Cosmological Evolution in R+R2 modified gravity тема диссертации и автореферата по ВАК РФ 01.04.02, кандидат наук Раджниш Сингх

  • Раджниш Сингх
  • кандидат науккандидат наук
  • 2022, ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет»
  • Специальность ВАК РФ01.04.02
  • Количество страниц 92
Раджниш Сингх. Cosmological Evolution in R+R2 modified gravity: дис. кандидат наук: 01.04.02 - Теоретическая физика. ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет». 2022. 92 с.

Оглавление диссертации кандидат наук Раджниш Сингх

Contents

Declaration of Authorship i

Acknowledgements ii

Abstract iv

1 Introduction

1.1 Modified Gravity Theories

1.1.1 Einstein-Cartan Theory

1.1.2 Gauss-Bonnet Gravity

1.1.3 Brans-Dicke Theory

1.2 f (R)-gravity

1.2.1 Metric f (R) gravity

1.2.2 Palatini f (R) gravity

1.2.3 Metric-affine f (R) gravity

1.2.4 Starobinsky Inflation

4

1.2.5 The (R - ^) model

2 Evolution in R + R2 gravity

2.1 The Modified Einstein's Field Equations

2.2 Solution from the beginning to gt

2.2.1 Solution at inflationary epoch

2.2.2 Numerical solutions at post-inflationary epoch

2.2.3 Asymptotic behavior of the solution at t » 1 and w = 1/3

2.2.4 Asymptotic solution at t » 1, gt < 1, and w =

2.2.5 Energy influx to cosmological plasma from the scalaron decay

2.2.6 Features of the distinctive cosmological evolution at t < 1/g

2.3 Solution at gt &

3 Dark Matter

3.1 Galaxy Rotation Curves

3.2 Possible Candidates

3.3 LSP as dark matter in R + R2 gravity

3.3.1 R2 -gravity versus General Relativity

3.3.2 LSP density for the scalaron decay into scalars

3.3.3 Decay into fermions or conformal scalars

3.4 Anomalous decay into gauge bosons

4 Dark matter in R + R2 cosmology with conformal anomaly

4.1 X-particle production through the scalaron decay

4.2 Production of X-particles in thermal plasma

4.3 Possible Observations

5 Conclusion

List of Figures

1.1 The Einstein Frame potential V (f) [44]

2.1 Evolution of h(t) at the inflationary stage with the initial values of dimensionless curvature r = 300 (left) and 600 (right). Initially h is taken to be zero, hin = 0, but it quickly reaches the value given by Eq. (2.2.2), h(0) = \J—r0/12. The numbers of e-foldings, according to Eq. (2.2.1), are respectively 75 and

2.2 Evolution of the dimensionless energy density of matter during inflation for w = 0 (solid line) and w = 1/3 (dotted line). Left panel: initially yn = 0 and right panel: yin = 0.1. The initial fast rise of p from zero in the left panel during short time is generated by the S[r]-term (2.1.18) taken as S[r] = (r')2/288n. The results are not sensitive to the form S[r] because at inflation y(t) quickly vanishes anyhow

2.3 Evolution of the dimensionless curvature scalar for rn = —300 (solid) and rn = —600 (dotted). Left panel: shows evolution during inflation and right panel: shows evolution after the end of inflation when curvature scalar starts to oscillate

2.4 Evolution of the curvature scalar tr(t) in post-infationary epoch. Left panel (w=1/3): initially rin = —300 (solid), rn = —600 (dotted). There is absolutely no difference between the curves. Right panel (rin = —300): w = 1/3 (solid) and w = 0 (dotted). The difference is minuscule. The source term (2.1.18) here is taken as S[r] = (r')2/1152n.

The results are not sensitive to its form

2.5 Evolution of the Hubble parameter, ht, in post-inflationary epoch for w = 1/3 (solid

line) and w = 0 (dotted)

2.6 Evolution of the energy density of matter yt at small t (left) and at large t (right). Parameter w = 1/3 (solid) and w = 0 (dotted)

2.7 Left panel: comparison of numerical solution for ht (solid) with analytic estimate (2.2.20) (dotted). Right panel: the same for numerically calculated rt with analytic result (2.2.21). The difference between the solid and dotted curves is not observable

2.8 Comparison of the numerical solution for the dimensionless energy density 120nt y(t) (solid) for w = 1/3 with the asymptotic expression (2.2.29) (dotted) for moderately large t (left panel) and very large t (right panel). The agreement is very good

2.9 Numerical solution of Eq. (2.2.7) for 120nty(t) in different time intervals with w =

1/3

2.10 Comparison of the solutions of the differential Eq. (2.2.32) for w = 0: integral solution (2.2.33) (solid) and asymptotic solution (2.2.34) (dotted). The dimensionless energy density 72 nt y(t) is presented for moderately large t (left panel) and very large t (right panel). The agreement is very good

3.1 Sketch of the observed HI rotation curve of the dwarf galaxy M33(red solid line) and

of that expected from the stellar distribution(blue dashed line) [69]

4.1 Log of ratio of the calculated number density of X-particles to the equilibrium number density (4.2.5) calculated in the limit nx ^ nei?;

left panel: y;n = 0.1 and right panel: y;n =

4.2 Log of the ratio of the calculated number density of X-particles to the equilibrium number density (4.2.5) calculated in the limit nx ^ nei?;

left panel: yin = 20 and right panel: yin =

4.3 Evolution of u(y) for y = 100 (left) and y = 50 (right)

4.4 Evolution of u(y) for y = 30 (left) and y = 20 (right)

4.5 Log of the ratio of the energy density of X-particles (4.2.15) to the observed energy density of dark matter as a function of y = Mr /Mx

Рекомендованный список диссертаций по специальности «Теоретическая физика», 01.04.02 шифр ВАК

Введение диссертации (часть автореферата) на тему «Cosmological Evolution in R+R2 modified gravity»

Introduction

In this chapter, the reason why alternatives to General Relativity are needed is briefly explored and then we lightly scratch the surface of some of the modified gravity theories present out there. For a comprehensive review on almost all kind of modified gravity theories readers can refer to [1, 2, 3, 4]. Later, we discuss f(R) gravity in detail, which is the main framework for this thesis.

The Einstein's theory of gravitation [5, 6] had been really successful after its importance was realized in 1920 [7]. It provided a new dimension to physics and especially to cosmology. It described the basic properties of the Universe with very good agreement with the observations. The theory of General Relativity (GR) is based on the Einstein-Hilbert action given as:

here R is the curvature scalar, mpi = 1.22 • 1019 GeV is the Planck mass, which is related to the gravitational coupling constant as mp = G—1 and g is the determinant of the metric tensor g^v. However even after the massive success of GR, some astonishing observations in the late 1990s made it quite clear that some alternative to GR is needed to explain the new observations. So, a natural choice was higher order extension of GR and modified gravity theories.

Похожие диссертационные работы по специальности «Теоретическая физика», 01.04.02 шифр ВАК

Заключение диссертации по теме «Теоретическая физика», Раджниш Сингх

Conclusion

In chapter 2 it was found that the cosmological evolution in R2-gravity is drastically different from that of GR based cosmology. The history of cosmological evolution in R2-modified gravity can be separated into four distinct epoch. At first, there was the exponential expansion, the curvature scalar R(t) was very large but as the universe expanded it slowly started to decrease. At this stage the universe was void and dark with slowly decreasing curvature scalar R(t). To ensure sufficiently long inflation, it is necessary that the initial value of R should be quite large, R > 300m2 , such that the number of e-folding exceeded 70.

The next epoch began when R(t) dropped down to zero and started to oscillate as R ~ m cos(mt)/t. The oscillations of R led to particle production and this moment can be considered as Big Bang. The universe expansion at this stage is described by very simple, but unusual law with the Hubble parameter periodically reaching (almost) zero, H = (2/3t)[1 + sin(mt)] (2.2.20). Such a regime was realised asymptotically for large time, mt ^ 1, but Gt . 1.

Later, when time becomes so large that Gt exceeds unity, the oscillations of all relevant quantities exponentially damps down and the particle production by curvature switches off, becoming negligible. This marks the next epoch which is the transition period from scalaron domination to the relativistic matter domination, and it takes place when Gt becomes larger than unity by the logarithmic factor, ln(mpi /m). Finally, after scalaron had decayed completely we arrive to the standard cosmology which is governed by General Relativity. A comparison of theoretical prediction with CMB fluctuation data gives the value of m, later indicated as mr — 3 1013GeV. The unusual cosmological evolution during early period, t < 1/G, lead to modification of the cosmological baryogenesis scenarios, which can affect the probability of the formaltion of primordial black holes, and the frozen number density of dark matter particles.

Usually the cosmological abundance, nx, is inversely proportional to the Planck mass squared. However, for the regime Gt . 1, nx depends on the mass of scalar mR and is independent of mvi. This fact opened the possibility for LSPs with mass larger than TeVs to form the cosmological dark matter.

This possibility was explored in chapter 3. First it was discovered that due to the continuous and slow production of matter by scalaron field, R(t), the temperature

of the ordinary matter in the universe drops much slower than in the usual FLRW cosmology. This led to a new modified canonical relation between temperature of matter and cosmological time which is T4t = Cr2 where as it is usually T21 = Cgr. Here Cgr is a universal constant which is proportional to Planck mass, whereas Cr2 is a constant which depends entirely on the model.

Next to study the number density of LSP, we used the Zeldovich equation and studied two cases i.e. scalaron decays into a pair of scalars or into a pair of fermions. If scalaron decays into a pair of scalars, then LSP can play the role of dark matter particle if it is considerably heavier than the scalaron. For the next case, when scalaron decays into fermions or conformally coupled scalars the mass of LSP may be at the level of 103 TeV, which can open the possibility for their direct detection in experiments. However, such energies are still beyond the reach of present accelerators. The search for such dark matter particles in low background experiments looks presently more feasible. If they are discovered, it would be an interesting confirmation of R2 inflationary model.

However, the analysis presented in Chapter 3 was done without the consideration of conformal anomaly. This restiction was lifted in Chapter 4, and the model was studied with strength of conformal anomaly. In the presence of conformal anomaly, the thermalization of the cosmological plasma is caused by the creation of gauge bosons and the reactions between them led to creation of all other particles.

Again two processes were considered for the production of X-particle, first being the direct decay of scalaron into a pair XX and secondly, by thermal production of X-particles in the plasma. To restrict the density of X-particles produced by the direct decay the observed value Mx should be below 107 GeV but it leads to very strong thermal production of these particles. This inconsistency was resolved by considering that the X particles are Majorana fermions, therefore the production of X particles by direct decay of scalaron is suppressed which allowed us to have larger a value for Mx and the thermal production of X particle is favourable. It opens the possibility for X-particles to make proper amount of dark matter, if their mass is about 5 ■ 1012 GeV.

So a supersymmetric type of dark matter particles seems to be possible only if their mass is quite high i.e. from 106 up to 5 x 1012 GeV, or even higher than the scalaron mass, mR = 3 x 1013 GeV. There is no possibility in near future to discover these particles, but they may be observable through cosmic rays from their annihilation in high density clumps of dark matter, or from annihilation in their gravita-tionally bound two-body states, or through the products of their decays, since they naturally should be unstable.

Список литературы диссертационного исследования кандидат наук Раджниш Сингх, 2022 год

Bibliography

[1] S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59.

[2] T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept. 513 (2012) 1.

[3] S. Capozzziello and M. De Laurentis, Extended Theories of Gravity, Phys. Rept. 509 (2011) 167.

[4] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, Phys. Rept. 692 (2017) 1.

[5] D. Hilbert, Die Grundlagen der Physik", Konigl. Gesell. d. Wiss. Göttingen, Nachr. Math.-Phys. Kl. (1915) 395-407.

[6] A. Einstein,Die Feldgleichungen der Gravitation". Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915) 844-847.

[7] F. W. Dyson, A. S. Eddington and C. Davidson, A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observation Made at the Total Eclipse of May 29,1919, Phil. Trans. Roy. Soc. A 220 (1920) 571.

[8] H. Weyl, A new extension of theory of Relativity, Ann. Phys. 59 (1919) 101.

[9] A. S. Eddington, The Mathematical Theory of Relativity, Cambridge University Press (1923), Cambridge.

[10] R. Utiyama and B. S. Witt, Renormalization of a Classical Gravitational Field Interacting with Quantized Matter Fields, J. Math. Phys. 3 (1962) 608.

[11] H. J. Schmidt, Fourth Order Gravity: Equations, History, and applications to Cosmology, Int. Geom. Meth. Phys. 4 (2007) 209.

[12] C. M. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press, New York (1981).

[13] V. C. Rubin and W. K. Ford, Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J. 159 (1970) 379.

[14] A.G. Reiss et al.,Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron. J. 116 (1998) 1009.

[15] E. Komatsu et al.,Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, ApJS. 192 (2011) 18.

[16] Élie Cartan, Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, Comptes rendus de l'Académie des Sciences de Paris (in French) 174 (1922) 593.

[17] Élie Cartan,Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie), Annales Scientifiques de l'École Normale Supérieure (in French) 40 (1923) 325.

[18] Élie Cartan, Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite), Annales Scientifiques de l'École Normale Supérieure (in French), 41 (1924) 1-25.

[19] Élie Cartan, Sur les variétés à connexion affine, et la théorie de la relativité généralisée (deuxième partie), Annales Scientifiques de l'École Normale Supérieure (in French) 42 (1925) 17.

[20] D. W. Sciama, The Physical Structure of Modern Physics, Rev. Mod. Phys. 36 (1964) 463.

[21] T. W. B Kibble, Lorentz invariance and the gravitational field, J. Math. Phys. 2 (1961) 212.

[22] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick and J. M. Nester, General relativity with spin and torsion: foundations and prospects, Rev. Modern Phys. 48 (1976) 393.

[23] A. Trautman, Einstein-Cartan theory, 2006 [arXiv:gr-qc/0606062].

[24] David Lovelock, The Einstein tensor and its generalization, J. Math. Phys. 12 (1971) 498.

[25] C. Brans and R. H. Dicke, Mach's Principle and a Relativistic Theory of Gravitation, Phys. Rev. 124,925.

[26] M. Biesiada and B. Malec, A new white dwarf constraint on the rate of change of the gravitational constant, Mon. Not. Roy. Astron. Soc. 350 (2004) 644 [arXiv:astro-ph/0303489].

[27] O.G. Benvenuto et al., Asteroseismological bound on G from pulsating white dwarfs, Phys. Rev. D 69 (2004) 082002.

[28] J.P.W. Verbiest et al., Precision timing of PSR J0437-4715: an accurate pulsar distance, a high pulsar mass and a limit on the variation of Newton's gravitational constant, Astrophys. J. 679 (2008) 675 [arXiv:0801.2589].

[29] E. Gaztanaga et al., Bounds on the possible evolution of the gravitational constant from cosmological type la supernovae, Phys. Rev. D 65 (2002) 023506 [arXiv:astro-ph/0109299].

[30] S. E. Thorsett, The Gravitational constant, the Chandrasekhar limit, and neutron star masses, Phys. Rev. Lett. 77 (1996) 1432 [arXiv:astro-ph/9607003].

[31] P. Jordan, Fünfdimensionale Kosmologie, Astr. Nachr. 276 (1948) 193208.

[32] P. Jordan, Zum gegenwärtigen stand der Diracschen kosmologischen hypothesen, Z. Phys. 157 (1959) 112.

[33] I. Quiros et al., Brans-Dicke Galileon and the variational principle, Eur. J. Phys. 37 (2016) 5 [arXiv:1605.00326].

[34] O. Hrycyna and M. Szydlowski, Brans-Dicke Theory and the emergence of LCDM model, Phys. Rev. D 88 (2013) 064018.

[35] S. Weinberg, Gravitation and Cosmology, John Wiley, New York (1972).

[36] A. Einstein, "The Foundation of the General Theory of Relativity," Annalen Phys. 49 (1916) no.7, 769 [Annalen Phys. 14 (2005) 517].

[37] V.Ts. Gurovich and A.A. Starobinsky, Quantum effects and regular cosmological models, Sov. Phys. JETP 50 (1979) 844; [Zh. Eksp. Teor. Fiz. 77 (1979) 1683]; A.A. Starobinsky, JETP Lett. 30 (1979) 682; [Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719].

[38] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91,99 (1980) 99.

[39] J. Hwang and H. Noh, f (R) gravity theory and CMBR constraints, Phys. Lett. B 506 (2001) 13.

[40] L. A. Kofman, V. F. Mukhanov and D. I. Pogosian, The evolution of inhomo-geneities in inflationary models in the theory of gravitation with higher derivatives, Zh. Eksp. noi. i Teo. Fiz. 93 (1987) 769.

[41] V. F. Mukhanov and G. V. Chibisov, Quantum fluctuations and a non-singular universe, JETP Lett. 33 (1981) 532.

[42] M. L. Ruggiero and L. Lorio, Solar System planetary orbital motions and f (R) theories ofgravity, JCAP 01 (2007) 010.

[43] A. Vilenkin, Classical and quantum cosmology of the Starobinsky inflationary model, Phys. Rev. D 32 (1985) 2511.

[44] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D 70 (2004) 043528.

[45] S. Capozziello, S. Carloni and A. Troisi, Quintessence without scalar fields, Recent Res.Dev.Astron.Astrophys. 1 (2003) 625 [arXiv: astro-ph/0303041].

[46] P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nuci. Phys. B 258 (1985) 46; S. Nojiri and S.D. Odintsov, Phys. Lett. B 576 (2003) 5; S. Nojiri, S.D. Odintsov, and M. Sami, Phys. Rev. D 74 (2006) 046004.

[47] M. Hindmarsh, I. D. Saltas, f(R) Gravity from the renormaiisation group, Phys. Rev. D 86(2012) 064029.

[48] A. D. Dolgov and M. Kawasaki, Can modified gravity expiain acceierated cosmic expansion?, Phys. Lett. B 573 (2003) 1; S. Nojiri and S. D. Odintsov, Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceieration, Phys. Rev. D 68 (2003) 123512.

[49] V. Faraoni, Soiar system experiments do not yet veto modified gravity modeis, Phys Rev D 74 (2006) 104017.

[50] G. Cognola and S. Zerbini, One-ioopf(R) gravitationai modified modeis, J Phys A 39 (2006) 6245.

[51] E.V. Arbuzova, A.D. Dolgov and R.S. Singh, Distortion of the standard cosmoiogy in R + R2 gravity, JCAP 07 (2018) 019.

[52] A. A. Starobinsky, Nonsinguiar Modei of the Universe with the Quantum-Gravitationai de Sitter Stage and its Observationai Consequences, in Proceedings of The Second Seminar Quantum Theory of Gravity (Moscow, 13-15 Oct. 1981), INR Press, Moscow, 1982, pp. 58-72 (reprinted in Quantum Gravity, eds. M. A. Markov, P. C. West, Plenum Publ. Co., New York, pp. 103-128).

[53] Ya. B. Zeldovich and A. A. Starobinsky,Rate ofparticie production in gravitationai fieid, JETP Lett. 26 (1977) 252.

[54] M. B. Mijic, M. S. Morris and W. M. Suen, The R2 Cosmoiogy: Inflation Without a Phase Transition Phys. Rev. D34, (1986) 2934.

[55] Wai-Mo Suen, P. R. Andreson, Reheating in the Higher Derivative Inflationary Modeis, Phys. Rev. D 35, 2940-2954 (1987).

[56] D.S. Gorbunov, A.G. Panin, Scaiaron the mighty: producing dark matter and baryon asymmetry at reheating, Phys.Lett. B700 (2011) 157-162, [arXiv:1009.2448 [hep-ph]].

[57] D.S. Gorbunov, A.G. Panin,Free scaiar dark matter candidates in R2-inflation: the iight, the heavy and the superheavy, Phys. Lett. B718 (2012) 15, [arXiv:1201.3539 [astro-ph.CO]]

[58] E. V. Arbuzova, A. D. Dolgov and L. Reverberi, Cosmoiogicai evoiution in R2 gravity, JCAP 02 (2012) 049.

[59] A. De Felice and S. Tsujikawa, /(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928].

[60] A. A. Starobinsky, On a nonsingular isotropic cosmological model, Sov. Astron. Lett. 4 (1978) 82.

[61] A.D. Dolgov and S.H. Hansen, Equation o/motion o/a classical scalar field with back reaction o/produced particles, Nucl.Phys. B 548 (1999) 408-426 [hep-ph/9810428].

[62] A. S. Koshelev L. Modesto, L. Rachwal, A.A. Starobinsky, Occurence o/exact R2 inflation in non-local UV-complete gravity, /HEP 11 (2016) 067. [arXiv:1604.03127].

[63] T. Faulkner, M. Tegmark, E. F. Bunn and Y. Mao, Constraining/(R) Gravity as a Scalar Tensor Theory, Phys. Rev. D 76 (2007) 063505 [astro-ph/0612569].

[64] J. C. Kapteyn, First Attempt at a Theory of the Arrangement and Motion of the Sidereal System, Astrophys. /. 55 (1922) 302.

[65] J. H. Oort, The force exerted by the stellar system in the direction perpendicular to the galactic plain and some related problems, Bull. Astron. Inst. Netherland 6 (1932) 249.

[66] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6 (1933) 110.

[67] Einasto, J., Kaasik, A., Saar, E., Nature, 250 (1974) 309.

[68] J. P. Ostriker, P. J. E. Peebles and A. Yahil, Astrophys. J. 193 (1974) L1.

[69] C. Bambi and A. D. Dolgov, Introduction to Particle Cosmology: The Standard Model of Cosmology and its Open Problems; UNITEXT for Physics, Springer-Verlag Berlin Heidelberg 2016.

[70] D. Clowe, A. Gonzalez, Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657-558: Direct Evidence/or the Existence of Dark Matter, Astrophys. /. 604 (2004) 596[arXiv: astro-ph/0312273].

[71] C. Afonso et al., EROS Collaboration, Limits on galactic dark matter with 5 years of EROS SMC data, Astron. Astrophys. 400 (2003) 951[arXiv: astro-ph/0212176].

[72] C. Alcock et al., MACHO Collabration, The MACHO project: Microlensing results from 5.7 years o/LMC observations, Astrophys. /. 542 (2000) 281 [arXiv: astro-ph/0001272].

[73] P. Tisserand et al., EROS-2 Collaboration, Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey o/the Magellanic Clouds, Astron. Astrophys. 469 (2007) 387 [arXiv: astro-ph/0607207].

[74] J. M. Overduin and P. S. Wesson, Dark matter and Background Light, Physics Report, 402 (2004)(5-6):267-406[arXiv: astro-ph/0407207].

[75] K. Jedamzik, Primordial biack hoie dark matter and the LIGO/VIRGO observations, JCAP 09 (2020) 022.

[76] R. Catena and L. Covi, SUSY dark matter(s), Eur. Phys. J. C 74, (2014) 2703 [arXiv: 1310.4776 [hep-ph]].

[77] G. B. Gelmini, The Hunt for Dark Matter, in Proceedings, Theoreticai Advanced Study Institute in Eiementary Particie Physics: Journeys Through the Precision Frontier: Ampiitudes for Coiiiders (TASI 2014), Boulder, CO, U.S.A., June 2-27, 2014, pp. 559-616 (2015) [arXiv:1502.01320 [hep-ph]].

[78] M. Lisanti, Lectures on Dark Matter Physics, in Proceedings, Theoreticai Advanced Study Institute in Eiementary Particie Physics: New Fronteirs in Fieids and Strings (TASI 2015), Boulder, CO, U.S.A., June 1-26, 2015, pp. 399-446 (2017) [arXiv:1603.03797 [hep-ph]].

[79] T. R. Slatyer, Indirect Detection of Dark Matter, in Proceedings, Theoreticai Advanced Study Institute in Eiementary Particie Physics: New Fronteirs in Fieids and Strings (TASI 2016), Boulder, CO, U.S.A., June 6-July 1, 2016, pp. 297-353 (2018) arXiv:1710.05137 [hep-ph]].

[80] J. M. Cline, TASI Lectures on Eariy Universe Cosmoiogy: Inflation, Baryogenesis and Dark Matter, PoS (TASI 2018) (2019) 001 [arXiv:1807.08749 [hep-ph]].

[81] S. Chatrchyan et al. (CMS Collaboration), Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352v1[hep-ex]].

[82] G. Aad et al. (The ATLAS Collaboration), Combined search for the Standard Modei Higgs boson using up to 4.9 fb-1 ofpp coiiision data at y/s = 7TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408v3[hep-ex]].

[83] G.L. Kane, P. Kumar, B.D. Nelson and B. Zheng, Dark matter production mechanisms with a nonthermai cosmoiogicai history: A ciassification, Phys. Rev. D 93 (2016) no.6, 063527 [arXiv: 1502.05406].

[84] M. Drees and F. Hajkarim, Neutraiino Dark Matter in Scenarios with Eariy Matter Domination, JHEP12 (2018) 042 [arXiv:1808.05706].

[85] A. D. Dolgov, P. D. Naselsky and I. D. Novikov, Gravitationai waves, brayogenesis and dark matter from primordiai biack hoies [arXiv: astro-ph/0009407].

[86] S. V. Ketov and A. A. Starobinsky, Embedding R + R2-Inflation into Supergravity, Phys. Rev. D 83 (2011) 063512 [arXiv:1011.0240 [hep-th]].

[87] A. Addazi, S.V. Ketov, and M.Yu. Khlopov, Gravitino and Poionyi production in supergravity, Eur. Phys. J. C 78 (2018) 642 [arXiv:1708.05393 [hep-ph]].

[88] S. Ketov and M. Khlopov, Extending Starobinsky inflationary model in gravity and supergravity, Bled Workshops in Phys. 19 (2018) pp.148 [arXiv:1809.09975 [hep-th]].

[89] L. Parker, Particle creation in expanding universes, Phys. Rev. Lett. 21 (1968) 562.

[90] Y. B. Zeldovich, Survey of Modern Cosmology, Adv. Astron. Astrophys. 3 (1965) 241.

[91] Y. B. Zeldovich, L. B. Okun and S. B. Pikelner, Quarks, astrophysical and physico-chemical aspects, Phys. Lett. 17 (1965) 164.

[92] Y. B. Zeldovich, L. B. Okun and S. B. Pikelner, Quarks, astrophysical and physico-chemical aspects, Sov. Phys. Usp. 8 (1965) 702[Usp. Phys. Nauk. 87 (1965) 113].

[93] B. W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165.

[94] M. I. Vysotsky, A. D. Dolgov and Y. B. Zeldovich, Cosmological Restriction on Neutral Lepton Masses, JETP Lett. 26 (1977) 188 [Pisma Zh. Eksp. Teor. Fiz. 26 (1977) 200].

[95] A. D. Dolgov, Massless Particle Production By Conformal Plane Gravitation Field. (in Russian), Pisma Zh. Eksp. Teor. Fiz. 32 (1980) 673.

[96] A. D. Dolgov, Conformal Anomaly and the Production of Massless Particles by a Conformably Flat Metric, Sov. Phys. JETP 54 (1981) 223 [Zh. Eksp. Teor. Fiz. 81 (1981) 417].

[97] A. Dolgov, Breaking of conformal invariance and electromagnetic field generation in the universe, Phys. Rev. D 48 (1993) 2499 [hep-ph/9301280].

[98] D. Gorbunov and A. Tokareva, R2-inflation with conformal SM Higgs field, JCAP 12 (2013) 021 [arXiv:1212.4466 [astro-ph.CO]].

[99] M. F. Sohnius, Introducing Supersymmetry, Phys. Rept. 128 (1985) 39.

[100] M. Chaichian, W. F. Chen and C. Montonen, New superconformal field theories in four-dimensions and N=2 duality, Phys. Rept. 346 (2001) 89 [hep-th/0007240].

[101] S.I. Blinnikov and A.D. Dolgov, Cosmological acceleration, Phys.Usp. 62 (2019) 529.

[102] A. I. Akhiezer and V. B. Berestetsky, Quantum electrodynamics, Interscience Publishers (1965).

[103] U. Kraemmer, A. K. Rebhan and H. Schulz, Resummations in hot scalar electrodynamics, Annals Phys. 238 (1995) 286 [arXiv:hep-ph/9403301].

[104] J. I. Kapusta and C. Gale, Finite temperature field theory: Principles and Applications, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2006).

[105] M. Le Bellac, Quantum And Statisticai Fieid Theory, Clarendon Press, Oxford U.K. (1991).

[106] V. S. Berezinsky, V. I. Dokuchaev and Y. N. Eroshenko, Smaii-scaie ciumps of dark matter, Phys. Usp. 57 (2014) 1 [Usp. Fiz. Nauk 184 (2014) 3] [arXiv:1405.2204 [astro-ph.HE]].

[107] V. Berezinsky, A. Bottino and G. Mignola, On neutraiino stars as microiensing objects, Phys. Lett. B 391 (1997) 355 [arXiv:astro-ph/9610060].

[108] A.D. Supanitsky and G. Medina-Tanco, Uitra high energy cosmic rays from superheavy dark matter in the context of iarge exposure observatories, arXiv: 1909.09191 [astro-ph.HE].

[109] Ya.B. Zeldovich, A new type of radioactive decay: gravitationai annihiiation of baryons, Phys. Lett. A 59 (1976) 254.

[110] Ya.B. Zeldovich, A Novei Type of Radioactive Decay: Gravitationai Baryon Annihiiation , Zh. Eksp. Teor. Fiz. 72 (1977) 18.

[111] C. Bambi, A.D. Dolgov and K. Freese, A Biack Hoie Conjecture and Rare Decays in Theories with Low Scaie Gravity, Nuci.Phys. B 763 (2007) 91 [arXiv:hep-ph/0606321].

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.