2D пленки, сформированные из фуллерена C60, углеродных нанотрубок, наноалмазов и полистирольных микросфер, модифицированных данными аллотропными формами углерода тема диссертации и автореферата по ВАК РФ 02.00.06, кандидат химических наук Левачева, Ирина Сергеевна

  • Левачева, Ирина Сергеевна
  • кандидат химических науккандидат химических наук
  • 2008, Москва
  • Специальность ВАК РФ02.00.06
  • Количество страниц 172
Левачева, Ирина Сергеевна. 2D пленки, сформированные из фуллерена C60, углеродных нанотрубок, наноалмазов и полистирольных микросфер, модифицированных данными аллотропными формами углерода: дис. кандидат химических наук: 02.00.06 - Высокомолекулярные соединения. Москва. 2008. 172 с.

Оглавление диссертации кандидат химических наук Левачева, Ирина Сергеевна

ВВЕДЕНИЕ

1 .ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Синтез и свойства полистирольных микросфер

1.2 Перспективы развития химии аллотропных форм углерода

1.3 Принципы создания сенсорных систем на основе аллотропных форм углерода.

1.4. Перспективные направления синтеза композитных полимерных материалов, содержащих углеродные нанотрубки. 1.5 Получение и свойста 2D пленок аллотропных форм углерода (фуллерена, углеродных нанотрубок и наноалмазов). 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1 Объекты исследования

2.2 Методы исследования.

2.2.1. Получение частиц полистирольного латекса методом затравочной полимеризации.

2.2.2. Получение 2D пленок и проведение измерений изотерм зависимости двумерного давления

2.2.3. Исследование морфологии 2D пленок методом Брюстеровской микроскопии.

2.2.4. Перенесение 2D пленок на твердые подложки.

2.2.5. Исследование морфологии перенесенных 2D пленок методом Атомно-силовой Микроскопии.

2.2.6. Исследование состава образца методом ИК-спектроскопии.

2.2.7. Определение размера полимерных микросфер. 86 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1 Синтез полимерных микросфер, модифицированных аллотропными формами углерода

3.2 Влияние электролитного состава субфазы на изотермы двумерного давления полимерных микросфер.

3.3 Условия получения изотерм двумерного давления

2D пленок С6о.

3.4 Влияние электролитного состава субфазы на изотермы двумерного давления фуллерена Сбо

3.5. Изотермы двумерного давления 2D пленок углеродных нанотрубок

3.6. Исследование морфологии перенесенных пленок фуллеренов

3.7. Характеристика химического состава поверхности наноалмазов

3.8 Влияние электролитного состава субфазы на изотермы двумерного давления наноалмазов

3.9 Влияние электролитов на параметры 2D пленок полимерных микросфер, модифицированных фуллереном С6о и гидрофобизированными наноалмазами

Рекомендованный список диссертаций по специальности «Высокомолекулярные соединения», 02.00.06 шифр ВАК

Введение диссертации (часть автореферата) на тему «2D пленки, сформированные из фуллерена C60, углеродных нанотрубок, наноалмазов и полистирольных микросфер, модифицированных данными аллотропными формами углерода»

Развитие нанотехнологии требует совершенствования методов создания предельно тонких пленок аллотропных форм углерода, таких как фуллерены, нанотрубки и наноалмазы. В идеальных условиях они должны иметь мономолекулярное строение или представлять собой монослой наночастиц. Решение данного вопроса актуально для создания высокоэффективных сенсорных систем, защитных покрытий, катализаторов и адсорбентов. Важным направлением развития химической технологии является использование фуллеренов в качестве активного компонента безопасных аккумуляторов водорода. Эффективность использования аллотропных форм углерода возрастает в форме предельно тонких пленок (2D пленок), в которых удельная поверхность контакта активного компонента с окружающей средой максимальна. Сложности в реализации таких структур заложены в физико-химических свойствах наномерных частиц аллотропных форм углерода. Имея высокие значения избытков свободной энергии на своей поверхности, они склонны к кристаллизации в. случае фуллерена, или агрегации, при использовании углеродных нанотрубок и наноалмазов.

Одним из возможных путей уменьшения степени агрегированности наномерных частиц аллотропных форм углерода является создание электростатического барьера на межфазной границе. Преспективным методом формирования предельно тонких пленок является метод Ленгмюра, в котором пленка образуется на энергетически однородной поверхности и ее параметры могут быть под контролем при получении изотерм двумерного давления. Используя существующие методы Ленгмюр-Блоджетт и Ленгмюр-Шеффера пленки можно переносить на различные твердые носители.

Особый интерес вызывает возможность формирования предельно тонких пленок аллотропных форм углерода на поверхности полистирольных микросфер. Иммобилизации наноразмерных частиц на полимерной поверхности микросфер открывает новые пути их модификации. Такие системы могут рассматриваться в качестве твердого носителя заданной дисперсности и геометрических параметров активного компонента, например, фуллерена. С другой стороны, модификация поверхности полистирольных микросфер тонкой пленкой материала, представляющего собой аллотропную форму углерода, открывает перспективы при дальнейшей переработке полимера и получения максимально однородного распределения компонентов в объеме получаемого изделия.

ЛИТЕРАТУРНЫЙ ОБЗОР

Похожие диссертационные работы по специальности «Высокомолекулярные соединения», 02.00.06 шифр ВАК

Заключение диссертации по теме «Высокомолекулярные соединения», Левачева, Ирина Сергеевна

Выводы

1. Определены условия получения протяженных 2D пленок фуллерена Сбо 5 имеющих практически мономолекулярную структуру с небольшим количеством дефектов.

2. Показано, что добавление электролитов в водную субфазу изменяет параметры изотерм двумерного давления 2D пленок сформированных из фуллерена Сбо> углеродных нанотрубок, наноалмазов, полистирольных микросфер и полистирольных микросфер, модифицированных фуллереном Сбо и гидрофобизированными наноалмазами.

3. Предложен механизм влияния электролитов на структуру 2D пленок на поверхности водной субфазы, содержащих аллотропные формы углерода, заключающийся в создании двойного электрического слоя на поверхности наночастиц углерода, препятствующего агрегации5 частиц.

4. Разработан метод синтеза модифицированных полистирольных микросфер с иммобилизированными на поверхности полимера аллотропными формами углерода (фуллерена Сбо и наноалмазов), имеющих нанометровый размер. Обнаружено увеличение гидрофобизации поверхности полистирольных микросфер * при иммобилизации на них фуллерена Сбо и гидрофобизированных наноалмазов, вызывающей их агрегацию в 2D пленках. Такое изменение характеристики полимерных микросфер может быть частично компенсировано введением электролитов в систему.

5. Показано, что использование в синтезе химически чистого фуллерена Сбо позволяет эффективно проводить процесс модификации полистирольной поверхности, в отличие, от наноалмазов, при использовании которых необходимо проведение предварительной гидрофобизации их поверхности.

6. Использован метод химической модификации поверхности наноалмазов в реакции с диметилдихлорсиланом. Установлены условия проведения синтеза полистирольных микросфер, позволяющие получить равномерное распределение модифицирующего агента по полимерной поверхности.

Список литературы диссертационного исследования кандидат химических наук Левачева, Ирина Сергеевна, 2008 год

1. Miraballesmartinez 1., Martinrodriguez A., Hidalgoalvarez R. Chloroactivated Latex-Particles for Covalent Coupling of Antibodies- Application to Immunoassays.//.!. OF BIOMATERIALS SCIENCE-POLYMER EDITION -1997-Vol. 1.8-Iss. 10-pp. 765-777.

2. Margel S., Nov E., Fisher I. Polychloromethylstyrene Microspheres- Synthesis and Charaaterization.//J. Polym. Chlem. Ed.-1991-Vol.29-Iss.3-pp.247-355.

3. Magnet S., Guillot J., Guyot A., Pichot C. Cross-Linking Ability of Sturene Butyl Acrilate Copolymer Lattices Functionalized with Glicidyl Methacrylate.// Prog, organ. Coating-1992- Vol.20-Issl-pp73-80.

4. Odeberg J., Rassing J., Josson J.E., Wesslen B. Water-Based Radiotion-Curable Latexes// J. OF APPLIED POLYMER SCIENCE -1996- Vol.62-Iss.2-pp.43 5445.

5. Horak D. Straka J., Schneider В., Lednicky F. Pilar J. Poly(Ethylene Dimethacrylate) Particles with Poly(Clycidyl Methacrylate) Functionalities.// Polymer-1994-Vol 35-Iss.6-pp.l 195-1202.

6. Иванчев С.С. Полифункциональные компоненты при радикальной^ полимеризации и получении полимерных композиций.//Успехи химию-1991.т.60.-вып.7.-с. 1368-1290.

7. Bangs L.B. The Latex Course.// Bangs Laboratories Inc. Carmel. Indianapolis. USA,-1996-V.4-P 1-15.

8. Kawaguchi H. Funational polymer microspherees// Prog. Plym. Sci.-2000.-V.25.-P.1171-1210.

9. Прокопов Н.И., Грицкова И.А., Черкасов B.P., Чалых Ф.Е. Синтез монодисперсных функциональных полимерных микросфер для иммунодиагностических исследований//Успехи химии.-1996.-Т.65.-№2.-с.178-192.

10. Medcalf Е.А., Newman D.J., Gilboa A., Gorman E.G., Price C.P. A Rapid and robust particle-enhanced turbodimetric immunoassay for serum B2-microglobulin // J. Immunol. Methods.- 1990- V.129.-P. 97-103

11. Amiral J., Migaud M. Development and application of a new photometric method for fast and sensitive immunoassaus // Eur. Clin. Lab.-1991.-V. 10.-P.28.

12. Calisteo-Conzalez F., Puig J., Martin- Rodriguez A., Serra-Domenech J., Hidalgo-Alvarez R. Influence of electrostatic forces on IgG adsorption onto polystyrene beads // Colloids Surface B: 1994,- V. 2.-P.435-441.

13. Shirahama H., Suzawa T. Adsorption of Bovine Serum Albumin onto Styrene/2-Hydroxyethyl Methacrylate copolymer latex // J. Colloid Interface Sci.- 1985.-V.104.- №2.-P. 416-421.

14. Peula-Carsia J.M., Hidalgo-Alvarez R., de las Nieves F.J. Protein coadsorption on different polysteren latexes: electrokinrtic characterization of poltmer colloid stability // Colloid Polym. Sci.-1997.-V.275.-P. 198-202.

15. Suzawa Т., Shirahama H. Adsorption of plasma proteins onto polymer lattices //Adv. Colloid Interface Sci.-1991.-V.35.-P.139-172.

16. Okubo M., Hattori H. Competitive adsorption of fibrinogen and albumin onto polymer microspheres having hydrophilic/hydrophobic heterogeneous surface structures // Colloid Polymer Sci.-1993.-V.271.№12.-P.l 157-1164.

17. Dresselhaus, M. S., Dresselhaus, G., Avouris Ph. Carbon Nanotubes: Synthesis, Structure and Applications, Springer Publishing: New York, 2001.

18. Freitag M., Martin Y., Misewich J.A., Martel R., Avouris Ph. Photoconductivity of Single Carbon Nanotubes//Nano Letters, 2003, V.3, № 8, p. 1067-1071.

19. Kelly K.F., Shon Y.-S., Lee T.R., Halas N.J. Scanning Tunneling Microscopy and Spectroscopy of Dialkyl Disulfide Fullerenes Inserted into Alkanethiolate SAMs//J. Phys. Chem. B,1999,V. 103,№. 41,p. 8639-8642.

20. Homyonfer M., Alperson В. et al Intercalation of Inorganic Fullerene-like Structures Yields Photosensitive Films and New Tips for Scanning Probe Microscopy//J. Am. Chem. Soc., 1997, 119, p.2693-2698.

21. Dekanski A., Stevanovic J., Stevanovic R., Nikolic B.Z., Jovanovic V.M. Glassy carbon electrodes I. Characterization and electrochemical activation//Carbon, 2001, V.39, p. 1195-1205.

22. Zhou G., Kawazoe Y. Application of single-walled carbon nanotube body to unique emitter: a first-principles study//Chem.Phys.Letters, 2001, V.350, p.386-392.

23. Ciraci S., Dag S., Yildirim Т., Senger R.T. Functionalized carbon nanotubes and device applications// J. Phys.: Condens. Matter, V.16, 2004, R901-R960.

24. Lu J., Han J. Carbon nanotubes and nanotube-based nano devices// Int. J. of High Speed El. and Sys., V.9,1998,p.l01-123.

25. Matranga Ch., Bockrath В., Chopra N., Hinds B.J., Andrews R. Raman Spectroscopic Investigation of Gas Interactions with an Aligned Multiwalled Carbon Nanotube Membrane//Langmuir, 2006, V.22,p.l235-1240.

26. Gusev V.Y., Ruetsch S., Popeko L.A., Popeko I.E. Nitrogen and Argon Adsorption and SEM Characterization of C60 and C60/C70 FullerenesComparison with Graphite/Л. Phys. Chem. В 1999, V.103, p. 64986503.

27. Rouse J., Lillehei P., Sanderson J., Siochi E. Polymer/Single-Walled Carbon Nanotube Films Assembled via Donor-Acceptor Interactions and Their Use as Scaffolds for Silica Deposition// Chem. Mater. 2004, V.16, p.3904-3910.

28. Qi P., Vermesh O.et al Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection//Nano Letters, 2003, V.3, №3, p.347-351.

29. Li J., Lu Y., Ye Q., Cinke M., Han J., Meyyappan M. Carbon Nanotube Sensors for Gas and Organic Vapor Detection//Nano Letter, 2003, V.3, №7, p.929-933.31 .Ulman A; Introduction to Ultrathin Organic Films, Academic Press, San Diego, 1991.

30. Tang Z., Cai X., Gao J. In-situ characterization of Сбо coalescence reaction//Chem.Phys.Lett. 1999,v.306, p.345-351.

31. Saran N. et al Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates// J. AM. CHEM; SOC. 2004, V.126, p.4462-4463.

32. Baskaran D., Mays J.W., Bratcher M.S. Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon1 Nanotubes//Chem. Mater. 2005, V.17, p: 3389-3397.

33. Toccoli Т., Boschetti A., Corradi L. Co-deposition of phalocyanines and fullerene by SuMBE: characterization and prototype devices//Synth.Met. 2003, V.138, p.3-7.

34. Ishibashi K., Suzuki M., Tsuya D., Aoyagi Y. Fabrication of single electron transistors in multi-wall carbon nanotubes using Ar beam irradiation/ZMicroel. Eng., 2003, v.67, p. 749-754.

35. Kovtyukhova N.I., Mallouk Т.Е. Ultrathin Anisotropic Films Assembled from Individual Single-Walled Carbon Nanotubes and Amine Polymers//J. Phys. Chem., 2005, V.109, p. 2540-2545.

36. Deshpande R.,. Dillon A.C., Mahan A.H., Alleman J., Mitra S. Hydrogen adsorption in single-walled and multi-walled carbon nanotubes grown in a hotwire CVD (Cat-CVD) reactor// Thin Solid Films, 2005, p.435-437.

37. Sayagoa I. et al Hydrogen sensors based on carbon nanotubes thin films// Synthetic Metals, 2005, v. 148, p. 15-19.

38. Simonyan V., Johnson K. Hydrogen storage in carbon nanotubes and graphitic nanofibers// Journal of Alloys and Compounds, 2002,v.330-332, p.659-665.

39. Zacharia R., Kim K., Kibria K., Nahm K. Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles//Chemical Physics Letters, 2005, v. 412, p. 369-375.

40. Wu H., Qiua J., Hao C., Tang Z., Hanc K. Molecular dynamics study of hydrogen adsorption in Y-junction carbon nanotubes// Journal of Molecular Structure (Theochem), 2004, v.684, p.75-80.

41. Seifert G. Hydrogen on and in carbon nanostructures// Solid State Ionics, 2004, v.168, p. 265-269.

42. Noworyta K., Kutner W., Deviprasad G., D'Souza F. Protonation-induced rearrangement in Langmuir films and redox properties of 2-(n-alkyl)fulleropyrrolidines//Synth.Met. 2002, v. 130, p.221-227.

43. Kang S., Xu S., Zhang H., Gan L. Fabrication, characterization and electrochemical behaviors of the orientated film of Сбо derivative//Surf.Sci. 2003, v.536, p.408-409.

44. Launaya S., Fedorova A.G., Joshia Y., Caob A., Ajayan P.M. Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement// Microelectronics Journal, 2005, p. 1-7.

45. Ding H., Ram M., Zheng L., Nicolini C. Fabrication and photovoltaic properties of fullerene and copper phthalocyanine derivative mixed Langmuir-Schaefer films//J.of Mat.Sci. 2001, V.36, p.5423-5428.

46. Wang P., Maruyama Y., Metzger R.M. Superconductivity of C60 Langmuir-Blodgett Films Doped with Potassium: Low-Field Signal and Electron Spin Resonance Study// Langmuir, 1996, V.12, p.3932-3937.

47. Sun D., Tham F.S., Reed Ch, Boyd,P. Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks//PNAS, 2002, V.99, №8, p. 5088-5092.

48. Dei L., LoNostro P., Capuzzi G., Baglioni P. Langmuir Films of p-tert-Butylcalix8.arene. Conformations at the Water-Air Interface and Complexation of Fullerene C60//Langmuir, 1998, V.14, p.4143-4147.

49. Castillo R., Ramos S. et al Langmuir Films of Calix8.arene/Fullerene Complexes//J. Phys. Chem., 1996, V. 100, p. 709-713.

50. Zhang X., Ye X., Chen K. Three-dimensional degenerate multiwave mixing and optical storage effects in C6o Langmuir-Blodget films//Optics Comm. 1995, V.113, p.519-522.

51. Soldatov E.S. et al. Molecular cluster based nanoelectronics// Microelectronic Engineering, 2003,V. 69, p. 536-548.

52. Zhao Y., Gan L., Zhoc D., Huang C. et al Photocurrent generation from a self-assembling guest-host LB film of C60(HOOCCHNHCHCOOH) and octopentyloxy phthalocyanine//Solid St.Comm. 1998, v. 106, p.43-48.

53. Zhu C., Xu Y., Long C., Fan L., Li Y., Zhu D. Electrochemical properties and LB films of fullerene derivatives//Synth.Met. 1997, v.86, p.2291-2292.

54. Liu Y., Xu Y., Zhu D. Schottky diodes fabricated with LB films of Сбо-doped poly (3-alkylthiophene)s//Synth.Met. 1997, v.90, p.143-146

55. Ball T.Z., Sivula K., Frechet J. Well-Defined Fullerene-Containing Homopolymers and Diblock Copolymers with High Fullerene Content and Their Use for Solution-Phase and Bulk Organization//Macromolecules, 2006, V.39, p. 70-72.

56. Zhang W., Gan L., Huang C. Photoelectric response of ITO electrode sensitized by single-layer C60aminodicarboxylate derivative C6o(C7H13N04)//J.Mater.Chem. 1998, v.8, p.1731-1734

57. Tang B.Z., Leung S.M., Peng H., Yu N., Su K.C. Direct Fullerenation of Polycarbonate via Simple Polymer Reactions//Macromolecules, 1997, V.30 ,p. 2848-2852.

58. Huang L., Chen J., Cao Т., Cong H., Cao W. Investigation of microtribological properties of C60-containing polymer thin films using AFM/FFMZ/Wear 2003, V.255, p.826-831.

59. Wei Ch., Dai L., Roy A., Tolle T. Multifunctional Chemical Vapor Sensors of Aligned Carbon Nanotube and Polymer Composites//J. Am. Chem. Soc., 2005, V.16, p.234-235.

60. Guo Z., Li Y., Ge Z., Yan J. et al Langmuir-Blodget and optical second-harmonic generation of a crowned 60.folleropyrrolidine//Appl.Phys. В 2000, p.545-548.

61. Kang S., Xu S., Zhang H., Gan L. Fabrication, characterization and electrochemical behaviors of the orientated film of Сбо derivative//Surf.Sci. 2003, V.536, p.408-409.

62. Ding H., Ram M., Zheng L., Nicolini C. Fabrication and photovoltaic properties of fullerene and copper phthalocyanine derivative mixed Langmuir-Schaefer films//J.of Mat.Sci. 2001, V.36, p.5423-5428.

63. Zhang X., Ye X., Chen K. Three-dimensional degenerate multiwave mixing and optical'storage effects in Сбо Langmuir-Blodget films//Optics Comm. 1995, V.113,p.519-522.

64. Brown, C.M. et al. Quantum Rotation of Hydrogen in Single-Wall' Carbon Nanotubes// Chemical Physics Letters, 2000, V.329, p.311-316.

65. Dillon, A.C. et al. Carbon Nanotube Materials for Hydrogen Storage in Proceedings of the 2000 U.S. D.O.E. Hydrogen Program Review.

66. Wang, Q. & Johnson, J.K. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores// J. Chem Phys., 1999, V.110, p.577-586.

67. Dillon, A.C. et al. Storage of Hydrogen in Single-Wall Carbon Nanotubes// Nature, 1997, V. 386, p.377-379.

68. Ramachandran S., Wilson T.A., Vandervelde D., Holmes D.K., Vilches O.E. Heat Capacity of H2 Adsorbed on Carbon Nanotube Bundles//.!, of Low Temp. Phys., 2004, V.134, p.l 15-120.

69. Yoo E., Habe Т., Nakamura J. 19 Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials//Science and Technology of Advanced Materials, 2005, p.465-467.

70. Centrone A., Brambilla L., Zerbi G. Adsorption of H2 on carbon-based materials: A Raman spectroscopy study// Physical Review B, 2005, v. 71, p. 245-252.

71. Ye Y. et al. Hydrogen Adsorption and Cohesive Energy of Single-walled Carbon Nanotubes// Appl. Phys. Lett., 1999, V. 74, p.2307.

72. Ormsby J., King B. The Regioselectivity of Addition to Carbon Nanotube Segments//J. Org. Chem., 2007, V.2, p.571-574.

73. Efremenko I., Sheintuch M. Enthalpy and Entropy Effects in Hydrogen Adsorption on Carbon Nanotubes// Langmuir, 2005, V.21, p.6282-6288.

74. Kowalczyk P., Brualla L., Bhatia S.K. Single-Walled Carbon Nanotubes: Efficient Nanomaterials for Separation and On-Board Vehicle Storage of Hydrogen and Methane Mixture at Room Temperature// J. Phys. Chem. С 2007, V.lll, p.5250-5257.

75. Clewett C.F.M., Li P., Pietrass T. Electron Spin Resonance Studies of Hydrogen Adsorption on Defect-Induced Carbon Nanotubes// J. Phys. Chem. C, 2007, V.lll, p.5100-5104.

76. Ormsby J., King B. The Regioselectivity of Addition to Carbon Nanotube Segments//J. Org. Chem., 2007, V.3, p.453-457.

77. Gurrum S., Suman S., Joshi Y., Fedorov A. Thermal issues in next generation integrated circuits//Trans. on Device and Materials Reliab., V.4, 2004, p.709-715.

78. Rainey K.N., You S.M. Pool boiling heat transfer from plain and microporous, square pin-finned surfaces in saturated FC-72//J. of Heat Transfer, V.122, 2000, p.509-516.

79. Honda H., Wei J. Advances in enhancement boiling heat transfer from electronic components, JSME Int. J., 2003, V. 46, p.479-490.

80. Rainey K.N., You S.M., Lee S. Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous surfaces in FC-72//J. of Heat Transfer, 2003, V. 125, p.75-83.

81. Wei B.Q. et al Assembly of Highly Organized Carbon Nanotube -Architectures by Chemical Vapor Deposition//Chem. of Materials, 2003, V.15, p. 1598-1606.

82. Wei J., Honda H. Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins// Int. J. of Heat and Mass Transfer, 2003, V. 46, p.4059-^070.

83. Dillon A.C., Gennett Т., Alleman J.L., Jones K.M., Parilla P.A., Heben M.J. Optimization of Single-Wall Nanotube Synthesis For Hydrogen Storage// J. Phys. Chem., 2006, V.203, p.4809-4813.

84. Wang, Q. & Johnson, J.K. Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption// J. Phys. Chem., 1999, V. 103, p.4809-4813.

85. Wang, Q. & Johnson, J.K. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores//J. Chem Phys., 1999, V. 110, p.577-586.

86. Rzepka, M., Lamp, P. & de la Casa-Lillo, M.A. Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes// J.Phys. Chem, 2007, V.102, p.10894-10898.

87. Wang Ch. Et al C64H4: Production, Isolation, and Structural Characterizations of a Stable Unconventional Fulleride//J. Am. Chem. Soc. 2006, V.128, p.6605-6610.

88. Seifert G. Hydrogen on and in carbon nanostructures// Solid State Ionics, 2004, V. 168, p.265-269.

89. Wang W., Yao M., Pan S., Jin M., Liu В., Zhang H. A Barrierless Process from Physisorption to Chemisorption of H2 Molecules on Light-Element-Doped Fullerenes//J. Phys. Chem. C, 2007, V.102, p. 10900-10905.

90. Jin P., Hao C., Li S., Mi W., Sun Z., Zhang J., Hou Q. Theoretical Study on the Motion of a La Atom Inside a C82 Cage//J. Phys. Chem. A, 2007, V.l 11, p.167-169.

91. Hou J., Kang H. DFT Study on the Stabilities of the Heterofullerenes Sc3N@C67B, Sc3N@C67N, and Sc3N@C66BN//J. Phys. Chem. A, 2007, V.l 11, p.l 111-1116.

92. Zacharia R., Kim K., Nahm K. Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles//Chemical Physics Letters, 2005, V.412, p.369-375.

93. Mubeen S., Zhang Т., Yoo В., Deshusses M., Myung N. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor//J. Phys. Chem. C, 2007, V.100, p.1023-1030.

94. Launaya S., Fedorova A.G., Joshia Y., Caob A., Ajayan P.M. Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement/Microelectronics Journal, 2005, V.l, p. 1-7.

95. Zuttela A. et al Hydrogen storage in carbon nanostructures// International Journal of Hydrogen Energy, 2002, v.27, p.203-212.

96. Pukazhselvan D., Gupta В., Srivastava A., Srivastava O.N. Investigations on hydrogen storage behavior of CNT doped NaAlH4// Journal of Alloys and Compounds, 2005, p. 132-134.

97. Du F., Scogna R.C. et al Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity// Macromolecules, 2004, V.37, p.9048-9055.

98. Du F., Scogna R.C. et al Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity// Macromolecules, 2004, V.37, p.9048-9055.

99. Song Y.S., Youn J.R. Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method// Carbon, 2006, V.44, p. 710-717.

100. Callegari A., Cosnier S. et al Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose Biosensors// J. Mater. Chem., 2004 , V.14, p.807-810.

101. Panhuis M., Maiti A. Selective Interaction in a Polymer-Single-Wall Carbon Nanotube Composite//J. Phys. Chem. В 2003, V. 10, p.478-482.

102. Kedem S., Schmidt J., Paz Y., Cohen Y. Composite Polymer Nanofibers with Carbon Nanotubes and Titanium Dioxide Particles// Langmuir, 2005, V.21, p. 5600-5604.

103. Dror Y., Salalha W., Khalfin R., Cohen Y., Yarin A., Zussman E. Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning // Langmuir 2003, V.19, p.7012-7020.

104. Ramanathan Т., Fisher F.T., Ruoff R.S., Brinson L.C. Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems// Chem. Mater. 2005, V.17, p. 1290-1295.

105. Baskaran D., Mays J.W., Bratcher M.S. Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes// Chem. Mater. 2005, V.17, p. 3389-3397.

106. Xia H., Wang Q., Qiu G. Polymer-Encapsulated Carbon Nanotubes Prepared through Ultrasonically Initiated In Situ Emulsion Polymerization// Chem. Mater. 2003, V.15, p.3879-3886.

107. Liu I., Huang H., Chang C., Tsai H, Hsu C., Chien-Chao T. Preparing a Styrenic Polymer Composite Containing Well-Dispersed Carbon Nanotubes: Anionic Polymerization of a Nanotube-Bound p-Methylstyrene// Macromolecules, 2004, V.37, p.283-287.

108. Coleman J., Fleming A. et al Binding Kinetics and SWNT Bundle Dissociation in Low Concentration Polymer-Nanotube Dispersions// J. Phys. Chem. B, 2004, V.108, p.3446-3450.

109. Gong X, Liu J., Baskaran S., Voise R., Young J. Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites// Chem. Mater. 2000, V.12, p. 1049-1052.

110. Liu Y., Yao Z., Adronov A. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polymers by Radical Coupling// Macromolecules, 2005, V.38, p.l 172-1179.

111. Velasco-Santos C., Mart A. et al Chemical functionalization of carbon nanotubes through an organosilane//Nanotechnology, 2003, V.13, p.495-498.

112. Evans A.K Kinetics of Langmuir Films of Fullerene C^ll J. Phys. Chem. В 1998, V. 102, p.7016-7022.

113. Ravaine S., Mingotaud C., Delhaes P. Langmuir and Langmuir-Blodgett films of mesogenic methanofullerenes//Synt.Met. 1996, v.81, p.271-275.

114. Hosomizu K. et al Dendritic Effects on Structure and Photophysical and Photoelectrochemical Properties of Fullerene Dendrimers and Their Nanoclusters// J. Phys. Chem. C, 2007, V.l 11, p.2777-2786.

115. Scanu D., Yevlampieva N.P., Deschenaux R. Polar and Electro optical Properties of 60.Fullerene-Containing Poly(benzyl ether) Dendrimers in Solution//Macromolecules, 2007, V.40, p.l 133-1139.

116. Tan Z., Hou J., He Y., Zhou E., Yang C., Li Y. Synthesis and Photovoltaic Properties of a Donor-Acceptor Double-Cable Polythiophene with High Content of C60 Pendant//Macromolecules, 2007, V.40, p.1868-1873.

117. Dresselhaus M., Dresselhaus G., Eklund P. Science of Fullerenes and Carbon Nanotubes// Academic Press, San Diego, 1996.

118. Hirsch A. The Chemistry of the Fullerenes, Thieme, New York, 2004.

119. Gallani J., Felder D., Guillon D., Heinrich В., Nierengarten J. Micelle Formation in Langmuir Films of C6o Derivatives// Langmuir, 2002, V.l8, p.2908-2913.

120. Sygula A., Fronczek F., Sygula R., Rabideau P., Olmstead M. A Double Concave Hydrocarbon Buckycatcher// J. Am. Chem. Soc., 2007, V.32, p. 234237.

121. Vuorimaa E. et al Photoinduced Electron Transfer between a Self-Assembled Resorcinarene-60.Fullerene Complex and Poly(3-hexylthiophene) in Langmuir-Blodgett Films// Langmuir, 2001, V.l7, p.7327-7331.

122. Jin J., Li L., Li Y., Zhang Y., Chen X., Wang D., Jiang S., Li T. Structural Characterizations of C60-Derivative Langmuir-Blodgett Films and Their Photovoltaic Behaviors// Langmuir, 1999, V.15, p.4565-4569.

123. Ge Z., Li Y., Du C., Wang S., Zhu D. Stable monolayer and LB films of a new crown ether-bearing 60.fulleropyrrolidine containing betizolium styryl dye//Thin Sol.Films 2000, v.368, p.147-150.

124. Ge Z., Li Y., Du C., Wang S., Zhu D. Stable monolayer and LB films of a new crown ether-bearing 60.fulleropyrrolidine containing betizolium styryl dye//Thin Sol.Films, 2000, v.368, p.147-150.

125. Valter В., Ram M., Nicolini C. Synthesis of Multiwalled Carbon Nanotubes and Poly(o-anisidine) Nanocomposite Material: Fabrication and Characterization of Its Langmuir-Schaefer Films// Langmuir, 2002, V.18, p.l 535-1541.

126. Girifalco L. A. Extended Mie-Gruneisen theory applied to Сбо in the disordered fee phase//Phys. Rev. B, 1995, V.52, p.9910-17.

127. Baskaran S. et al. A. Molecular properties of C60 in the gas and solid phases// J. Phys. Chem., 1992, V.96, p.858-61.

128. Wang P., Metzger R., Chen B. Stable monolayers of fullerene derivatives//Thin Sol. Films 1998, v.327, p.96-99.

129. Mirkin, C. A.; Caldwell, W. B. Thin film, fullerene-based materials//Tetrahedron, 1996, V.52, p.5113-5130.

130. Wang S., Leblanc R., Arias F., Echegoyen L. Surface and Optical Properties of Langmuir and LB Films of a Crown-Ether Сбо Derivative//Langmuir, 1997, V.13, p.1672-1676.

131. Yamagida, M., Kuri Т., Kajiyama T. Construction of а Сбо monolayer on the water surface// Chem. Lett., 1997, p.911-912.

132. Kharlamov, A. A.; Chernozatonskii, L. A.; Dityat'ev, A. A. Two states of Сбо film at the air/water interface// Chem. Phys. Lett,. 1994, V.219, p.457-461.

133. Back, R.; Lennox, R. В. Сбо and C7o at the air-water interface// J.Phys. Chem. 1992, V.96, p.8149-8152.

134. Chen В. et al. Langmuir-Blodgett films of fullerene derivatives//Thin Sol.Films 1995, v.284, p.102-105.

135. Tachibana H., Azumi R., Ouchi A., Matsumoto M. Effect of Heat Treatment on Langmuir-Blodgett Films of a C60 Adduct// J. Phys. Chem. B, 2001, V.l05, p.42-45.

136. Cao Т., Wei F., Yang Y., Huang L., Zhao X., Cao W. Microtribologic Properties of a Covalently Attached Nanostructured Self-Assembly Film Fabricated from Fullerene Carboxylic Acid and Diazoresin// Langmuir, 2002, V.18, p.5186-5189.

137. Krautler В., Muller Т., Maynollo J., Gruber K., Kratky C., Ochsenbein P., Schwarzenbach D., Burgi H.-B. Fullerenes;Synthesis, Properties and Chemistry of Large Carbon Clusters// Angew. Chem., Int.Ed. Engl., 1996, V.35, p. 12041205.

138. Cardullo F. et al Stable Langmuir and Langmuir-Blodgett Films of Fullerene-Glycodendron Conjugates//Langmuir, 1998, V.14, p.1955-1959.

139. Guo Z., Li Y., Ge Z., Yan J. et al Langmuir-Blodget and optical second-harmonic generation of a crowned 60.fulleropyrrolidine//Appl.Phys. В 2000, p.545-548.

140. Wang S., Leblanc R., Arias F., Echegoyen L. Study of Langmuir monolayers of crown-either Сбо derivatives and they interaction with different subphase ions//Thin Sol.Films 1998, p. 141-144.

141. Vaknin D. Cgo-amine adduct at the air-water interface: A new class of Langmuir monolayers//Physica В 1996, v.221, p. 152-158.

142. Murakami H., Watanabe Y., Nakashima N. Fullerene Lipid Chemistry: Self-Organized Multibilayer Films of a C60-Bearing Lipid with Main and Subphase Transitions//J. Am. Chem. Soc., 1996, V.l 18, p.4484-4485.

143. Langmuir-Blodgett films of fullerene derivatives//Thin Sol.Films 1995, v.284, p.102-105.147.

144. Long С., Xu Y., Zhu C., Zhu D. ТЕМ study on Langmuir-Blodgett films of two novel C60 derivatives//Sol.State Comm. 1996, v.101, №6, p.439-442

145. Giovanelli L., Le Lay G. A chemical and morphological syudy of fullerene derivatives Langmuir-Blodgett films //Appl.Surf.Sci. 2000, v. 162, p.513-518.

146. Zhou D., Gan L., Luo C., Huang C., Wu Y. A new 4-acetalphenyl Сбо-pyrrolidine derivative and its Langmuir-Blodgett film study//Sol.State Comm. 1997,v.l02, №12, p.891-894.

147. Ravaine S., Agricole В., Mingotaud C., Cousseau J., Delhaes P. Langmuir and Langmuir-Blodgett films of a perfluoro Сбо derivative//Chem.Phys.Lett.1995, v.242, p.478-482.

148. Ravaine S., Mingotaud C., Delhaes P. Langmuir and Langmuir-Blodgett films of C60 derivatives//Synt.Met. 1996, v.284, p.76-79.

149. Xiao Y., Ye Y., Yao Z. Preparation and physical properties of TMT-TTF-Сбо Langmuir-Blodgett film//Thin Sol. Films 1995, v. 261, p. 120-124.

150. Denisenko N.I., Yudin S.G., Streletskiy A.V., Boltalina O.V. Brominated fullerenes as precursors in the formation of fluorofullerenes C6oF.8 Langmuir-Blodgett films//Proc.-Electr.Soc. 2002, v. 12, p.655.

151. Denisenko N.I., Yudin S.G, Palto S.P., Boltalina O.V.,Sidorov L.N. Stark spectroscopy studies of the Langmuir-Blodgett films of the fluorofullerenes C60Fi8//Proc.-Electr.Soc. 2003, v. 13, p.607.

152. Tronel-Peyoroz E., Miquel-Mercier G., Seta P. Fulleren Сбо and amphilic Сбо succinic acid derivative Langmuir-Blodgett films as modifier of the wetting properties of Hydrophobic(PET) and hydrophilic(glass) substrates//Synt.Met.1996, v.81,p.33-38.

153. W. Kempinski Superconductivity of Carbon Materials Unstable Phases// ACTA PHYSICA POLONICA A, 2004, Vol. 106, p.627-636.

154. Huang H., Yang S. Langmuir-Blodgett films of the endohedral metallofulerene Dy@Cg2 at the air-water interface//Organomet.Chem. 2000, v.599, p.42-48.

155. Noworyta K., Kuran P. et al Surface properties of Langmuir films of mono-, di- and tetra-n-octyl adducts of C6o at the water-air interface//Synt.Met. 2001, v.123, p.157-164.

156. Sawada H., Hata S., Kawasaki N. et al Synthesis and surface properties of novel fluoroalkyl end-capped amphilic fullerene cooligomers/ZPolymer 2002, v.43, p.1035-1038.

157. Birkett P.R. Fullerene chemistry// Royal Society of Chemistry, Annual Reports, Book A, 2006, p.611-670

158. Fujiwara K. et al Synthesis of a propargyl alcohol having Сбо, its transformation into Сбо derivatives with polar functional groups//Tetrahedron, 1998, V.54, p.2049-2058.

159. Bloor D. et al Organic Materials and Fullerenes//Chem. Phys. Lett, 1996, V.23, p. 1974-1980.

160. Souda R. Sputtering of C60 Fullerenes Physisorbed on Ar, Xe, H20, 02, and C8F18 Matrix Films Studied with Time-of-Flight Secondary Ion Mass Spectrometry// J. Phys. Chem. A, 2007, V.l 11, p.201-205.

161. Yan Q., Zheng Q., Su G. Structures, Electronic Properties, Spectroscopies, and Hexagonal Monolayer Phase of a Family of Unconventional Fullerenes C64X4 (X = H, F, CI, Br)// J. Phys. Chem. C, 2007, V.l 11, p.549-554.

162. Backer S., Suez I., Fresco Z., Rolandi M., Frechet J. Covalent Formation of Nanoscale Fullerene and Dendrimer Patterns// Langmuir, 2007, V.23, p.2297-2299.

163. Ricot C., Audouin F., Mathis C. Solutions of Stars Based on C60. Structural Behavior As Revealed by Small Angle Neutron Scattering// Macromolecules, 2007, V.40, p.1643-1656.

164. Kawai Т., Scheib S., Cava M.P., Metzger R. Langmuir-Blodgett Films of a Thermally Labile 1:1 Adduct of Сбо Fullerene and 8-(9-Anthryl)-7-oxaoctanoic Acid//Langmuir, 1997, V.13,p. 5627-5633.

165. Noworyta K., Kutner W., Deviprasad G., D'Souza F. Protonation-induced rearrangement in Langmuir films and redox properties of 2-(n-alkyl)fulleropyrrolidines//Synth.Met. 2002, v. 130, p.221-227.

166. Tronel-Peyoroz E., Miquel-Mercier G., Seta P. Fulleren C6o and amphilic C6o succinic acid derivative Langmuir-Blodgett films as modifier of the wetting properties of Hydrophobic(PET) and hydrophilic(glass) substrates//Synt.Met. 1996, v.81, p.33-38

167. Krstic V., Duesberg G., Muster J., Burghard M., Roth S. Langmuir-Blodgett Films of Matrix-Diluted Single-Walled Carbon Nanotubes// Chem. Mater. 1998, V.10, p.2338-2340.

168. Iijima S. Helical microtubules of graphitic carbon// Nature, 1991, V.354, p.56-58.

169. Dresselhaus M., Dresselhaus G., Saito R. Physics of carbon nanotubes//Carbon, 1995, V.3, p.883-891.

170. Kumar M., Ando Y. A simple method of producing aligned carbon nanotubes from an unconventional precursor Camphor//Chem. Phys. Lett., 2003, V.374, p. 521-526.

171. Ci L., Wei J., Wei В., Liang J., Xu C., Wu D. Carbon nanofibers and single-walled carbon nanotubes preparedby the floating catalyst method// Carbon, 2001, V.39, p. 329-335.

172. Wong Т., Wang M., Chena K., Chen L., Ma T. Carbon nanotube growth by rapid thermal processing//Diam. and Rel. Mat., 2001, V. 10, p. 1810-1813.

173. Botti S., Ciardi R., Terranova M., Piccirillo S., Sessa V., Rossi M. Carbon> nanotubes and nanowires grown from spherical carbon nano-particles// Chem. Phys. Lett., 2002, V.355, p.395-399.

174. Sarangi D., Godon V., Granier A., Moalic R., Goullet A., Turban G. Carbon nanotubes and nanostructures grown fromdiamond-like carbon and polyethylene// Appl. Phys. A, 2001,V. 73, p.765-768.

175. Che R., Peng L., Chen X., Duan F., Zou P. Controlled synthesis and phase transformation of ferrous nanowires inside carbon nanotubes// Chem. Phys. Lett., 2003, V.375, p.59-64.

176. Kukovitsky E.F., L'vov S.G., Sainov N.A., Shustov V.A. CVD growth of carbon nanotube films on nickel substrates// Appl. Surf. Sc., 2003, V.215, p.201-208.

177. Zhang Y., Tang Y., Zhang Y., Lee C., Bello I., Lee S. Deposition of carbon nanotubes on Si nanowires by chemical vapor deposition//Chem. Phys. Lett., 2000, V.330, p.48-52.

178. Murakami Y., Miyauchi Y., Chiashi S., Maruyama S. Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates//Chem. Phys. Lett., 2003, V.377, p.49-54.

179. Shimizu Y. et al Fabrication of carbon nanotube assemblies on Ni-Mo substrates mimics law of natural forest growth//Chem. Phys. Lett., 2003, V.370, p.774-780.

180. Blank V. et al Formation of N- containing C-nanotubes and nanofibres by carbon resistive heating under high nitrogen pressure//Diam. and Rel. Mat., 2003, V. 12, p. 864-869.

181. Cui H., Eres G., Howe J., Puretkzy A., Varela M., Geohegan D., Lowndes D. Growth behavior of carbon nanotubes on multilayered metal catalyst in chemical vapor deposition//Chem. Phys. Lett., 2003, V. 374, p.222-228.

182. Han J. et al Growth characteristics of carbon nanotubes using platinum catalyst by plasma enhanced chemical vapor deposition//Diam. and Rel. Mat., 2003, V.12, p.878-883.

183. Kim J., Hyung J., Park J., Kim S., Yoo J., Park C. Growth characteristics of carbon nanotubes via aluminum nanopore template on Si substrate using PECVD//Thin Sol. Films, 2003, V.435, p.312-317.

184. Yuan L., Li Т., Saito K. G rowth mechanism of carbon nanotubes in methane diffusion flames//Carbon, 2003, V.41, p.1889-1896.

185. Савилов C.B., Зосимов Г.А., Лунин B.B. Способ получения УНТ с инкапсулированными частицами никеля и кобальта: установка для синтеза материалов на основе углеродных нанотрубок и частиц никеля и кобальта. Патент № 2005132267

186. Tibbetts G.G. Why are carbon filaments tubular // J. Cryst. Growth., 1994, V. 66., p. 632-638

187. Kim J. et al Growth of carbon nanotubes with anodic aluminum oxide formed on the catalytic metal-coated Si substrate//Diam. and Rel. Mat., 2003, V.12, p.870-873.

188. Biercuk J., Mason N., Marcus C. Local Gating of Carbon Nanotubes//Nano Lett., 2004, V.4, No. 1, p. 1-4

189. Nishide D., Kataura H., Suzuki S., Okubo S., Achiba Y. Growth of single-wall carbon nanotubes from ethanol vaporb on cobalt particles produced by pulsed laser vaporization//Chem. Phys. Lett., 2004, V.392, p.309-313.

190. Chattopadhyay D., Galeska I., Papadimitrakopoulos F. Complete elimination of metal catalysts from single wall carbon nanotubes//Carbon, 2002, V.40, p.985-988.

191. Park Y. et al High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing//Carbon, 2001, V.39, p.655-661.

192. B.P. Ramesh et al Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition//Thin Sol. Films, 2006, V.494, p.128-132.

193. Kuiyang J. et al Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation//J.Mater Chem., 2004, V.14, p.37-39.

194. Vazquez E., Georgakilas V., Prato M. Microwave-assisted purification of ШРСО carbon nanotubes//Chem. Commun., 2002, p.2308-2309

195. Pantarotto D., Briand J., Prato M., Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes// Chem. Commun., 2004, p.16-17

196. Wiltshire J., Khlobystov A., Li J., Lyapin S., Briggs G., Nicholas R. Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes//Chem. Phys. Lett., 2004, V.386, p.239-243

197. Costa P., Friedrichs S., Sloan J., Green M. Structural studies of purified double walled carbon nanotubes (DWNTs) using phase restored high-resolution imaging//Carbon, 2004, V.42, p.2527-2533

198. Soo K., Kim J., Kim C., Hong G. N on-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced field emission//Carbon, 2004, V.41, p.2481-2485

199. Hernadi K., Siska A., Kiricsi I. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes//Sol. St. Ion.,, 2001, V.141,p.203-209

200. Ramesh P., Okazaki Т., Sugai Т., Kimura J., Kishi N., Sato K. Purification and characterization of double-wall carbon nanotubes synthesized by catalytic chemical vapor deposition on mesoporous silica//Chem. Phys. Lett., 2005, V.418, p.404-408

201. Tagmatarchis N., Zattoni A., Reschiglian P., Prato M. Separation and purification of fimctionalised water-soluble multi-walled carbon nanotubes by flow field-flow fractionation//Carbon, 2005, V.43, p. 1984-1989

202. Andoa Y., Zhaoa X., Iijima S. Mass production of multiwalled carbon nanotubes by hydrogen arc discharge//J. of Cryst. Gr., 2002, V.207, p. 19261930

203. Chen C., Chen M., Peng Y., Yu H., Chen C. High efficiency microwave digestion purification of multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition//Thin Sol. Films, 2006, p.365-360

204. Liu Y., Tang J., Chen X., Xin J. Decoration of carbon nanotubes with chitosan//Carbon, 2005, V.43, p. 3178-3180

205. Kong J., Cassell A., Dai H. Chemical vapor deposition of methane for single-walled carbon nanotubes//Chem. Phys. Lett., 1998, V.292, p.567-574

206. Chen C., Chen M., Peng Y., Yu H., Chen C. High efficiency microwave digestion purification of multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition// Thin Sol. Films, 2006, V.494, p.200-206.

207. Saran N., Parikh K., Suh D., Mun E., Kolla H., Manohar S. Fabrication,and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates// J. Am. Chem. Soc., 2004, V.126, p.4462-4463

208. Bai S., Li F., Yang Q., Cheng H., Bai J. Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures// Chem. Phys. Lett., 2003, V.376, p.83-89

209. Venkatesan N., Yoshimitsu J., Ito Y., Shibata N., Takada K. Liquid filled nanoparticles as a drug deliverytool for protein therapeutics// Biomaterials, 2005, V.26, p.7154-7163

210. Kaempgen K., Duesberg G., Roth S. Transparent carbon nanotube coatings// Appl. Surf. Sc., 2005, V.252, p.425^129

211. Liang-Liang Huang et al Molecular Dynamics Simulation Study of the Structural Characteristics of Water Molecules Confined in Functionalized Carbon Nanotubes// J. Phys. Chem. B, 2006, V.l 10, p.25761-25768

212. Soma C., Chattopadhyay J., Peng H., Chen Z., Mukherjee A. Methane Adsorption on Multi-Walled Carbon Nanotube at (303.15, 313.15, and 323.15) К// J. Chem. Eng. Data, 2006, V.51, p. 963-967,

213. Rolf S., Hauge R., Billups W. Surface Area Measurement of Functionalized Single-Walled Carbon Nanotubes//J. Phys. Chem. B, 2006, V.l 10, p.24812-24815

214. Salvador-Morales C., Flahaut E., Simc E., Sloan J., Malcolm L. H. Complement activation and protein adsorption by carbon nanotubes// Mol. Immun., 2006, V.43, p. 193-201

215. Gao P., Liu M. Compression Induced Helical Nanotubes in a Spreading Film of Bolaamphiphile at the Air/Water Interface // Langmuir, 2006, V.22, p.6727-6729

216. Liu Q., Ren W., Li F., Cong H., Cheng H. Synthesis and High Thermal Stability of Double-Walled Carbon Nanotubes Using Nickel Formate Dihydrate as Catalyst Precursor //J. Phys. Chem. C, 2007, V.l 11, p.5006-5013

217. Chen C., Wang X. Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes// Ind. Eng. Chem. Res., 2006, V.45, p.9144-9149

218. Carbon Nanomaterials: Building Blocks in Energy Conversion Devices by Prashant Kamat The Electrochemical Society Interface Spring 2006, 45-47

219. Banhart F. et al METAL ATOMS IN CARBON NANOTUBES AND RELATED NANOPARTICLES//Int. J. of Mod. Phys. B, 2001, V. 15, №31, p. 4037-4069

220. Campos R., Reis dos Santos H., Grinberg P. Determination of copper, iron, lead and nickel in gasoline by electrothermal atomic absorption spectrometry using threecomponent solutions // Spectr.Acta Part B, 2002, V.57, p:15-28

221. Guoa Y., Minamia N., Penga J., Yoshidaa M., Miyashita T. Multi-layer LB films of single-wall carbon nanotubes// Physica B, 2002, V.323, p.235-236

222. Li X., Li Z., Wang X., Shimoyama I., Sun X., Won-Seok S., Da H. Langmuir-Blodgett Assembly of Densely Aligned Single-Walled Carbon Nanotubes from Bulk Materials// J. Am. Chem. Soc., 2004, p.76-80

223. Krustic P., WassermanE., Keizer P. et al. Radical reactions of C6o//Science 1991, v. 254, p.l 183-1185

224. Chueh S., Lai M., Lee M. et al. Decrease of free radical level in organ perfusate by a novel water-soluble carbon-sixty, hexa(sulfobutyl)fullerenes//Transplant Proc. 1999, v.31, p.1976-1977

225. Lai H., Chen Y., Chen W. et al. Free radical scavenging activity of fullerenol on grafts after small bowel transplantation in dogs//Transplant Proc. 2000, v.32, №6, p. 1272-1274

226. Lai Y., Murugan P., Hwang K. Fullerene derivative attenuates ischemia-reperfusion-induced lung injury//J.Life Sci. 2003, v. 72, №11, p.1271-1278

227. Lai H., Chen W., Chiang L. Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs// World J.Surg. 2000, v.24, p.450-454

228. Yang D., Wang M., Chen I. et al. Systemic administration of water-soluble hexasulfonated C60 (FC4S) reduces cerebral ischemia-induced infarct volume in gerbils/ZNeurosci.Lett. 2001, v. 311, №2, p. 121-124

229. Huang S., Tsai S., Chih C. et al. Neuroprotective effect of hexasulfobutylated C6o on rats subjected to focal cerebral ischemia//Free Radic.Biol.Med. 2001, v.30, №6, p. 643-649.

230. Lin A., Fang S., Lin S. et al. Local carboxyfullerene protects cortical infarction in rat brain//J.Neurosci.Res. 2002, v.43,№4, p.317-321.

231. Satoh M., Matsuo K., Kiriya H. et al. Inhibitory effect of a fullerene derivative, monomalonic acid C60, on nitric oxide-dependent relaxation of aortic smooth muscle//Gen.Pharmacol. 1997, v. 29, №3, p.345-351

232. Wolff D., Papoiu A., Mialkowski K. et al. Inhibition of nitric oxide synthase isoforms by tris-malonyl-C60-fullerene adducts//J.Arch.Biochem.Biophys. 2000, v. 378, №2, p.216-223

233. Huang S., Mashino Т., Mochizuki M. et al Effect of hexasulfobutylated C6o on the isolated aortic ring of guinea pig//Pharmacology 2000, v.64, p. 91-97

234. Lu L., Lee Y., Chen H. et al The possible mechanisms of the antiproliferative effect of fullerenol, polyhydroxylated Сбо, on vascular smooth muscle cells//Br.J.Pharmacol. 1998, v. 123, p.l097-1102

235. Bowry V., Stocker R. Tocopherol-mediated peroxidation: the prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein//J.Am.Chem.Soc. 1993, v.115, p.6029-6044

236. Lee Y., Chiang L., Chen W., Hsu H. Water-soluble hexasulfobutyl 60.fullerene inhibit low-density lipoprotein oxidation in aqueous and lipophilic phases//Proc.Soc.Exp.Biol.Med. 2000, v.224, p.69-75

237. R. Schreiner et al Functionalized Nanodiamonds: Triamantane and 12l.TetramantanevPeter //J. Org. Chem., 2006, V.71, p.6709- 6720

238. Dolmatov, V.Detonation Synthesis Ultradispersed Diamonds: Properties and Applications//Russian Chemical Review, 2001, V.70, p.607-626

239. Wang L., Gao Y., Xue Q., Liu H., Xu T. Effects of Nano-diamond'Particles on the Structure and Tribological Property of Ni-matix Nanocomposite Coatings//Mat. Sc. and Eng., 2004, V.309, p.313-318

240. Ozkan G. Influence of nickel boride additions on sintering behaviors , of injection moulded 17-4 PH stainless steel powder//Scr. Mat., 2005, V.52, p. 187-192

241. Hou, F., Wang, W., Guo H. Effect of the dispersibility of Zr02 nanoparticles in Ni-Zr02 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings//Appl. Surf. Sc., 2006, V.252, p.3812-3817, 2006.

242. Osswald S., Yushin G., Mochalin V., Kucheyev S., Gogotsi Y. Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air// J. Am. Chem. Soc., 2006, V.l28, p. 11635-11642

243. Liu Y., Khabashesku V., Halas N. Fluorinated Nanodiamond as a Wet Chemistry Precursor for Diamond Coatings Covalently Bonded to Glass Surface// J. Am. Chem. Soc., 2005, V.127, p.3712-3713

244. Andreyev, M., Anishchik, V., Markova, L., Kuznetsova, T. Ion-beam coatings based on Ni and Cr with ultradispersed diamonds—structure and properties//Vacuum, 2005, V.78, p.451-454

245. Boryslav A. Tkachenko et al Functionalized Nanodiamonds Part 3:Thiolation of Tertiary/Bridgehead Alcohols// Organic Lett., 2006, V.8, №. 9, p.l 767-1770

246. Engel P., Schwarz G., Wolf G. K. Characterisation of chromium nitride films prepared by ion-beam-assisted deposition// Surf, and Coat. Techn., 1999, V.l 12, p.286-290

247. Gurga A., Mochalin V., Pepe D., Picardi C. Nanoindentation Study of the Effect of Nanodiamond Additives on Electroless Deposition Nickel-Boride Coating//J.of On. Mat., 2006, V.2, 1-9

248. Shenderova O. A.; McGuire G. Nanocrystalline Diamond. In Nanomaterials Handbook; Gogotsi, Y., Ed.; CRC Press: Boca Raton, FL, 2006; p. 203-237.

249. Barnard A., Sternberg M. Substitutional Nitrogen in Nanodiamond and Bucky-Diamond Particles//J. Phys. Chem. B, 2005, V.l09, p. 17107-17112

250. Osswald, S., Yushin, G. N., Mochalin, V., Kucheyev, S. & Gogotsi, Y., "Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air// J. of the Am. Chem. Soc., 2007, In Press

251. Purification and characterization'of double-wall carbon nanotubes synthesized by catalytic chemical vapor deposition on mesoporous silica// Chem. Phys. Lett., 2005, V.418, p.404-408.

252. Raymundo-Pinero E., Cacciaguerra Т., Simon P., Beguin F. A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes// Chem. Phys. Lett., 2005, V.412, p. 184-189.

253. Гордон А., Форд P. Спутник химикаУ/М., Мир, 1976, c.437-444

254. Ребиндер П.А. Избранные труды. Поверхностные явления в дисперсных системах. М.:Наука, 1978, -365с.

255. Basavaraj М. Packing, Flipping, and Buckling Transitions in Compressed Monolayers of Ellipsoidal Latex Particles// Langmuir 2006, V.22, p.6605-6612

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.