток, также могут вносить вклад в перестройки АК и актинового цитоскелета. Таким образом, настоящая работа демонстрирует то, что структурная и динамическая координация между кадхеринами, актиновыми структурами и актин-регулирующими белками может изменяться при неопластической трансформации эпителиальных клеток.

Список литературы диссертационного исследования кандидат биологических наук Айолло, Дмитрий Владимирович, 2011 год

1. Abe К, Takeichi М. EPLIN mediates linkage of the cadherin-catenin complex to F-actin and stabilizes the circumferential actin belt. Proceedings of the National Academy of Sciences of the USA 2008; 105:13-19.

2. Abraham VC, Krishnamurthi V, Taylor DL, Lanni F. The actin-based nanomachine at the leading edge of migrating cells. Biophysical journal 1999; 77:1721-1732.

3. Albiges-Rizo C, Destaing O, Fourcade B, Planus E, Block MR. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. The Journal of Cell Science 2009; 122: 3037-3049.

4. Ammer AG, Weed SA. Cortactin branches out: roles in regulating protrusive actin dynamics. Cell motility and the cytoskeleton 2008; 65: 687-707.

5. Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y, Reynolds AB. Inhibition of RhoA by pl20 catenin. Nature cell biology 2000; 2: 637644.

6. Angres B, Barth A, Nelson WJ. Mechanism for transition from initial to stable cell-cell adhesion: kinetic analysis of E-cadherinmediated adhesion using a quantitative adhesion assay. The Journal of cell biology 1996; 134: 549-557.

7. Angst BD, Marcozzi C, Magee AI. The cadherin superfamily: diversity in form and function. Journal of cell science 2001; 114: 629-641.

8. Anton IM, Jones GE, Wandosell F, Geha R, Ramesh N. WASP-interacting protein (WIP): working in polymerisation and much more. Trends in cell biology 2007; 17: 555-562.

9. Aspenstrom P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. The Biochemical journal 2004; 377: 327-337.

10. Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. Journal of Cell Biology 2005; 168: 29-33.

11. Bamburg JR, McGough A, Ono S. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends in cell biology 1999; 9: 364-370.

12. Bannikov GA, Guelstein VI, Montesano R, Tint IS, Tomatis L, Troyanovsky SM, Vasiliev JM. Cell shape and organization of cytoskeleton and surface fibronectin in non-tumorigenic rat liver cultures. Journal of cell science 1982; 54: 47-67.

13. Beckerle MC. Zyxin: zinc fingers at sites of cell adhesion. BioEssays: news and reviews in molecular, cellular and developmental biology 1997; 19: 949-957.

14. Berx G, van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harbor perspectives in biology 2009; 1: a003129.

15. Bienz M. beta-Catenin: a pivot between cell adhesion and Wnt signalling. Current biology: CB 2005; 15: 64-67.

16. Birchmeier W, Behrens J. in expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et biophysica acta 1994 ;1198: 11-26.

17. Bishop AL, Hall A. Rho GTPases and their effector proteins. The Biochemical journal 2000; 348: 241-255.

18. Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 2002; 296:1308-1313.

19. Bollrath J, Greten FR. IKK/NF-kB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO reports 2009; 10: 1314-1319.

20. Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Molecular biology and evolution 2007; 24: 203-216.

21. Boyartchuk VL, Ashby MN, Rine J. Modulation of Ras and a-factor function t>Y carboxyl-terminal proteolysis. Science 1997; 275:1796-1800.

22. Braga VM, Betson M, Li X, Lamarche-Vane N. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Molecular biology of the cell 2000; 11: 3703-3721.

23. Braga VM, Del Maschio A, Machesky L, Dejana E. Regulation of cadherin furtCtion by Rho and Rac: modulation by junction maturation and cellular context. Mol^cu^ar biology of the cell 1999; 10: 9-22.

24. Braga VM, Machesky LM, Hall A, Hotchin NA. The small GTPases Rho and R^c are required for the establishment of cadherin-dependent cell-cell contacts. The Journal of cell biology 1997; 137: 1421-1431.

25. Brock J, Midwinter K, Lewis J, Martin P Healing of incisional wounds in the embryonic chick wing bud: characterization of the actin purse-string and demonstration of a requirement for Rho activation. The Journal of cell biology 19 135:1097-1107.

26. Bryce NS, Clark ES, Leysath JL, Currie JD, Webb DJ, Weaver AM. Cortactin promotes cell motility by enhancing lamellipodial persistence. Current biology: ^^ 2005; 15: 1276-1285.

27. Bu W, Chou AM, Lim KB, Sudhaharan T, Ahmed S. The Toca-l-N-WASP comp>lex links filopodial formation to endocytosis. The Journal of biological chemistry 2009; 284: 11622-11636.

28. Bullions LC, Notterman DA, Chung LS, Levine AJ. Expression of wild-type alpha-catenin protein in cells with a mutant alpha-catenin gene restores both growth regulation and tumor suppressor activities. Molecular and cellular biology 1997; 17: 4501-4508.

29. Burdett ID. Aspects of the structure and assembly of desmosomes. Micron 1998; 29: 309-328.

30. Burridge K. Cell biology: a break in the chain? Nature 2006; 440: 38-39.

31. Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays: news and reviews in molecular, cellular and developmental biology 2007; 29(4): 356-370.

32. Bustos RI, Forget MA, Settleman JE, Hansen SH. Coordination of Rho and Rac GTPase function via pl90B RhoGAP. Current biology 2008; 18:1606-1611.

33. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes & development 1997; 11: 3286-3305.

34. Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nature reviews. Molecular cell biology 2010; 11: 237-251.

35. Carnero A. The PKB/AKT pathway in cancer. Current pharmaceutical design 2010; 16: 34-44.

36. Carramusa L, Ballestrem C, Zilberman Y, Bershadsky AD. Mammalian diaphanous-related formin Dial controls the organization of E-cadherin-mediated cell-cell junctions. Journal of cell science 2007; 120: 3870-3882.

37. Cavey M, Rauzi M, Lenne PF, Lecuit T. A twotiered mechanism for stabilization and immobilization of E-cadherin. Nature 2008; 453: 751-756.

38. Chen X, Macara IG. Par-3 controls tight junction assembly through the Rac exchange factor Tiaml. Nature cell biology 2005; 7: 262-269.

39. Chen YT, Stewart DB, Nelson WJ. Coupling assembly of the E-cadherin/(3-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. The Journal of cell biology 1999; 144: 687-699.

40. Chesarone MA, DuPage AG, Goode BL. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature reviews. Molecular cell biology 2010; 11: 62-74.

41. Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D, Ivanov IE, Philips MR. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 1999; 98: 69-80.

42. Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends in biochemical sciences 1999; 24: 73-76.

43. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406: 532-535.

44. Condeelis J. Life at the leading edge: the formation of cell protrusions. Annual review of cell biology 1993; 9:411-444.

45. Connolly BA, Rice J, Feig LA, Buchsbaum RJ. Tiaml-IRSp53 complex formation directs specificity of racmediated actin cytoskeleton regulation. Molecular and cellular biology 2005; 25: 4602- 4614.

46. Conti MA, Adelstein RS. Nonmuscle myosin II moves in new directions. Journal of cell science 2008; 121:11-18.

47. Cooper JA, Schafer DA. Control of actin assembly and disassembly at filament ends. Current opinion in cell biology 2000; 12: 97-103.

48. Cramer LP, Siebert M, Mitchison TJ. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. The Journal of cell biology 1997; 136:1287-1305.

49. Dai Q, Choy E, Chiu V, Romano J, Slivka SR, Steitz SA, Michaelis S, Philips MR. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. The Journal of biological chemistry 1998; 273:15030-15034.

50. Davis MA, Ireton RC, Reynolds AB. A core function for pl20-catenin in cadherin turnover. The Journal of cell biology 2003; 163: 525-534.

51. Davison MD, Critchley DR. alpha-Actinins and the DMD protein contain spectrin-Iike repeats. Cell 1988; 52:159-160.

52. Dawe HR, Minamide LS, Bamburg JR, Cramer LP. ADF/cofilin controls cell polarity during fibroblast migration. Current biology 2003; 13: 252-257.

53. De La Cruz EM, Ostap EM, Brundage RA, Reddy KS, Sweeney HL, Safer D.

54. Thymosin-beta(4) changes the conformation and dynamics of actin monomers. Biophysical journal 2000; 78: 2516-2527.

55. Delanoe-Ayari H, A1 Kurdi R, Vallade M, Gulino-Debrac D, Riveline D. Membrane and acto-myosin tension promote clustering of adhesion proteins. Proceedings of the

56. National Academy of Sciences of the USA 2004; 101: 2229-2234.

57. DePina AS, Langford GM. Vesicle transport: the role of actin filaments and myosin motors. Microscopy research and technique 1999; 47: 93-106.

58. Derivery E, Lombard B, Loew D, Gautreau A. The Wave complex is intrinsically inactive. Cell motility and the cytoskeleton 2009; 66: 777-790.

59. DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends in cell biology 2005; 15: 356-363.

60. DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE. Spatial regulationof actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. Journal of cell science 2002; 115: 4649-4660.

61. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI. a-Catenin is a molecular switchthat binds E-cadherin-p-Catenin and regulates actin-filament assembly. Cell 2005; 123:903-915.

62. Edelman GM. Cell adhesion and morphogenesis: the regulator hypothesis. Proceedings of the National Academy of Sciences of the USA 1984; 81:1460-1464.

63. Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW. Mechanism of regulation of VVAVEl-induced actin nucleation by Racl and Nek. Nature 2002; 418: 790-793.

64. Ehrlich JS, Hansen MDH, Nelson WJ. Spatio-temporal regulation of Racl localization and lamellipodia dynamics during epithelial cell-cell adhesion. Developmental Cell 2002; 3: 259-270.

65. Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 2005; 103: 1631-1643.

66. Fackler OT, Grosse R. Cell motility through plasma membrane blebbing. The Journal of cell biology 2008; 181: 879-884.

67. Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J. C„ Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Developmental Cell 2009; 17: 736-743.

68. Fox CH, Caspersson T, Kudynowski J, Sanford KK, Tarone RE. Morphometric analysis of neoplastic transformation in rodent fibroblast cell lines. Cancer research 1977; 37: 892-897.

69. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. Journal of cell biology 2010; 188:11-19.

70. Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature cell biology 2002; 4: 222-231.

71. Geiger B, Yehuda-Levenberg S, Bershadsky AD. Molecular interactions in the submembrane plaque of cell-cell and cellmatrix adhesions. Acta anatomica 1995; 154: 46-62.

72. Goicoechea SM, Bednarski B, García-Mata R, Prentice-Dunn H, Kim HJ, Otey CA. Palladin contributes to invasive motility in human breast cancer cells. Oncogene 2009; 28: 587-598.

73. Gomis RR, Alarcon C, Nadal C, Van Poznak C, Massagué J. C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer cell 2006; 10: 203-214.

74. Green KJ, Getsios S, Troyanovsky S, Godsel LM. Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harbor perspectives in biology 2010; 2: a000125.

75. Green KJ, Simpson CL. Desmosomes: new perspectives on a classic. The Journal of investigative dermatology 2007; 127: 2499-2515.

76. Hansen MDH, Beckerle MC. Opposing roles of zyxin/LPP ACTA repeats and the LIM domain region in cell-cell adhesion. The Journal of biological chemistry 2006; 281: 16178-16188.

77. Harris TJC, Tepass U. Adherens junctions: from molecules to morphogenesis. Nature reviews. Molecular cell biology 2010; 11: 502-514.

78. Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature reviews. Molecidar cell biology 2008; 9: 690-701.9T

79. Heath JP, Dunn GA. Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and highvoltage electron-microscope study. Journal of cell science 1978; 29:197-212.

80. Hinck L, Nathke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation: Ovel protein interactions and pathways of complex assembly. The Journal of cell biology 1994; 125:1327-1340.

81. Hirano S, Kimoto N, Shimoyama Y, Hirohashi S, Takeichi M. Identification of a neural alpha-catenin as a key regulator of Cadherin function and multicellular organization. Cell 1992; 70: 293-301.

82. Hirata H, Tatsumi H, Sokabe M. Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. Journal of cell science 2008; 121: 27952804.

83. Hordijk PL, ten Klooster JP, van der Kämmen RA, Michiels F, Oomen LC, Collard JG. Inhibition of invasion of epithelial cells by Tiaml-Rac signaling. Science 1997; 278:1464-1466.

84. Hotulainen P, Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. The Journal of cell biology 2006; 173: 383-394.

85. Imamura Y, Itoh M, Maeno Y, Tsukita S, Nagafuchi A. Functional domains of alpha-catenin required for the strong state of cadherin-based cell adhesion. Journal of Cell Biology 1999; 144:1311-1322.

86. Inoue T, Yaoita E, Kurihara H, Shimizu F, Sakai T, Kobayashi T, Ohshiro K, Kawachi H, Okada H, Suzuki H, Kihara I, Yamamoto T. FAT is a component of glomerular slit diaphragms. Kidney international 2001; 59:1003-1012.

87. Ismail AM, Padrick SB, Chen B, Umetani J, Rosen MK. The WAVE regulatory complex is inhibited. Nature structural & molecular biology 2009; 16: 561-563.

88. Itoh K, Yoshioka K, Akedo IT, Uehata M, Ishizaki T, Narumiya S. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature medicine 1999; 5: 221-225.

89. Ivanov AI, Hunt D, Utech M, Nusrat A, Parkos CA. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Molecular biology of the cell 2005; 16: 2636-2650.

90. Jaffe AB, Hall A. Rho GTPases: Biochemistry and biology. Annual review of cell and developmental biology. 2005; 21: 247-269.

91. Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Current opinion in cell biology 1999; 11: 591-596.

92. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 2009; 119:1420-1428.

93. Kardash E, Reichman-Fried M, Maître JL, Boldajipour B, Papusheva E, Messerschmidt EM, Heisenberg CP, Raz E. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nature cell biology 2010; 12: 47-53.

94. Katoh H, Negishi M. RhoG activates Racl by direct interaction with the DocklSO-binding protein Elmo. Nature 2003; 424: 461-464.

95. Kemler R. From Cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends in genetics : TIG 1993; 9: 317-321.

96. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273: 245248.

97. Kolega J. Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving m culture. The Journal of cell biology 1986; 102:1400-1411.

98. Kosako H, Yoshida T, Matsumura F, Ishizaki T, Narumiya S, Inagaki M. Rhokinase/ROCK is involved in cytokinesis through the phosphorylation of myosinlight chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 2000; 19: 6059-6064.

99. Kovacs EM, Ali RG, McCormack AJ, Yap AS. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. The Journal of biological chemistry 2002a; 277: 6708-6718.

100. Kraemer A, Goodwin M, Verma S, Yap AS, Ali RG. Rac is a dominant regulator of cadherin-directed actin assembly that is activated by adhesive ligationindependently of Tiaml. American journal of physiology. Cell physiology 2007; 292: C1061-C1069.

101. Krendel MF, Bonder EM. Analysis of actin filament bundle dynamics during contact formation in live epithelial cells. Cell motility and the cytoskeleton 1999; 43: 296-309.

102. Ladwein M, Rottner K. On the Rho@d: The regulation of membrane protrusions by Rho-GTPases. FEBS letters 2008; 582: 2066-2074.

103. Lammers M, Meyer S, Kiihlmann D, Wittinghofer A. Specificity of interactions ■ between mDia isoforms and Rho proteins. The Journal of biological chemistry 2008; 283: 35236-35246.

104. Lammers M, Rose R, Scrima A, Wittinghofer A. The regulation of mDial by autoinhibition and its release by Rho*GTP. The EMBO journal 2005; 24: 4176-4187.

105. Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 2005; 24: 7443-7454.

106. Lazarides E, Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 1975; 6: 289-298.

107. Lazarides E. Tropomyosin antibody: the specific localization of tropomyosin in nonmuscle cells. The Journal of cell biology 1975; 65: 549-561.

108. Legg JA, Bompard G, Dawson J, Morris HL, Andrew N, Cooper L, Johnston SA, Tramountanis G, Machesky LM. N-WASP involvement in dorsal ruffle formation in mouse embryonic fibroblasts. Molecular biology of the cell 2007; 18: 678-687.

109. Li B, Trueb B. Analysis of the a-actinin/zyxin interaction. The Journal of biological chemistry 2001; 276: 33328-33335.

110. Li F, Higgs HN. Dissecting requirements for auto-inhibition of actin nucleation by the formin, mDial. The Journal of biological chemistry 2005; 280: 6986-6992.

111. Lommel S, Benesch S, Rottner K, Franz T, Wehland J, Kühn R. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO reports 2001; 2: 850-857.

112. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999; 285: 895-898.

113. Martin TA, Goyal A,Watkins G, JiangWG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Annals of surgical oncology 2005; 12: 488-496.

114. McLachlan RW, Kraemer A, Helwani FM, Kovacs EM, Yap AS. E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Molecular biology of the cell 2007; 18: 3214-3223.

115. Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harbor perspectives in biology 2009; 1: a002899.

116. Miki H, Yamaguchi H, Suetsugu S, Takenawa T. IRSp53 is an essential intermediate between Rae and WAVE in the regulation of membrane ruffling. Nature 2000; 408: 732-735.

117. Miranda KC, Joseph SR, Yap AS, TeasdaleRD, Stow JL. Contextual binding of 120ctn to E-cadherin at the basolateral plasma membrane in polarized epithelia. The Journal of biological chemistry 2003; 278: 43480-43488.

118. Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura S. Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Experimental cell research 2006; 312: 1637-1650.

119. Montesano R, Saint Vincent L, Drevon C, Tomatis L. Production of epithelial and mesenchymal tumours with rat liver cells transformed in vitro. International journal of cancer 1975; 16: 550-558.

120. Montesano R, Saint Vinsent L, Tomatis L. Malignant transformation in vitro ofrat liver cells by dimethylnitrosamine and N-methyl-N'-nitro-N-nitrosoguanidine.

121. British journal of cancer 1973; 28: 215-220.

122. Moon SY, Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends in cell biology 2003; 13:13-22.

123. Morii N, Narumiya S. Preparation of native and recombinant Clostridium botulinum C3 ADP-ribosyltransferase and identification of Rho proteins by ADi3-ribosylation. Methods in enzymology 1995; 256:196-206.

124. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenm or APC. Science 1997; 275:1787-1790.

125. Nagafuchi A, Takeichi M, Tsukita S. The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 1991; 65: 849-857.

126. Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDial, in transformation, metastasis and invasion. Cancer metastasis reviews 2009; 28: 65-76103

127. Niederman R, Pollard TD. Human platelet myosin. II. In vitro assembly and structure of myosin filaments. The Journal of cell biology 1975; 67: 72-92.

128. Nieset JE, Redfield AR, Jin F, Knudsen KA, Johnson KR, Wheelock MJ. Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin. Journal of cell science 1997; 110:1013-1022.

129. Nobes CD, Hawkins P, Stephens L, Hall A. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. Journal of cell science 1995; 108: 225233.

130. Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. Journal of molecular biology 2000; 299: 551-72.

131. Otey CA, Carpen O. Alpha-actinin revisited: A fresh look at an old player. Cell Motil. Cytoskeleton 2004; 58:104-111.

132. Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 2005; 433: 488-494.

133. Ozawa M, Kemler R. Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin. The Journal of cell biology 1990; 111: 1645-1650.

134. Padua D, Massague J. Roles of TGFbeta in metastasis. Cell research 2009; 19: 89102.

135. Pantaloni D, Boujemaa R, Didry D, Gounon P, Carlier MF. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature cell biology 2000; 2: 385-391.

136. Paul AS, Pollard TD. The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation. Current biology: CB 2008; 18: 919.

137. Pellegrin S, Mellor H. Actin stress fibres. Journal of Cell Science 2007; 120: 34913499.

138. Peng X, Cuff LE, Lawton CD, DeMali KA. Vinculin regulates cell-surface E-cadherin expression by binding to (3-catenin. Journal of Cell Science 2010; 123: 567-577

139. Perez-Moreno M, Fuchs E. Catenins: Keeping cells from getting their signals crossed. Developmental cell 2006; 11: 601-612.

140. Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 2003; 112: 535-548.

141. Petruzzelli L, Takami M, Humes HD. Structure and function of cell adhesion molecules. The American journal of medicine 1999; 106: 467-^76.

142. Phee H, Abraham RT, Weiss A. Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vavl. Nature immunology 2005; 6: 608-617.

143. Pokutta S, Weis WI. Structure of the dimerization and (3-catenin-binding region of a-catenin. Molecular cell 2000; 5: 533-543.

144. Pokutta S,Weis WI. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annual review of cell and developmental biology 2007; 23: 237-261.

145. Polakis P. Wnt signaling and cancer. Genes & development 2000; 14:1837-1851.

146. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112: 453-465.

147. Ponassi M, Jacques TS, Ciani L, ffrench Constant C. Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mechanisms of development 1999; 80: 207-212.

148. Price LS, Collard JG. Regulation of the cytoskeleton by Rho-family GTPases: implications for tumour cell invasion. Seminars in cancer biology 2001; 11:167-173.

149. Rebouissou S, Amessou M, Couchy G, Poussin K, Imbeaud S, Pilati C, Izard T, Balabaud C, Bioulac-Sage P, Zucman-Rossi J. Frequent in-frame somatic deletions activate gpl30 in inflammatory hepatocellular tumours. Nature 2009; 457: 200-204.

150. Ren G, Crampton MS, Yap AS. Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell motility and the cytoskeleton 2009; 66: 865873.

151. Reynolds AB, Daniel J, McCrea PD, Wheelock MJ, Wu J, Zhang Z. Identification of a new catenin: the tyrosine kinase substrate pl20cas associates with E-cadherin complexes. Molecular and cellular biology 1994; 14: 8333-8342.

152. Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nature reviews. Molecular cell biology 2003; 4: 446-56.

153. Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature cell biology 2003; 5: 711-719.

154. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nature reviews. Cancer 2002a; 2: 133-142.

155. Sahai E, Marshall CJ. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature cell biology 2002b; 4: 408-415.

156. Sander EE, ten Klooster JP, van Delft S, van der Kämmen RA, Collard JG. Rae downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. The Journal of cell biology 1999; 147: 1009-22.

157. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshal CJ. Rae activation and inactivation control plasticity of tumor cell movement. Cell 2008; 135: 510-523.

158. Self AJ, Hall A. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods in enzxjmology 1995; 256: 3-10.

159. Shapiro L, Weis WI. Structure and Biochemistry of Cadherins and Catenins. Cold Spring Harbor perspectives in biology 2009; 1: a003053.

160. Shore EM, Nelson WJ. Biosynthesis of the cell adhesion molecule uvomorulin (E-cadherin) in Madin- Darby Canine Kidney epithelial cells. The Journal of biological chemistry 1991; 266:19672-19680.

161. Sjöblom B, Salmazo A, Djinovic-Carugo K. Alpha-actinin structure and regulation. Cellular and molecular life sciences: CMLS 2008; 65: 2688-2701.

162. Small JV, Isenberg G, Celis JE. Polarity of actin at the leading edge of cultured-cells. Nature 1978; 272: 638-639.

163. Small JV, Rottner K, Kaverina I, Anderson KI. Assembling an actin cytoskeleton for cell attachment and movement. Biochimica et biophysica acta 1998; 1404: 271-281.

164. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer research 2008; 68: 537-544.

165. Steinberg B, Pollack R, Topp W, Botchan M. Isolation and characterization of T antigen-negative revertants from a line of transformed rat cells containing one copy of the SV40 genome. Cell 1978; 13:19-32.

166. Stradal TE, Scita G. Protein complexes regulating Arp2/3-mediated actin assembly. Current opinion in cell biology 2006; 18: 4-10.

167. Straight A F, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 2003; 299:1743-1747.

168. Suetsugu S, Kurisu S, Oikawa T, Yamazaki D, Oda A, Takenawa T. Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac. The Journal of cell biology 2006; 173: 571-585.

169. Suwa H, Ohshio G, Imamura T, Watanabe G, Arii S, Imamura M, Narumiya S, Hiai H, Fukumoto M. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. British journal of cancer 1998; 77:147-152.

170. Suzuki ST. Recent progress in protocadherin research. Experimental cell research 2000; 261: 13-18.

171. Svitkina TM, Borisy GG. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. The Journal of cell biology 1999; 145:1009-1026.

172. Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. The Journal of cell biology 1997; 139: 397-415.

173. Symons M, Segall JE. Rac and Rho driving tumor invasion: who's at the wheel? Genome biology 2009; 10: 213.

174. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251:1451-1455.

175. Takeichi M. Morphogenetic roles of classic cadherins. Current opinion in cell biology 1995; 7: 619-627.

176. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 1988; 102: 639-655.

177. Tarone G, Cirillo D, Giancotti FG, Comoglio PM, Marchisio PC. Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Experimental cell research 1985; 159:141-157.

178. Tehrani S, Tomasevic N, Weed S, Sakowicz R, Cooper JA. Src phosphorylation of cortactin enhances actin assembly. Proceedings of the National Academy of Sciences of the USA 2007; 104:11933-11938.

179. Tomasevic N, Jia Z, Russell A, Fujii T, Hartman }}, Clancy S, Wang M, Beraud C, Wood KW, Sakowicz R. Differential regulation of WASP and N-WASP by Cdc42, Racl, Nek, and PI(4,5)P2. Biochemistry 2007; 46: 3494-3502.

180. Torres E, Rosen MK. Protein-tyrosine kinase and GTPase signals cooperate to phosphorylate and activate Wiskott-Aldrich syndrome protein (WASP)/neuronal WASP. The Journal of biological chemistry 2006; 281: 3513-3520.

181. Troyanovsky RB, Sokolov EP, Troyanovsky SM. Endocytosis of cadherin from intracellular junctions is the driving force for cadherin adhesive dimer disassembly. Molecular biology of the cell 2006; 17: 3484-3493

182. Troyanovsky S. Cadherin dimers in cell-cell adhesion. European journal of cell biology 2005; 84: 225-233.

183. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro. Genes & development 1999; 13: 31913197.

184. Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T. Flamingo, a seven-pass transmembrane Cadherin, regulates planar cell polarity under the control of Frizzled. Cell 1999; 98: 585-595.

185. Vaezi A, Bauer C, Vasioukhin V, Fuchs E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Developmental Cell 2002; 3: 367-381.

186. Vallotton P, Danuser G, Bohnet S, Meister JJ, Verkhovsky AB. Tracking retrograde flow in keratocytes: news from the front. Molecular biology of the cell 2005; 16:1223-1231.

187. Vasiliev JM. Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells. The International journal of developmental biology 2004; 48: 425-439.

188. Vasioukhin V, Bauer C, Yin M, Fuchs E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 2000; 100: 209-219.

189. Verkhovsky AB, Svitkina TM, Borisy GG. Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. The Journal of cell biology 1995; 131: 989-1002.

190. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature reviews. Molecular cell biology 2009; 10: 778-790.

191. Vinson VK, De La Cruz EM, Higgs HN, Pollard TD. Interactions of Acanthamoeba profilin with actin and nucleotides bound to actin. Biochemistry 1998; 37:10871-10880.

192. Virel A, Addario B, Backman L. Characterization of Entamoeba histolytica alpha-actinin2. Molecular and biochemical parasitology 2007; 154: 82-89.

193. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003; 302:1775-1779.

194. Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nature reviews. Cancer 2007; 7: 429-440.

195. Wang Y, Gilmore TD. Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochimica et biophysica acta 2003; 1593:115-120.

196. Weaver AM. Invadopodia. Current biology : CB 2008; 18: R362-364.

197. Weiss EE, Kroemker M, Rudiger AH, Jockusch BM, Rudiger M. Vinculin is part of the cadherin-catenin junctional complex: complex formation between alpha-catenin and vinculin. Journal of Cell Biology 1998; 141: 755-764.

198. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. Journal of cell science 2008; 121: 727.

199. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer cell 2006; 9: 261-272.

200. Wildenberg GA, Dohn MR, Carnahan RH, Davis MA, Lobdell NA, Settleman J, Reynolds AB. pl20-catenin and pl90RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell 2006; 127:1027-1039.

201. Winter-Vann AM, Casey PJ. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Reviews Cancer 2005; 5: 405-412.

202. Wolf K, Friedl P. Molecular mechanisms of cancer cell invasion and plasticity. The British journal of dermatology 2006; 154:11-15.

203. Woodfield RJ, Hodgkin MN, Akhtar N, Morse MA, Fuller KJ, Saqib K, Thompson NT, Wakelam MJ. The p85 subunit of phosphoinositide 3-kinase is associated with |3-catenin in the cadherin-based adhesion complex. The1. Biochemicaljournal 2001; 360: 335-344.

204. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin-catenin-actin complex. Cell 2005; 123: 889-901.

205. Yamazaki D, Oikawa T, Takenawa T. Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion. Journal of cell science 2007; 120: 86-100.

206. Yang C, Czech L, Gerboth S, Kojima S, Scita G, Svitkina T. Novel roles of fori*rin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS biology 2007^ e317.

207. Yang C, Huang M, DeBiasio J, Pring M, Joyce M, Miki H, Takenawa T, ZigmO1"1^ SH. Profilin enhances Cdc42-induced nucleation of actin polymerization. Theof cell biology 2000; 150:1001-1012.

208. Yap AS, Brieher WM, Pruschy M, Gumbiner BM. Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Current biology: CB 1997; 7: 308-315.-1 12

209. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M. a-Catenin as a tension transducer that induces adherens junction development. Nature cell biology 2010; 12: 533-542.

210. Young KG, Copeland JW. Formins in cell signaling. Biochimica et biophysica acta 2010; 1803: 183-190.

211. Zandy, N. L., Playford, M. & Pendergast, A. M. Abl tyrosine kinases regulate cell-cell adhesion through Rho GTPases. Proceedings of the National Academy of Sciences of the USA 2007; 104:17686-17691.

212. Zebda N, Bernard O, Bailly M, Welti S, Lawrence DS, Condeelis JS. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. The Journal of cell biology 2000; 151:1119-1128.

213. Zhang Y, Sivasankar S, Nelson WJ, Chu S. Resolving Cadherin interactions and binding cooperativity at the single-molecule level. Proceedings of the National Academy of Sciences of the USA 2009; 106:109-114.

214. Zheng Y. Dbl family guanine nucleotide exchange factors. Trends in Biochemical Sciences 2001; 26: 724-732.

215. Zigmond SH. Formin-induced nucleation of actin filaments. Current opinion in cell biology 2004; 16: 99-105.

216. Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kämmen RA, Collard JG. Oncogenic Ras downregulates Rae activity, which leads to increased Rho activity and epithelial-mesenchymal transition. The Journal of cell biology 2000; 149: 775-782.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.