Адаптивные алгоритмы снижения уровня боковых лепестков отклика на выходе фильтра сжатия ФКМ радиолокационных сигналов тема диссертации и автореферата по ВАК РФ 05.12.14, кандидат технических наук Бабур, Галина Петровна
- Специальность ВАК РФ05.12.14
- Количество страниц 122
Оглавление диссертации кандидат технических наук Бабур, Галина Петровна
Введение
Глава 1 - Методы обработки цифровых ФКМ-сигналов
1.1 Постановка задачи
1.2 Классификация методов подавления боковых лепестков сжато! о сш нала
1.2.1 Методы первичной и методы вторичной обработки
1.2.2 Методы обработки в спектральной и временной области
1.2.3 Методы итерационной и реитсрациоппой обработки
1.2.4 Адаптивные методы
1.3 Описание исходно! о &гп оритма адаптивно1 о сжатия импульсов
1.4 Выводы по главе
Глава 2 - Математическое описание системы
2.1 Обобщенное представление системы
2.2 Описание зондирующего ФКМ-сш пала
2.2.1 Описание зондирующем о сиг пала для одпокапальпой PJIC
2.2.2 Описание векторно1 о зондирующею си шала для поляризационной PJIC
2.3 Моделирование радиолокационных объектов
2.3.1 Импульсная характеристика радиолокационного объекта для одпокапальпой PJIC
2.3.2 Описание моделей радиолокационных объектов для поляризационной PJIC
2.4 Факторы, влияющие на точность оценки импульсной характеристики радиолокационного объекта
2.5 Шум системы
2.6 Критерии оценки уровня боковых лепестков сигнала на выходе фильтра ^ сжатия
2.7 Выводы по главе
Глава 3 - Алгоритмы адаптивной фильтрации
3.1 Использование адаптивной обработки при фильтрации сиг налов
3.2 Адаптивный алгоритм для одпокапальпой PJIC
3.2.1 Использование согласованною фильтра в составе адаптивною фильтра для од покапал ьной PJIC
3.2.2 Описание адаптивного аш оритма для одпокапальпой PJIC
3.2.3 Описание адаптивною фильтра для однокаиальной PJIC
3.3 Адаптивный алюритм для поляризационной PJIC
3.3.1 Использование согласованною матричною фильтра в составе адаптивною фильтра для поляризационной PJIC
3.3.2 Описание адаптивною алюритма для поляризационной PJIC
3.3.3 Описание адаптивно1 о фильтра для поляризационной PJIC
3.4 Выводы по I лаве
Глава 4 - Исследование предложенных адаптивных алгоритмов
4.111римспспие адаптивно! о алгоритма для одноканальпой PJIC
4.1.1 Применение алюритма для разных моделей радиолокационных объектов
4.2 11римепепие адаптивного шпоритма для поляризационной PJIC 96 4.2.1 11римепение ал1 оритма для разных моделей радиолокационных объектов
4.3 Рекомендации но использованию разработанных шноритмов
4.4 Выводы по I лаве 4 109 Заключение 111 С11 и со к л и терату р ы 113 Приложение А 119 Приложение В
Список сокращений
ЛКФ - автокорреляционная функция;
АСИ - адаптивное сжатие импульсов;
ЛФ - адаптивный фильтр;
ВКФ - взаимокорреляционпая функция;
ДД - динамический диапазон;
ИХ - импульсная характеристика;
ЛЧМ - линейно-частотно-модулированный;
МСО- минимум средпеквадратической ошибки;
PJI - радиолокационный;
PJIC - радиолокационная станция;
СКО - средпеквадратичсское отклонение;
УБЛ - уровень боковых лепестков;
ФКМ - фазокодоманипулиро ванный;
ФН - функция неопределенности;
ЭПР - эффективная поверхность рассеяния.
Рекомендованный список диссертаций по специальности «Радиолокация и радионавигация», 05.12.14 шифр ВАК
Исследование имитационных алгоритмов преобразований сложномодулированных радиолокационных сигналов для проведения измерений параметров радиолокационных станций2005 год, кандидат технических наук Нгуен Хыу Тхань
Разработка и исследование метода повышения помехоустойчивости радиолокаторов со сложными квазинепрерывными сигналами2003 год, кандидат технических наук Нилов, Михаил Александрович
Синтез сигналов с псевдослучайным законом амплитудно-фазовой манипуляции и методы их обработки в РЛС с квазинепрерывным режимом работы2005 год, доктор технических наук Быстров, Николай Егорович
Подавление корреляционных шумов при обработке дискретных радиотехнических сигналов методом сопряженной согласованной фильтрации2003 год, кандидат технических наук Мельников, Алексей Дмитриевич
Улучшение параметров радиолокационной наблюдаемости цели в РЛС УВД методами цифровой адаптивной пространственно-доплеровской обработки эхо-сигналов2000 год, кандидат технических наук Савельев, Тимофей Григорьевич
Введение диссертации (часть автореферата) на тему «Адаптивные алгоритмы снижения уровня боковых лепестков отклика на выходе фильтра сжатия ФКМ радиолокационных сигналов»
Теория радиолокации с момента своею появления в основном развивалась как теория, рассматривающая так нашваемые точечные цели. Однако, реальная цель зачастую представляет сложный объект, состоящий из совокупности элементов, и возникает необходимость определения их дальностей и интенсивности отраженных от эгих элементов си! налов.
Во многих современных радиолокационных станциях (PJIC) применяется сложный Фондирующий сигнал. Использование сложных сигналов но сравнению с простыми имеет ряд преимуществ, в частности, достижение высокого эперюпотенциала РЛС при ограниченной мощности излучения и повышенная помехозащищенность. Среди большою многообразия сложных сш палов нашли применение фаюкодоманипулироваппые (ФКМ) сигналы. Функция неопределенности таких сигналов имеет форму, которая исключает эквивалентность сдвша во времени и по частоте, характерную, например, для липейпо-частотпо-модулироваппых (ЛЧМ) сигналов.
При обработке отраженные сигналы сворачиваются в короткие импульсы в фильтре сжатия (сжимаются). Как правило, для этою используется согласованный фильтр (СФ). За длительность сжатою фазокодомапипулированною сигнала принимается ширина основного пика, однако за его пределами наблюдаются побочные максимумы (боковые лепестки).
Ссмласованный фильтр приемника PJIC может считаться оптимальным, если радиолокационный объект представлен одним точечным отражателем и сигнал принимается на фоне аддитивного белою шума. При наблюдении сложною, состоящею из совокупности отражающих элементов, радиолокационного объекта использование СФ не является оптимальным.
Уровень боковых лепестков (УШ1) сжатою сишала может существенно превышать не только уровень шума, но и уровни полезных сигналов. Мешающее влияние боковых лепестков проявляется в маскировании информационных пиков от слабых сигналов. На практике часто важно не пропустить полезный слабый радиосишал от отражателя с малой эффективной поверхностью рассеяния (ЭПР) па фоне мешающих отражений от объектов с большой ЭПР. Например, отраженный целмо импульс нередко теряется в более сильных отражениях от близких к цели посторонних объектов. Указанное явление существенно ограничивает динамический диапазон амплитуд полезных сигналов, обрабатываемых PJIC, и сфемлепие его расширить по одной принятой реализации является особенно привлекательным.
Проблема снижения уровня боковых лепестков сжатою сишала является актуальной как для одпокапальной, так и для поляризационной (мпоюкапальной) PJIC. В поляризационной PJIC ситуация усугубляется тем, что при полном поляризационном зондировании одновременно излучается два ортогональных сигнала, и уровень боковых лепестков определяется как их авто-, так и взаимной (кросс-) корреляцией.
Учитывая то, что расположение отражателей в составе радиолокационного объекта и интенсивность отраженных от них сигналов являются случайными, возникает задача синтеза приспосабливающихся (адаптивных) шпоритмов и соответствующих им фильтров, параметры и структура которых изменяются во времени. Чтобы характеристики системы были переменными и могли адаптироваться к изменяющимся условиям радиолокационного наблюдения (к различным объектам), необходимо использовать адаптивные фильтры.
Таким образом, исследовательскую работу по синтезу адаптивных алюритмов снижения боковых лепестков отклика на выходе фильтра сжатия ФКМ радиолокационных си! налов, рассеянных сложными радиолокационными объектами, можно считать актуальной.
Цслмо настоящей диссертации является разработка адаптивных алюритмов снижения уровня боковых лепестков отклика на выходе фильтра сжатия ФКМ сигналов для одпокапальной PJIC и поляризационной PJIC, позволяющих повысить радиолокационную наблюдаемость малоразмерных целей па фоне объектов с большой ЭПР, и исследование их эффективности.
В соответствии с этим были поставлены и решены следующие основные задачи.
1. Определение математических моделей зондирующею сигнала для одпокапальной и поляризационной PJIC.
2. Определение моделей радиолокационных объектов для одпокапальной и поляризационной PJIC.
3. Расширение динамического диапазона амплитуд полезных принимаемых сигналов PJIC по одной принятой реализации путем снижения уровня боковых лепестков сжатого сигнала.
4. Проведение численною моделирования адаптивною алгоритма для одпокапальной PJIC и разработка на его основе адаптивного алгоритма для поляризационной PJIC.
5. Исследование эффективности разработанных алгоритмов адаптивной фильтрации.
Актуальность исследовании
Решение поставленных задач актуально на современном этапе развития радиолокации, поскольку расширение динамического диапазона амплитуд полезных сигналов позволяет избежать осложнений, связанных с наличием больших боковых лепестков сжатого сложною сигнала и является актуальными [ 1 ].
Особенно актуальны эти задачи для поляризационной радиолокации, поскольку позволяют уменьшить ошибки определения элементов матриц рассеяния целей как при последовательном, так и при одновременном их измерении.
Методы исследовании. Проводимые исследования основаны на способах адаптивной обработки сигналов, теории сложных сигналов, оптимальных методах радиоприема и статистической теории радиолокации. В процессе исследования использовались методы математичесш о моделирования.
При проведении математическою моделирования использовался пакет прикладных программ MatLAB 7.0.
Практическая значимость работы определяется ее направленностью на повышение )ффективпости радиолокационных систем.
Полученные в работе результаты позволили:
1. Профаммпыми методами оптимизировать обработку радиолокационных сш налов по одной принятой реализации.
2. Разработать адаптивный алгоритм для однокапальной PJIC, позволяющий снижать уровень боковых лепестков принимаемою сжатою сшпала. Динамический диапазон одноканальных PJIC для описанных в работе моделей радиолокационном) объекта был увеличен па 7-23 дВ, а средний квадрат ошибки оценок импульсных характеристик радиолокационных объектов снижен на 8-32 дБ. Сравнение производилось с сигналами па выходе согласованного фильтра при прочих равных условиях.
3. Разработать адаптивный алгоритм для поляризационной PJIC, позволяющий снижать уровень боковых лепестков принимаемою сжатою сигнала. Динамический диапазон поляризационных PJIC для описанных в работе моделей радиолокациоппою объекта был увеличен на 8 - 19 дБ, а средний квадрат ошибки оценок импульсных характеристик радиолокационных объектов снижен па 8 - 17 дБ. Сравнение производилось е сигналами на выходе coi ласоваппою матричного фильтра при прочих равных условиях.
Структура и объем диссертации
Диссертация состоит из введения, 4-х глав, заключения и списка литературы, включающего 72 наименования, и 2-х приложений. Работа содержит 122 страницы, 36 рисунков и 7 таблиц.
Похожие диссертационные работы по специальности «Радиолокация и радионавигация», 05.12.14 шифр ВАК
Повышение разрешающей способности информационных систем по времени прихода сигналов в условиях взаимных помех2010 год, кандидат технических наук Мишура, Тамара Прохоровна
Синтез вычислительных ядер цифровой согласованной фильтрации радиолокационных сигналов на современной элементной базе2005 год, кандидат технических наук Пяткин, Алексей Константинович
Сверхширокополосная радиолокация воздушных объектов с безынерционным обзором пространства2005 год, доктор технических наук Вовшин, Борис Михайлович
Алгоритмы и устройства снижения уровня боковых лепестков при сжатии сложных сигналов радиотехнических систем2007 год, кандидат технических наук Варламов, Дмитрий Львович
Цифровая обработка сигналов атомарными функциями в радиофизических приложениях2005 год, кандидат физико-математических наук Смирнов, Дмитрий Валентинович
Заключение диссертации по теме «Радиолокация и радионавигация», Бабур, Галина Петровна
Результаты работы использованы в учебном процессе при чтении лекций и проведении практических занятий со студентами радиотехническою факультета па кафедре радиотехнических систем по дисциплинам «Проектирование радиотехнических систем» и «Теория электрической связи». Также результаты диссертационной работы были реализованы при проведении НИР «Решение проблемы использования сложных сингалов в задаче корректной оценки матрицы рассеяния радиолокационного объекта» по проекту РИ-111/004/006 ФЦПТН «Исследования и разработки по приоритетным направлениям развития науки и техники» на 2002-2006 гг., (номера гос. регистрации: регистрационный № 01200611495, инвентарный № 02200606700).
ЗАКЛЮЧЕНИЕ
В диссертационной работе решена актуальная научно-техническая задача расширения динамическою диапазона амплитуд полезных принимаемых сш палов в одноканальных и поляризационных РЛС с ФКМ зондирующими сигналами. Расширение динамическою диапазона происходит за счет адаптивной обработки, позволяющей существенно уменьшить уровень боковых лепестков функции отклика на выходе фильтра сжатия принимаемого сигнала.
В работе получены следующие основные результаты.
1. Разработан адаптивный алгоритм снижения уровня боковых лепестков отклика на выходе фильтра сжатия ФКМ сигналов ;ц1я одпокапальной РЛС по одной принятой реализации путем поэтапной обработки входного сипгала.
2. Разработана функциональная схема адаптивного фильтра для одпокапальной РЛС, использующего в своем составе согласованный фильтр.
3. Для поляризационной РЛС разработан адаптивный алюритм снижения уровня боковых лепестков отклика на выходе фильтра сжатия ФКМ сигналов по одной принятой реализации путем поэтапной обработки векторного входною сигнала. Алгоритм позволяет снизить уровень боковых лепестков сжатою сигнала, обусловленный как непулевой автокорреляцией, так и ненулевой взаимной корреляцией используемых сипгалов.
4. Разработана функциональная схема адаптивною фильтра для поляризационной РЛС, использующего в своем составе согласованный матричный фильтр. Особенностью фильтра является наличие перекрестных связей между каналами обработки сигналов.
Разработанные алгоритмы адаптивной обработки позволяют:
1. Расширить динамический диапазон амплитуд полезных принимаемых сш налов РЛС за счет адаптивной обработки сипгалов на выходе фильтра, согласованною со сложным ФКМ-сигпалом. Для заданных моделей PJI объекта расширение динамическою диапазона для одноканальной РЛС составило 7-23 дБ, для поляризационной РЛС -8- 19 дБ.
2. Производить снижение уровня боковых лепестков сжатых сигналов без увеличения базы зондирующих ФКМ-сигпалов.
3. Повысить точность оценки импульсной характеристики радиолокационных объектов. Снижение среднею квадрата ошибки оценки ИХ различных радиолокационных объектов на выходе адаптивного фильтра для одноканальной РЛС но сравнению с согласованным фильтром составило 8-32 дБ, для случая поляризационной PJIC значение среднею квадрата ошибки оценки ИХ было снижено на 8 - 17 дБ.
4. Адаптивный алгоритм для поляризационной PJIC позволяет снизить боковые лепестки, определяемые не только автокорреляцией сложных сигналов, входящих в состав векторного зондирующего сипгала, по и их взаимной (кросс-) корреляцией.
Теоретические результаты работы имеют практическую направленность:
1. Разработанные адаптивные алгоритмы позволяют расширить динамический диапазона амплитуд полезных принимаемых сигналов в одпокапальных и поляризационных PJIC с ФКМ-сиг налами посредством снижения уровня боковых лепестков сжатых сигналов. Это позволяет уменьшить маскирующее влияние целей с большой ЭПР на близкорасположенные цели с малой ЭПР, это улучшает радиолокационную наб гюдаемость и распознавание малоразмерных целей.
2. Представленные адаптивные алгоритмы позволяют повысить точность оценки импульсной характеристики наблюдаемых радиолокационных объектов.
3. При радиолокации распределенных объектов, которые могут быть описаны совокупностью точечных отражателей, разработанные алгоритмы позволяют повысить контрастность радиолокационного изображения.
Анализ алгоритмов, разработанных и представленных в настоящей работе, показывает преимущество адаптивных алгоритмов обработки сложных радиолокационных сингалов по сравнению с традиционными методами, а именно с согласованной фильтрацией.
Список литературы диссертационного исследования кандидат технических наук Бабур, Галина Петровна, 2006 год
1. Бабур Г.Г1. Адаптивный фильтр поляризационной РЛС со сложными сигналами. Известия Томского политехническою университета, том 309, №8,2006.
2. Бабур Г.П. Расширение динамического диапазона поляризационной PJIC со сложными сигналами без увеличения их базы. "Труды выпускников аспирантуры ТУСУР". И*д-во ТУ СУР, 2005,216 с. с илл. ISBN 5-86889-256-9.
3. Проектирование радиолокационных приемных устройств. Под. ред. М. А. Соколова. М. "Высшая школа", 1984.
4. П.Михайлов П.Ф. Радиметеоролог ические исследования над морем. Л.: Гидметеоиздат, 1990.-207 с.
5. Радиолокационные методы исследования Земли./ Ю.А. Мельник, С.Г. Зубкович, В.Д. Степанепко и др. Под. ред. Ю.А. Мельника. М.: Советское радио, 1980. - 264 е., ил.
6. A. Mudukutore, V. Chandrasekar, and R. JelTery Keeler, "Pulse compression for weather radars", Ii£I£I£ Transactions on Remote Sensing, Vol. 36, No. 1, January 1998.
7. A Mudukutore, V. Chandrasekar, and R. J. Keeler, "Range sidelobe suppression for weather radars with pulse compression: Simulation and evaluation," in Preprints, 27th AMS Conf. Radar Meteorol., Vail, CO, Oct. 1995, pp. 763-766.
8. A Mudukutore, V. Chandrasekar, and R. J. Keeler, "Simulation and analysis of pulse compression for weather radar," in Proc. IGARSS, Firen/e, Italy, July 1995.
9. Островитяпипов P.B., Басалов Ф.А. Статистическая теория радиолокации протяженных целей. М.: Радио и связь, 1982. - 232с., ил.
10. Канарейкин ДБ., Павлов Н.Ф., Потехин В.А. Поляризация радиолокационных сиг налов. М.: Сов. радио, 1966. - 440 с.
11. Картон Д, Вард Г. Справочник по радиолокационным измерениям. Пер. с англ. под ред. М.М. Вейсбейна. М.: Сов. радио, 1976. - 392 с.
12. Фельдман Ю.И., Мандуровский И.Л. '1еория флуктуаций локационных сигналов, отраженных распределенными целями. Под. Ред. Ю.И. Фельдмана. М.: Радио и связь, 1988.-272 е.: ил.
13. Варакин Л.1£. Системы связи с шумоподобпыми chi палами. М.: Радио и связь, 1985. -384с.
14. Амиантов И.Н. Избранные вопросы статистической теории связи. -М.: Сов. Радио. 1971.-416с.
15. Справочник по радиолокации. Под ред. М Сколника. Ныо-Йорк, 1970: Пер с ашл. (в четырех томах) / Под общей ред. К.П. Трофимова; Том 3. Радиолокационные устройства и системы / Под ред. А.С. Винницкою. Сов. радио, 1978,528 с.
16. Тихонов В.И., Харисов В.П. Статистический анализ и синтез радиотехнических устройств и систем. М.: Радио и связь, 1991. - 608с.
17. Адаптивная обработка сигналов: Пер. с англ./ Бернард Уидроу, Самьюэл Д. Стирнз; Пер. Ю. К. Сальников. М : Радио и связь, 1989. - 440 с.
18. Кириллов II.Б. Помехоустойчивая передача сообщений по линейным каналам со случайно изменяющими параметрами. М., Связь, 1971.-256 с.
19. Быстров Н.Н., Жукова И.Н. Сегментная обработка сложных сигналов в ограниченном дальпостно-доплеровском диапазоне. 2001 Вестник Новгородского государственного университета №19.
20. I ихопов В.И. Статистическая радиотехника: монография. 2-е изд., перераб. и доп. -М.: Радио и связь, 1982. - 624 с.
21. Хлусов В.А. Теория и методы обработки векторных сигналов в поляризационных радиолокационных системах: дис. докт. техн. паук. Томск, 2004.
22. Хлусов В.А. Совместная оценка координатных и поляризационных параметров радиолокационных объектов // Сибирский поляризационный семинар СИБПОЛ 2004. 7-9 сентября 2004 г. Сургут, Россия.
23. В.А. Губин, А.А. Коростелев, IO.A. Мельник. Пространственно-временная обработка радиолокационных сигналов. Конспект лекций. Ленинградская инженерная краснознаменная академия имени А.Ф. Можайского. Ленинград, 1970. 201с.
24. Лйфичер Эммануил С., Джсрвис Барри У. Цифровая обработка chi палов: прагсгический подход, 2-е издание.: Пер. с англ. М.: Издательский дом «Вильяме», 2004. - 992 е.: ил. Парал. тит. Лшл.
25. S.D. Blunt, К. Gerlach, "Adaptive Pulse Compression", Radar Conference, 2004. Proceedings of the IEEE 26-29 April 2004, pp. 271 276.
26. S.D. Blunt, K. Gerlach, "Adaptive Pulse Compression Repair Processing", Radar Conference, 2005 IEEE International 9-12 May 2005, pp. 519 523.
27. S.D. Blunt, K. Gerlach, "Aspects of Multistatic Adaptive Pulse Compression", Radar Conference, 2005 IEEE International 9-12 May 2005, pp. 104 108.
28. S.D. Blunt, K. Gerlach, "A Novel Pulse Compression Scheme Based on Minimum Mean
29. Square Error Reiteration", Radar Conference, 2003. Proceedings of the International 3-5 Sept. 2003, pp. 349-353.
30. Ilaykin S. Adaptive filter theory, 2nd ed., Prentice-Hall, Englewood Cliffs, N.J.
31. Haykin S. "Adaptive filters: past, present, and future," Proc. IMA Conf. Math. Signal Process., Warwick, England.
32. Розов А.К. Нелинейная фильтрация сигналов. Санкт-Петербург: Политехника. 1994. -382с.
33. Быков В.В. Цифровое моделирование в статистической радиотехнике. М.: Сов. радио, 1971.-328 с.
34. IIu Hang, "Study on the weighting methods of suppressing sidelove for pulse compression of chirp signal", 2004 4' International Conference on Microwave and Millimeter Wave Technology Proceedings.
35. Савостьянов В.Ю., Морозова C.A. Синтез оптимального фильтра сообщений для первичной обработки частотио-манипулироваппого радиолокационного сигнала. «Радиотехника», 2005 г., №9.
36. M.II. Ackroyd and F. Ghani, "Optimum Mismatched Filters For Sidelobe Suppression," IEEE Trans. Aerospace Electronics, Vol. AES-9, pp 214-218, March 1973.
37. Василенко Г.И., Тараторин A.M. Восстановление изображений. M. "Радио и связь", 1986,304 с.
38. R. J. Keeler and С. A. Hwang, "Pulse compression for weather radar," in Proc. IEEE Int. Radar Conf., May 1995, pp. 529-535.
39. Обработка сигналов в радиотехнических системах: Учеб. пособие/ Далматов А.Д., Елисеев А.А., Лукошкин А.П., Оводепко А.П., Устинов Б.В.; Под ред. А.II. Jly кошкина.-JI.: Изд-во Ленингр. Ун-та, 1987.400 с.
40. Ilaykin S., "Cognitive Radar", IEEE Signal Processing Magazine, Jan 2006.
41. Рутковская Д., Нилипьский М., Рутковский JI. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польск. И.Д. Рудинского. М.: Горячая линия - I елеком, 2006. - 452 с.
42. Акулиничев 10.11. Теория и методы диагностики многолучевости для повышения помехоустойчивости систем радиолокации и дистанционного зондирования атмосферы: дисдокт. техн. паук. 1'омск, 2002.
43. Радиотехнические системы: Учеб. для вузов по спец. «Радиотехника»/ IO.lI. Гришин, B.II. Ипатов, Ю.М. Казаринов и др.; Под ред. 10.М. Казаринова. М.: Высш. шк., 1990.-496 е.: ил.
44. Савиных И.С. Геометрическая модель объемпо-распределсппых радиолокационных объектов, обеспечивающая заданную точность имитации эхо-сигнала при минимальном количестве отражателей: дис. канд. техн. наук. Новосибирск, 2005.
45. Леонтьев В.В. Вероятностная модель рассеяния сантиметровых радиоволн объектом, расположенным вблизи взволнованной морской поверхности. «Жериал технической физики», 1997 г.,№9.
46. Бакулев П.А., Стенин В.М. Методы и устройства селекции движущихся целей. М.: Радио и связь, 1986. - 288 с.
47. Вайнштейн Л.А., Зубаков В Д. Выделение сигналов па фоне случайных помех. М.: Радио и связь, 1970. - 447с.
48. Зубкович С.Г. Статистические характеристики сигналов, отраженных от земной поверхности. М.: Сов. радио, 1968. - 224 е.
49. Петере Л., Веймер Ф. Радиолокационное сопровождение сложных целей. -Зарубежная радиоэлектроника, 1964, №7, с. 17-44.
50. Пространственно-временная обработка сигналов / И.Я. Кремер, А.И. Кремер, В.М. Петров и др ; Под ред. И.Я. Крнемера. М.: Радио и связь, 1984. - 224 с.
51. Прошкип Н.Г., Кащеев Б.Л. Исследование псодпородпостей структуры F слоя ионосферы. «Радиотехника и электроника», 1957, №7.
52. Вентцель П.С., Овчаров Л.А. Теория вероятностей: Учебник для вузов 7-е изд., стереотип. - М.: Высшая школа, 2001. - 576 с.
53. Богородский В.В., Канарейкин Д.Б., Козлов А.И. Поляризация рассеянного и собственною радиоизлучения земных покровов.-Ленинград: Годромстеоиздат, 1981. -279 с.
54. Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery, J-S. Lee, K.W. Iloppel, S.A. Mango and A.R. Miller. 1ПЕЕ TORS (32)5 Sep 1994 pp. 1017—1028.
55. Statistics of the Stokes Parameters and of the Complex Coherence Parameters in One-Look and Multilook Speckle Fields, R. Touzi and Л. Lopes. IIiHL 'IGRS (34)2 Mar 1996, pp. 519-531.
56. N. R. Goodman, "Statistical analysis based on a certain complex Gaussian distribution (an introduction)," Ann. Mathemar. Sratisr., VOL 34, pp. 152-177, 1963.
57. Рабипер P., Гоулд В. Теория и применение цифровой обработки сигналов. М., 1978, 848.
58. Основы цифровой обработки сигналов: Курс лекций / Авторы: А.И. Солонина, Д.А. Улахович, С.М. Арбузов, ИВ. Соловьева / Изд. 2-е испр. и перераб. СПб: БХВ-Петербург, 2005. - 768 е.: ил.
59. Madisetti V.K., Williams D.B. The Digital Signal Processing Handbook. CRC Press, 1998.
60. Фачькович С.И Оценка параметров сипгала. М.: Радио и связь, 1970. - 336 с.
61. Kassam, S.A., Signal Detection in Non-Gaussian Noise, Springer-Verlag, New York, 1988.
62. Бакут M.A., Большаков И.А. и др. Вопросы статистической теории радиолокации. -М.: Мир, 1989.- 1.2-С. 1080.
63. Козлов А.И. Радиолокация. Физические основы и проблемы // Соросовский образовательный журнал, 1996, №5, с. 70-78.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.