Децентрализованная оптимизация с аффинными ограничениями / Decentralized optimization with affine constraints тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Ярмошик Демьян Валерьевич
- Специальность ВАК РФ00.00.00
- Количество страниц 71
Введение диссертации (часть автореферата) на тему «Децентрализованная оптимизация с аффинными ограничениями / Decentralized optimization with affine constraints»
Introduction
1.1 Decentralized Optimization and Affine Constraints
Decentralized optimization is a significant branch of numerical optimization research. Its development began with the consideration of distributed optimization algorithms [8,72]. Later, the notion of decentralized optimization over communication graphs was introduced [53], combining ideas from distributed optimization and consensus algorithms. We provide a more comprehensive literature review in dedicated sections of the following chapters.
Essentially, decentralized optimization is concerned with finding a solution to an optimization problem, di erent parts of which are kept privately at di erent computing nodes. The computing nodes are connected through a communication graph, and the atomic communication operation allows the exchange of information (i.e., numeric arrays) with immediate neighbors only.
Our thesis focuses on decentralized optimization with a ne constraints. A ne constraints are often artificially introduced to solve problems of form ^^ f (x) ^ minx, where f are stored at di erent computing nodes, with the consensus-based reformulation: ^ fi(xi) ^ minx s.t. xi = ... = xn. Since the resulting formulation has separable objective and the variables are only connected through the a ne constraint, such constraints are called coupled. Coupled constraints are also naturally arise in various sharing and resource allocation problems, e.g. in the optimal power flow problem. Sometimes, in addition to the consensus constraint xi = ... = xn each node has another restriction on its variable's value posed as AiXi = bi. Such constraints are called local.
In this thesis we propose new algorithms for decentralized optimization problems with a ne constraints under various assumptions. We provide convergence analysis of our algorithms and construct lower bounds to show their optimality. Numerical experiments are conducted to evaluate practical performance of our algorithms.
1.2 Scientific Novelty
We underline the three main contributions of the thesis:
• Analysis of the decentralized Extragradient method for convex smooth optimization with mixed a ne constraints
• Lower bounds and optimal first-order algorithms for strongly convex decentralized optimization with local a ne constraints on static and time-varying graphs
• Optimal first order decentralized algorithm for coupled constraints in strongly convex setup
Below we explain our contributions in more detail.
1
In Chapter 2 we consider our most general formulation of problem with a ne constraints, which include coupled and local constraints posed as equalities and inequalities. We apply Extragradient method to a decentralized-friendly reformulation of this problem and derive the convergence rates for function value and constraints deviation errors using parameters of the original problem's formulation. Here we assume static communication graph and smooth, convex, but not strongly convex objective function.
In Chapter 3 we focus on local a ne constraints. We adapt several di erent algorithmic approaches for general a ne-constrained optimization to the (consensus) decentralized optimization with local constraints. Utilizing special structure of our consensus-based reformulation, we separate spectral properties of the local constraint's matrix and the gossip matrix in the convergence rates for smooth and strongly convex objectives. These results are extended in Chapter 4 to the time-varying communication graphs, and corresponding lower bounds are also established for both static and time-varying cases.
In Chapter 5 we propose an algorithm with accelerated linear convergence rate for coupled constraints. Due to a degeneracy that appear in decentralized-friendly reformulations of problems with coupled constraints, it is not straightforward to obtain a linearly convergent algorithm. Using augmented Lagrangian technique we develop a first decentralized gradient-descent-like algorithm with linear convergence for coupled constraints. Utilization of Nesterov's and Chebyshev's accelerations allows us to obtain the optimal convergence rate. The lower bound that matches the convergence rate is constructed in this chapter.
The papers, on which the present thesis is based, were prepared with co-authors. The table below specifies the amount of personal contribution of the author in each paper.
Table 1.1: Personal contribution of the author in theoretical results (Theory), text writing (Text) and
numerical experiments (Experiments) for each chapter
Chapter Base paper Theory Text Experiments
Chapter 2 [15] 70% 80% 100%
Chapter 3 [17] 35% 50% 50%
Chapter 4 [81] 80% 90% 100%
Chapter 5 [14] 35% 65% 0%
1.3 Presentations and Validation of Research Results
The results were presented at the following conferences
1. Decentralized Convex Optimization under A ne Constraints for Power Systems Control. International Conference on Mathematical Optimization Theory and Operations Research, Petrozavodsk, Karelia, Russia, July 2-6, 2022.
2. Decentralized Strongly-Convex Optimization with A ne Constraints: Primal and Dual Approaches. XIII International Conference on Optimization and Applications. Petrovac, Montenegro, September 26, 2022 (online).
1.4 Publications
The thesis is based on the following publications
Published papers.
1. Yarmoshik, D., Rogozin, A., Khamisov, O.O., Dvurechensky, P., Gasnikov, A. (2022, June). Decentralized Convex Optimization Under A ne Constraints for Power Systems Control. In: Pardalos, P., Khachay, M., Mazalov, V. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2022. Lecture Notes in Computer Science, vol 13367. Springer, Cham. [15]
2. Rogozin, A., Yarmoshik, D., Kopylova, K., and Gasnikov, A. (2023, January). Decentralized Strongly-Convex Optimization with A ne Constraints: Primal and Dual Approaches. In Advances in Optimization and Applications: 13th International Conference, OPTIMA 2022, Petrovac, Montenegro, September 26-30, 2022, Revised Selected Papers (pp. 93-105). Cham: Sprijnger Nature Switzerland. [17]
3. Yarmoshik, D., Rogozin, A., Gasnikov, A. (2023, October). Decentralized optimization with ane constraints over time-varying networks. Comput Manag Sci 21, 10. [81]
1.5 Structure of the Thesis
The thesis consists of an introduction, four main chapters, list of references and a conclusion.
Chapter
Mixed Affine Constraints. Extragradient Method
Summary
Modern power systems are now in continuous process of massive changes. Increased penetration of distributed generation, usage of energy storage and controllable demand require introduction of a new control paradigm that does not rely on massive information exchange required by centralized approaches. Distributed algorithms can rely only on limited information from neighbours to obtain an optimal solution for various optimization problems, such as optimal power flow, unit commitment etc.
As a generalization of these problems we consider the problem of decentralized minimization of the smooth and convex partially separable function f = ^k=i fk (xk, x) under the coupled ^k=i (Akxk — bk) < 0 and the shared Ax — b < 0 a ne constraints, where the information about Ak and bk is only available for the k-th node of the computational network.
One way to handle the coupled constraints in a distributed manner is to rewrite them in a distributed-friendly form using the Laplace matrix of the communication graph and auxiliary variables (Khamisov, CDC, 2017). Instead of using this method we reformulate the constrained optimization problem as a saddle point problem (SPP) and utilize the consensus constraint technique to make it distributed-friendly. Then we provide a complexity analysis for state-of-the-art SPP solving algorithms applied to this SPP.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Методы решения задач, допускающих альтернативную минимизацию / Methods for Solving Problems That Allow Alternating Minimization2020 год, кандидат наук Тупица Назарий Константинович
Численные методы оптимизации для задач большой размерности: неточный оракул и прямо-двойственный анализ2020 год, доктор наук Двуреченский Павел Евгеньевич
Рандомизированные алгоритмы в задачах оптимизации и управления с приложениями к анализу энергетических систем2022 год, доктор наук Грязина Елена Николаевна
Подход к отслеживанию траектории многороторных летательных аппаратов в неизвестных условиях / Trajectory Tracking Approach for Multi-rotor Aerial Vehicles in Unknown Environments2024 год, кандидат наук Кулатхунга Мудийанселаге Гисара Пратхап Кулатхунга
Общий подход к теории и методологии метода анализа сингулярного спектра2023 год, доктор наук Голяндина Нина Эдуардовна
Заключение диссертации по теме «Другие cпециальности», Ярмошик Демьян Валерьевич
Conclusion
This thesis featured decentralized optimization algorithms designed for problems with a ne constraints. We covered di erent variants of problem formulations. For strongly convex objectives we obtained optimal algorithms and corresponding lower bounds on the complexity of first-order algorithms. All proposed algorithms come with provable convergence rates showing the dependency on problem's parameters.
The potential for applying our algorithms in practice was demonstrated with numerical experiments on real-world problems such as optimal power flow and vertical federated learning. However, we are not yet certain, whether the decentralized setting is useful in practice, or if another distributed protocols with higher level of coordination (e.g. centralized) can be applied instead, facilitating more e cient information exchange while preserving privacy and failure-tolerance, and avoiding communication bottlenecks.
Several open questions remain for future work. First, linearly convergent algorithms for coupled constraints on time-varying networks are unknown. Second, it is desirable to obtain first-order algorithms for more general problem formulations, e.g. including bounded domains of objective functions Xj £ Qj and coupled inequalities with general convex functions ^j gj(xj) < 0. Third, an important for practical applications and not yet implemented feature is the adaptivity of the algorithms. Even incorporation of backtracking adaptive stepsize will significantly reduce the burden of parameter tuning.
Список литературы диссертационного исследования кандидат наук Ярмошик Демьян Валерьевич, 2024 год
Bibliography
[1] ADOM: accelerated decentralized optimization method for time-varying networks / Dmitry Kovalev, Egor Shulgin, Peter Richtârik et al. // International Conference on Machine Learning / PMLR. — 2021. — Pp. 5784-5793.
[2] Accelerated convergence algorithm for distributed constrained optimization under time-varying general directed graphs / Huaqing Li, Qingguo Lu, Xiaofeng Liao, Tingwen Huang // IEEE Transactions on Systems, Man, and Cybernetics: Systems. — 2018. — Vol. 50, no. 7. — Pp. 2612-2622.
[3] Advances and open problems in federated learning / Peter Kairouz, H Brendan McMahan, Brendan Avent et al. // Foundations and trends® in machine learning. — 2021. — Vol. 14, no. 1-2. — Pp. 1-210.
[4] Alghunaim Sulaiman A, Yuan Kun, Sayed Ali H. Dual coupled di usion for distributed optimization with a ne constraints // 2018 IEEE Conference on Decision and Control (CDC) / IEEE. — 2018. — Pp. 829-834.
[5] Array programming with NumPy / Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt et al. // Nature. — 2020. — Vol. 585, no. 7825. — Pp. 357-362. https://doi.org/10.1038/s41586-020-2649-2 (date accessed 18.08.2024).
[6] Arrow Kenneth J, Debreu Gerard. Existence of an equilibrium for a competitive economy // Econo-metrica: Journal of the Econometric Society. — 1954. — Pp. 265-290.
[7] Aybat Necdet Serhat, Hamedani Erfan Yazdandoost. A distributed ADMM-like method for resource sharing over time-varying networks // SIAM Journal on Optimization. — 2019. — Vol. 29, no. 4. — Pp. 3036-3068.
[8] Bertsekas Dimitri P, Tsitsiklis John N. Parallel and distributed computation: numerical methods. — Prentice hall Englewood Cli s, NJ, 1989. — Vol. 23.
[9] Beznosikov Aleksandr, Gorbunov Eduard, Gasnikov Alexander. Derivative-free method for composite optimization with applications to decentralized distributed optimization // IFAC-PapersOnLine. — 2020. — Vol. 53, no. 2. — Pp. 4038-4043.
[10] Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent / Xiangru Lian, Ce Zhang, Huan Zhang et al. // Advances in Neural Information Processing Systems. — 2017. — Pp. 5330-5340.
[11] Carli Ra aele, Dotoli Mariagrazia. Distributed alternating direction method of multipliers for linearly constrained optimization over a network // IEEE Control Systems Letters. — 2019. — Vol. 4, no. 1.
— Pp. 247-252.
[12] Chang Chih-Chung, Lin Chih-Jen. LIBSVM: A library for support vector machines // ACM Trans. Intell. Syst. Technol. — 2011. — may. — Vol. 2, no. 3. — 27 pp. https://doi.org/10.1145/ 1961189.1961199 (date accessed 18.08.2024).
[13] Chang Tsung-Hui. A proximal dual consensus ADMM method for multi-agent constrained optimization // IEEE Transactions on Signal Processing. — 2016. — Vol. 64, no. 14. — Pp. 3719-3734.
[14] Decentralized Optimization with Coupled Constraints / Demyan Yarmoshik, Dmitry Kovalev, Alexander Rogozin et al. // arXiv preprint arXiv:2407.02020. — 2024. https://arxiv.org/abs/2407. 02020 (date accessed 18'08'2024)'
[15] Decentralized convex optimization under a ne constraints for power systems control / Demyan Yarmoshik, Alexander Rogozin, Oleg O Khamisov et al. // International Conference on Mathematical Optimization Theory and Operations Research / Springer. — 2022. — Pp. 62-75.
[16] Decentralized distributed optimization for saddle point problems / Alexander Rogozin, Alexander Beznosikov, Darina Dvinskikh et al. // arXiv preprint arXiv:2\02.01T58' — 2021. https: //arxiv.org/abs/2102.07758 (date accessed 18.08.2024).
[17] Decentralized strongly-convex optimization with a ne constraints: Primal and dual approaches / Alexander Rogozin, Demyan Yarmoshik, Ksenia Kopylova, Alexander Gasnikov // International Conference on Optimization and Applications / Springer. — 2022. — Pp. 93-105.
[18] Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers / Stephen Boyd, Neal Parikh, Eric Chu et al. // Found. Trends Mach. Learn. — 2011. — . — Vol. 3, no. 1. — Pp. 1-122. http://dx.doi.org/10.1561/2200000016 (date accessed 18.08.2024).
[19] Distributed Optimization in Distribution Systems: Use Cases, Limitations, and Research Needs / Niloy Patari, Venkatesh Venkataramanan, Anurag Srivastava et al. // IEEE Transactions on Power Systems. — 2021. — Pp. 1-1.
[20] Doan Thinh T, Olshevsky Alex. Distributed resource allocation on dynamic networks in quadratic time // Systems & Control Letters. — 2017. — Vol. 99. — Pp. 57-63.
[21] Dominguez-Garcia Alejandro D, Cady Stanton T, Hadjicostis Christoforos N. Decentralized optimal dispatch of distributed energy resources // 2012 IEEE 51st IEEE conference on decision and control (CDC) / IEEE. — 2012. — Pp. 3688-3693.
[22] Dual decomposition for multi-agent distributed optimization with coupling constraints / A. Falsone, K' Margellos, S. Garatti, M. Prandini // Automatica. — 2017. — Vol. 84. — Pp. 149-158.
[23] Dualize, split, randomize: Toward fast nonsmooth optimization algorithms / Adil Salim, Laurent Con-dat, Konstantin Mishchenko, Peter Richtârik // Journal of Optimization Theory and Applications. — 2022. — Vol. 195, no. 1. — Pp. 102-130.
[24] Dvinskikh Darina, Gasnikov Alexander. Decentralized and parallel primal and dual accelerated methods for stochastic convex programming problems // Journal of Inverse and Ill-posed Problems.
— 2021. — Vol. 29, no. 3. — Pp. 385-405.
[25] Erseghe T. Distributed Optimal Power Flow Using ADMM // IEEE Transactions on Power Systems.
— 2014. — Sep. — Vol. 29, no. 5. — Pp. 2370-2380.
[26] Federated machine learning: Concept and applications / Qiang Yang, Yang Liu, Tianjian Chen, Yongxin Tong // ACM Transactions on Intelligent Systems and Technology (TEST). — 2019. — Vol. 10, no. 2. — Pp. 1-19.
[27] Gong Kai, Zhang Liwei. Decentralized Proximal Method of Multipliers for Convex Optimization with Coupled Constraints // arXiv preprint arXiv:2310.15596. — 2023. https://arxiv.org/abs/2310. 15626 (date accessed 18.08.2024).
[28] Gong Kai, Zhang Liwei. Push-Pull Based Distributed Primal-Dual Algorithm for Coupled Constrained Convex Optimization in Multi-Agent Networks // arXiv preprint arXiv:2310.15626. — 2023. https: //arxiv.org/abs/2310.15626 (date accessed 18.08.2024).
[29] Gorbunov E., Dvinskikh D., Gasnikov A. Optimal Decentralized Distributed Algorithms for Stochastic Convex Optimization // arXiv:1911.07363. — 2019. https://arxiv.org/abs/1911.07363 (date accessed 18.08.2024).
[30] Gpipe: E cient training of giant neural networks using pipeline parallelism / Yanping Huang, Youlong Cheng, Ankur Bapna et al. // Advances in neural information processing systems. — 2019.
— Vol. 32.
[31] Gutknecht Martin H, Rollin Stefan. The Chebyshev iteration revisited // Parallel Computing. — 2002. — Vol. 28, no. 2. — Pp. 263-283.
[32] Kakade Sham M., Shalev-Shwartz Shai, Tewari Ambuj. Tech. Rep.: : Toyota Technological Institute, 2009.
[33] Khamisov O. O. Direct disturbance based decentralized frequency control for power systems // 2017 IEEE 56th Annual Conference on Decision and Control (CDC). — 2017. — Dec. — Pp. 3271-3276.
[34] Khamisov O. O., Chernova T., Bialek J. W. Comparison of two schemes for closed-loop decentralized frequency control and overload alleviation // 2019 IEEE Milan PowerTech. — 2019. — June. — Pp. 1-6.
[35] Koloskova Anastasiia. Tech. Rep.: : EPFL, 2024.
[36] Korpelevich Galina. The extragradient method for finding saddle points and other problems // Eknomika i Matematicheskie Metody. — 1976. — Vol. 12. — Pp. 747-756.
[37] Kovalev Dmitry, Gasnikov Alexander, Richtárik Peter. Accelerated primal-dual gradient method for smooth and convex-concave saddle-point problems with bilinear coupling // Advances in Neural Information Processing Systems. — 2022. — Vol. 35. — Pp. 21725-21737.
[38] Kovalev Dmitry, Salim Adil, Richtárik Peter. Optimal and practical algorithms for smooth and strongly convex decentralized optimization // Advances in Neural Information Processing Systems. — 2020. — Vol. 33. — Pp. 18342-18352.
[39] Lan Guanghui. First-order and Stochastic Optimization Methods for Machine Learning. — Springer, 2020.
[40] Li Huan, Lin Zhouchen. Accelerated gradient tracking over time-varying graphs for decentralized optimization // Journal of Machine Learning Research. — 2024. — Vol. 25, no. 274. — Pp. 1-52.
[41] Liang S., Wang L. Y., Yin G. Distributed smooth convex optimization with coupled constraints // IEEE Transactions on Automatic Control. — 2020. — Jan. — Vol. 65. — Pp. 347-353.
[42] Liang Shu, Yin George et al. Distributed smooth convex optimization with coupled constraints // IEEE Transactions on Automatic Control. — 2019. — Vol. 65, no. 1. — Pp. 347-353.
[43] Liang S., Zheng X., Y.Hong. Distributed ninsmooth optimization with coupled inequality constraints via modified Lagrangian function // IEEE Transaction on Automatic Control. — 2018. — Vol. 63. — Pp. 1753-1759.
[44] Lower bounds and optimal algorithms for smooth and strongly convex decentralized optimization over time-varying networks / Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov, Peter Richtarik // Advances in Neural Information Processing Systems. — 2021. — Vol. 34.
[45] Necoara Ion, Nedelcu Valentin. Distributed dual gradient methods and error bound conditions // arXiv:1401.4398' — 2014. https://arxiv.org/abs/1401.4398 (date accessed 18.08.2024).
[46] Necoara Ion, Nedelcu Valentin. On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems // Automatica. — 2015. — Vol. 55. — Pp. 209-216.https://www.sciencedirect.com/science/article/pii/S0005109815001004 (date accessed 18.08.2024)'
[47] Necoara Ion, Nedelcu Valentin. On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems // Automatica. — 2015. — Vol. 55. — Pp. 209-216.
[48] Necoara Ion, Nedelcu Valentin, Dumitrache Ioan. Parallel and distributed optimization methods for estimation and control in networks // Journal of Process Control. — 2011. — Vol. 21, no. 5. — Pp. 756-766. — Special Issue on Hierarchical and Distributed Model Predictive Control. https:// www.sciencedirect.com/science/article/pii/S095915241000257X (date accessed 18.08.2024).
[49] Necoara Ion, Nedelcu Valentin, Dumitrache Ioan. Parallel and distributed optimization methods for estimation and control in networks // Journal of Process Control. — 2011. — Vol. 21, no. 5. — Pp. 756-766.
[50] Nedic Angelia. Distributed Gradient Methods for Convex Machine Learning Problems in Networks: Distributed Optimization // IEEE Signal Processing Magazine. — 2020. — Vol. 37, no. 3. — Pp. 92-101.
[51] Nedic Angelia, Olshevsky Alex, Shi Wei. Achieving geometric convergence for distributed optimization over time-varying graphs // SIAM Journal on Optimization. — 2017. — Vol. 27, no. 4. — Pp. 25972633.
[52] Nedi Angelia, Olshevsky Alex, Shi Wei. Improved convergence rates for distributed resource allocation // 2018 IEEE Conference on Decision and Control (CDC) / IEEE. — 2018. — Pp. 172-177.
[53] Nedi A., Ozdaglar A. Distributed Subgradient Methods for Multi-Agent Optimization // IEEE Transactions on Automatic Control. — 2009. — Vol. 54, no. 1. — Pp. 48-61.
[54] Nedi Angelia, Ozdaglar Asuman. Distributed subgradient methods for multi-agent optimization // IEEE Transactions on Automatic Control. — 2009. — Vol. 54, no. 1. — Pp. 48-61.
[55] Nedic Angelia, Ozdaglar Asuman, Parrilo Pablo A. Constrained consensus and optimization in multi-agent networks // IEEE Transactions on Automatic Control. — 2010. — Vol. 55, no. 4. — Pp. 922-938.
[56] Nesterov Yurii. A method of solving a convex programming problem with convergence rate O(1/k2) // Soviet Mathematics Doklady. — 1983. — Vol. 27, no. 2. — Pp. 372-376.
[57] Nesterov Yurii. Introductory Lectures on Convex Optimization: a basic course. — Kluwer Academic Publishers, Massachusetts, 2004.
[58] Olshevsky Alex, Tsitsiklis John N. Convergence speed in distributed consensus and averaging // SIAM Journal on Control and Optimization. — 2009. — Vol. 48, no. 1. — Pp. 33-55.
[59] On biased compression for distributed learning / Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, Mher Safaryan // Journal of Machine Learning Research. — 2023. — Vol. 24, no. 276.
— Pp. 1-50.
[60] Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks / Kevin Scaman, Francis Bach, Sébastien Bubeck et al. // International Conference on Machine Learning. — 2017. — Pp. 3027-3036.
[61] Ram Sundhar Srinivasan, Veeravalli Venugopal V, Nedic Angelia. Distributed non-autonomous power control through distributed convex optimization // IEEE INFOCOM 2009 / IEEE. — 2009. — Pp. 3001-3005.
[62] Randomized gossip algorithms / Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, Devavrat Shah // IEEE transactions on information theory. — 2006. — Vol. 52, no. 6. — Pp. 2508-2530.
[63] Recent theoretical advances in decentralized distributed convex optimization / Eduard Gorbunov, Alexander Rogozin, Aleksandr Beznosikov et al. // High-Dimensional Optimization and Probability.
— Springer, 2022. — Pp. 253-325.
[64] Rostampour Vahab, Haar Ole ter, Keviczky Tamás. Distributed Stochastic Reserve Scheduling in AC Power Systems With Uncertain Generation // IEEE Transactions on Power Systems. — 2019. — Vol. 34, no. 2. — Pp. 1005-1020.
[65] Scutari Gesualdo, Facchinei Francisco, Lampariello Lorenzo. Parallel and distributed methods for constrained nonconvex optimization—Part I: Theory // IEEE Transactions on Signal Processing. — 2016. — Vol. 65, no. 8. — Pp. 1929-1944.
[66] Scutari Gesualdo, Sun Ying. Distributed nonconvex constrained optimization over time-varying digraphs // Mathematical Programming. — 2019. — Vol. 176, no. 1. — Pp. 497-544.
[67] Silva-Rodriguez Jesus, Li Xingpeng. Privacy-Preserving Decentralized Energy Management for Networked Microgrids via Objective-Based ADMM // arXiv preprint arXiv:2304.03649. — 2023. https://arxiv.org/abs/2304.03649 (date accessed 18.08.2024).
[68] A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems / D. K. Molzahn, F. Dorfler, H. Sandberg et al. // IEEE Transactions on Smart Grid. — 2017.
— Nov. — Vol. 8, no. 6. — Pp. 2941-2962.
[69] Swarm-LIO: Decentralized Swarm LiDAR-inertial Odometry / Fangcheng Zhu, Yunfan Ren, Fanze Kong et al. // 2023 IEEE International Conference on Robotics and Automation (ICRA) / IEEE. — 2023. — Pp. 3254-3260.
[70] Tracking-ADMM for distributed constraint-coupled optimization / A. Falsone, I. Notarnicola, G. Notarstefano, M. Prandini // Automatica. — 202. — Vol. 117. — Pp. 1-13.
[71] Tracking-ADMM for distributed constraint-coupled optimization / Alessandro Falsone, Ivano Notarnicola, Giuseppe Notarstefano, Maria Prandini // Automatica. — 2020. — Vol. 117. — P. 108962.
[72] Tsitsiklis John Nikolas. Tech. Rep.: : Massachusetts Inst of Tech Cambridge Lab for Information and Decision Systems, 1984.
[73] VGAI: End-to-end learning of vision-based decentralized controllers for robot swarms / Ting-Kuei Hu, Fernando Gama, Tianlong Chen et al. // ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) / IEEE. — 2021. — Pp. 4900-4904.
[74] Van den Bergh Kenneth, Delarue Erik, Dhaeseleer William. DC power flow in unit commitment models // no. May. — 2014.
[75] Wang Jianzheng, Hu Guoqiang. Distributed Optimization with Coupling Constraints in Multi-Cluster Networks Based on Dual Proximal Gradient Method // arXiv preprint arXiv:2203.00956. — 2022. https://arxiv.org/abs/2203.00956 (date accessed 18.08.2024).
[76] Wang Yamin, Wu Lei, Wang Shouxiang. A fully-decentralized consensus-based ADMM approach for DC-OPF with demand response // IEEE Transactions on Smart Grid. — 2016. — Vol. 8, no. 6. — Pp. 2637-2647.
[77] Wang Yamin, Wu Lei, Wang Shouxiang. A Fully-Decentralized Consensus-Based ADMM Approach for DC-OPF With Demand Response // IEEE Transactions on Smart Grid. — 2017. — Vol. 8, no. 6. — Pp. 2637-2647.
[78] Wien Auzinger. Iterative solution of large linear systems. — Lecture Notes, TU Wien, 2011.
[79] Wnag Z., Ong C. J. Distributed model predictive control of linear descrete-times systems with local and global cosntraints // Automatica. — 2017. — Vol. 81. — Pp. 184-195.
[80] Wu Xuyang, Wang He, Lu Jie. Distributed optimization with coupling constraints // IEEE Transactions on Automatic Control. — 2022.
[81] Yarmoshik Demyan, Rogozin Alexander, Gasnikov Alexander. Decentralized optimization with a ne constraints over time-varying networks // Computational Management Science. — 2024. — Vol. 21, no. 1. — P. 10.
[82] Yuan D., Ho D. W. C., Jiang G. P. An adaptive primal-dual subgradient algorithm for online distributed constrained optimization // IEEE Transactions on Cybernetics. — 2018. — Vol. 48. — Pp. 3045-3055.
[83] Zhang Bingru, Gu Chuanye, Li Jueyou. Distributed convex optimization with coupling constraints over time-varying directed graphs // Journal of Industrial and Management Optimization. — 2021.
— Vol. 17, no. 4. — Pp. 2119-2138.
[84] Zhang Haixiang, Chen Ying, Lavaei Javad. Geometric Analysis of Matrix Sensing over Graphs // Advances in Neural Information Processing Systems. — 2024. — Vol. 36.
[85] Zhou Hua, Lange Kenneth. A path algorithm for constrained estimation // Journal of Computational and Graphical Statistics. — 2013. — Vol. 22, no. 2. — Pp. 261-283.
[86] Zhu Minghui, Martinez Sonia. On distributed convex optimization under inequality and equality constraints // IEEE Transactions on Automatic Control. — 2011. — Vol. 57, no. 1. — Pp. 151-164.
[87] An optimal algorithm for strongly convex minimization under a ne constraints / Adil Salim, Laurent Condat, Dmitry Kovalev, Peter Richtârik // International Conference on Artificial Intelligence and Statistics / PMLR. — 2022. — Pp. 4482-4498.
[88] An optimal design method for communication topology of wireless sensor networks to implement fully distributed optimal control in IoT-enabled smart buildings / Wenzhuo Li, Rui Tang, Shengwei Wang, Zhuang Zheng // Applied Energy. — 2023. — Vol. 349. — P. 121539.
[89] A state-independent linear power flow model with accurate estimation of voltage magnitude / Jingwei Yang, Ning Zhang, Chongqing Kang, Qing Xia // IEEE Transactions on Power Systems. — 2016. — Vol. 32, no. 5. — Pp. 3607-3617.