Analysis of Resource Allocation Procedures for Cellular Network in Joint Servicing of Real-Time Multiservice Traffic and Elastic IoT Traffic / Анализ процедур распределения ресурса сетей сотовой связи при совместном обслуживании мультисервисного трафика реального времени и эластичного трафика IoT тема диссертации и автореферата по ВАК РФ 05.12.13, кандидат наук Андраби Умер Мукхтар

  • Андраби Умер Мукхтар
  • кандидат науккандидат наук
  • 2022, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ05.12.13
  • Количество страниц 172
Андраби Умер Мукхтар. Analysis of Resource Allocation Procedures for Cellular Network in Joint Servicing of Real-Time Multiservice Traffic and Elastic IoT Traffic / Анализ процедур распределения ресурса сетей сотовой связи при совместном обслуживании мультисервисного трафика реального времени и эластичного трафика IoT: дис. кандидат наук: 05.12.13 - Системы, сети и устройства телекоммуникаций. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2022. 172 с.

Оглавление диссертации кандидат наук Андраби Умер Мукхтар

Contents

Abstract

Chapter 1. Introduction and Motivation

1.1 Overview

1.2 Background of the Study

1.3 Machine-to-Machine Communication

1.3.1 Machine-to-Machine Applications

1.3.2 IoT Technological Revolution

1.3.3 IoT Connectivity Technologies

1.3.4 LPWAN Technologies

1.3.5 MTC Deployment Challenges

1.4 Cellular Communication Systems

1.5 Cellular IoT

1.6 Statement of the Problem

1.7 Dissertation Overview

1.7.1 Relevance of the Study

1.7.2 Degree of Development of the Topic

1.7.3 Aim and Objective of the Work

1.7.4 Object of the Study

1.7.5 Research Methods Implemented

1.7.6 Scientific Novelty

1.7.7 Theory and Practical Significance of the work

1.7.8 Statements to be Defended

1.7.9 Presentation and Validation of results

1.7.10 Publications

1.7.11 Personal Contribution

1.8 Organization of the Thesis

Chapter 2. Overview Principal Technologies and Operator

Surveillance System (OSS)

2.1 Overview

2.2 Long-Term Evolution

2.2.1 LTE and its Evolution Through Different Releases

2.2.2 Architecture of LTE

2.2.3 LTE Advanced

2.2.4 LTE-A and E-UTRAN High Level Architecture

2.3 5G Cellular Networks

2.3.1 5G Deployment Modes

2.3.2 5G Core Architecture

2.4 Radio Resource Management in LTE

2.4.1 QoS Management in LTE

2.4.2 Physical Layer (PHY/Layer 1) LTE

2.4.3 LTE PHY Throughput Calculations

2.5 LTE Uplink Scheduling Algorithms

2.6 Heterogenous Networks and Scheduling

2.7 Network Slicing Procedure

2.8 Video Surveillance System

2.9 Operator Surveillance System

Chapter 3. Mathematical Model for Joint Servicing of RealTime and Elastic Data in a Cellular Node and Access

Control Deployment

3.1 Overview

3.2 Dynamic Distribution of The Information Transmission Resource

3.3 Functional Model for Joint Servicing of Real-Time Traffic and Elastic Data Traffic

3.4 Mathematical Model for Joint Servicing of Real-Time Traffic and Elastic Data Traffic

3.4.1 Information Service Request Model and Access Restriction

3.4.2 Markov Process and State Space Model

3.4.3 Service Quality Characteristics

3.4.4 System of Equilibrium Equations

3.4.5 Solution of the System of Equilibrium Equations

3.5 Problems of Joint Servicing of Heterogenous Traffic

3.6 Conclusion of the Obtained Results for Chapter

Chapter 4. Analysis of Scenarios for The Implementation of Static

and Dynamic Slicing in A Wireless Access Node

4.1 Overview

4.2 Analysis of the Implementation of the Static Slicing

4.2.1 Introduction

4.2.2 Service Characteristics of Real-time Traffic

Transmission Sessions

4.2.3 Evaluation of Data Transmission Session Service

Characteristics

4.3 Analysis of the Implementation of the Static Slicing

4.3.1 Introduction

4.3.2 Dynamic Slicing Analysis when Serving Data Traffic According to Real-time Traffic Rules

4.3.3 Dynamic Slicing Analysis when Serving Data Traffic According to Elastic Traffic Rules

4.4 Analysis of Network Slicing Usage in Case of Overload

4.5 Analysis of Conditions for Providing Differentiated Service of Heterogeneous Traffic Based on Access Restrictions

4.5.1 Introduction

4.5.2 Resource Sharing Scenarios and Traffic Models

4.5.3 Data Servicing According to The Elastic Traffic Rule

4.6 Conclusion of the Obtained Results for Chapter

Conclusion

Bibliography

List of Figures

List of Tables

Acknowledgments

Рекомендованный список диссертаций по специальности «Системы, сети и устройства телекоммуникаций», 05.12.13 шифр ВАК

Введение диссертации (часть автореферата) на тему «Analysis of Resource Allocation Procedures for Cellular Network in Joint Servicing of Real-Time Multiservice Traffic and Elastic IoT Traffic / Анализ процедур распределения ресурса сетей сотовой связи при совместном обслуживании мультисервисного трафика реального времени и эластичного трафика IoT»

Abstract

Over the recent times, cellular networks have undergone tremendous transformations and have witnessed enormous developments in the volumes and diversities of the data transmitted over the Internet of Things (IoT) and other modern smart applications. The management and control of such massive quantities of data is proving to be a crucial task for network industries across the various domains of the technology. Modern day complex, smart and heterogenous networks produce huge volumes of "Big Data" and are among the main contributors for this enormous data surge. This bulk of data is putting current networks infrastructure under lot of stress and making it difficult to use the available radio resources efficiently. Though 3GPP has recognized this issue and have recommended several measures for such circumstances but regrettably there are no genuine explanations on how these resources should be shared especially in current and futuristic heterogenous networks. The mathematical modeling based on queuing systems that considers the characteristics of traffic streams originating and acknowledging for servicing is believed one of the key solutions to such kind of problems.

To address this issue, we have developed a model based on resource allocation and sharing strategy for an operator surveillance system (OSS) for conjoint servicing of realtime video traffic referred as "Heavy traffic" originating from HD surveillance cameras and low-quality video traffic, referred as "Light traffic" which are transmitted as files over LTE cell facilities. Our work is devoted to the issues of constructing and analyzing a generalized model of dynamic resource allocation of wireless access nodes when servicing heterogenous IoT traffic. During the development a model, the following features of servicing heterogeneous traffic are considered: the dependence of the arrival and servicing of sessions on the requirement for transmission speed; access restriction for all types of communication sessions, depending on the load of the resource by communication sessions of the considered flow; prioritization of real-time traffic; using the Processor Sharing discipline when transmitting elastic traffic.

An algorithm for estimating the main indicators of joint servicing of communication sessions has been developed. Among them: the share of lost sessions, the average amount

of information transfer resource used, the average message delivery time, etc. The resulting expressions allow us to analyze the operation of various procedures aimed at increasing the efficiency of using the transmission resource of access nodes and creating conditions for differentiated servicing of heterogeneous traffic flows based on access restriction, depending on the load of the resource by the communication sessions of the flow in question.

It is shown that differentiated servicing of non-uniform traffic based on the use of the proposed procedure for a dynamic resource allocation scenario, in contrast to the traditional solution of the same problem using a static scenario, when the resource is divided in a certain proportion between incoming information flows, can improve the quality of service for communication sessions and improve efficiency of access node resource usage.

The constructed model and the computational algorithms developed on its basis used in the educational process at the Department "Infocommunication Systems and Networks" at Moscow Institute of Physics and Technology (MIPT, Phystech).

*** This research work has been supported by the Russian Foundation for Basic Research, under Project No. 20-37-90048, for postgraduates.

Похожие диссертационные работы по специальности «Системы, сети и устройства телекоммуникаций», 05.12.13 шифр ВАК

Заключение диссертации по теме «Системы, сети и устройства телекоммуникаций», Андраби Умер Мукхтар

Conclusion

An analysis of the work of modern base station radio resource scheduler was carried out. The resource scheduling model is formalized in the form of a resource requirement distribution function, considering the varied heterogenous data generating UEs, the radio channel model, and radio resource distribution policy based on the QoS requirements. The overall model was realized for an operator surveillance system (OSS). Additionally, in the conclusion of the dissertation, in contrast to the findings of previous investigations, we construct the key findings and conclusions of the obtained results. The following are the key findings of the overall research study.

1. A generalized model for the formation and servicing of communication session flows of a wireless access node has been developed and studied, which, unlike the known models, has made it possible to consider the combined influence of the main significant factors that determine the joint transmission of traffic of modern communication applications. Among them: the arrival and servicing of sessions are dependent on the transmission rate requirements; access restriction for all types of communication sessions, depends on the occupied volume of the resource by communication sessions for the considered flow; prioritization of real-time traffic; using the Processor Sharing discipline when transmitting elastic traffic.

2. Using the constructed model, a scenario has been developed for dynamically distributing the access node resource between incoming sessions, which allows creating conditions for differentiated servicing of heterogeneous traffic flows based on access restriction depending on the volume of the resource occupied by communication sessions of the flow under consideration. Expressions are obtained for estimating indicators of joint service of communication sessions: the proportion of lost sessions; the average volume of the information transfer resource used; average message delivery time; average number of sessions under servicing, etc.

3. It was concluded that the usefulness of the application of the dynamic scenario and the traditional static scenario, when the resource is divided between individual sessions in a certain proportion, can be studied using a set of models for joint service of heterogeneous traffic and algorithms for estimating their probabilistic characteristics, introduced and studied in the third and fourth chapters of the dissertation. The developed algorithms are characterized by high implementation efficiency and is almost valid for all practically interesting values of input parameters.

4. Using the developed models and algorithms for assessing the characteristics of their service, a comparison was made of the efficiency of using the proposed scenarios for distributing the information transmission resource under overload conditions. The following statements are established:

• The Static scenario is considered as simplest in terms of usage, where available radio resources are strictly distributed among real- time "heavy" and "light" traffic streams to achieve the recommended values of performance indicators but this scenario have two downsides. The first one is that it has a high-level of sensitivity of characteristics towards the value load being offered and which demands a prior knowledge of the traffic intensity. The second one that this scenario has decreased resource unit utilization in contrast to the other two scenarios i.e. Fully shared and Access controlled.

• Fully shared scenario, this scenario has optimal usage i.e. improved capabilities of resource unit utilization as compared to static scenario. One of its drawbacks is that during overload situations, degradation of losses occurs in case heavy traffic during servicing.

• Access controlled scenario, this scenario betters Static scenario i.e. the utilization rate is far superior and it has the capabilities to overcome the drawbacks of Fully shared scenario. Due to its exclusive abilities this technique of resource allocation is endorsed for the application of 5G cellular networks.

5. The performed numerical study determined that the use of the developed procedure for dynamic resource allocation allows reducing the losses in differentiated services up to two times, aimed at leveling the losses of sessions on a fixed amount of the resource, and by 10 - 15% to reduce the requirement for the amount of resource to provide a given level of losses. sessions, compared with the use of static slicing for the same purposes.

Список литературы диссертационного исследования кандидат наук Андраби Умер Мукхтар, 2022 год

Bibliography

1. Liberg, M. Cellular Internet of Things: Technologies, Standards, and Performance Elsevier / Liberg, M. Sundberg, E. Wang, J. Bergman, and J. Sachs // Ed. Elsevier - 2018.

2. Murdoch, T.B. The Inevitable Application of Big Data to Health Care / Murdoch, TB, Detsky, A.S // JAMA. — 2013. — V.309. — N.13. — P.1351 - 1352.

3. Jagadish, H.V. Big Data and Its Technical Challenges / H.V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J.M. Patel, R. Ramakrishnan, C. Shahabi // Commun. ACM. — 2014. — V. 57. — P. 86 - 94.

4. Elharrouss, O. A. Review of Video Surveillance Systems / Elharrouss, O, Almaadeed N, Al-Maadeed S // J Vis Commun. Image Represent — 2021. — V.77.

— 103116 p.

5. Annual Report for Years (2018-2023) White Paper [Electronic Resource] / Cisco. — 2018. — Https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c 11 -741490.html — (Access Date: 15.04.2022).

6. Verma, P.K. Machine-to-machine (m2m) Communications: A Survey / P. K. Verma, R. Verma, A. Prakash, A. Agrawal, K. Naik, R. Tripathi, M. Alsabaan, T. Khalifa, T. Abdelkader, and A. Abogharaf. // Journal of Network and Computer Applications

— 2016. — V.66. — P.83 - 105.

7. Zhang, Y. Cognitive Machine-To-Machine Communications: Visions and Potentials for The Smart Grid / Y. Zhang, R. Yu, M. Nekovee, Y. Liu, S. Xie, and S. Gjessing // IEEE Network — 2012. — V.26. — N.3. — P.6 - 13.

8. Pandey, N. M2M Communication Concept / N. Pandey // White Paper — 2016. Accessed: Jan. 9, 2022. [Online]. — Https://www.researchgate.net/publication/291337307_M2M_communication concept.

9. Mehmood, Y. Impact of Machine-to-Machine Traffic on LTE Data Traffic Performance / Mehmood Y, Potsch T, Khan Marwat SN, Ahmad F, Goerg C, Rashid I // Springer Verlag. — 2015. — P. 259 - 269.

10. Ghavimi, F. M2M Communications in 3GPP LTE/LTE-A Networks: Architectures, Service Requirements, Challenges, and Applications / F. Ghavimi and H.-H. Chen // IEEE Communications Surveys & Tutorials — 2015. — V.17. — N.2. — P.525 -549.

11. Wu, G. M2M: From Mobile to Embedded Internet / G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson // IEEE Communications Magazine Tutorials — 2011. — V.49. — N.4. — P.36 - 43.

12. Service requirements for Machine-Type Communications (MTC) [Electronic Resource] / 3GPP // TS 22.368. — 2017. — Stage 1. V.14.0.1. — Https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s pecificationId=645 — (Access Date: 05.05.2022).

13. Shafiq, M.Z. Large-Scale Measurement and Characterization of Cellular Machine-to-Machine Traffic / M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang // IEEE/ACM Transactions on Networking — 2013. — V.21. — N.6. — P.1960 -1973.

14. Chin, W.H. Emerging Technologies and Research Challenges for 5G Wireless Networks / W.H. Chin, Z. Fan , R. Haines // IEEE Wirel. Commun. — 2014. — V.21. — N.2. — P.106 - 112.

15. Tehrani, M. Device-To-Device Communication in 5G Cellular Networks: Challenges, Solutions, and Future Directions / M. Tehrani , M. Uysal , H. Yanikomeroglu // , IEEE Commun. Mag. . — 2014. — V.52. — N.5. — P.86 - 92.

16. Cellular Networks For Massive IoT White Paper [Electronic Resource] / Ericsson // — Https://www.ericsson.com/en/reports-and-papers/white-papers/ cellular - networks - for - massive - iot - -enabling - low - power - wide-area-applications— (Access Date: 01.05.2022).

17. Americas, G. Cellular Technologies Enabling the IoT / G. Americas // White Paper —2015. Accessed: April.9,2022. [Online]. Https:// www.5gamericas.org/wp-content/uploads/2019/07/4G_Americas_CellularTechnologies_Enabling_the_IoT_

White_Paper_-_Novemb er_2015.pdf.

18. Agiwal, M. Next Generation 5G Wireless Net works: A Comprehensive Survey / M. Agiwal, A. Roy, and N. Saxena // IEEE Commun. Surveys Tuts. — 2016. — V.18.

— N.3. — P.1617-1655.

19. Qadir, Q.M. Low Power Wide Area Networks: A Survey of Enabling Technologies, Applications and Interoperability Needs / Q. M. Qadir, T. A. Rashid, N. K. Al-Salihi, B. Ismael, A. A. Kist, and Z. Zhang // IEEE Access. — 2018. — V.6. — P.77454-77473.

20. Brien, D.C.O. Optical wireless communications: Current status and future prospects / D.C.O. Brien // IEEE Summer Top. — 2016. — P.34-38.

21. What is Sigfox Technology [Electronic Resource] / Sigfox // — Available: Https://www.sigfox.com/en/what-sigfox/technology — (Access Date: 05.05.2022).

22. Combined Narrow-Band and Spread Spectrum Physical Layer Coverage and Capacity Simulations (Semtech) / 3GPP // TSG GERAN 65. — 2015.

23. Service requirements for Machine-Type Communications (MTC) [Electronic Resource] / 3GPP // TS 22.368. — 2017. — Stage 1. V.14.0.1. — Available: Https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s pecificationId=645 — (Access Date: 05.05.2022).

24. Service Requirements for Next Generation New Services and Markets [Electronic Resource] / 3GPP // TS 22.261. — 2016. — V. 15.7.0. — Available: https://www.etsi.org/deliver/etsi TS/122200 122299/122261/15.07.00 60/ts 1222 61v150700p.pdf — (Access Date: 05.05.2022).

25. Ding, J. IoT Connectivity Technologies and Applications: A Survey / J. Ding, M. Nemati, C. Ranaweera and J. Choi // IEEE Access. — 2020. — V.8. — P.67646 -67673.

26. Raza, U. Low Power Wide Area Networks: An Overview / U. Raza, P. Kulkarni, and M. Sooriyabandara // IEEE Commun. Surveys Tuts. — 2017. — V.19. — N.2.

— P.855-873.

27. Ayoub, W. Internet of Mobile Things: Overview of LORAWAN, DASH7, And NB-IoT In LPWANS Standards and Supported Mobility / W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J.C. Prevotet // IEEE Commun. Surveys Tuts. — 2019. — V.21. — N.2. — P.1561 - 15 81.

28. Guibene, W. Survey on Clean Slate Cellular- IoT Standard Proposals / W. Guibene, K. E. Nolan, and M.Y.Kelly // IEEE Int. Conf. Comput. Inf. Technol., Ubiquitous Comput. Commun., Dependable, Autonomic Secure Comput., Pervas. Intell. Comput. — 2015. — P.1596 - 1599.

29. Service requirements for Machine-Type Communications (MTC) [Electronic Resource] / 3GPP // TS 22.368. — 2014. — Stage 1. V.13.0. (Access Date: 05.05.2022).

30. Narrow-Band and Spread Spectrum Physical Layer Coverage and Capacity Simulations (DOC. No. GP-150076). [Electronic Resource] 3GPP TSG GERAN 65 Semtech // — 2015. — Https://www.3gpp.org/DynaReport/TDocExMtg--GP-65--31298.htm. (Access Date: 15.05.2022).

31. Laya, A. Is the Random-Access Channel ff LTE and LTE—A Suitable For M2M Communications? A Survey of Alternatives / A. Laya, L. Alonso, and J. Alonso-Zarate // IEEE Commun. Surveys Tuts. — 2014. — V.16. — N.1. — P.4 - 16.

32. The Zettabyte Era, Trends and Analysis [Electronic Resource] / CISCO // — Https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c 11 -741490.html — (Access Date: 24.04.2022).

33. Dawy, Z. Toward Massive Machine Type Cellular Communications / Z. Dawy, W. Saad, A. Ghosh, J. G. Andrews, and E. Yaacoub // IEEE Wireless Commun. — 2017. — V.24. — N.1. — P.120 - 128.

34. Condoluci, M. Toward 5G Densenets: Architectural Advances for Effective Machine Type Communications Over Femtocells / M. Condoluci, M. Dohler, G. Araniti, A. Molinaro, and K. Zheng // IEEE Commun. Mag. — 2015. — V.53. — N.1. — P.134 - 141.

35. Zhou, K. Dynamic Resource Allocation for Machine-Type Communications In LTE/LTE-A with Contention Based Access / K. Zhou, N. Nikaein, and R. Knopp // IEEE Wireless Commun. Netw. Conf. (WCNC). — 2013. — P.256 - 261.

36. Wu, G. M2M: From Mobile to Embedded Internet / G. Wu, S. Talwar, K. Johnson, N. Himayat, and K. D. Johnson // IEEE Communications Magazine. — 2011. — V.49. — N.4. — P.36 - 43.

37. Chapman, T. HSPA Evolution — The Fundamentals for Mobile Broadband / T. Chapman, E. Larsson, P. von Wrycza, E. Dahlman, S. Parkvall, J. Skold // Academic Press. — 2015.

38. Nashar, El. Deployment and Performance of 4G-LTE Networks: A Practical Approach, 1st ed. / El-Nashar, M. El-saidny, and M. Sherif // Wiley Publishing. — 2014.

39. The Universal Mobile Telecommunication Sysytems [Electronic Resource] / 3GPP // — Https://www.3gpp.org/dynareport/SpecList.htm?release=Rel-16&tech=2.html — (Access Date: 12.04.2022).

40. IMT 2000 - Detailed Specifications of the Radio Interfaces of International Mobile Telecommunications-2000 (IMT-2000) / Recommendation ITU-R M.1457- 11, // ITU-R Std. — 2013.

41. IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond / Recommendation ITU-R M.2012-3 // ITU-R Std. — 2018.

42. Dahlman, E. 4G LTE-Advanced Pro and The Road to 5G, 3rd ed. / E. Dahlman, S. Parkvall, and J. Skold // Academic Press. — 2016.

43. Eastwood, L. Mobility Using IEEE 802.21 In a Heterogeneous IEEE 802.16/802.11-based, IMT-advanced (4G) network / L. Eastwood, S. Migaldi, Q. Xie and V. Gupta // IEEE Wireless Communications. — 2008. — V.15. — N. 2. — P. 26 - 34.

44. 3GPP Low Power Wide Area Technologies White paper [Electronic Resource] / GSMA // — 2016. — Https://www.gsma.com/iot/wp-content/uploads/2016/10/3GPP-Low-Power-Wide-Area-Technologies-GSMA-White-Paper.pdf — (Access Date: 12.04.2022).

45. Liberg, O. Cellular Internet of Things: Technologies, Standards, and Performance / O. Liberg, M. Sundberg, E. Wang, J. Bergman, and J. Sachs // Elsevier, Ed. Elsevier. — 2018.

46. Network Slicing Made Easy White Paper [Electronic Resource] / Ericsson // — Https://www.ericsson.com/en/network-slicing — (Access Date: 16.05.2022).

47. Akpakwu, G.A. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges / G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz // IEEE Access. — 2018. — V.6. — P.3619 - 3647.

48. Boccardi, F. Five Disruptive Technology Directions for 5G / Boccardi F, Heath Jr RW, Lozano A, Marzetta TL, Popovski P // IEEE Communications Magazine. — 2014. — V.52. — N.2. — P.74 - 80.

49. Moltchanov, D. Improving Session Continuity with Bandwidth Reservation in Mmwave Communications / Moltchanov D., Samuylov A., Petrov V., Gapeyenko M., Himayat N., Andreev S., and Koucheryavy Y // IEEE Wireless Communications Letters.— 2019. — V.8. — N.1. — P.105 - 108.

50. Giqbowski, M. Modeling of Systems with Overflow Multi-Rate Traffic / M. Gl^bowski, K. Kubasik,, and M. Stasiak // Telecommun Syst. .— 2008. V.37. — N.1. — P.85 - 96.

51. Kaufman, J. S. Blocking in A Shared Resource Environment // IEEE Transactions on Communications. — 1981. — V.29. — N.1. — P. 1474 - 1481.

52. Kelly, F. P. Blocking Probabilities in Large Circuit-Switched Networks // Adv. Appl. — 1986. — V. 18. — P. 473 - 505.

53. Roberts, J. W. A Service System with Heterogeneous User Requirements Application to Multi-Service Telecommunications Systems : Performance of Data Communication Systems and Their Applications // Pujolle G. (ed.). North Holland, Amsterdam. — 1981. — P. 423 - 431.

54. Kelly F. P. Reversibility and Stochastic Networks / P.F. Kelly — New York: Willy, 1981. — 230 p.

55. Berezner, S.A. An Efficient Stable Recursion to Compute Multiservice Blocking Probabilities / Berezner S. A, Krzesinski A. E // Performance Evaluation. — 2001. — V.43. — N.2. — P. 151 - 164.

56. Roberts, J. Broadband Network Traffic: Performance Evaluation and Design Of Broadband Multiservice Networks / J. Roberts, U, Mocci and J. Virtamo — Springer,1996. — 584 p.

57. Delbrouck, L. E. N. On the Steady-State Distribution in A Service Facility Carrying Mixtures of Traffic with Different Peakedness Factor and Capacity Requirements / L.E.N. Delbrocuk // IEEE Transactions on Communications. — 1983. — V.31. — P.1209 - 1211.

58. Fortet, R. Congestion in a Loss System When Some Calls Want Several Devices Simultaneously / R.Fortet, Ch.Grandjean // Electrical Communications. — 1964. — V.39. — N.4. — P. 513 - 526.

59. Iversen, V.B. The exact evaluation of multi-service loss system with access control / V.B.Iversen // Teleteknik. — 1987. — V.31. — N.2. — P. 56 - 61.

60. Iversen, V.B. Teletraffic Engineering and Network Planning / V.B.Iversen. — Technical University of Denmark, 2010. — 370 p.

61. Iversen, V.B. The Usage of Convolution Algorithm with Truncation for Estimation of Individual Blocking Probabilities in Circuit-Switched Telecommunication Networks. In: V.Ramaswami and P.E.Wirth (editors) / V.B.Iversen, S.N.Stepanov // Proc. 15th International Teletraffic Congress. — Amsterdam. — 1997. — P. 1327 -1336.

62. Iversen, V.B. The Calculation of Stationary Performance Measures of Loss Models with Access Control Based on the Concept of Truncation / V.B.Iversen, S.N.Stepanov // Proc. 14th Nordic Teletraffic Seminar. — Copenhagen. — 1998. — P. 277 - 286.

63. Iversen, V.B. The Unified Approach for Teletraffic Models to Convert Recursions for Global State Probabilities into Stable Form / V.B.Iversen, S.N.Stepanov // Proc. 19th International Teletraffic Congress. — Beijing. — 2005. — P. 1559 - 1570.

64. Iversen, V.B. The optimal dimensioning of multi-service links / V.B.Iversen, S.N.Stepanov // Modeling and simulation tools for emerging telecommunication networks Proc. COST-285 Mid-term Symposium. — 2005. — V.7 — P. 151 - 178.

65. Iversen, V.B. Dimensioning of Multiservice Links Taking Account of Soft Blocking / V.B.Iversen, S.N.Stepanov, A.V.Kostrov // Proc. 6th International Conference, Next Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN 2006). — St. Petersburg. — 2006. — P. 3 - 10.

66. Iversen, V.B. Derivatives of Blocking Probabilities for Multi-Service Loss Systems and their Applications / V.B.Iversen, S.N.Stepanov // Proc. 7th International Conference, Next Generation Teletraffic and Wired. Wireless Advanced Networking (NEW2AN 2007). — St. Petersburg. — 2007. — P. 260 - 268.

67. Ross, K. W. Multiservice loss models for broadband telecommunication networks / K.W.Ross. — London: Springer, 1995. — 343 p.

68. 3rd Generation Partnership Project [Electronic Resource] / 3GPP // — 2011. — Available: http://www.3gpp.org — (Access Date: 09.05.2022).

69. Requirements Related to Technical Performance for IMT-Advanced Radio Interface(s) / ITU // R M.2134. — 2008.

70. 3rd Generation Partnership Project 2 [Electronic Resource] / 3GPP // — 2010. — Https://www.3gpp2.org/Public_html/Misc/AboutHome.cfm — (Access Date: 08.05.2022).

71. Even Further Enhanced MTC for LTE (DOC. No. 750059) [Electronic Resource] / 3GPP // — 2017. — Https://www.3gpp.org/DynaReport/GanttChart-Level-2.htm#bm750059 — (Access Date: 07.05.2022).

72. Akpakwu, G.A. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges / G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz // IEEE Access. — 2018. — V.6. — P.3619 - 3647.

73. 3rd Generation Partnership Project 2 [Electronic Resource] / 3GPP // — 2010. — Https://www.3gpp2.org/Public_html/Misc/AboutHome.cfm — (Access Date: 08.05.2022).

74. Release description; Release 14 / 3GPP // TR 21.914. — 2018. —. Rel. 14. — V. 14.0.0.

75. Release description; Release 15 / 3GPP // TR 21.915. — 2019. —. Rel. 15. —. V. 0.6.0.

76. IMT Vision e Framework and Overall Objectives of the Future Development of IMT for 2020 and beyond [Electronic Resource] / ITU-R M. 2083 // — 2015. — Https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s

pecificationId=3179 — (Access Date: 12.05.2022).

77. Service Requirements for the Evolved Packet System (EPS) / 3GPP // TS 22.278. — 2009. — Rel. 8.

78. Shannon, C. E. A Mathematical theory of Communication / C. E. Shannon // The Bell System Technical Journal. — 1984. — P.3619 - 3647, 623 - 656.

79. Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN) / 3GPP // TS 25.913 . — 2009. — Rel. 8.

80. Policy and Charging Control Architecture / 3GPP // TS 23.203. — 2011. — Rel. 10. — Sec. 6.1.7.2.

81. Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced / ITU Report // ITU-R M.2135. — 2008.

82. Detailed specifications of the radio interfaces of international mobile telecommunications-2000 (IMT-2000) / Recommendation ITU-R M.1457e11. — 2013.

83. Detailed Specifications of the Terrestrial Radio Interfaces of International Mobile Telecommunications Advanced (IMT-Advanced) / ITU-R WP5D // Recommendation R M.2012. — 2012.

84. Olsson, M. SAE and the Evolved Packet Core Driving the Mobile Broadband Revolution / M.Olsson, S. Sultana, S. Rommer, L. Frid, C. Mulligan // Academic Press, 2009.

85. Technical Specification Group Radio Access Network; Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN) / 3GPP // 3GPP TR 36.300. — 2017. Https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s pecificationId=2430 .

86. ITU Paves Way for Next-Generation 4G Mobile Technologies; / ITU-R IMT-advanced 4G standards to usher new era of mobile broadband communications // ITU Press Release. — 2010.

87. Feasibility Study for Evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN) / 3GPP // TS 25.912 . — 2011. Rel. — 10. Sec. — 13.5

88. Piro, G. A. Two-Level Scheduling Algorithm for QoS Support in the Downlink ff LTE Cellular Networks / Piro, G., Grieco, L.A., Boggia, G. and Camarda, P // European Wireless Conference (EW). — 2010. — P.246 - 253.

89. Rouzbehani, B. A Joint Admission Control & Resource Management Scheme for Virtualized Radio Access Networks / B. Rouzbehani, V. Marbukh and K. Sayrafian // IEEE Conference on Standards for Communications and Networking (CSCN). — 2019. — P.1 - 6.2019, pp. 1-6.

90. Ekstrom, H. QoS Control in The 3GPP Evolved Packet System / H. Ekstrom // IEEE Communications Magazine. — 2009. . — V.47 . — N.2. — P.76 - 83.

91. Services, Technical, Specification Group and System Aspects Policy and Charging Control architecture /3GPP // TS 23.S03. — 2011 - 2012. — Rel. 9.

92. Sesia, S. et al. The UMTS Long Term Evolution, From Theory to Practice, 2nd ed. / S. Sesia, et al. // Wiley Publication, 2011.

93. Chen, Y. Architecture and Protocols of EPC-LTE with Relay / Y. Chen and X.Lagrange // ffhal-00830621f, 2013. — 25p.

94. Capozzi, F. Downlink Packet Scheduling in LTE Cellular Networks: Key Design Issues and a Survey / F. Capozzi, G. Piro, L. A. Grieco, G. Boggia and P. Camarda // IEEE Communications Surveys & Tutorials. — 2013. — V.15. — N.2. — P.678 - 700.

95. Technical, Specifications, Group Radio Access Network Physical Channel and Modulation / 3GPP // TS 36.211. — 2009. — Rel. 8.

96. Sesia, S. LTE: The UMTS Long Term Evolution / S. Sesia, I. Tbufik, and M. Baker // Wiley Online Library, 2009.

97. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (3GPP TS 36.211 version 8.3.0 Release 8). 2014. — P.0 -121.

98. Yadav, S.P. PAPR Analysis of Single Carrier FDMA System for Uplink Wireless Transmission / Yadav, S.P, and Bera, S.C // 10th Int Conf Information, Commun. Signal Process ICICS. — 2015. — P.1 - 5.

99. Maestro, L. A. Channel-Aware Scheduling Algorithms for SC-FDMA in Local Area Scenarios / Maestro, L. A., B erardinelli, G., Frattasi, S., and Mogensen, P. // IEEE

19th International Symposium on Personal, Indoor and Mobile Radio Communications. — 2008. — P.1 - 6.

100. Abu-Ali, N. Uplink Scheduling in LTE and LTE-Advanced: Tutorial, Survey and Evaluation Framework / N. Abu-Ali, A. M. Taha, M. Salah and H. Hassanein // IEEE Communications Surveys & Tutorials. — 2014. — V.16 . — N.3. — P.1239 - 1265.

101. Ruby, R. Uplink Scheduler for SC-FDMA-Based Heterogeneous Traffic Networks with QoS Assurance and Guaranteed Resource Utilization / R. Ruby, V. C. M. Leung and D. G. Michelson // IEEE Transactions on Vehicular Technology. — 2015. — V. 64 . — N.10. — P.4780 - 4796.

102. Biswas, J. Low Complexity User Pairing and Resource Allocation of Heterogeneous Users for Uplink Virtual MIMO System over LTE-A Network / J.Biswas, N. Wei, R.P. Liu, I.B. Collings and S. Jha // IEEE Wireless Communications and Networking Conference, WCNC. — 2014. — P.1903 - 1908.

103. Afolabi, I. Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies & Solutions / Afolabi I, Taleb T, Samdanis K, Ksentini A, and Flinck H // . IEEE Communications Surveys and Tutorials.— 2018. — V.20 . — N.3. — P.2429 - 2453.

104. Stepanov, S. Resource Allocation and Sharing for Transmission of Batched NB IoT Traffic over 3GPP LTE // S. Stepanov, M. Stepanov , A. Tsogbadrakh , J. Ndayikunda, and U. Andrabi // Conference of Open Innovations Association, FRUCT — 2019. — P. 422 - 429.

105. Begona, B, et al. Technology Pillars in The Architecture ff Future 5G Mobile Networks: NFV, MEC and SDN / B. Begona, et al. // Computer Standards and Interfaces archive. — 2017. — V.54. — P. 216 - 228.

106. Parvez, I. A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions / I. Parvez, A. Rahmati, I. Gcvenc, AI. Sarwat, and H. Dai // IEEE Communications Surveys & Tutorials. — 2018. — V.20. — N.4. — P. 3098 -3130.

107. Rost, P. Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks / P. Rost , C. Mannweiler , and DS. Michalopoulos , et al. // IEEE Communications Magazine. — 2017. — V.55. — N.5. — P. 72 - 79.

108. Olwal, T.O. A Survey of Resource Management Toward 5G Radio Access Networks / T.O. Olwal, K. Djouani, and A.M. Kurien // IEEE Commun. Sury. Tutor. — 2016.

— V.18. — N.3. — P. 1656 - 1686.

109. Kasgari, A.T.Z. Stochastic Optimization and Control Framework for 5G Network Slicing with Effective Isolation / ATZ. Kasgari, and W. Saad // Proc Conf Inf Sci Syst., CISS. — 2016. — P. 1 - 6.

110. Stepanov, S.N. The Analysis of Resource Sharing for Heterogenous Traffic Streams over 3GPP LTE with NB-IoT Functionality / S.N. Stepanov, M.S. Stepanov, U.M. Andrabi, S.N., and J. Ndayikunda // Distributed Computing and Computer Networks. DCCN 2020. Lecture Notes Computer Science, Springer, Cham. — 2020.

— V.12563. — P. 422 -435.

111. Rost, P. Network slicing to enable scalability and flexibility in 5G mobile networks / Rost P. Mannweiler C, Michalopoulos DS, et al. // . IEEE Communications Magazine. — 2017. — V.55. — N.5. — P. 72 - 79.

112. Cumming, D. Cameras Tracking Shoppers: The Economics of Retail Video Surveillance / D. Cumming, and S. Johan // , Eurasian Business Review.— 2015. — V.5. — N.2. — P. 235 - 257.

113. Tang, Y. Intelligent Video Surveillance System for Elderly People Living Alone Based on ODVS / Y. Tang, B. Ma, and H. Yan // Advances in Internet of Things .— 2013. — V.3. — N.2. — P. 44 - 52.

114. SanMiguel, J. C. Self-Reconfigurable Smart Camera Networks / J. C. SanMiguel, C. Micheloni, K. Shoop, G. L. Foresti and A. Cavallaro // Computer. — 2014. — V.47.

— N.5. — P. 67 - 73.

115. Foresti, G. L. Multimedia Video-Based Surveillance Systems: Requirements, Issues and Solutions / G.L. Foresti, P. Mahonen, and C.S. Regazzoni // Springer Science & Business Media, Vol. 573, 2012.

116. Stepanov, D. The Concept of Video Surveillance System Based on the Principles of Stereo Vision / D. Stepanov, and I. Tishchenko // FRUCT. — 2014. — P. 328 - 334.

117. Ang, L. Wireless Multimedia Sensor Networks on Reconfigurable Hardware: Information Reduction Techniques / L. Ang, K.P. Seng, L.S. Yeong,

and W.C. Chia // Berlin, Germany: Springer Science + Business Media, 2013. — 383p.

118. Li, Y. Survey of Spatio-Temporal Interest Point Detection Algorithms in Video / Y. Li, R. Xia, Q. Huang, W. Xie, and X. Li // IEEE Access. — 2017. — V.5. — P. 10323 - 10331.

119. Live Encoder Settings, Bitrates and Resolutions [Electronic Resource] / YouTube // — Https://support.google.com/youtube/answer/2853702?hl=en — (Access Date: 13.04.2022).

120. HDV Progressive Primer [Electronic Resource] /Sony // — Https://www.sony-asia.com/microsite/professional/hdv/pdf/HVR-HD1000P.pdf — (Access Date: 13.04.2022).

121. Blue Ray Disk Format White Paper [Electronic Resource] / Modern Tech — http://www.moderntech.com.hk/sites/default/files/whitepaper/V05_Blu%20Ray-4-LogicalAudioVisual.pdf — (Access Date: 19.04.2022).

122. Verizon and AT&T want to virtualize the 5G Network Core and use Mobile Edge Computing [Electronic Resource] / Techblog — // Https://techblog.comsoc.org/2019/03/15/verizon-and-att-want-to-virtualize-the-5g-network-core-and-use-mobile-edge-computing — (Access Date: 22.04.2022).

123. Zhu, W. Multimedia Big Data Computing / W. Zhu, P. Cui, Z. Wang, and G. Hua // IEEE Multimedia. — 2015. — V. 22. — N.2. — P. 95 - 105.

124. Che, D. From Big Data to Big Data Mining: Challenges, Issues, and Opportunities / D. Che, M. Szafran, and Z. Peng // Proc. of the 18th International Conference on Database Systems for Advanced Applications. — 2013. — P. 1 - 15.

125. Olshannikova, E. Visualizing Big Data with Augmented and Virtual Reality: Challenges and Research Agenda / E. Olshannikova, A. Ometov, Y. Koucheryavy, and T. Olsson // Journal of Big Data. — 2015. — V. 2. — N.1. — P. 1 - 27.

126. Malik, H. Radio Resource Management Scheme in NB-IoT Systems / H. Malik, H. Pervaiz, M. Mahtab Alam, Y. Le Moullec, A. Kuusik and M. Ali Imran // IEEE Access. — 2018. — V. 6. — P. 15051 - 15064.

127. Begishev, V. Resource Allocation and Sharing for Heterogeneous Data Collection over Conventional 3GPP LTE and Emerging NB-IoT Technologies / V. Begishev, V. Petrov, A. Samoylov, D. Moltchanov, S. Andreev, Y. Koucheryavy, and K. Samouylov // Computer Communications. — 2018. — V. 120. — N.2. — P. 93 -101.

128. Yu, Y. Uplink Resource Allocation for Narrowband Internet of Things (NB-IoT) Cellular Networks / Y. Yu and J. Wang // Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. — 2018. — P. 446 - 471.

129. Stepanov, S.N. Reservation Based Joint Servicing of Real Time and Batched Traffic in Inter Satellite Link / S. N. Stepanov, U. M. Andrabi, M. S. Stepanov and J. Ndayikunda // Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia. — 2020. — P. 1 - 5.

130. Umer, M.A. Investigation of Cellular Network Resource Division Procedures for the Joint Servicing of Real-Time Multiservice Traffic and Elastic IoT Traffic / M. A. Umer, and S. N. Stepanov // Synchroinfo Journal. — 2020. — V. 6. — N.1. — P. 7 - 10.

131. Andrabi, U.M. The Model of Conjoint Servicing of Real-Time Traffic of Surveillance Cameras and Elastic Traffic Devices with Access Control / U. M. Andrabi, and S. N. Stepanov // 2nd International Informatics and Software Engineering Conference (IISEC). — 2021. — P. 1 - 6.

132. Andrabi, U.M. The Model of Conjoint Servicing of Real Time and Elastic Traffic Streams Through Processor Sharing (PS) Discipline with Access Control / U. M. Andrabi, S. N. Stepanov, M. S. Stepanov, M. G. Kanishcheva and F. X. Habinshuti // International Conference Engineering and Telecommunication (En&T). — 2021.

— P. 1 - 5.

133. Andrabi, U.M. Cellular Network Resource Distribution Methods for The Joint Servicing of Real-Time Multiservice Traffic And Grouped IoT / U. M. Andrabi, S.N. Stepanov., J. Ndayikunda , and M.G. Kanishcheva // Journal T-Comm. — 2020.

— V.14. — N.10. — P. 61 - 69.

134. Andrabi, U.M. Radio Resource Management For Shared Servicing of Real-Time Multiservice and Elastic IOT Traffic Streams / U.M. Andrabi , and F.X. Habinshuti // International Journal of Electrical, Electronics and Data Communication

(IJEEDC). — 2021. — V.9. — I.12. — P. 1 - 6. — URL: http://iraj.in/ journal / IJEEDC/paper_detail.php?paper_id=18309&name=Radio_Resource_Management

_For_Shared_Servicing _of _Real-Time_ Multiservice _and _Elastic

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.