Активность порфиринов металлов, содержащих антиоксидантные 2,6-ди-трет-бутилфенольные заместители, в процессе окисления углеводородов тема диссертации и автореферата по ВАК РФ 02.00.08, кандидат химических наук Герасимова, Ольга Алексеевна
- Специальность ВАК РФ02.00.08
- Количество страниц 177
Оглавление диссертации кандидат химических наук Герасимова, Ольга Алексеевна
СОДЕРЖАНИЕ
4
Глава 1. Обзор литературы
1.1. Порфирины в медицине
1.2. Порфирины металлов - биомиметики активных центров гемовых белков
1.2.1. Биомиметики супероксиддисмутазы на основе порфиринов металлов
1.2.2. Биомиметики оксигеназ на основе порфиринов железа и марганца
1.2.2.1. Биомиметики оксигеназ на основе порфиринов металлов как гомогенные катализаторы
1.2.2.2. Биомиметики оксигеназ на основе иммобилизованных порфиринов железа и марганца как гетерогенные катализаторы
Глава 2. Обсуждение результатов
2.1. Получение порфиринов, иммобилизованных на матрице силикагеля
2.1.1. Синтез и спектральные свойства порфиринов металлов
2.1.2. Синтез и характеристики порфиринов металлов,
иммобилизованных на матрице силикагеля
2.2. Изучение окислительной активности порфиринов металлов
2.2.1. Активность неиммобилизованных порфиринов металлов в процессах окисления углеводородов
2.2.2. Изучение механизма окисления углеводородов №104 в присутствии порфиринов Бе и Мп
2.2.2.1. Образование комплексов порфиринов Бе и Мп с имидазолом
2.2.2.2. Исследование окисления порфиринов Бе и Мп ЫаЮ4 методом электронной спектроскопии поглощения
2.2.2.3. Исследование окисления порфиринов Бе и Мп №Ю4 методом масс-спектрометрии
2.2.2.4. Исследование окисления порфирина Бе с 2,6-ди-трет-бутилфенольными группами методом ЭПР
2.2.3. Активность иммобилизованных порфиринов металлов в процессах окисления углеводородов
2.2.4. Сравнительный анализ механизма окисления углеводородов в присутствии порфиринов Бе и Мп, содержащих 2,6-]щ-трет-бутилфенольные и фенильные заместители
Глава 3. Экспериментальная часть
3.1. Синтез порфиринов
3.2. Иммобилизация порфиринов металлов на матрице силикагеля
3.3. Окисление углеводородов пероксидом водорода
3.4. Окисление углеводородов периодатом натрия
3.5. Окисление этилбензола Ог
3.6. Исследование методом газовой хромато-масс-спектрометрии (ГХ-МС)
3.7. Исследование окисления порфирина железа методом ЭПР
3.8. Исследование окисления порфиринов железа и марганца методом электронной спектроскопии поглощения
3.9. Исследование окисления порфиринов железа и марганца методом масс-спектрометрии
Выводы
Литература
Рекомендованный список диссертаций по специальности «Химия элементоорганических соединений», 02.00.08 шифр ВАК
Координационная химия и реакционная способность смешанных ацидопорфириновых комплексов марганца в растворах2006 год, доктор химических наук Клюева, Мария Евгеньевна
Химическая устойчивость и каталитические свойства марганец(III)порфиринов с различным типом замещения в ароматическом макроцикле2005 год, кандидат химических наук Киселева, Екатерина Николаевна
Каталитические свойства гетерогенизированных порфиринов2003 год, кандидат химических наук Киреев, Сергей Георгиевич
Антиоксидантная активность комплексов металлов, содержащих 2,6-ди-трет-бутилфенольные группы2004 год, кандидат химических наук Шпаковский, Дмитрий Борисович
Кинетика диссоциации и каталитическая активность медь(II)- и палладий(II)-мезо-фенил-β-октаалкилпорфиринов2007 год, кандидат химических наук Косарева, Ольга Владимировна
Введение диссертации (часть автореферата) на тему «Активность порфиринов металлов, содержащих антиоксидантные 2,6-ди-трет-бутилфенольные заместители, в процессе окисления углеводородов»
ВВЕДЕНИЕ
Порфирины входят в состав большого числа биохимических систем, их синтетические аналоги применяются в фармакологии и медицине. Так, например, РкоШап, Рко^кет используются в фотодинамической терапии опухолевых заболеваний; синтетические порфирины железа и марганца {АЕОЬ 10150) как миметики супероксиддисмутазы проходят клинические испытания в качестве препаратов для борьбы с окислительным стрессом. Липофильные свойства свободных оснований порфиринов и их комплексов с различными металлами обеспечивают накопление этих соединений в липидном бислое клеточных мембран и транспорт в клетки живых организмов.
Однако структурное и функциональное сходство синтетических металлопорфиринов с активными центрами гемовых оксигеназ обусловливает их каталитическую активность в реакциях окисления органических субстратов. В результате, использование порфиринов, например, в качестве сенсибилизаторов в терапии и диагностике опухолевых заболеваний осложняется неконтролируемыми побочными процессами окисления важных биологических субстратов - компонентов белков, ДНК и липидов. В связи с этим возникает необходимость создания новых синтетических порфиринов с управляемой оксигеназной активностью. Данная задача может быть решена в результате получения полифункциональных систем, в которых органическое лигандное окружение металла обеспечивает анти- или прооксидантное действие порфиринов металлов. К таким системам относятся порфирины, содержащие в качестве периферийных органических заместителей антиоксидантные фрагменты 2,6-диалкилфенолов.
Целью работы является направленный синтез порфиринов переходных металлов (Ре111, Мпш, Со", Си11), содержащих в .мезо-положениях макрокольца группы 2,6-ди-т/?ега-бутилфенола, их иммобилизация на матрицу силикагеля
для моделирования связывания активного центра аналога тема с белком и изучение их активности как гомогенных или гетерогенных катализаторов в окислительных процессах.
В задачи работы входило: (1) получение биомиметических полифункциональных систем, в состав молекул которых входят как каталитически активные центры порфирина металла, так и антиоксидантные 2,6-ди-трега-бутилфенольные группы; (2) получение иммобилизованных на матрицу силикагеля порфиринов Бе111, Мпи|, Со11, Си11 с фенольными группами; (3) изучение их каталитической активности в процессах окисления, оксигенирования, эпоксидирования модельных органических субстратов; (4) установление роли фенольных групп в механизме действия данных порфиринов металлов в процессе окисления субстратов, а также влияния на направление процесса.
В работе использованы методы электронной спектроскопии поглощения, инфракрасной спектроскопии, спектроскопии ядерного магнитного резонанса, ЭПР, газовой хроматографии с масс-детектированием и масс-спектрометрии.
Полученные результаты могут быть использованы для формирования новых подходов к созданию нетривиальных про- и антиоксидантов на основе порфиринов металлов, содержащих пространственно-затрудненные фенолы, с переменным эффектом действия.
Работа выполнена при поддержке РФФИ (гранты 06-03-32773, 09-0300090) и Российско-Греческой межгосударственной Программы «Биоматериалы».
Похожие диссертационные работы по специальности «Химия элементоорганических соединений», 02.00.08 шифр ВАК
Синтез, строение и физико-химические свойства азапорфиринов и порфиразинов2004 год, доктор химических наук Стужин, Павел Анатольевич
Синтез и физико-химические свойства МЕЗО-алкилзамещенных тетрабензопорфиринов и их металлокомплексов2010 год, кандидат химических наук Якубов, Леонид Александрович
Замещенные порфиразины симметричного и несимметричного строения. Синтез и свойства2007 год, доктор химических наук Кудрик, Евгений Валентинович
Синтез и свойства мезо-замещенных тетрабензопорфиринов и их структурных аналогов2010 год, доктор химических наук Галанин, Николай Евгеньевич
Электрохимические и электрокаталитические свойства карбонил- и оксо- производных фенилпорфиринов с марганцем, железом, кобальтом и никелем2005 год, кандидат химических наук Евсеев, Андрей Александрович
Заключение диссертации по теме «Химия элементоорганических соединений», Герасимова, Ольга Алексеевна
выводы
1. Впервые получены порфирины металлов (ЯдРМ и РЬ4РМ; М = Ре, Мп, Со, Си) с антноксидантными 2,6-ди-трега-бутилфенольными группами или фенильными заместителями, иммобилизованные на матрице силикагеля с элементоорганическими спейсерами на основе имидазола.
2. Проведено сравнительное исследование активности неиммобилизованных и иммобилизованных на поверхности силикагеля порфиринов металлов (Ре, Мп, Со, Си) в процессах окисления, оксигенирования, эпоксидирования модельных углеводородов (алканов и алкенов) различными окислителями (№Ю4, Н202 и 02).
3. Выявлена зависимость окислительной активности порфиринов металлов от природы металла; природы арильных заместителей в порфириновом макрокольце (фенольная или фенильная группа); длины цепи спейсера и природы окислителя.
4. С использованием методов электронной спектроскопии поглощения, масс-спектрометрии, ЭПР и анализа продуктов реакции изучен механизм окисления углеводородов периодатом натрия в присутствии порфиринов Ре и Мп с 2,6-ди-трет-бутилфенольными группами и установлены активные интермедиаты.
5. Показано образование л-катион-радикала оксокомплекса К4Р'+Ре1У=0, ответственного за механизм действия порфирина железа, и оксокомплекса ^РМп =0, ответственного за механизм действия порфирина марганца.
6. Впервые показана принципиальная возможность управления оксигеназной активностью порфиринов путем введение антиоксидантных 2,6-ди-трет-бутилфенольных групп: для порфирина железа наблюдается усиление, а для порфирина марганца - снижение активности.
Список литературы диссертационного исследования кандидат химических наук Герасимова, Ольга Алексеевна, 2013 год
ЛИТЕРАТУРА
1. Biochemistry: the chemical reactions of living cells. Ed. D.E. Metzler. Academic Press. USA. 2 edition. 2001. Vol. 1. P. 353-362.
2. J.B. Wittenberg, B.A. Wittenberg. Mechanisms of cytoplasmic hemoglobin and myoglobin function. // Annu. Rev. Biophys. Biophys. Chem. 1990. Vol. 19. P. 217-241.
3. Biochemistry. Eds. R.H. Garrett, Ch.M. Grisham. Cengage Learning. Canada. 2010. P. 467-480.
4. Biochemistry. Eds. M.K. Campbell, S.O. Farrell. Thomson Brooks. Canada. 2009. P. 102-112.
5. Handbook of metalloproteins. Eds. A. Messerschmidt, W. Bode, M. Cygler. Wiley. Chichester. 2004. Vol. 1-2.
6. J. Stubbe, W.A. van der Donk. Protein radicals in enzyme catalysis. // Chem. Rev. 1998. Vol. 98. P. 705-762.
7. Sh.N. Harrison. New cytochrome P450 mechanisms: implications for understanding molecular basis for drug toxicity at the level of the cytochrome. // Expert Opin. Drug Metab. Toxicol. 2010. Vol. 6. №1. P. 1-15.
8. I.G. Denisov, Th.M. Makris, S.G. Sligar, I. Schlichting. Structure and chemistry of cytochrome P450. // Chem. Rev. 2005. Vol. 105. P. 2253-2277.
9. S.G. Sligar. Nature's universal oxygenases: the cytochromes P450. // Essays Biochem. 1999. Vol. 34. P. 71-83.
10. F.P. Guengerich. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. // Chem. Res. Toxicol. 2001. Vol. 14. P. 611-650.
11. Cytochromes P450. Role in the metabolism and toxicity of drugs and other xenobiotics. Ed. C. Ioannides. Royal Society of Chemistry. UK. 2008. 521 P.
12. The porphyrin handbook. Eds. К. M. Kadish, K.M. Smith, R. Guilard Academic Press. 1999. Vol. 1-4.
13. W. Hausmann. Die sensiblisierende Wirkung des Hematoporphyrins. // Biochem. Z. 1911. Vol. 30. S. 276-316.
14. F. Meyer-Betz. Untersuchungen über die Biologische (photodynamische) Wirkung des Hamatoporphyrins und anderer Derivative des Blut- und Galenfarbstoffs. // Dtsch. Arch. Klin. Med. 1913. Vol. 112. S. 476-503.
15. A. Policard. Etudes sur les aspects offerts par des tumeurs expérimentales examines a la lumiere de Wood. // С. R. Séances Mém. Soc. Biol. 1924. Vol. 91. P. 1423-1424.
16. А.Ф. Цыб, M.A. Каплан. Возможности и перспективы применения фотодинамической терапии. // Российские медицинские вести. 2002. Т. 7. №2. С. 19-24.
17. В.Н. Залесский, С.А. Возианов, О.Б. Дынник. Фотодинамическая терапия: к 100-летию открытия (этапы развития и изучения механизмов действия). // Журн. АМН Украины. 2004. Т. 10. №4. С. 808-824.
18. J. Moan, Q. Peng. An outline of the history of PDT. In: Photodynamic therapy. Ed. T. Patrice. European Soc. for Photobiol. UK. 2003. Vol. 2. P. 1-18.
19. H. Auler, G. Banzer. Untersuchungen über die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren. // Z. Krebsforsch. 1942. Vol. 53. P. 6568.
20. F.H.J. Figge, G.S. Weiland, L.O.J. Manganiello. Cancer detection and therapy. Affinity of neoplastic, embryonic and trau-matized regenerating tissues for porphyrins and metalloporphyrins. // J. Proc. Soc. Exp. Biol. Med. 1948. Vol. 68. №3. P. 640-641.
21. R.L. Lipson, E.J. Baldes, A.M. Olsen. Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. // J. Thorac. Cardiovasc. Surg. 1961. Vol. 42. P. 623-629.
22. T.J. Dougherty. Photoradiation therapy for the treatment of malignant tumours. // Cancer Res. 1978. Vol. 38. №8. P. 2628-2635.
23. T.J. Dougherty, W.R. Potter, K.R.Weishaupt. The structure of the active component of hematoporphyrin derivative. In: Porphyrin localization and treatment of tumors. Eds. D.R. Dorion, C.J. Gomer. New York: Alan R Liss Inc. 1984. P. 301-314.
24. M.A. Biel. Photodynamic therapy of head and neck cancers. In: Photodynamic therapy methods and protocols. Ed. Ch.J. Gomer. Humana Press New York. USA. 2010. P. 281-293.
25. M.A. Каплан, B.C. Медведев, B.B. Полькин, B.H. Капинус, A.H. Шубина, И.С. Спиченкова. Фотодинамическая терапия рака языка, слизистой оболочки полости рта и ротоглотки. // Российский биотерапевтический журн. 2008. Т. 7. №1. С. 17-18.
26. А.А. Фильченков, В.И. Залесский. Клиническая эффективность и механизмы повреждения опухолевых клеток при эндобронхиальной фотодинамической терапии больных раком легкого. // Онкология. 2006. Т. 8. №4. С. 365-371.
27. M.JI. Гельфонд. Фотодинамическая терапия в онкологии. // Практическая онкология. 2007. Т. 8. №4. С. 204-210.
28. В.В. Бойко, A.M. Коробов, JI.A. Бойко. Об опыте лечения рака гортани методом ФДТ. // Сибирский онкологический журн. 2005. Т. 13. №1. С. 102103.
29. J. Tian, D.M. Peehl, S.J. Knox. Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through Fenton chemistry. // Cancer Biother. Radiopharm. 2010. Vol. 25. №4. P. 439-448.
30. I. Spasojevic, X. Zhang, B.J. Moeller, S. Haberle, J. Vasquez-Vivar, M. W. Dewhirst, Z. Vujaskovic, I. Batinic-Haberle. Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), via suppression of oxidative stress in a mouse model of breast tumor. // Free Radic. Biol. Med. 2009. Vol. 47. №7. P. 992-1004.
31. R.R. Allison, G.H. Downie, R. Cuenca, Xin-Hua Hu, C.J.H. Childs, C.H. Sibata. Photosensitizers in clinical PDT. // Photodiagnosis Photodynamic Ther. 2004. Vol. 1. P. 27-42.
32. L. Jayashankar, B.S. Sundar, R. Vijayaraghavan, K.S. Betanabhatla, Ch. AJM, J. Athimoolam, K.S. Saravanan. Evaluation of photodynamic activity of
metalloporphyrins on human neuroblastoma cell line. // Pharmacology online. 2008. Vol. l.P. 66-77.
33. J.H. Lee, J-W. Park. A manganese porphyrin complex is a novel radiation protector. // Free Radic. Biol. Med. 2004. Vol. 37. №2. P. 272-283.
34. X.W. Mao, J.D. Crapo, T. Mekonnen, N. Lindsey, P. Martinez, D.S. Gridley, J.M. Slater. Radioprotective effect of a metalloporphyrin compound in rat eye model. // Curr. Eye Res. 2009. Vol. 34. №1. P. 62-72.
35. J.M. Pollard, J.S. Reboucas, A. Durazo, I. Kos, F. Fike, M. Panni, E.B. Gralla, J.S. Valentine, I. Batinic-Haberle, R.A. Gatti. Radioprotective effects of manganese-containing superoxide dismutase mimics on ataxia-telangiectasia cells. // Free Radic. Biol. Med. 2009. Vol. 47. №3. P. 250-260.
36. J.P. Crow, N.Y. Calingasan, J. Chen, J.L. Hill, M.F. Beal. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. // Ann. Neurology. 2005. Vol. 58. №2. P. 258-265.
37. G.B. Mackensen, M. Patel, H. Sheng, C.L. Calvi, I. Batinic-Haberle, B.J. Day, L.P. Liang, I. Fridovich, J.D. Crapo, R.D. Pearlstein, D.S. Warner. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. // J. Neurosci. 2001. Vol. 21. №13. P. 4582-4592.
38. H. Sheng, J.J. Enghild, R. Bowler, M. Patel, I. Batinic-Haberle, C.L. Calvi, B.J. Day, R.D. Pearlstein, J.D. Crapo, D.S. Warner. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. // Free Radic. Biol. Med. 2002. Vol. 33. P. 947-961.
39. H.L. Liang, G. Hilton, J. Mortensen, K. Regner, Ch.P. Johnson, V. Nilakantan. MnTMPyP, a cell-permeant SOD mimetic, reduces oxidative stress and apoptosis following renal ischemia-reperfusion. // Am. J. Physiol. Renal. Physiol. 2009. Vol. 296. №2. P. 266-276.
40. J.B. Day, M. Patel. Metalloporphyrin catalytic antioxidants for the potential treatment of neurodegenerative diseases. // Drugs Fut. 2008. Vol. 33. №12. P. 1025-1032.
41. Ю.А. Белый, А.В. Терещенко, М.А. Каплан, Т.Н. Пупкова. Фотодинамическая терапия при неоваскуляризации роговицы с фотосенсибилизатором Фотолон. // Рефракционная хирургия и офтальмология. 2009. Т. 9. №1. С. 4-13.
42. К.С. Уооп, І.С. You, I.S. Kang, S.K. Im, J.K. Ahn, Y.G. Park, K.Y. Ahn. Photodynamic therapy with verteporfm for corneal neovascularization. // Am. J. Ophthalmol. 2007. Vol. 144. P. 390-395.
43. P. Soucek, I. Souckova. Photodynamic therapy with verteporfm: from neovascularization to hemangioma. // Cesk. Slov. Oftalmol. 2010. Vol. 66. №3. P. 146-151.
44. R. Song, M. Witvrouw, D. Schols, A. Robert, J. Balzarini, E.De. Clercq, J. Bernadou, B. Meunier. Anti-HIV activities of anionic metalloporphyrins and related compounds. // Antivir. Chem. Chemother. 1997. Vol. 8. №2. P. 85-97.
45. D.L. DeCamp, L.M. Babe, R. Saloto, J.L. Lucich, M.S. Koo, S.B. Kahl, C.S. Craik. Specific inhibition of HIV-1 protease by boronated porphyrins. // J. Med. Chem. 1992. Vol. 35. P. 3426-3428.
46. O.D. Perez, G.P. Nolan, D. Magda, R.A. Miller, L.A. Herzenberg, L.A. Herzenberg. Motexafin gadolinium (Gd-Tex) selectively induces apoptosis in HIV-1 infected CD4-T helper cells. // Proc. Nat. Acad. Sci. USA. 2002. Vol. 99. №4. P. 2270-2274.
47. A.R.M. Chen-Collins, D.W. Dixon, A.N. Vzorov, L.G. Marzilli, R.W. Compans. Prevention of poxvirus infection by tetrapyrroles. // BioMedCentral Infectious Diseases. 2003. Vol. 3. №9. p. 1-10.
48. J. Ziegler, L. Pasierb, K.A. Cole, D.W. Wright. Metalloporphyrin probes for antimalarial drug action. // J. Inor. Biochem. 2003. Vol. 96. P. 478-486.
49. A. Robert, F. Benoit-Vical, O. Dechy-Cabaret, B. Meunier. From classical antimalarial drugs to new compounds based on the mechanism of action of artemisinin. //Pure Appl. Chem. 2001. Vol. 73. P. 1173-1188.
50. A. Juarranz, P. Jaen, F. Sanz-Rodriguez, J. Cuevas, S. Gonzalez. Photodynamic therapy of cancer. Basic principles and applications. // Clin. Transl. Oncol. 2008. Vol. 10. P. 148-154.
51. P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, J. Mir, S. Elrington, A. Khurshid, T. Hasan. Development and applications of photo-triggered theranostic agents. // Adv. Drug Delivery Rev. 2010. Vol. 62. № 11. p. 1094-1124.
52. T. Mlodnicka. Metalloporphyrin-catalyzed oxidation of hydrocarbons with dioxygen. In: Metalloporphyrins in catalytic oxidations. Ed. R.A. Sheldon. New York: Marcel Dekker Inc. 1994. P. 261-296.
53. J. Milano, B.J. Day. A catalytic antioxidant metalloporphyrin blocks hydrogen peroxide-induced mitochondrial DNA damage. // Nucleic Acids Res. 2000. Vol. 28. P. 968-973.
54. J.S. Reboucas, G. Defreitas-Silva, I. Spasojevic, Y.M. Idemori, L. Benov, I. Batinic-Haberle. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. // Free Radic. Biol. Med. 2008. Vol. 45. P. 201-210.
55. I. Batinic-Haberle, I. Spasojevic, R.D. Stevens, B. Bondurant, A. Okado-Matsumoto, I. Fridovich, Z. Vujaskovic, M.W. Dewhirst. New PEG-ylated Mn(III) porphyrins approaching catalytic activity of SOD enzyme. // Dalton Trans. 2006. Vol. 4. P. 617-624.
56. I. Spasojevic, Y. Chen, T.J. Noel, P. Fan, L. Zhang, J.S. Reboucas, D.K. St Clair, I. Batinic-Haberle. Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP5+, in plasma and major organs of B6C3F1 mice. // Free Radic. Biol. Med. 2008. Vol. 45. P. 943-949.
57. M.J. Perez, A.I. Cederbaum. Antioxidant and pro-oxidant effect of manganese porphyrin complex against CYP2E1 -dependent toxicity. // Free Radic. Biol. Med. 2002. Vol. 33. P. 111-127.
58. P. Мари, Д. Греннер, П. Мейес, В. Родуэлл. Биохимия человека. М. Изд-во. МИР. 2009. С. 126.
59. Sh. Asayama, N. Kasugai, S. Kubota, Sh. Nagaoka, H. Kawakami. Superoxide dismutase as a target enzyme for Fe-porphyrin-induced cell death. // J. Inor. Biochem. 2007. Vol. 101. P. 261-266.
60. S.V. Avery. Molecular targets of oxidative stress. // Biochem. J. 2011. Vol. 434. P. 201-210.
61. R.C. Murphy, K.M. Johnson. Cholesterol, reactive oxygen species, and the formation of biologically active mediators. // J. Biol. Chem. 2008. Vol. 283. №23. P.15521-15525.
62. M.B. Grisham. Reactive metabolites of oxygen and nitrogen in biology and medicine. RG Landes Co. Austin. 1992. 104 p.
63. J. Everse. Heme proteins. In: Encyclopedia of Biological Chemistry. Elsevier Inc. 2004. Vol. 2. P. 358
64. M.E.C. Robbins, W. Zhao. The AT, receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment. //J. Radiat. Biol. 2004. Vol. 80. P. 251-259.
65. Free radicals in biology and medicine. Eds. B. Halliwell, J.M.C. Gutteridge. Oxford University Press. UK. 2007. 851 P.
66. В.Г. Зайцев, В.И. Закревский, O.B. Островский. Связь между химическим строением и мишенью действия как основа классификации антиоксидантов прямого действия. // Эксп. Клин. Фарм. 2003. Т. 66. №4. С. 66-70.
67. B.R. James. Intaraction of dioxygen with metalloporphyrins. In: The Porphyrins. Ed. D. Dolphin. N. Y.: Academic Press. 1978. Vol. 5. P. 206-302.
68. I. Spasojevic, I. Batinic-Haberle. Manganese (III) complexes with porphyrins and related compounds as catalytic scavengers of superoxide. // Inorg. Chim. Acta. 2001. Vol. 317. P. 230-242.
69. A. Kanamori, M.-M. Catrinescu, A. Mahammed, Z. Gross, L. A. Levin. Neuroprotection against superoxide anion radical by metallocorroles in cellular and murine models of optic neuropathy. // J. Neurochem. 2010. Vol. 114. №2. P. 488498.
70. B.J. Day, I. Fridovich, J.D. Crapo. Manganic porphyrins posses catalase activity and protect endothelial cells against hydrogen peroxide - mediatet injury. // Arch. Biochem. Biophys. 1997. Vol. 347. P. 256-262.
71. B.J. Day, I. Batinic-Haberle, J.D. Crapo. Metalloporphyrins are potent inhibitors of lipid peroxidation. // Free Radic. Biol. Med. 1999. Vol. 26. P. 730736.
72. R.A. Rosenthal, K.D. Huffman, L.W. Fisette, Ch.A. Damphousse, W.B. Callaway, B. Malfroy, S.R. Doctrow. Orally available Mn porphyrins with superoxide dismutase and catalase activities. // J. Biol. Inorg. Chem. 2009. Vol. 14. P. 979-991.
73. E. Konorev, S. Kotamraju, H. Zhao, S. Kalivendi, J. Joseph, B. Kalyanaraman. Paradoxial effect of metalloporphyrins on doxorubicininduced apoptosus: scavenging of reactive oxygen species versus induction of heme oxygenase-1. // Free Radic. Biol. Med. 2002. Vol. 33. P. 988-997.
74. M. Patel, B.J. Day. Metalloporphyrin class of therapeutic antioxidants. // Trends Pharmacol. Sci. 1999. Vol. 20. P. 359-364.
75. Int. Pub. Num. WO 96/040223 Al. Oxidant scavengers. / M.P. Trova, J.D. Crapo, I. Fridovich, T. Oury, B.J. Day, R.J. Folz, B.A. Freeman, I. Batinik-Haberle. Appl. N. US 9610497. 19.12.96. 223 P.
76. T. Hanawa, Sh. Asayama, T. Watanabe, Sh. Owada, H. Kawakami. Protective effects of the complex between manganese porphyrins and catalase-poly(ethylene glycol) conjugates against hepatic ishemia/reperfusion injury in vivo. II J. Controlled Release. 2009. Vol. 135. P. 60-64.
77. Z. Vujaskovic, I. Batinic-Haberle, Z.N. Rabbani, Q.F. Feng, S.K. Kang, I. Spasojevic, T.V. Samulski, I. Fridovich, M.W. Dewhirst, M.S.A. Anscher. Small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. // Free Radic. Biol. Med. 2002. Vol. 33. P. 857-863.
78. Z.N. Rabbani, F.K. Salahuddin, P. Yarmolenko, I. Batinic-Haberle, B.A. Thrasher, B. Gauter-Fleckenstein, M.W. Dewhirst, M.S. Anscher, Z. Vujaskovic.
Lowmolecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. // Free Radic. Res. 2007. Vol. 41. P. 1273-1282.
79. B. Gauter-Fleckenstein, K. Fleckenstein, K. Owzar, C. Jiang, I. Batinic-Haberle, Z. Vujaskovic. Comparison of two Mn porphyrin-based mimics, of superoxide dismutase in pulmonary radioprotection. // Free Radic. Biol. Med. 2008. Vol. 44. P. 982-989.
80. J.H. Lee, Y.M. Lee, J.W. Park. Regulation of ionizing radiation-induced apoptosis by a manganese porphyrin complex. // Biochem. Biophys. Res. Comm. 2005. Vol. 334. P. 298-305.
81. Z.N. Rabbani, I. Batinic-Haberle, M.S. Anscher, J. Huang, B.J. Day, E. Alexander, M.W. Dewhirst, Z. Vujaskovic. Longterm administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. // Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 67. P. 573-580.
82. S.T. Keir, M.W. Dewhirst, J.P. Kirkpatrick, D.D. Bigner, I. Batinic-Haberle. Cellular redox modulator, ortho Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) in the treatment of brain tumors. // Anticancer Agents Med. Chem. 2011. Vol. 11. №2. P. 202-212.
83. A.Y. Makinde, A. Rizvi, J.D. Crapo, R.D. Pearlstein, J.M. Slater, D.S. Gridley. A metalloporphyrin antioxidant alters cytokine responses after irradiation in a prostate tumor model. // Radiat. Res. 2010. Vol. 173. №4. P. 441-452.
84. A.S. Wu, M. Kiaei, N. Aguirre, J.P. Crow, N.Y. Calingasan, S.E. Browne, M.F. Beal. Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. // J. Neurochem. 2003. Vol. 85. №1. P. 142-150.
85. E.P. Милаева. Биомолекулярное моделирование редокс-процессов с участием комплексов металлов. // Рос. Хим. Ж. 2004. Т. XLVIII. №4. С. 20-29.
86. N.N. David, S.T. Atkinson, К.В. Nolan. Synthetic porphyrins: metalloporphyrins which mimic states in catalytic cycle of cytochrome P-450 and peroxidases. // Pure Appl. Chem. 1993. Vol. 65. №7. P. 1541-1548.
87. N.N. David, K.B. Nolan. Oxidized metallophenolic porphyrins as models for compound I of the peroxidases. Reduction of oxidized iron (III), nickel (II) and zinc (II) complexes of tetrakis(3,5-di-te^butyl-4-hydroxyphenyl)porphyrin by the peroxidase substrate/?-cresol. // Inorg. Chim. Acta. 1993. Vol. 211. №1. P. 55-60.
88. A.B. Solovieva, S.F. Timashev. Catalyst systems based on immobilised porphyrins and metalloporphyrins. // Russ. Chem. Rev. 2003. Vol. 72. P. 965-984.
89. А.Б. Соловьева, Т.Н. Румянцева. Каталитические системы на основе иммобилизованных порфиринов. В Успехи химии порфиринов. Ред. О.А. Голубчиков. Изд.: НИИ Химии СПбГУ. Санкт-Петербург. 2001. Т. 3. С. 245259.
90. S. Ted Oyama. Rates, kinetics, and mechanisms of epoxidation: homogenous, heterogeneous, and biological routes. In: Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Ed. S. Ted Oyama. 2008. Elsevier. P. 70.
91. C.M.C. Prado-Manso, E.A. Vidoto, F.S. Vinhado, H.C. Sacco, K.J. Ciuffi, P.R. Martins, A.G. Ferreira, J.R. Lindsay-Smith, O.R. Nascimento, Y. Iamamoto. Characterization and catalytic activity of iron(III) mono(4-N-methylpyridyl)-tris(halophenyl)porphyrins in homogeneoys and heterogeneous systems. // J. Мої. Cat. A: Chem. 1999. Vol. 150. P. 251-266.
92. D. Mansuy. A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis. // C. R. Chimie. 2007. Vol. 10. P. 392-413.
93. T.L. Poulos. Cytochrome P450. // Current Opin. Struct. Biol. 1995. Vol. 5. P. 767-774.
94. J. Ohno, N. Suzuki, T. Dokoh, Y. Urano, K. Kikuchi, M. Hirobe, T. Higuchi, T. Nagano. Remarkable axial thiolate ligand effects on the oxidation of hydrocarbons by active intermediate of iron porphyrin and cytochrome P450. // J. Inorg. Biochem. 2000. Vol. 82. P. 123-125.
95. M. Sono, M. P. Roach, E. D. Coulter, J. H. Dawson. Heme-containing oxygenases. // Chem. Rev. 1996. Vol. 96. P. 2841-2887.
96. I. Schlichting, J. Berendzen, K. Chu, A.M. Stock, S.A. Maves, D.E. Benson, R.M. Sweet, D. Ringe, G.A. Petsko, S.G. Sligar. The catalytic pathway of cytochrome P450cam at atomic resolution. // Science. 2000. Vol. 287. P. 16151622.
97. A.A. Штейнман. Железо-содержащие оксигеназы: структура, механизм действия и моделирование. // Успехи химии. 2008. Т. 77. №1. С. 1013-1035.
98. J.T. Groves. Models and mechanisms of cytochrome P450 action. In: Cytochrome P450. Structure, mechanism and biochemistry. Ed. P.R. Ortiz de Montellano. 2005. Kluwer Academic Plenum Publishers. New York. P. 1-44.
99. D.L. Harris, G.H. Loew. Theoretical investigation of the proton assisted pathway to formation of cytochrome P450 compound I. // J. Am. Chem. Soc. 1998. Vol. 120. P. 8941-8948.
100. B. Meunier, J. Bernadou. Active iron-oxo and iron-peroxo species in cytochromes P450 and peroxidases; oxo-hydroxo tautomerism with water-soluble metalloporphyrins. In: Metal-oxo and metal-peroxo species in catalytic oxidation. Ed. B. Meunier. Springer. Germany. 2000. Vol. 97. P. 1-36.
101. Cytochromes P450. Structure, function and mechanism. Ed. D.F.V. Lewis. UK. Taylor & Fancis Ltd. 2005. 323 P.
102. D.L. Harris, G.H. Loew, L. Waskell. Structure and spectra of ferrous dioxygen and reduced ferrous dioxygen model cytochrome P450. // J. Am. Chem. Soc. 1998. Vol. 120. P. 4308-4318.
103. A.R. Groenhof, A.W. Ehlers, K. Lammertsma. Proton assisted oxygen-oxygen bond splitting mechanism in cytochrome P450. // J. Am. Chem. Soc. 2007. Vol. 129. P. 6204-6209.
104. R. Davydov, T.M. Makris, V. Kofman, D.E. Werst, S.G. Sligar, B.M. Hoffman. The ferric-hydroperoxo complex of chloroperoxidase. // J. Am. Chem. Soc. 2001. Vol. 123. P. 1403-1415.
105. R. Davydov, I.D.G. Macdonald, T.M. Makris, S.G. Sligar, B.M. Hoffman. EPR and ENDOR of catalytic intermediates in cryoreduced native and mutant oxy-
cytochromes P450cam: mutation-induced changes in the proton delivery system. // J. Am. Chem. Soc. 1999. Vol. 121. P. 10654-10655.
106. D.G. Kellner, S.C. Hung, K.E. Weiss, S.G. Sligar. Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119. // J. Biol. Chem. 2002. Vol. 277. P. 9641-9644.
107. T. Spolitak, J.H. Dawson, D.P. Ballou. Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway. // J. Biol. Chem. 2005. Vol. 280. P. 20300-20309.
108. T.M. Makris, K. von Koenig, I. Schlichting, S.G. Sligar. The status of high-valent metal oxo complexes in the P450 cytochromes. // J. Inorg. Biochem. 2006. Vol. 100. P. 507-518.
109. S.H. Kim, R. Perera, L.P. Hager, J.H. Dawson, B.M. Hoffman. Rapid freeze-quench ENDOR study of chloroperoxidase compound I: the site of the radical. // J. Am. Chem. Soc. 2006. Vol. 128. P. 5598-5599.
110. J.T. Groves, Т.Е. Nemo. Aliphatic hydroxylation catalyzed by ferric porphyrins. //J. Am. Chem. Soc. 1983. Vol. 105. P. 6243-6248.
111. D. Mansuy, J.F. Bartoli, M. Momenteau. Alkane hydroxylation catalyzed by metal loporhyrins: evidence for different active oxygen species with alkylhydroperoxides and iodosobenzene as oxidants. // Tetrahedron Lett. 1982. Vol. 23. P. 2781-2784.
112. Е.И. Карасевич, B.C. Куликова, A.E. Шилов, А.А. Штейнман. Биомиметическое окисление алканов с участием комплексов металлов. // Успехи Химии. 1998. Т. 67. №4. С. 376-398.
113. Biomimetic oxidations catalyzed by transition metal complexes. Eds. B. Meunier. Imperial College Press. London. 2000. 677 P.
114. А.А. Штейнман. Роль металл-кислородных интермедиатов в биологическом и химическом монооксигенировании алканов. // Изв. АН. Сер. Хим. 2001. Т. 10. С. 1712-1727.
115. S.K. Yoo, J.H. Han, S.J. Lee, J.Y. Ryu, C. Kim, S.W. Jin, Y. Kim, W. Nam. Conversion of olefins into trans-diols or trans-diol mono-ethers by using iron
porphyrin(III) complex and H202. // Inorg. Chem. Comm. 2003. Vol. 6. P. 11481151.
116. S.-E. Park, W.J. Song, Y.O. Ryu, M.H. Lim, R. Song, K.M. Kim, W. Nam. Parallel mechanistic studies on the counterion effect of manganese salen and porphyrin complexes on olefin epoxidation by iodosylarenes. // J. Inorg. Biochem. 2005. Vol. 99. P. 424-431.
117. W. Nam. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. // Acc. Chem. Res. 2007. Vol. 40. P. 522-531.
118. J.T. Groves, J. Lee, S.S. Maria. Detection and characterization of an oxo-manganese(V) porphyrin complex by rapid-mixing stopped-flow spectrophotometry. // J. Am. Chem. Soc. 1997. Vol. 119. P. 6269-6273.
119. W. Nam, M.H. Lim, S.-Y. Oh, J.H. Lee, H.J. Lee, S.K.C. Woo, W. Kim, Shin. Remarkable anionic axial ligand effects of iron(III) porphyrin complexes on the catalytic oxygenations of hydrocarbons by H202 and the formation of oxoiron(IV) porphyrin intermediates by m-chloroperoxybenzoic acid. // Angew. Chem. Int. Ed. 2000. Vol. 39. P. 3646-3649.
120. G.I. Panov, V.I. Sobolev, K.A. Dubkov, V.N. Parmon, N.S. Ovanesyan, A.E. Shilov, A.A. Shteinman. Iron complexes in zeolites as a new model of methane monooxygenase. //React. Kinet. Catal. Lett. 1997. Vol. 61. P. 251-258.
121. Y. Suh, M.S. Seo, K.M. Kim, Y.S. Kim, H.G. Jang, T. Tosha, T. Kitagawa, J. Kim, W. Nam. Nonheme iron(II) complexes of macrocyclic ligands in the generation of oxoiron(IV) complexes and the catalytic epoxidation of olefins. // J. Inorg. Biochem. 2006. Vol. 100. 4. P. 627-633.
122. K. Nehru, Y. Jang, S. Oh, F. Dallemer, W. Nam, J. Kim. Oxidation of hydroquinones by a nonheme iron(IV)-oxo species. // Inorg. Chim. Acta. 2008. Vol. 361. P. 2557-2561.
123. S.P. Visser, K. Oh, A.R. Han, W. Nam. Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes. // Inorg. Chem. 2007. Vol. 46. №11. P. 4632-4641.
124. K. Chen, L.Jr. Que. Stereospecific alkane hydroxylation by nonheme iron catalysts: mechanisitc evidence for an Fev=0 active species. // J. Am. Chem. Soc. 2001. Vol. 123. P. 6327-6337.
125. A. Company, L. Gomez, X. Fontrodona, X. Ribas, M. Costas. A novel platform for modeling oxidative catalysis in non-heme iron oxygenases with unprecedented efficiency. // Chem. Eur. J. 2008. Vol. 14. P. 5727-5731.
126. K. Chen, M. Costas, L.Jr. Que. Spin state tuning of non-heme iron-catalyzed hydrocarbon oxidations: participation of Fe(III)-OOH and Fe(V)=0 intermediates. // Dalton Trans. 2002. P. 672-679.
127. J. Bautz, P. Comba, C.L. de Laorden, M. Menzel, G. Rajaraman. Biomimetic high-valent non-heme iron(IV) oxidants for the cz's-dihydroxylation and epoxidation of olefins. // Angew. Chem. Int. Ed. 2007. Vol. 46. P. 8067-8070.
128. A. Murphy, G. Dubois, T.D.P. Stack. Efficient epoxidation of electron-deficient olefins with a cationic manganese complex. // J. Am. Chem. Soc. 2003. Vol. 125. P. 5250-5251.
129. K. Suzuki, P.D. Oldenburg, L. Jr. Que. Iron-catalyzed asymmetric olefin cis-dihydroxylation with 97 % enantiomeric excess. // Angew. Chem. Int. Ed. 2008. Vol. 47. P. 1887-1889.
130. I. Garcia-Bosch, A. Company, X. Fontrodona, X. Ribas, M. Costas. Efficient and selective peracetic acid epoxidation catalyzed by a robust manganese catalyst. // Org. Lett. 2008. Vol. 10. P. 2095-2098.
131. J.W. de Boer, W.R. Browne, S.R. Harutyunyan, L. Bini, T.D. Tiemersma-Wegman, P.L. Alsters, R. Hage, B.L. Feringa. Manganese catalysed asymmetric c/s-dihydroxylation with H202. // Chem. Comm. 2008. P. 3747-3749.
132. B. Retcher, J.S. Costa, J. Tang, R. Hage, P. Gamez, J. Reedijk. Unexpected high oxidation of cyclohexane by Fe salts and dihydrogen peroxide in acetonitrile. // J. Mol. Cat. A. 2008. Vol. 286. P. 1-5.
133. J. Yang, B. Gabriele, S. Belvedere, Y. Huang, R. Breslow. Catalytic oxidations of steroid substrates by artificial cytochrome P-450 enzymes. // J. Org. Chem. 2002. Vol. 67. P. 5057-5067.
134. S. Das, G.W. Brudvig, R.H. Crabtree. High turnover remote catalytic oxygenation of alkyl groups: how steric exclusion of unbound substrate contributes to high molecular recognition selectivity. // J. Am. Chem. Soc. 2008. Vol. 130. P. 1628-1637.
135. M.C. White, A.G. Doyle, E.N. Jacobsen. Synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H202. //J. Am. Chem. Soc. 2001. Vol. 123. P. 7194-7195.
136. G. Dubois, A. Murphy, T.D.P. Stack. Simple iron catalyst for terminal alkene epoxidation. // Org. Lett. 2003. Vol. 5. № 14. P. 2469-2472.
137. R. Mas-Balleste, L.Jr. Que. Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant. // J. Am. Chem. Soc. 2007. Vol. 129. P. 15964-15972.
138. J.T. Groves, T.E. Nemo, R.S.Myers. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. // J. Am. Chem. Soc. 1979. Vol. 101. P. 1032-1033.
139. N. Jin, J.T. Groves. Unusual kinetic stability of a ground-state singlet oxomanganese(V) porphyrin. Evidence for a spin state crossing effect. // J. Am. Chem. Soc. 1999. Vol. 121. P. 2923-2924.
140. W.J. Song, M.S. Seo, S.D. George, T. Ohta, R. Song, M.-J. Kang, T. Tosha, T. Kitagawa, E.I. Solomon, W. Nam. Synthesis, characterization, and reactivities of manganese(V)-oxo porphyrin complexes. // J. Am. Chem. Soc. 2007. Vol. 129. P. 1268-1277.
141. S. Nakagaki, Y. Iamamoto, O. Baffa, O.R. Nascimento. Intermediate species detected in oxidation reactions of Fetm(4)Pyp5+ with iodosylbenzene by EPR and Uv-Vis spectroscopies. //J. Inorg. Chim. Acta. 1991. Vol. 186. P. 39-43.
142. T. Spolitak, J.H. Dawson, D.P. Ballou. Spectroscopic investigations of intermediates in the reaction of cytochrome P450BM3-F87G with surrogate oxygen atom donors. // J. Inorg. Biochem. 2006. Vol. 100. P. 2034-2044.
143. N. Jin, M. Ibrahim, T.G. Spiro, J.T. Groves. Trans-dioxo manganese(V) porphyrins. //J. Am. Chem. Soc. 2007. Vol. 129. P. 12416-12417.
144. Z. Gross. The groves-spiro dioxomanganese(V) story. // Angew. Chem. Int. Ed. 2008. Vol. 47. P. 2737-2739.
145. W. Nam, I. Kim, M.H. Lim, H.J. Choi, J.S. Lee, H.G. Jang. Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H202 in aqueous solution. // Chem. Eur. J. 2002. Vol. 8. P. 2067-2071.
146. D. Lahaye, J.T. Groves. Modeling the haloperoxidases: reversible oxygen atom transfer between bromide ion and an oxo-Mn(V) porphyrin. // J. Inorg. Biochem. 2007. Vol. 101. P. 1786-1797.
147. J.Y. Lee, Y.-M. Lee, H. Kotani, W. Nam, S. Fukuzumi. High-valent manganese(V)-oxo porphyrin complexes in hydride transfer reactions. // Chem. Comm. 2009. P. 704-706.
148. Y. Shimazaki, T. Nagano, H. Takesue, B.-H. Ye, F. Tani, Y. Naruta. Characterization of a dinuclear Mnv=0 complex and its efficient evolution of 02 in the presence of water. // Angew. Chem. Int. Ed. 2004. Vol. 43. P. 98-100.
149. G.M. Raner, J.I. Thompson, A. Haddy, V. Tangham, N. Bynum, G.R. Reddy, D.P. Ballou, J.H. Dawson. Spectroscopic investigations of intermediates in the reaction of cytochrome P450BM3-F87G with oxygen atom donors. // J. Inorg. Biochem. 2006. Vol. 100. P. 2045-2053.
150. S.R. Bell, J.T. Groves. A highly reactive P450 model compound I. // J. Am. Chem. Soc. 2009. Vol. 131. P. 9640-9641.
151. X. Sheng, J.H. Horner, M. Newcomb. Spectra and kinetic studies of the compound I derivative of cytochrome P450 119. // J. Am. Chem. Soc. 2008. Vol. 130. P. 13310-13320.
152. R. Zhang, J.H. Horner, M. Newcomb. Laser flash photolysis generation and kinetic studies of porphyrin-manganese-oxo intermediates. Rate constants for oxidations effected by porphyrin-Mnv-oxo species and apparent disproportionation equilibrium constants for porphyrin-MnIV-oxo species. // J. Am. Chem. Soc. 2005. Vol. 127. P. 6573-6582.
153. Y. Iamamoto, M.D. Assis, K.J. Giuffi, C.M.C. Prado, B.Z. Prellwitz, M. Moraes, O.R. Nascimento, H.C. Sacco. Manganese(III) porphyrins: catalytic activity and intermediate studies in homogeneous systems. // J. Mol. Cat. A: Chem. 1997. Vol. 116. P. 365-374.
154. Y. Iamamoto, M.D. Assis, K.J. Ciuffi, H.C. Sacco, L. Iwamoto, A.J.B. Melo, O.R. Nascimento, C.M.C. Prado. Factors which affect the catalytic activity of iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin chloride in homogeneous system. // J. Mol. Cat. A: Chem. 1996. Vol. 109. P. 189-200.
155. B. Meunier. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. // Chem. Rev. 1992. Vol. 92. P. 1411-1456.
156. E. Baciocchi, T. Boschi, C. Galli, A. Lapi, P. Tagliatesta. Epoxidation and hydroxylation reaction catalyzed by the manganese and iron complexes of 5,10,15,20-tetrakis(2,6-dimethoxyphenyl)porphyrin. //Tetrahedron. 1997. Vol. 53. №12. P. 4497-4502.
157. X. Zhou, H. Ji. Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins. // Chem. Eng. J. 2010. Vol. 156. P. 411-417.
158. C. Poriel, Y. Ferrand, P. Le Maux, J. Rault-Berthelot, G. Simonneaux. Syntheses of manganese and iron tetraspirobifluorene porphyrins as new catalysts for oxidation of alkenes by hydrogen peroxide and iodosylbenzene. // Tetrahedron Lett. 2003. Vol. 44. P. 1759-1761.
159. Y. Iamamoto, K.J. Ciuffi, L.S. Iwamoto, H.C. Sacco, A.J.B. Melo, C.M.C. Prado, M.D. Assis. Factors affecting the catalytic activity of aryl substituted ironporphyrins. // J. Braz. Chem. Soc. 1995. Vol. 6. P. 251-256.
160. Y. Terazono, D. Dolphin. Synthesis of the hemin of |3-tetrakis(trifluoromethyl)-meso-tetraphenylporphyrin and its evaluation as a P-450 mimic. // Inorg. Chim. Acta. 2003. Vol. 346. P. 261- 264.
161. T.G. Traylor, A.R. Miksztal. Alkene epoxidations catalyzed by iron(III), manganese(III) and chromium(III) porphyrins. Effects of metal and porphyrin
substituents on selectivity and regiochemistry of epoxidation. // J. Am. Chem. Soc. 1989. Vol. 11. P. 7443-7448.
162. D. Mohajer, L. Sadeghian. Co-catalytic effects of nitrogen donors on the epoxidation of cyclooctene with tetra-«-butylammonium hydrogen monopersulfate in the presence of manganese(III) tetraarylporphyrins: a comparative study. // J. Mol. Cat. A: Chem. 2007. Vol. 272. P. 191-197.
163. Y. Iamamoto, C.M.C. Prado, H.C. Sacco, K.J. Giuffi, M.D. Assis, A.J.B. Melo, O. Baffa, O.R. Nascimento. Study of the catalytical intermediates of metallopophyrins supported on imidazole propyl gel. // J. Mol. Cat. A: Chem. 1997. Vol. 117. P. 259-271.
164. M.C.A.F. Gotardo, A.A. Guedes, M.A. Schiavon, N.M. Jose, I.V.P. Yoshida, M.D. Assis. Polymeric membranes: the role this support plays in the reactivity of the different generations of metalloporphyrins. // J. Mol. Cat. A: Chem. 2005. Vol. 229. P. 137-143.
165. C.-C. Guo, G. Huang, X.-B. Zhang, D.-C. Guo. Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobic oxidation of cyclohexane in absence of reductans and solvents. // Appl. Cat. A: General. 2003. Vol. 247. P. 261-267.
166. X.T. Zhou, H.B. Ji, Q.L. Yuan, J.C. Xu, L.X. Pei, L.F. Wang. Aerobic oxidation of benzylic aldehydes to acids catalyzed by iron (III) meso-tetraphenylporphyrin chloride under ambient conditions. // Chinese Chem. Lett. 2007. Vol. 18. P. 926-928.
167. X.G. Li, J. Wang, R. He. Selective oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins with molecular oxygen. // Chinese Chem. Lett. 2007. Vol. 18. P. 1053-1056.
168. S.M.S. Chauhan, P. Kumari. Biomimetic oxidation of metribuzin with hydrogen peroxide catalyzed by 5,10,15,20-tetraarylporphyrinatoiron(III) chlorides. // Tetrahedron Lett. 2007. Vol. 48. P. 5035-5038.
169. M. Nasr-Esfahani, M. Moghadam, S. Tangestaninejad, V. Mikhani. Biomimetic oxidation of Hantzsch 1,4-dihydropyridines with tetra-n-
butylammonium periodate catalyzed by tetraphenylporphyrinatomanganese (III) chloride [Mn(TPP)Cl]. // Bioorg. Med. Chem. Lett. 2005. Vol. 15. P. 3276-3278.
170. S. Camprestrini, U. Tonellato. Highly efficient cascade-oxygen-transfer from H2O2 to olefins mediated by halogenated carbonyl compounds and metalloporphyrins. // J. Mol. Cat. A: Chem. 2001. Vol. 171. P. 37-42.
171. K.-W. Xu, J.-Y. Ma, Q. Jiang, H.-Y. Hu, C.-C. Guo. Selective catalysis of manganese porphyrins on aerobic oxidation of different carbon hydrogen bonds of methyl cyclohexane. // J. Mol. Cat. A: Chem. 2005. Vol. 243. P. 194-197.
172. V. Maraval, J.-E. Ancel, B. Meunier. Manganese(III) porphyrin catalysts for the oxidation of terpene derivatives: a comparative study. // J. Cat. 2002. Vol. 206. P. 349-357.
173. S.L.H. Rebelo, M.M. Pereira, P.V. Monsanto, H.D. Burrows. Catalytic oxidative degradation of s-triazine and phenoxyalkanoic acid based herbicides with metalloporphyrins and hydrogen peroxide: identification of two distinct reaction schemes. // J. Mol. Cat. A: Chem. 2009. Vol. 297. P. 35^3.
174. Y. Iamamoto, K.J. Giuffi, H.C. Sacco, L.S. Iwamoto, O.R. Nascimento, C. M.C. Prado. Characterization and catalytic activity of 2,6-dichlorophenyl substituted iron(III) porphyrin supported on silica gel and imidazol propyl gel. // J. Mol. Cat. A: Chem. 1997. Vol. 116. P. 405-420.
175. P. Battioni, J.P. Renaud, J.F. Bartoli, M. Reina-Artiles, M. Fort, D. Mansuy. Monooxygenase-like oxidation of hydrocarbons by H202 catalyzed by manganese porphyrins and imidazole: selection of the best catalytic system and nature of the active oxygen species. // J. Am. Chem. Soc. 1988. Vol. 110. P. 8462-8470.
176. F.G. Doro, J.R. Lindsay Smith, A.G. Ferreira, M.D. Assis. Oxidation of alkanes and alkenes by iodosylbenzene and hydrogen peroxide catalysed by halogenated manganese porphyrins in homogeneous solution and covalently bound to silica. // J. Mol. Cat. A: Chem. 2000. Vol. 164. P. 97-108.
177. I.D. Cunningham, T.N. Danks, J.N. Hay, I. Hamerton, S. Gunathilagan. Evidence for parallel destructive, and competitive epoxidation and dismutation
pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide. // Tetrahedron. 2001. Vol. 57. P. 6847-6853.
178. V. Bagchi, D. Bandyopadhyay. The mechanistic aspects in hydroxylation reactions catalyzed by fluorinated porphyrins of manganese and iron: role of aqueous phosphate. // Inorg. Chim. Acta. 2010. Vol. 363. P. 2786-2790.
179. F.S. Vinhado, M.E.F. Gandini, Y. Iamamoto, A.M.G. Silva, M.M.Q. Simoes, M.G.P.M.S. Neves, A.C. Tome, S.L.H. Rebelo, A.M.V.M. Pereira, J.A.S. Cavaleiro. Novel Mn(III) chlorines as versatile catalysts for oxyfunctionalisation of hydrocarbons under homogeneous conditions. // J. Mol. Cat. 2005. Vol. 239. P. 138-143.
180. H.H. Monfared, V. Aghapoor, M. Ghorbanloo, P. Mayer. Highly selective olefin epoxidation with the bicarbonate activation of hydrogen peroxide in the presence of manganese(III) /«aso-tetraphenylporphyrin complex: optimization of effective parameters using the Taguchi method. // Appl. Cat. A: General. 2010. Vol. 372. P. 209-216.
181. F.S. Vinhado, P.R. Martins, A.P. Masson, D.G. Abreu, E.A. Vidoto, O.R. Nascimento, Y. Iamamoto. Supported iron(III) porphyrins pentafluorophenyl-derivatives as catalysts in epoxidation reactions by H2O2: the role of the silica-support and sulfonatophenyl residues in the activation of the peroxidic bond. // J. Mol. Cat. A: Chem. 2002. Vol. 188. P. 141-151.
182. F.S. Vinhado, C.M.C. Prado-Manso, H.C. Sacco, Y. Iamamoto. Cationic manganese(III) porphyrins bound to a novel bis-functionalised silica as catalysts for hydrocarbons oxygenation by iodosylbenzene and hydrogen peroxide. // J. Mol. Cat. A: Chem. 2001. Vol. 174. P. 279-288.
183. N.A. Stephenson, A.T. Bell. Mechanistic insights into iron porphyrin-catalyzed olefin epoxidation by hydrogen peroxide: factors controlling activity and selectivity. // J. Mol. Cat. A: Chem. 2007. Vol. 275. P. 54-62.
184. Zh. Pan, R. Zhang, M. Newcomb. Kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations with organic reductants. // J. Inorg. Biochem. 2006. Vol. 100. P. 524-532.
185. R.W. Lee, P.C. Nakagaki, T.C. Bruice. The kinetics for the reaction of hypochlorite with a manganese(III) porphyrin and subsequent epoxidation of alkenes in a homogeneous solution. // J. Am. Chem. Soc. 1989. Vol. 111. P. 13681372.
186. J.T. Groves, W.J. Kruper, R.C. Haushalter. Hydrocarbon oxidations with oxometalloporphinates: isolation and reactions of a (porphinato)manganese(V) complex. // J. Am. Chem. Soc. 1980. P. 6375-6377.
187. P.R. Cooke, J.R.L. Smith. Alkene epoxidation catalysed by iron(III) and manganese(III) tetraarylporphyrins coordinatively bound to polymer and silica supports. // J. Chem. Soc. Perkin Trans. 1. 1994. P. 1913-1923.
188. M. Gunter, P. Turner. The role of the axial ligand in meso-tetraarylmetalloporphyrin models of the P-450 cytochromes. // J. Mol. Cat. 1991. Vol. 66. P. 121-141.
189. A. Tellend, P. Battioni, D. Mansuy. Ammonium acetate as a very simple and efficient cocatalyst for manganese porphyrin-catalysed oxygenation of hydrocarbons by hydrogen peroxide. // Chem. Comm. 1994. P. 1035-1036.
190. T.G. Groves, W. Watanabe. The mechanism of olefin epoxidation by oxo-iron porphyrins. Direct observation of an intermediate. // J. Am. Chem. Soc. 1986. Vol. 108. P. 507-508.
191. J.H. Dawson. Probing structure-function relations in heme-containing oxygenases and peroxidases. // Science. 1988. Vol. 240. P. 433-439.
192. P. Shannon, T.C. Bruice. A novel P-450 model system for the N-dealkylation reaction. // J. Am. Chem. Soc. 1981. Vol. 103. P. 4580-4582.
193. M.F. Powell, E.F. Pai, T.C. Bruice. Study of (tetraphenylporphinato)manganese(III)-catalyzed epoxidation and demethylation using p-cyano-N,N-dimethylaniline N-oxide as oxygen donor in a homogeneous system. Kinetics, radiochemical ligation studies, and reaction mechanism for a model of cytochrome P-450. // J. Am. Chem. Soc. 1984. Vol. 106. P. 3277-3285.
194. E. Guilmet, B. Meunier. A new catalytic route for the epoxidation of styrene with sodium hypochlorite activated by transition metal complexes. // Tetrahedron Lett. 1980. Vol. 21. P. 4449-4450.
195. J.M. Garrison, T.C. Bruice. Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 3. Mechanism of oxygen transfer from substituted oxochromium(V) porphyrins to olefinic substrates. // J. Am. Chem. Soc. Vol. 1989. 111.P. 191-198.
196. M.C. Curet-Arana, G.A. Emberger, L.J. Broadbelt, R.Q. Snurr. Quantum chemical determination of stable intermediates for alkene epoxidation with Mn-prophyrin catalysts. // J. Mol. Cat. A. 2008. Vol. 285. P. 120-127
197. T.G. Traylor, A.R. Miksztal. Mechanisms of hemin-catalyzed epoxidations: Electron transfer from alkenes. // J. Am. Chem. Soc. 1987. Vol. 109. P. 2770-2774.
198. A.J. Castellino, T.C. Bruice. Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 1. cz's-Stilbene as a mechanistic probe. // J. Am. Chem. Soc. 1998. Vol. 110. P. 158-162.
199. A.J. Castellino, T.C. Bruice. Radical intermediates in the epoxidation of alkenes by cytochrome P-450 model systems. The design of a hypersensitive radical probe.//J. Am. Chem. Soc. 1988. Vol. 110. P. 1313-1315.
200. D. Ostovic, T.C. Bruice. Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 5. Epoxidation of alkenes catalyzed by a sterically hindered (meso-tetrakis(2,6-dibromophenyl)porphinato)iron(III) chloride. // J. Am. Chem. Soc. 1989. Vol. 111. P. 6511 -6517.
201. M.J. Nappa, C.A. Tolman. Steric and electronic control of iron porphyrin catalyzed hydrocarbon oxidations. // Inorg. Chem. 1985. Vol. 24. P. 4711-4719.
202. C.K. Chang, F. Ebina. NIH shift in haemin-iodosylbenzene-mediated hydroxylations. // Chem. Comm. 1981. P. 778-779.
203. J.-F. Bartoli, O. Brigaud, P. Battioni, D. Mansuy. Hydroxylation of linear alkanes catalysed by iron porphyrins: particular efficacy and regioselectivity of perhalogenated porphyrins. // Chem. Comm. 1991. P. 440-442.
204. C.-C. Guo, X.-Q. Liu, Y. Liu, Q. Liu, M.-F. Chu, X.-B. Zhang. Studies of simple ^-oxo-bisiron(III)porphyrin as catalyst of cyclohexane oxidation with air in absence of cocatalysts or coreductants. // J. Mol. Cat. A: Chem. 2003. Vol. 192. P. 289-294.
205. X.-T. Zhou, Q.-H. Tang, H.-B. Ji. Remarkable enhancement of aerobic epoxidation reactivity for olefins catalyzed by |i-oxo-bisiron(lII) porphyrins under ambient conditions. // Tetrahedron Lett. 2009. Vol. 50. P. 6601-6605.
206. M.D. Assis, A.J.B. Melo, O.A. Serra, Y. Iamamoto. Study of catalytic activity of nitro substituted ironporphyrins. // J. Mol. Cat. 1995. Vol. 97. P. 41-47.
207. P.R. Cooke , J.R.L. Smith. Alkene epoxidation catalysed by ligand-bound supported metalloporphyrins. // Tetrahedron Lett. 1992. Vol. 33. P. 2737-2740.
208. C. Gilmartin, J.R.L. Smith. Alkene epoxidation by iodosylbenzene catalysed by iron(III) 5,10,15,20-tetra(2,6-dichlorophenyl)porphyrin coordinated to pyridine-modified silica. // J. Chem. Soc. Perkin Trans. 1995. P. 243-251.
209. D.R. Leanord, J.R.L. Smith. Model systems for cytochrome P450 dependent monooxygenases. Part 8. A study of the epoxidation of (Z)-cyclooctene by iodosylbenzene catalysed by cationic iron(III) tetra(N-methylpyridyl)porphyrins adsorbed on Dowex MSC1. // J. Chem. Soc. Perkin Trans. 2. 1991. P. 25-30.
210. S.E.J. Bell, P.R. Cooke, P. Inchley, D.R. Leanord, J.R.L. Smith, S. Robbins. Oxoiron(IV) porphyrins derived from charged iron(III) tetraarylporphyrins and chemical oxidants in aqueous and methanolic solutions. // J. Chem. Soc. Perkin Trans. 2. 1991. P. 549-559.
211. O. de Montellano. The inactivation of cytochrome P-450. // P. R. Annu. Rep. Med. Chem. 1984. Vol. 19. P. 201-211.
212. T. Mashiko, D. Dolphin, T. Nakano, T.G. Traylor. N-Alkylporphyrin formation during the reactions of cytochrome P-450 model systems. // J. Am. Chem. Soc. 1985. Vol. 107. P. 3735-3736.
213. D. Mansuy, L. Devocelle, I. Artaud, J.P. Battioni. Alkene oxidations by iodosylbenzene catalyzed by iron-porphyrins. Fate of the catalyst and formation of
N-alkyl-porphyrin green pigments from monosubstituted alkenes as in cytochrome P-450 reactions. // Nouv. J. Chim. 1985. Vol. 9. P. 711-716.
214. I. Artaud, N. Gregorie, D. Mansuy. Suicidal inactivation of iron-porphyrins during trans hex-2-ene oxidation. First isolation and characterization of N-alkylporphyrins with a N-CHR-CHR'OH structure. // New J. Chem. 1989. Vol. 13. P. 581-586.
215. J.P. Collman, P.D. Hampton, J.I. Brauman. Oxygenation of styrene by cytochrome P-450 model systems: a mechanistic study. // J. Am. Chem. Soc. 1986. Vol. 108. P. 7861-7862.
216. T.G. Traylor, T. Nakaro, A.R. Miksztal, B.E. Dunlap. Transient formation of N-alkylhemins during hemin-catalyzed epoxidation of norbornene. Evidence concerning the mechanism of epoxidation. // J. Am. Chem. Soc. 1987. Vol. 109. P. 3625-3632.
217. B. Halliwell, M.V. Clement, L.H. Long. Hydrogen peroxide in the human body. // Fed. Eur. Biochem. Soc. Lett. 2000. Vol. 486. P. 10-13.
218. K.J. Paeng, J.R. Kincaid. The resonance Raman spectrum of horseradish peroxidase compound I. // J.Am. Chem.Soc. 1988. Vol. 110. P. 7913-7915.
219. J.E. Frew, P.L. Jones. Structure and functional properties of peroxidases and catalases. // Adv. Inorg. Bioinorg. Mechanisms. 1984. Vol. 3. P. 175-212.
220. I. Fita, M.G. Rossmann. The active center of catalase. // J. Mol. Biol. 1985. Vol. 185. P. 21-37.
221. Peroxidases in chemistry and biology. Eds. J. Everse, K.E. Everse, M.B. Grisham. CRC Press: Boca Raton. 1991. Vols. 1-2.
222. H. P. Dunford. Peroxidases. // Adv. Inorg. Biochem. 1982. Vol. 4. P. 41-68.
223. T.L. Poulos, S.T. Freer, R.A. Alden, S.L. Edwards, U. Skogland, K. Takio, B. Eriksson, N.-H. Xuone, T. Yonetani, J. Kraut. The crystal structure of cytochrome c peroxidase. // J. Biol. Chem. 1980. Vol. 255. P. 575-580.
224. R. Belal, M. Momenteau, B. Meunier. Influence of the proximal ligand in the dismutation of hydrogen peroxide catalysed by manganese- and iron-porphyrin complexes. // J. Chem. Soc. Chem. Comm. 1989. P. 412-414.
225. R. Belal, M. Momenteau, B. Meunier. Why an oxygen and not a nitrogen atom as proximal ligand in catalase? Hydrogen peroxide dismutation catalayzed by synthetic iron and manganese porphyrins. // New J. Chem. 1989. Vol. 13. P. 853862.
226. A. Robert, B. Loock, M. Momenteau, B. Meunier. Catalase modeling with metalloporphyrin complexes having an oxygen ligand in a proximal position. Comparison with complexes containing a proximal nitrogen. // Inorg. Chem. 1991. Vol. 30. P. 706-711.
227. M. Alfonso-Prieto, X. Biarnes, P. Vidossich, C. Rovira. The molecular mechanism of the catalase reaction. // J. Am. Chem. Soc. 2009. Vol. 131. P. 11751-11761.
228. S. Oea, Y. Watanabe, K. Fujimori. Biomimetic oxidation of organic sulfides with TPPFe(III)Cl/imidazole/hydrogen peroxide. // Tetrahedron Lett. 1982. Vol. 23. P. 1189-1192.
229. D. Gournis, M. Louloudi, M.A. Karakassides, C. Kolokytha, K. Mitopoulou, N. Hadjiliadis. Heterogeneous clay-manganese(II) oxidation catalyst. // Mater. Sci. Eng. C. 2002. Vol. 22. P. 113-116.
230. O.B. Череменская, А.Б. Соловьева, Г.В. Понамарев, С.Ф. Тимашев. Кинетические особенности разложения пероксида водорода, катализируемого моно- и димерными металлопорфиринами. // Ж. Физ. Хим. 2001. Т. 75. С. 1787-1791.
231. Т.Н. Ломова, М.В. Клюев, М.Е. Клюева, Е.Н. Кисилева, О.В. Косарева. Высокозамещенные порфирины в бионеорганической химии. // Рос. Хим. Ж. 2004. Т. XLVIII. С. 35-51.
232. Н. Sugimoto, D.T. Sawyer. Iron(II)-induced activation of hydroperoxides for the dehydrogenation and monooxygenation of organic substrates in acetonitrile. // J. Am. Chem. Soc. 1985. Vol. 107. P. 5712-5716.
233. M.E. Rerek, I. Weil, M. Hill. Kinetics and mechanism of the Mn(III)gluconate catalyzed decomposition of hydrogen peroxide. // Coord. Chem. Rev. 1990. Vol. 105. P. 251-268.
234. R. Panicucci, T.C. Bruice. Dynamics of the reaction of hydrogen peroxide with a water soluble non ¡u-oxo dimer forming iron(III) tetraphenylporphyrin. 2. The reaction of hydrogen peroxide with 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphinato iron(III) in aqueous solution. // J. Am. Chem. Soc. 1990. Vol. 112. P. 6063-6071.
235. T.G. Traylor, F. Xu. Mechanisms of reactions of iron(III)porphyrins with hydrogen peroxide and hydroperoxides: solvent and solvent isotope effects. // J. Am. Chem. Soc. 1990. Vol. 112. P. 178-186.
236. J.P. Renaud, P. Battioni, J.F. Bartoli, D. Mansuy. A very efficient system for alkene epoxidation by hydrogen peroxide. Catalysis by manganese porphyrins in the presence of imidazole. // Chem. Comm. 1985. P. 888-889.
237. E. Brule, Y.R. de Miguel. Supported metalloporphyrin catalysts for alkene epoxidation. // Org. Biomol. Chem. 2006. Vol. 4. P. 599-609.
238. I. Tabushi, N. Koga. P-450 type oxygen activation by porphyrin-manganese complex. // J. Am. Chem. Soc. 1979. Vol. 101. P. 6456-6458.
239. T. Okamoto, S. Oka. Oxygenation of olefins under reductive conditions. Cobalt-catalyzed selective conversion of aromatic olefins to benzylic alcohols by molecular oxygen and tetrahydroborate. // J. Org. Chem. 1984. Vol. 49. P. 15891594.
240. T. Okamoto, Y. Sasaki, K. Sasaki, S. Oka. Effect of catalyst on the oxygenation of styrene with BH4~ and molecular oxygen. // Bull. Chem. Soc. Jpn. 1987. Vol. 60. P. 4449-4450.
241. M. Shimizu, H. Orita, T. Hayakawa, K. Takehira, The oxidation of olefins with 02 and NaBH4 catalyzed by manganese meso-Xo\xakis(p-sulfonatophenyl)porphin. // J. Mol. Cat. 1988. Vol. 45. P. 85-90.
242. M. Shimizu, H. Orita, T. Hayakawa, K. Takehira. Aromatic olefin oxygenation with tetrahydroborate and dioxygen catalyzed by a manganese porphyrin. // J. Mol. Cat. 1989. Vol. 53. P. 165-172.
243. J.R. Lindsay Smith. Supported metalloporphyrin models for heme-catalyzed oxidation. In: Metalloporphyrins in catalytic oxidations. Ed. R.A. Sheldon. New York: Marcel Dekker Inc. 1994. P. 325-368.
244. О.И. Койфман, Т.А. Агеева. Порфиринполимеры. Изд.: физико-математической литературы. Москва. 2006. 194 С.
245. М. Louloudi, К. Mitopoulou, Е. Evaggelou, Y. Deligiannakis, N. Hadjiliadis. Homogeneous and heterogenized copper(II) complexes as catechol oxidation catalysts. // J. Mol. Cat. A: Chem. 2003. Vol. 198. P. 231-240.
246. M. Лоулоуди, H. Хадьилиадис. Гибридные органо-неорганические материалы в качестве катализаторов-биомиметиков. // Росс. Хим. Ж. 2004. Т. XLVIII. С. 30-34.
247. X.-Q. Yu, J.-S. Huang, W.-Y. Yu, C.-M. Che. Polymer-supported ruthenium porphyrins: versatile and robust epoxidation catalyst with unusual selectivity. // J. Am. Chem. Soc. 2000. Vol. 122. P. 5337-5342.
248. P. Anzenbacher, V. Krai. Pyridiniumporphyrin covalently bound to polystyrene: an efficient model of cytochrome P-450 reactivity. // J. Mol. Cat. A: Chem. 1995. Vol. 96. P. 311-315.
249. M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, N. Sirjanian, S. Parand. Polystyrene-bound Mn(T4PyP): A highly efficient and reusable catalyst for biomimetic oxidative decarboxylation of carboxylic acids with sodium periodate. // Bioorg. Med. Chem. 2009. Vol. 17. P. 3394-3398.
250. M.A. Garcia-Sanchez, A. Campero. Cobalt ortho- and para-substituted tetraphenylporphyrins inserted in Si02 gels. // J. Non-Cryst. Solids. 2004. Vol. 333. P. 226-230.
251. S. Campestrini, B. Meunier. Olefin epoxidation and alkane hydroxylation catalyzed by robust sulfonated manganese and iron porphyrins supported on cationic ion-exchange resins. // Inorg. Chem. 1992. Vol. 31. P. 1999-2006.
252. A. P. Wight, M. E. Davis. Design and preparation of organic-inorganic hybrid catalysts. // Chem. Rev. 2002. Vol. 102. P. 3589-3614.
253. R. Wang, W. Jiao, B. Gao. Efficient biomimetic aerobic oxidation of phenylethane catalyzed by P(4VP-co-St)/Si02-supported metalloporphyrins. // Appl. Surf. Sci. 2009. Vol. 255. P. 7766-7772.
254. K.A.D.F. Castro, M. Halma, G.S. Machado, G.P. Ricci, G.M. Ucoski, K.J. Ciuffi, S. Nakagaki. Preparation of catalysts based on iron(III) porphyrins heterogenized on silica obtained by the sol-gel process for hydroxylation and epoxidation reactions. // J. Braz. Chem. Soc. 2010. Vol. 21. №7. P. 1329-1340.
255. Y. Iamamoto, H.C. Sacco, J.C. Biazzotto, K.J. Giuffi, O.A. Serra. Porphyrinosilica and metalloporphyrinosilica: hybrid organic-inorganic materials prepared by sol-gel processing. // An. Acad. Bras. Cienc. 2000. Vol. 72. P. 59-66.
256. E. Fagadar-Cosma, M.C. Mirica, I. Balcu, C. Bucovicean, C. Cretu, I. Armeanu, G. Fagadar-Cosma. Syntheses, spectroscopic and AFM characterization of some manganese porphyrins and their hybrid silica nanomaterials. // Molecules. 2009. Vol. 14. P. 1370-1388.
257. S. Nakagaki, F. Wypych. Feature article nanofibrous and nanotubular supports for the immobilization of metalloporphyrins as oxidation catalysts. // J. Colloid Interface Sci. 2007. Vol. 315. P. 142-157.
258. A.L. de Faria, C. Airoldi, F.G. Doro, M.G. Fonseca, M.D. Assis. Anchored ironporphyrins - the role of talc-aminofunctionalyzed phyllosilicates in the catalysis of oxidation of alkanes and alkenes. // Appl. Cat. A: General. 2004. Vol. 268. P. 217-226.
259. M. Moghadam, M. Nasr-Esfahani, S. Tangestaninejadb, V. Mirkhanib. Mild and efficient oxidation of Hantzsch 1,4-dihydropyridines with sodium periodate catalyzed by a new polystyrene-bound Mn(TPP)Cl. // Bioorg. Med. Chem. Lett. 2006. Vol. 16. P. 2026-2030.
260. H.C. Sacco, Y. Iamamoto, J.R.L. Smith. Alkene epoxidation with iodosylbenzene catalysed by polyionic manganese porphyrins electrostatically bound to counter-charged supports. // J. Chem. Soc. Perkin Trans. 2. 2001. P. 181190.
261. D.R. Leonard, J.R.L. Smith. Model systems for cytochrome P450 dependent mono-oxygenases. Part 7. Alkene epoxidation by iodosylbenzene catalysed by ionic iron(III) tetraarylporphyrins supported on ion-exchange resins. // J. Chem. Soc. Perkin Trans. 2. 1990. P. 1917-1923.
262. D.R. Leonard, J.R.L. Smith. Model systems for cytochrome P450 dependent monooxygenases. Part 8. A study of the epoxidation of (Z)-cyclooctene by iodosylbenzene catalysed by cationic iron(III) tetra(N-methylpyridyl)porphyrins adsorbed on Dowex MSC1. // J. Chem. Soc. Perkin Trans. 2. 1991. P. 25-30.
263. M.E.F. Gandini, C.R. Neri, F.S. Vinhado, T.S. Minorin, O.R. Nascimento, O. A. Serra, Y. Iamamoto. Modified silicas covalently bounded to 5,10,15,20-tetrakis(2-hydroxy-5-nitrophenyl)porphyrinato iron(III). Synthesis, spectroscopic and EPR characterization. Catalytic studies. // J. Braz. Chem. Soc. 2008. Vol. 19. №2. P. 344-351.
264. A.D.Q. Ferreira, F.S. Vinhado, Y. Iamamoto. Characterization of Mn(III)porphyrin immobilized on modified silica surfaces by EXAFS spectroscopy: A promising tool for analysis of supported metalloporphyrin catalysts. // J. Mol. Cat. A: Chem. 2006. Vol. 243. P. 111-119.
265. V. Mirkhani, S. Tangestaninejad, M. Moghadam, Z. Karimian. Efficient oxidative decarboxylation of carboxylic acids with sodium periodate catalyzed by supported manganese(III) porphyrin. // Bioorg. Med. Chem. Lett. 2003. Vol. 13. P. 3433-3435.
266. A.L. W. Shroyer, C. Lorberau, S.S. Eaton, G.R. Eaton. Steric effect of meta-substituents in substituted tetraphenylporphyrin complexes of ruthenium, indium, titanium and gallium. // J. Org. Chem. 1980. Vol. 45. №22. P. 4296-4302.
267. T. Ozawa, A. Hanaki. A facile synthesis and properties of quinone from a polyvalent porphyrin, tetrakis(3,5-di-ier/-butyl-4-hydroxyphenyl)porphyrin. // Polyhedron. 1986. Vol. 5. P. 1881-1883.
268. T. Ozawa, A. Hanaki. Incorporation of some transition metal ions polyvalent porphyrin, tetrakis(3,5-di-ieri-butyl-4-hydroxyphenyl)porphyrin. // Inorg. Chim. Acta. 1987. Vol. 130. P. 231-233.
269. L.R. Milgrom, С.С. Jones, A. Harriman. Facile aeral oxidation of a porphyrin. Part 3. Some metal complexes of maso-tetrakis-(3,5-di-teri-butyl-4-hydroxyphenyl)porphyn. // J. Chem. Soc. Perkin Trans 2. 1988. P. 71-79.
270. Г.В. Пономарев, Г.Б. Маравин. Порфирины. Синтез и свойства 1-замещенных производных 5,10,15,20-тетрафенилпорфирина. // Химия гетероцикл. соединений. 1982. Т. 1. С. 59-64.
271. JI.A. Которленко, Д.Н. Вовк, В.Н. Якович. ИК спектры тетра(4-окси-3,5-ди-т/?ега-бутилфенил)металлопорфиринов и их свободнорадикальных производных. // Координац. Химия. 1986. Т. 12. №9. С. 1204-1209.
272. G.D. Dough, J.R. Miller, F.M. Huennekens. Spectra of the metallo-derivatives of a,|3,Y,5-tetraphenylporphyrine. // J. Am. Chem. Soc. 1951. Vol. 73. №9. P. 4315-4320.
273. L. Edwards, D. H. Dolphin, M. Gouterman, A. D. Adler. Porphyrins XVII. Vapor absorbtion spectra and redox reaction: tetraphenylporphins and porphin. // J. Мої. Spectrosc. 1971. Vol. 38. №1. P. 16-32.
274. R.D. Jones, D. A. Summerville, F. Basolo. Manganese(II) porphyrin oxygen carriers. Equilibrium constants for the reaction of dioxygen with para-substituted raeso-tetraphenylporphinatomanganeseill) complexes. // J. Am. Chem. Soc. 1978. Vol. 100. P. 4416-4424.
275. Z.-C. Sun, Y.-B. She, Y. Zhou, X.-F. Song, K. Li. Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes. // Molecules. 2011. Vol. 16. P. 2960-2970.
276. K. Abubakar. Synthetic studies of light-induced oxidation of manganese porphyrins. // Project SEED Research report. University of Memphis Department of Chemistry. 2009. P. 1-11.
277. T. Ozawa, A. Hanaki. Incorporation of some metal ions into polyvalent porphyrins. // Inorg. Chim. Acta. 1987. Vol. 130. P. 231-233.
278. M. Gouterman. Optical spectra and electronic structure of porphyrins and related rings. In: The porphyrins. Ed. Dolphin D. Academic. New York. 1978. Vol. III. p. 1-165.
279. K.S. Suslick, R. Watson. The photochemistry of chromium, manganese and iron poprhyrin complexes. // New J. Chem. 1992. Vol. 16. P. 633-642.
280. M. Gouterman, F.P. Schwarz, P.D. Smith, D. Dolphin, Porphyrins. XXVII. Spin - orbit coupling and luminescence of Group IV complexes. // J. Chem. Phys. 1973. Vol. 59. P. 676-690.
281. L.K. Hanson, W.A. Eaton, S.G. Sligar, I.C. Gunsalus, M. Gouterman, C.R. Connell. Origin of the anomalous Soret spectra of carboxycytochrome P-450. // J. Am. Chem. Soc. 1976. Vol. 98. P. 2672-2674.
282. H. Kobayashi, Y. Yanagawa, H. Osada, S. Minami, M. Shimizu. Electronic spectra of high-spin iron(III) tetraphenylporphins. // Bull. Chem. Soc. Jpn. 1973. Vol. 46. P. 1471.
283. M. Gouterman, К. H. Hanson, G.E. Khalil, W.R. Leenstra, J.W. Bouchler, Porphyrins. XXXII. Absorptions and luminescence of Cr(III) complexes. // J. Phys. Chem. 1975. Vol. 62. P. 2343.
284. M. Loulodi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis. Homogeneous and heterogenized copper(II) complexes as catechol oxidation catalysts. // J. Mol. Catal. A: Chem. 2003. Vol. 198. P. 231-240.
285. O. Leal, D.L. Anderson, R. G. Bowman, F. Basolo, R.L. Burwell. Reversible adsorption of oxygen on silica gel modified by imidazole-attached iron tetraphenylporphyrin. // J. Am. Chem. Soc. 1975. Vol. 97. P. 5125-5129.
286. J. Roeser, M. Kronstein, M. Litschauer, A. Thomas, M.-A. Neouze. Ionic nanoparticle networks as solid state catalysts. // Eur. J. Inorg. Chem. 2012. P. 5305-5311.
287. Eur. Pat. Appl. EP 526847 A1 19930210. Imidazole-silane compounds, their production and metal surface finishing agent containing them. / T. Katsuyuki, K. Masahi, O. Yukio. Appl. EP 1993. 92113067.0. 10.02.93. 22 P.
288. В. А. Рогинский. Фенольные антиоксиданты: реакционная способность и эффективность. М.: Наука, 1988. С. 246.
289. Denisov E., T. Denisova. Handbook of antioxidants: bond dissociation energies, rate constants, activation energies and enthalpies of reactions // New York: CRC Press. 1995. P. 231.
290. E.R. Milaeva, D.B. Shpakovsky, V.S. Petrosyan. Polyfunctional activity of metal complexes containing 2,6-di-/eri-butylphenol in catalytic oxidation. // Macromol. Symp. 2003. Vol. 204. P. 191-204.
291. W. Nam, S.-Y. Oh, Y. J. Sun, J. Kim, S. K. Woo, W. Shin. Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and H2O2 in protic solvents. // J. Org. Chem. 2003. Vol. 68. P. 7903-7906
292. D. Dolphin, T.G. Traylor, L.Y. Xie. Polyhaloporphyrins: unusual ligands for metals and metal-catalyzed oxidations. // Acc. Chem. Res. 1997. Vol. 30. P. 251259.
293. W. Nam, R. Ho, J.S. Valentine. Iron-cyclam complexes as catalysts for the epoxidation of olefins by 30% aqueous hydrogen peroxide in acetonitrile and methanol. //J. Am. Chem. Soc. 1991. Vol. 113. P. 7052-7054.
294. T.G. Traylor, S. Tsuchiya, Y.S. Byun, C. Kim. High-yield epoxidations with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by iron(III) porphyrins: Heterolytic cleavage of hydroperoxides. // J. Am. Chem. Soc. 1993. Vol. 115. P. 2775-2781.
295. S.R. Doctrow, K. Huffman, C.B. Marcus, G. Tocco, E. Malfroy, C.A. Adinolfi, H. Kruk, K. Baker, N. Lazarowych, J. Mascarenhas, B. Malfroy. Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. // J. Med. Chem. 2002. Vol. 45. P. 4549-4558.
296. M.A. Martinez Lorente, P. Battioni, W. Kleemiss, J.F. Bartoli, D. Mansuy. Manganese porphyrins covalently bound to silica and montmorillonite as efficient catalysts for alkene and alkane oxidation by hydrogen peroxide. // J. Mol. Cat. A: Chem. 1996. Vol. 113. P. 343-353.
297. A. Thellend, P. Battioni, D. Mansuy. Ammonium acetate as a very simple and efficient cocatalyst for manganese porphyrin-catalysed oxygenation of
hydrocarbons by hydrogen peroxide. // J. Chem. Soc. Chem. Commun. 1994. P. 1035-1036.
298. Synthetic methods of organometallic and inorganic chemistry: catalysis. Ed. W.A. Herrman. Stuttgart: Thieme. 1999. 248 p.
299. D. Mansuy, J.F. Bartoli, J.C. Chottard, M. Lange. Metalloporphyrin-catalyzed hydroxylation of cyclohexane by alkyl hydroperoxides: pronounced efficiency of iron-porphyrins. // Angew. Chem. Int. Edn. 1980. Vol. 19. P. 909-910.
300. O. Almarsson, T.C. Bruice. A homolytic mechanism of 0-0 bond scission prevails in the reactions of alkyl hydroperoxides with an octacationic tetraphenylporphinato-iron(III) complex in aqueous solution. // J. Am. Chem. Soc. 1995. Vol. 117. P. 4533-4544.
301. W. Nam, H.J. Han, S.-Y. Oh, Y.J. Lee, M.-H. Choi, S.-Y. Han, C. Kim, S.K. Woo, W. Shin. New insights into the mechanisms of O-O bond cleavage of hydrogen peroxide and teri-alkyl hydroperoxides by iron(III) porphyrin complexes. // J. Am. Chem. Soc. 2000. Vol. 122. P. 8677-8684.
302. M. Moghadam, S. Tangestaninejad, M.H. Habibi, V. Mirkhani. A convenient preparation of polymer-supported manganese porphyrin and its use as hydrocarbon monooxygenation catalyst. // J. Мої. Catal. A. 2004. Vol. 217. P. 912.
303. K.S. Suslick, F.V. Acholla, B.R. Cook. Photocatalytic oxidation of hydrocarbons by (5,10,15,20-tetraphenylpoфhyrinato)manganese(III) perchlorate and periodate. // J. Am. Chem. Soc. 1987. Vol. 109. P. 2818-2819.
304. D. Mohajer, S. Tangestaninejad. Efficient olefin epoxidation with tetrabutyl ammonium periodate catalyzed by manganese porphyrin in the presence of imidazole. // Tetrahedron Lett. 1994. Vol. 35. P. 945-948.
305. D. Mansuy. Biomimetic catalysts for selective oxidation in organic chemistry. // Appl. Chem. 1990. Vol. 62. P. 741-746
306. M. Fontecave, D. Mansuy. Monooxygenase - like oxidations of olefins and alkanes catalyzed by manganese porphyrins; comparison of systems involving
either O2 and ascorbate or iodosylbenzene. // Tetrahedron. 1984. Vol. 40. P. 42974311.
307. L.-C. Yuan, T.C. Bruice. Oxygen donation to manganese (III) tetraphenylporphyrin chloride. Low reactivity of hydroperoxides as oxygen donors to manganese (III) porphyrins. // Inorg. Chem. 1985. Vol. 24. P. 986-987.
308. T.G. Traylor, Kevin B. Nolan, R. Hildreth. Polyvalent porphyrins. 1. Properties of tetrakis(3,5-di-ieri-butyl-4-hydroxyphenyl)porphyrin (1-P) and its iron(III) and zinc(II) derivatives. // J. Am. Chem. Soc. 1983. Vol. 105. P. 61496151.
309. C.L. Hill, B.C. Schardt. Alkane activation and functionalization under mild
e
conditions by a homogeneous manganese (III) porphyrin - iodosylbenzene oxidizing system. //J. Am. Chem. Soc. 1980. Vol. 102. P. 6374-6375.
310. T.G. Traylor, K.B. Nolan, R. Hildreth, T.A. Evans. Polyvalent porphyrins. Ligands for stabilization of high valent metals. // Heterocycles. 1984. 21. P. 249264.
311. D. Mansuy. Activation of alkanes - the biomimetic approach. // Coord. Chem. Rev. 1993. Vol. 125. P. 129-141.
312. A. Khindaria, A.D. Aust. EPR detection and characterization of lignin peroxidase porphyrin 71-cation radical. // Biochem. 1996. Vol. 35. P. 13107-13111.
313. C.E. Schulz, P.W. Devaney, H. Winkler, P.G. Debrunner, N. Doan, R. Chiang, R. Rutter, L.P. Hager. Horseradish peroxidase compound I: evidence for spin coupling between the heme iron and a "free" radical. // FEBS Lett. 1979. Vol. 103. P. 102-105.
314. C.E. Schulz, R. Rutter, J.T. Sage, P.G. Debrunner, L.P. Hager. Mossbauer and electron paramagnetic resonance studies of horseradish peroxidase and its catalytic intermediates. //Biochem. 1984. Vol. 23. P. 4743-4754.
315. R. Rutter, L.P. Hager, H. Dhonau, M. Hendrich, M. Valentine, P. Debrunner. Chloroperoxidase compound I: electron paramagnetic resonance and Mossbauer studies. //Biochem. 1984. Vol. 23. P. 6809-6816.
316. S. Nagakaki, Y. Iamamoto, O. Baffa, O.R. Nascimento. Intermediate species detected in oxidation reactions of FeTM(4)PyP5+ with iodosylbenzene by EPR and UV-Vis spectroscopies. // Inorg. Chim. Acta. 1991. Vol. 186. P. 39-43.
317. Y. Iamamoto, M.D. Assis, O. Baffa, S. Nakagaki, O.R. Nascimento. Study by EPR and electronic spectroscopy of intermediates in iron porphyrin and iodosylbenzene reaction. // J. Inorg. Biochem. 1993. Vol. 52. P. 191-200.
318. J.T. Groves, R. Quinn, T.J. McMurray, M. Nakamura, G. Lang, B. Bose. Preparation and characterization of a dialkoxyiron(IV) porphyrin. // J. Am. Chem. Soc. 1985. Vol. 107. P. 354-360.
319. J.E. Roberts, B.M. Hoffman, R. Rutter, L.P. Hager. Oxygen-17 ENDOR of horseradish peroxidase compound I. // J. Am. Chem. Soc. 1981. Vol. 103. P. 76567659.
320. C.K. Chang, M-S. Kuo. Reaction of iron(III) porphyrins and iodosoxylene. The active oxene complex of cytochrome P-450. // J. Am. Chem. Soc. 1979. Vol. 101. P. 3413-3415.
321. B.J. Gaffney, H.J. Silverstone. EMR of Paramagnetic Molecules. In: Biological Magnetic Resonance. Eds. L.J. Berliner, J. Reuben. Plenum Press. New York. 1993. Vol. 13. P. 1-57.
322. M.L. Kennedy, S. Silchenko, N. Houndonougbo, B.R. Gibney, P.L. Dutton, K.R. Rodgers, D.R. Benson. Model hemoprotein reduction potentials: the effects of histidine-to-iron coordination equilibrium. // J. Am. Chem. Soc. 2001. Vol. 123. P. 4635-4636.
323. F.A. Walker, D. Reis, V.L. Balke. Models of the cytochromes b. 5. EPR studies of low-spin Fe(III) porphyrins. // J. Am. Chem. Soc. 1984. Vol. 106. P. 6888-6898.
324. F.A. Walker, B.H. Huynh, W.R. Scheidt, S.R. Osvath. Models of the cytochromes b. 6. The effect of axial ligand plane orientation on the EPR and Mossbauer spectra of low-spin ferrihemes. // J. Am. Chem. Soc. 1986. Vol. 108. P. 5288-5297.
325. E. Vinck, S. Van Doorslaer. Analysing low-spin ferric complexes using pulse EPR techniques: a structure determination of bis (4-methylimidazole)(tetraphenylpoфhyrinato)iron(III). // Phys. Chem. Chem. Phys. 2004. Vol. 6. P. 5324-5330.
326. K.C. Christoforodis, M. Louloudi, E.R. Milaeva, Y. Sanakis, Y. Deligiannakis. EPR study of a novel [Fe-porphyrin] catalyst. // Molec. Phys. 2007. Vol. 105. P. 2185-2194.
327. M. Ikeda-Saito, T. Iizuka. Studies on the heme environment of horse heart ferric cytochrome c. Azide and imidazole complexes of ferric cytochrome c. // Biochim. Biophys. Acta. 1975. Vol. 393. P. 335-342.
328. H. Hori. Analysis of the principal g-tensors in single crystals of ferrimyoglobin complexes. // Biochim. Biophys. Acta. 1971. Vol. 251. P. 227-235.
329. А. Гордон, 3. Форд. Спутник химика. // М.: Мир. 1976. С. 541.
330. G.M. Coppinger, T.W. Campbell. Reaction between 2,6-di-teri-butyl-p-cresol and bromine. // J. Am. Chem. Soc. 1953. Vol. 75. P. 734-736.
331. L.R. Milgrom. The facile aerial oxidation of a porphyrin. // Tetrahedron. 1983. Vol. 39. P. 3895-3898.
332. A.D. Adler, F. Longo, J. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff. A simplified synthesis for meso-tetraphenylporphine. // J. Org. Chem. 1967. Vol. 32. P. 476.
333. A.D. Adler, F.R. Long, F. Kampas, J. Kim. On the preparation of metalloDornhvrins //.I. Tnonr Nnc.1 Chem. 1970. Vol. 32. P. 2443-2445.
і X mf ' ~ ------О ' ~
334. E.B. Fleischer, J.M. Palmer, T.S. Srivastava, A. Chatterjee. Thermodynamic and kinetic properties of an iron-porphyrin system. // J. Am. Seem. Soc. 1971. Vol. 93. P. 3162-3167.
335. E. Brule, Y.R. de Miguel. Supported manganese porphyrin catalysts as P450 enzyme mimics for alkene epoxidation. // Tetrahedron Letters. 2002. Vol. 43. P. 8555-8558.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.