Антигенное картирование молекулы гемагглютинина вируса гриппа H5N1 и влияние изменения антигенной структуры на вирулентность тема диссертации и автореферата по ВАК РФ 03.01.03, кандидат биологических наук Крылов, Петр Сергеевич

  • Крылов, Петр Сергеевич
  • кандидат биологических науккандидат биологических наук
  • 2010, Москва
  • Специальность ВАК РФ03.01.03
  • Количество страниц 133
Крылов, Петр Сергеевич. Антигенное картирование молекулы гемагглютинина вируса гриппа H5N1 и влияние изменения антигенной структуры на вирулентность: дис. кандидат биологических наук: 03.01.03 - Молекулярная биология. Москва. 2010. 133 с.

Введение диссертации (часть автореферата) на тему «Антигенное картирование молекулы гемагглютинина вируса гриппа H5N1 и влияние изменения антигенной структуры на вирулентность»

Актуальность темы.6

Цели исследования.9

Научная новизна и практическое значение работы.11

Основные положения, выносимые на защиту.:.12

Часть I. Обзор литературы.14

Часть I. Обзор литературы.14

Похожие диссертационные работы по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Крылов, Петр Сергеевич

Выводы

1. Впервые осуществлено антигенное картирование молекулы гемагглютинина (НА) высокопатогенного вируса гриппа H5N1 с использованием трехмерной модели гемагглютинина подтипа Н5 посредством селекции эскейп-мутантов моноклональными антителами с последующим секвенированием мутантных генов НА и определения их перекрестной реактивности с моноклональными антителами.

2. Определена локализация, протяженность и структура двух антигенных сайтов в трехмерной структуре молекулы НА вируса A/Vietnam/1203/04 (H5N1).

3. Выявлены особенности моноклональных антител против НА вируса A/Vietnam/1203/04 (H5N1), отличающие их от охарактеризованных ранее моноклональных антител против НА подтипа Н5. Идентифицированы 4 ранее не описанные аминокислотные позиции в НА подипа Н5, распознаваемые моноклональными антителами. В Зх других позициях выявлены ранее не описанные аминокислотные замены, меняющие антигенную специфичность НА.

4. Впервые выявлена способность некоторых моноклональных антител против НА подтипа Н5 распознавать аминокислотные позиции, локализованные в двух разных антигенных сайтах.

5. У двух эскейп-мутантов, имеющих аминокислотную замену S145F в НА, выявлено резкое снижение вирулентности для мышей. Реадаптация низковирулентных эскейп-мутантов посредством пассажей на мышах при интраназальном заражении приводила к восстановлению вирулентности.

6. Реассортационный анализ, проведенный с использованием скрещивания и с применением сайт-специфического мутагенеза, показал, что снижение вирулентности эскейп-мутантов, имеющих замену S145F в НА, вызвано именно этой заменой. Восстановление вирулентности при пассировании низковирулентных эскейп-мутантов может быть обусловлено как дополнительными мутациями в гене НА, так и изменениями в других генах.

7. Аминокислотные замены в НА эскейп-мутантов вируса АЛ/1е1:пат/1203/04 (Н5Ш), совпадают с аминокислотными заменами у природных высокопатогенных изолятов Н5№, относящихся к разным ветвям филогенетического дерева. Это указывает на существенное значение вариаций антигенных сайтов, идентифицированных и охарактеризованных в настоящей работе, для эволюции иммунологических свойств и вирулентности вирусов подтипа Н5]Ч1.

Список литературы диссертационного исследования кандидат биологических наук Крылов, Петр Сергеевич, 2010 год

1. Ашмарин И.П. Вычисление LD50 при малом числе подопотных животных. ЖМЭИ. 1959, 2, стр. 102.

2. Бейли Н. Математика в биологии и медицине. Мир. 1970.

3. Бессмертный B.C., Ткачева М.Н. Статистические методы в эпидемиологии. Гос. Издат. Мед. Лит. 1961.

4. Букринская А.Г. Вирусология. Москва. Медицина. 1986, стр. 274-288.

5. Гендон Ю.З. Эпизоотии гриппа птиц и борьба с ними. Журн. микробиол. 2006, № 5, стр. 17-28.

6. Гмурман В.Е. Теория вероятностей и математическая статистика (4-е издание). Москва. Высшая школа. 1972, стр. 145-146.

7. Карпухин Г.И. Грипп: Руководство для врачей. Санк-Петербург, издательство Гиппократ. 2001, стр. 360.

8. Кингсбери Д.У. Орто- и парамиксовирусы и их репликация. Вирусология. Под ред. Б. Филдса и Д. Найпа, Москва. Мир. 1989, Том 2, стр. 446-486.

9. Львов Д.К., Ямникова С.С., Федякина И.Т., Аристова В.А., Львов Д.Н., Ломакина Н.Ф., Петрова Е.С., Злобин В.И., Хаснатинов М.А., Чепургина Е.А., Ковтунов А.И., Джаркенов А.Ф., Санков М.Н.,

10. Леонова Г.Н., Маслов Д.В., Щелканов М.Ю., Непоклонов Е.А., Алипер Т.И. Экология и эволюция вирусов гриппа в России (1979-2002). Вопр. вирусол. 2004, Т.49, № 3, стр. 17-24.

11. Львов Д.К., Прилипов А.Г., Щелканов М.Ю., Дерябин П.Г., Шилов

12. Смирнов Ю.А., Липатов А.С., Окуно И., Гительман А.К. Общий антигенный эпитоп в гемагглютинине вирусов гриппа А (HI, Н2, Н5, Н6). Вопр. вирусол. 1999, т.44, №3, стр. 111-115.

13. Соколов Б.П., Руднева И.А. Изучение изменчивости белков вируса гриппа А. Вопр. вирусол. 1981, №1, Т.4, стр. 471-477.

14. Финни Д.Д. Применение статистики в опытном деле. Москва, Государственное статистическое издательство. 1957, стр. 14-32.

15. Шубладзе А.К., Гайдамович С .Я. Краткий курс практической вирусологии. Москва. Медгиз. 1964, стр. 379.

16. Allen Н., McCauley J., Waterfield М., Gething M.J. Influenza virus RNA segment 7 has the coding capacity for two polypeptides. Virology. 1980, 107, 548-51.

17. Area E., Martin-Benito J., Gastaminza P., Torreira E., Valpuesta J.M., Carrascosa J.L., Ortin J. 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc Natl. Acad. Sci. 2004, 101,308-313.

18. Austin F.J., Webster R.G. Antigenic mapping of an avian HI influenza virus hemagglutinin and interrelationships of HI viruses from humans, pigs and birds. J.Gen.Virol. 1986, 67, 983-992.

19. Biswas S.K, Nayak D.P. Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J. Virol. 1994, 68, 1819-1826.

20. Blaas D., Patzelt E., Kuechler E. Identification of the cap binding protein of influenza virus. Nucleic Acids Res. 1982, 10, 4803-4812.

21. Bosch F., Orlich M., Klenk H.D., Rott R. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology. 1979, 95, 197-207.

22. Both G.W., Sleigh M.J. Conservation and variation in the hemagglutinins of Hong Kong subtype influenza viruses during antigenic drift. J. Virol. 1981, 39, 663-72.

23. Braam J., Ulmanen I., Krug R.M. Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell. 1983, 34, 609-618.

24. Brand C.M., Skehel J.J. Crystalline antigen from the influenza virus envelope. Nat. New Biol. 1972, 238, 145-147.

25. Brown E.G. Increased virulence of a mouse-adapted variant of influenza A/FM/1/47 virus is controlled by mutations in genome segments 4, 5, 7, and 8. J. Virol. 1990, 64, 4523-4533.

26. Caton A.J., Browlee G.G., Yewdell J.W., Gerhard W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (HI subtype). Cel. 1982,31,417-427.

27. Chen G.W., Chang S.C., Mok C.K., Lo Y.L., Kung Y.N., Huang J.H., Shih Y.H., Wang J.Y., Chiang C., Chen C.J., Shih S.R. Genomic signatures of human versus avian influenza A viruses. Emerg. Infect. Dis. 2006, 12, 1353-1360.

28. Chen H., Bright R.A., Subbarao K., Smith C., Cox N.J., Katz J.M., Matsuoka Y. Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus Res. 2007, 128, 159-163.

29. Chen H., Smith G.J., Zhang S.Y., Qin K., Wang J., Li K.S., Webster R.G., Peiris J.S., Guan Y. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature. 2005, 436, 191-192.

30. Chen W., Calvo P.A., Malide D., Gibbs J., Schubert U., Bacik I., Basta S., O'Neill R., Schickli J., Palese P., Henklein P., Bennink J.R., Yewdell J.W. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 2001,7, 1306-1312.

31. Cianci C., Tiley L., Krystal M. Differential activation of the influenza virus polymerase via template RNA binding. J. Virol. 1995, 69, 3995-3999.

32. Claas E.C., Osterhaus A.D., van Beek R., De Jong J.C., Rimmelzwaan G.F., Senne D.A., Krauss S., Shortridge K.F., Webster R.G. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998,351,472-477.

33. Colman P.M. Influenza virus neuraminidase: enzyme and antigen. The Influenza Viruses. 1989, 175-218.

34. Colman P.M. Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci. 1994, 3, 1687-1696.

35. Colman P.M., Hoyne P.A., Lawrence M.C. Sequence and structure alignment of paramyxovirus haemagglutinin-neuraminidase (HN) with influenza virus neuraminidase. J. Virol. 1993, 67, 2972-2980.

36. Colman P.M., Varghese J.N., Laver W.G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature. 1983, 303, 41-44.

37. Compans R.W. Influenza virus proteins. II. Association with components of the cytoplasm. Virology. 1973, 51, 56-70.

38. Compans R.W., Content J., Duesberg P.H. Structure of the ribonucleoprotein of influenza virus. J. Virol. 1972, 10, 795-800.

39. Conenello G.M., Zamarin D., Perrone L.A., Tumpey T., Palese P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS. Pathog. 2007, 3, 1414-1421.

40. Cox N.J., Bender C. The molecular epidemiology of influenza viruses. Virology. 1995, 6, 359-370.

41. Deng T., Sharps J., Fodor E., Brownlee G.G. In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A viruspolymerase subunits into a functional trimeric complex. J. Virol. 2005, 79, 8669-8674.

42. Dias A., Bouvier D., Crepin T., McCarthy A.A., Hart D.J., Baudin F., Cusack S., Ruigrok R.W. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009, 458, 914-918.

43. Dopheide T.A., Ward C.W. The carboxyl-terminal sequence of the heavy chain of a Hong Kong influenza haemagglutinin. Eur. J. Biochem. 1978, 85, 393-398.

44. Dybing J.K., Schultz-Cherry S., Swayne D.E., Suarez D.L., Perdue M.L. Distinct pathogenesis of Hong Kong-origin H5N1 viruses in mice compared to that of other highly pathogenic H5 avian influenza viruses. J. Virol. 2000, 74, 1443-1450.

45. Engelhardt O.G., Smith M., Fodor E. Association of the influenza A vims RNA-dependent RNA polymerase with cellular RNA polymerase II. J. Virol. 2005, 79, 5812-5818.

46. Finkelstein D.B., Mukatira S., Mehta P.K., Obenauer J.C., Su X., Webster R.G., Naeve C.W. Persistent host markers in pandemic and H5N1 influenza viruses. J. Virol. 2007, 81, 10292-10299.

47. Flanagan M.T., Skehel J.J. The conformation of influenza virus haemagglutinin. FEBS Lett. 1977, 80, 57-60.

48. Fodor E., Crow M., Mingay L.J., Deng T., Sharps J., Fechter P., Brownlee G.G. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 2002, 76, 8989-9001.

49. Fodor E., Mingay L.J., Crow M., Deng T., Brownlee G.G. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerasepromotes the generation of defective interfering RNAs. J. Virol. 2003, 77, 5017-5020.

50. Fodor E., Smith M. The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J. Virol. 2004, 78, 9144-9153.

51. Gabriel, G., Dauber B., Wolff T., Planz O., Klenk H. D., Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl. Acad. Sci. 2005, 102, 18590-18595.

52. Gao P., Watanabe S., Ito T., Goto H., Wells K., McGregor M., Cooley A. Kawaoka Y. Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J. Virol. 1999, 73,3184-3189.

53. Gerhard W., Yewdell J., Frankel M. In. Structure and Variation in Influenza Virus. N. Y. Elsevier. 1980, 273-280.

54. Gibbs J.S., Malide D., Hornung F., Bennink J.R., Yewdell J.W. The influenza A virus PB1-F2 protein targets the inner mitochondrial membranevia a predicted basic amphipathic helix that disrupts mitochondrial function. J. Virol. 2003, 77, 7214-7224.

55. Goldsmith C. S., Balish A. CDC Atlanta (http://www.cdc.gov/media/subtopic/libraiy/diseases.htm)

56. Gomez-Puertas P., Albo C., Perez-Pastrana E., Vivo A., Portela A. Influenza virus matrix protein is the major driving force in virus budding. J. Virol. 2000, 7, 11538-11547.

57. Gonzalez S., Ortin J. Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. J. Virol. 1999, 73, 631-637.

58. Gottshalk A. The chemistry of virus receptor. The viruses. 1959, 51 61.

59. Ha Y., Stevens D.J., Skehel J.J., Wiley D.C. H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO J. 2002, 21, 865-875.

60. Ha Y., Stevens D.J., Skehel J .J., Wiley D.C. X-ray structure of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc. Natl. Acad. Sci. 2001, 98, 11181-11186.

61. Hagen M., Chung T.D., Butcher J.A., Krystal M. Recombinant influenza virus polymerase: requirement of both 5'and 3' viral ends for endonuclease activity. J. Virol. 1994, 68, 1509-1515.

62. Hatta M., Gao P., Halfmann P., Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001, 293, 1840-1842.

63. Hoffinann E., Lipatov A.S., Webby R.J., Govorkova E.A., Webster R.G. Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc. Natl. Acad. Sci. 2005, 102, 12915-12920.

64. Holsinger L.J., Nichani D., Pinto L.H., Lamb R.A. Influenza A virus M2 ion channel protein, a structure-function analysis. J. Virol. 1994, 68, 1551-1563.

65. Honda A., Mizumoto K., Ishihama A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells. 1999, 4, 475-485.

66. Horimoto T., Kawaoka Y. Biologic effects of introducing additional basic amino acid residues into the hemagglutinin cleavage site of a virulent avian influenza virus. Virus Res. 1997, 50, 35-40.

67. Horimoto T., Kawaoka Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of avian influenza A virus. J.Virol. 1994, 68, 3120-3128.

68. Huang R.T., Wahn K., Klenk H.D., Rott R. Fusion between cell membrane and liposomes containing the glycoproteins of influenza virus. Virology. 1980, 104, 294-302.

69. Huarte M., Falcon A., Nakaya Y., Ortín J., García-Sastre A., Nieto A. Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses. J. Virol. 2003, 77, 6007-6013.

70. Inglis S.C., Gething M.J., Brown C.M. Relationship between the messenger RNAs transcribed from two overlapping genes of influenza virus. Nucleic Acids Res. 1980, 8, 3575-3589.

71. Jackson D.C., Nestorowicz A. antigenic determinants of influenza virus hemagglutinin. Virology. 1985, 145, 72-83.

72. Jiao P., Tian G., Li Y., Deng G., Jiang Y., Liu C., Liu W., Bu Z., Kawaoka Y., Chen H. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J. Virol. 2008, 82, 1146-1154.

73. Katz J.M., Lu X., Tumpey T.M., Smith C.B., Shaw M.W., Subbarao K. Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J. Virol. 2000, 74, 10807-10810.

74. Katz J.M., Webster R.G. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J. Gen. Virol. 1992, 73, 1159-1165.

75. Kawaoka Y., Webster R.G. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc. Natl. Acad. Sci. 1988, 85, 324-328.

76. Kell W., Klenk H.D., Schwarz R.T. Carbohydrates of influenza virus. III. Nature of oligosaccharide-protein linkage in viral glycoproteins. J. Virol. 1979,31,253-256.

77. Kell W., Niemann H., Schwars R.T., Klenk H.D. Carbohydrates of influenza virus. V. Oligosaccharides attached to individual glycosylation sites of the hemagglutinin of fowl plaque virus. Virology. 1984, 133, 77-91.

78. Klenk H.D., Compans R.W., Choppin W.P. An electron microscopic study of the presence or absence of neuraminic acid in enveloped viruses. Virology. 1970, 42, 1158-1162.

79. Klenk H.D., Garten W. Host cell proteases controlling virus pathogenicity. Trends. Microbiol. 1994, 2, 39-43.

80. Klenk H.D., Rott R., Orlich M., Biodorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975, 68, 426-439.

81. Krug R.M., Etkind P.R. Cytoplasmic and nuclear virus-specific proteins in influenza virus-infected MDCK cells. Virology. 1973, 56, 334-348.

82. Krug R.M., Soeiro R. Studies on the intranuclear localization of influenza virus-specific proteins. Virology. 1975, 64, 378-387.

83. Lai C.J, Markoff L.J, Zimmerman S., Cohen B., Berndt J.A., Chanock R.M. Cloning DNA sequences from influenza viral RNA segments. Proc Natl. Acad. Sci. 1980, 77,210-214.

84. Lamb R.A., Choppin P.W. Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus. Virology. 1981, 112, 729-737.

85. Lamb R.A., Choppin P.W. The gene structure and replication of influenza virus. Ann. Rev. Biochem. 1983, 52, 467-506.

86. Lamb R.A., Krug R.M. Orthomyxoviridae. In: Fields Virology. Section 2, Specific Virus Families. Eds B.N. Fields and D.M. Knipe, Lippincott, Williams & Wilkins, 2001, 1091-1137.

87. Lamb R.A., Lai C.J. Conservation of the influenza virus membrane protein (Ml) amino acid sequence and an open reading frame of RNA segment 7 encoding a second protein (M2) in H1N1 and H3N2 strains. Virology. 1981, 112, 746-751.

88. Lamb R.A., Lai C.J., Choppin P.W. Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc. Natl. Acad. Sci. 1981, 78, 4170-4174.

89. Laver W.G., Air G.M., Dopheide T.A., Ward C.W. Amino acid sequence changes in the haemagglutinin of A/Hong Kong (H3N2) influenza virus during the period 1968-77. Nature. 1980, 283, 454-457.

90. Laver W.G., Air G.M., Webster R.G. Mechanism of antigenic drift in influenza vims. Amino acid sequence changes in an antigenically active region of Hong Kong (H3N2) influenza virus hemagglutinin. J. Mol. Biol. 1981, 145,339-361.

91. Laver W.G., Gerhard W., Webster R.G, Frankel M.E., Air G.M. Antigenic drift in type A influenza virus: peptide mapping and antigenic analysis of A/PR/8/34 (HON1) variants selected with monoclonal antibodies. Proc. Natl. Acad. Sci. 1979, 76, 1425-1429.

92. Lazarowitz S., Choppin P. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975, 68, 440-454.

93. Lazarowitz S.G., Compans R.W., Choppin P.W. Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes. Virology. 1971, 46, 830-843.

94. Li M.L., Ramirez B.C., Krug R.M. RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO J. 1998, 17, 5844-5852.

95. Li M.L., Rao P., Krug R.M. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J. 2001, 20, 2078-2086.

96. Li Z., Chen H., Jiao P., Deng G., Tian G., Li Y., Hoffmann E., Webster R.G, Matsuoka Y., Yu K. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J. Virol. 2005, 79, 12058-12064.

97. Lipatov A.S., Govorkova E.A., Webby R.J., Ozaki H., Eiris M., Guan Y., Poon L., Webster R.G. Influenza: emergence and control. J. Virol. 2004, 78, 8951-8959.

98. Lu X., Tumpey T.M., Morken T., Zaki S.R., Cox N.J., Katz J.M. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J. Virol. 1999, 73, 5903-5911.

99. Lu Y., Qian X.Y., Krug R.M. The influenza virus NS1 protein: a novel inhibitor of pre-mRNA splicing. Genes. Dev. 1994, 8, 1817-1828.

100. Lu Y., Wambach M., Katze M.G., Krug R.M. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the proteinkinase that phosphorylates the elF-2 translation initiation factor. Virology. 1995,214, 222-228.

101. Maeda Y., Horimoto T., Kawaoka Y. Classification and genome structure of influenza virus. Nippon Rinsho. 2003, 61, 1886-1891.

102. Martin K., Helenius A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (Ml) promotes export and inhibits import. Cell. 1991, 67, 117-130.

103. Matrosovich M., Zhou N., Kawaoka Y., Webster R.G. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol. 1999, 73, 11461155.

104. Naffakh N., Massin P., van der Werf S. The transcription/ replication activity of the polymerase of influenza A viruses is not correlated with the level of proteolysis induced by the PA subunit. Virology 2001, 285, 244-252.

105. Nakajima K. Influenza virus genome structure and encoded proteins. Nippon Rinsho. 1997, 55, 2542-2546.

106. Nakamura K., Compans R.W. Glycopeptide components of influenza viral glycoproteins. Virology. 1978, 86, 432-442.

107. Nakamura K., Compans R.W. Host cell- and virus strain-dependent differences in oligosaccharides of hemagglutinin glycoproteins of influenza A viruses. Virology. 1979, 95, 8-23.

108. Ohtsu Y., Honda Y., Sakata Y., Kato H., Toyoda T. Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol. Immunol. 2002, 46, 167-175.

109. Oxford J.S., Hockley D.J. Orthomyxoviridae. Animal virus structure. 1987, 213-232.

110. Palese P. New biochemical techniques for the characterization of viruses to assist the epidemiologist. J. Infect. Dis. 1980, 142, 633-635.

111. Palese P., Elliott R., Baez M. Genetic variation among influenza viruses. Academic Press. 1981, 127-140.

112. Palese P., Schulman J.L. Differences in RNA patterns of influenza A viruses. J. Virol. 1976, 17, 876-884.

113. Palese P., Shaw M.L. Orthomyxoviridae: The Viruses and Their Replication. In: Fields Virology. Eds Knipe D.M. and Howley P.M., Lippincott, Williams & Wilkins, 2007, 2, 1648-1678.

114. Palese P., Tobita K., Ueda M., Compans R.W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology. 1974, 61, 397-410.

115. Patterson K.D., Pyle G.F. The geography and mortality of the 1918 influenza pandemic. Bull Hist Med. 1991, 65, 4-21.

116. Peiris J.S., de Jong M.D., Guan Y. Avian Influenza Virus (H5N1): a Threat to Human Health. Clin. Micro. Rev. 2007, 243-267.

117. Philpott M., Hioe C., Sheerar M., Hinshaw V.S. Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus. J. Virol. 1990, 64,2941-2947.

118. Pons M.W., Schulze I.T., Hirst G.K., Hauser R. Isolation and characterization of the ribonucleoprotein of influenza virus. Virology. 1969, 39, 250-259.

119. Poole E., Elton D., Medcalf L., Digard P. Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology. 2004, 321, 120-133.

120. Porter A.G., Barber C., Carey N.H., Hallewell R.A., Threlfall G., Emtage J.S. Complete nucleotide sequence of an influenza virus hemagglutinin gene from cloned DNA. Nature. 1979, 282, 471-477.

121. Privalsky M.L., Penhoet E.E. Influenza virus proteins: identity, synthesis, and modification analyzed by two-dimensional gel electrophoresis. Proc. Natl. Acad. Sci. 1978, 75, 3625-3629.

122. Privalsky M.L., Penhoet E.E. Phosphorylated protein component present in influenza virions. J. Virol. 1977, 24, 401-405.

123. Privalsky M.L., Penhoet E.E. The structure and synthesis of influenza virus phosphoproteins. J. Biol. Chem. 1981, 256, 5368-5376.

124. Qian X.Y., Alonso-Caplen F., Krug R.M. Two functional domains of the influenza virus NS1 protein are required for regulation of nuclear export of mRNA. J. Virol. 1994, 68, 2433-2441.

125. Qiu Y., Krug R.M. The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J. Virol. 1994, 68, 2425-2432.

126. Qiu Y., Nemeroff M., Krug R.M. The influenza virus NS1 protein binds to a specific region in human U6 snRNA and inhibits U6-U2 and U6-U4 snRNA interactions during splicing. RNA. 1995, 1, 304-316.

127. Rafelson M.E., Jr., SCHNEIR M., WILSON V.W. Jr. Studies on the neuraminidase of influenza virus. II. Additional properties of the, enzymes from the Asian and PR 8 strains. Arch Biochem Biophys. 1963, 103, 424430.

128. Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493-497.

129. Robertson J.S., Bootman J.S., Newman R., Oxford J.S., Daniels R.S., Webster R.G., Schild G.C. Structural changes in the haemagglutinin whichaccompany egg adaptation of an influenza A(H1N1) virus. Virology. 1987, 160,31-37.

130. Rogers G.N., Paulson J.C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983, 127, 361-373.

131. Rogers G.N., Pritchett T.J., Lane J.L., Paulson J.C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology. 1983, 131, 394408.

132. Rott R. Molecular basis of infectivity and pathogenicity of myxovirus. Brief review. Arch Virol. 1979, 59, 285-298.

133. Rott R., Becht H., Orlich M. The significance of influenza virus neuraminidase in immunity. J. Gen. Virol. 1974, 22, 35-41.

134. Rott R., Reinacher M., Orlich M., Klenk H.D. Cleavability of hemagglutinin determines spread of avian influenza viruses in the chorioallantoic membrane of chicken embryo. Arch. Virol. 1980, 65, 123-133.

135. Rudneva I.A., Ilyushina N.A., Timofeeva T.A., Webster R.G., Kaverin N.V. Restoration of virulence of escape mutants of H5 and H9 influenza viruses by their readaptation to mice. J. Gen. Virol. 2005, 86, 2831-2838.

136. Russell R.J., Gamblin S.J., Haire L.F., Stevens D.J., Xiao B., Ha Y., Skehel J.J. HI and H7 influenza hemagglutinin structures extend a structural classification of hemagglutinin subtypes. Virology. 2004, 325, 287-296.

137. Sanz-Ezquerro J.J., de la Luna S., Ortin J., Nieto A. Individual expression of influenza virus PA protein induces degradation of coexpressed proteins. J. Virol. 1995, 69, 2420-2426.

138. Schild G.C. Evidence for a new type-specific structural antigen of the influenza virus particle. J. Gen. Virol. 1972, 15, 99-103.

139. Schulman J.L., Khakpour M., Kilbourne E.D. Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice. J. Virol. 1968, 2, 778-786.

140. Schulman J.L., Palese P. Selection and identification of influenza virus recombinants of defined genetic composition. J. Virol. 1976, 20, 248-254.

141. Schulman J.L., Palese P. Virulence factors of influenza A viruses: WSN virus neuraminidase required for plaque production in MDBK cells. J Virol. 1977, 24, 170-176.

142. Schulze I.T. The structure of influenza virus. II. A model based on the morphology and composition of subviral particles. Virology. 1972, 47, 181196.

143. Schwarz R.T., Schmidt M.F., Anwer U., Klenk H.D. Carbohydrates of influenza virus. I. Glycopeptides derived from viral glycoproteins after labeling with radioactive sugars. J. Virol. 1977, 23, 217-226.

144. Seo S. H., Hoffmann E., Webster R. G. The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokyne responses. Virus. Res. 2005, 103, 107-113.

145. Seo S.H., Hoffmann E., Webster R.G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat. Med. 2002, 8, 950-954.

146. Shestopalov A.M., Durimanov A.G., Evseenko V.A., Ternovoi V.A., Rassadkin Y.N., Razumova Y.V., Zaykovskaya A.V., Zolotykh S.I., Netesov S.V. H5N1 influenza virus, domestic birds, Western Siberia, Russia. Emerg. Infect. Dis. 2006, 12, 1167-1168.

147. Skehel J J. Polypeptide synthesis in influenza virus-infected cells. Virology. 1972, 49, 23-36.

148. Skehel J.J., Waterfields M.D. Studies on primary structure of the influenza virus hemagglutinin. Proc. Natl. Acad. Sci. 1975, 72, 93-97.

149. Smimov Y.A., Lipatov A.S., Van Beek R., Gitelman A.K., Osterhaus A.D., Claas E.C. Characterization of adaptation of an avian influenza A (H5N2) virus to a mammalian host. Acta. Virol. 2000, 44, 1-8.

150. Stevens J., Blixt O., Tumpey T.M., Taubenberger J.K., Paulson J.C., Wilson I.A. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 2006, 312, 404-410.

151. Suarez D.L., Perdue M.L., Cox N., Rowe T., Bender C., Huang J., Swayne D.E. Comparisons of highly virulent H5N1 influenza A viruses isolated from humans and chickens from Hong Kong. J. Virol. 1998, 78, 6678-6688.

152. Subbarao E.K., London W., Murphy B.R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 1993, 67, 1761-1764.

153. Sugiura A., Ueda M. Neurovirulence of recombinants between virulent and avirulent virus strains. Virology. 1980, 101, 440-449.

154. Sun L., Lu X., Li C., Wang M., Liu Q., Li Z., Liu F., Li Q., Belser J.A.,

155. Hancock K., Shu Y., Katz J.M., Liang M., and Li D. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses. PLoS ONE. 2009, 4, 5476.

156. Taubenberger J.K. The origin and virulence of the 1918 "Spanish" influenza virus. Proc. Am. Philos. Soc. 2006, 150, 86-112.

157. Taubenberger J.K., Reid A.H., Lourens R.M., Wang R., Jin G., Fanning T.G. Characterization of the 1918 influenza virus polymerase genes. Nature. 2005, 437, 889-893.

158. Tsuchiya E., Sugawara K., Hongo S., Matsuzaki Y., Muraki Y., Li Z.N., Nakamura K. Antigenic structure of the haemagglutinin of human influenza A/H2N2 vims. J.Gen.Virol. 2001, 82, 2475-2484.

159. Tumpey T.M., Basler C.F., Aguilar P.V., Zeng H., Solorzano A., Swayne D.E., Cox N.J., Katz J.M., Taubenberger J.K., Palese P., García-Sastre A. Characterization of the reconstructed 1918 spanish influenza pandemic virus. Science. 2005, 310, 77-80.

160. Twu K.Y., Kuo R.L., Marklund J., Krug R.M. The H5N1 influenza virus NS genes selected after 1998 enhance virus replication in mammalian cells. J. Virol. 2007,81,8112-8121.

161. Ulmanen I., Broni B.A., Krug R.M. Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and ininitiating viral RNA transcription. Proc. Natl. Acad. Sci. 1981, 78, 73557359.

162. Varghese J.N., Colman P.M. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. J. Mol. Biol. 1991,221,473-486.

163. Varghese J.N., Laver W.G., Colman P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature. 1983, 303, 35-40.

164. Varghese J.N., McKimm-Breschkin J., Caldwell J.B., Kortt A.A., Colman P.M. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins Struct Funct Genetics. 1992, 14, 327-332.

165. Veit M., Kretzschmar E., Kuroda K., Garten W., Schmidt M.F., Klenk H.D., Rott R. Site-specific mutagenesis identifies three cysteine residues in the cytoplasmic tail as acylation sites of influenza virus hemagglutinin. J. Virol. 1991,65,2491-2500.

166. Ward C.W., Dopheide T.A. Primary structure of the Hong Kong (H3) haemagglutinin. Br. Med. Bull. 1979, 35, 51-56.

167. Waterfield M., Espelie K., Elder K., Skehel J. Structure of the haemagglutinin of influenza virus. Br. Med. Bull. 1979, 35, 57-63.

168. Waterfield M., Gething M.J., Scrace G., Skehel J. Structure and Variation in Influenza Virus. Elsevier. 1980, 11-20.

169. Webster R.G., Laver W.G. Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. J. Immunol. 1967, 99, 49-55.

170. Wharton S.A., Weis W., Skehel J.J., Wiley D.C. Structure, function and antigenicity of the hemagglutinin of influenza virus. The Influenza Viruses. 1989, 153-174.

171. White J., Matlin K., Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J. Cell Biol. 1981, 89, 674-679.

172. Wiley D.C., Shekel J.J. the structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 1987, 56, 365-394.

173. Wiley D.C., Skehel J.J., Waterfield M. Evidence from studies with a cross-linking reagent that the haemagglutinin of influenza virus is a trimer. Virology. 1977, 79, 446-448.

174. Wiley D.C., Wilson I.A., Skehel J.J. Structural identification of the antibody-binding sites of Hong Kong influenza hemagglutinin and their involvement in antigenic variation. Nature. 1981, 289, 373-378.

175. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature. 1981, 289, 366-373.

176. Winter G., Fields S. Cloning of influenza cDNA ino M13: the sequence of the RNA segment encoding the A/PR/8/34 matrix protein. Nucleic Acids Res. 1980, 8, 1965-1974.

177. Winter G., Fields S. The structure of the gene encoding the nucleoprotein of human influenza virus A/PR/8/34. Virology 1981, 114, 423-428.

178. Wrigley N.G., Brown E.B., Daniels R.S., Douglas A.R., Shekel J J., Wiley D.C. Electrone microscopy of influenza hemagglutinin-monoclonal antibody complexes. Virology. 1973, 131, 308-314.

179. Wu W.L., Chen Y., Wang P., Song W., Lau S.Y., Rayner J.M., Smith G.J., Webster R.G., Peiris J.S., Lin T., Xia N., Guan Y., Chen H. Antigenic profile of avian H5N1 viruses in Asia from 2002 to 2007. J. Virol. 2008, 82, 1798-1807.

180. Xu R., McBride R., Paulson J.C., Basler C.F., Wilson I.A. Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic. J. Virol. 2010, 84, 1715-1721.

181. Yewdell J.W., Webster R.G., Gerhard W.U. Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule. Nature. 1979, 279, 246-248.

182. Zhirnov O.P. Solubilization of matrix protein Ml/M from virions occurs at different pH for orthomyxo- and paramyxoviruses. Virology. 1990, 176, 274-279.